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The detection and estimation of gravitational wave signals belonging to a parameterized family of

waveforms requires, in general, the numerical maximization of a data-dependent function of the signal

parameters. Because of noise in the data, the function to be maximized is often highly multimodal with

numerous local maxima. Searching for the global maximum then becomes computationally expensive,

which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach

to reducing computational costs in such applications. We report results from a first investigation of the

particle swarm optimization method in this context. The method is applied to a test bed motivated by the

problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm

optimization works well in the presence of high multimodality, making it a viable candidate method for

further applications in gravitational wave data analysis.

DOI: 10.1103/PhysRevD.81.063002 PACS numbers: 95.85.Sz, 02.50.Tt, 04.80.Nn, 07.05.Kf

I. INTRODUCTION

The detection and estimation of a gravitational wave
(GW) signal belonging to a parameterized family of wave-
forms requires, in general, the numerical maximization of
some data-dependent function over the space of the signal
parameters. For example, in the matched filtering [1,2]
method, which is the focus of this paper, the function to
be maximized is a suitably defined inner product between
the data and parameterized signal waveforms. The global
maximum of this function serves as a detection statistic. A
point estimate of the signal parameters is furnished by the
location of the global maximum in parameter space.

The presence of noise in the output of GW detectors
leads to a large number of local maxima in this function
that are distributed randomly in parameter space. The
search for the global maximum in this forest of local
maxima then becomes a computationally expensive task.
This can affect the sensitivity of a search by limiting either
the volume that is searched in parameter space or the
integration length of data required for accumulating suffi-
cient signal-to-noise ratio (SNR), or both. The computa-
tional efficiency of the search for the global maximum is,
thus, an important issue in GW data analysis. The various
search strategies proposed in the GW literature so far can
be broadly divided into those based on sampling the func-
tion on predetermined grids of points in parameter space
(e.g., [3–5]), and those that use stochastic optimization
methods (e.g., [6–8]).

In the class of grid-based methods, significant savings in
computational costs have been demonstrated with a hier-
archy of grids [4,9,10]. A nice feature of grid-based meth-
ods is that they are easy to characterize statistically and,
hence, design variables of the algorithm, such as the spac-
ing of points, can be fixed systematically.
Stochastic methods do not use predetermined grids but

employ some form of random walk through the parameter
space. The probabilistic rules of the random walk are tuned
to maximize the chances of its terminating close to the
global maximum. There are many algorithms that fall
under the class of stochastic methods, a hybrid of simu-
lated annealing and Metropolis-Hastings Markov chain
Monte Carlo (MCMC) being the most widely explored in
GW data analysis [6–8].
Since the number of points in a grid grows exponen-

tially with the dimensionality of the parameter space,
stochastic methods tend to outperform grid-based ones
with an increase in the number of signal parameters. It
is worth noting here that stochastic methods in GW
data analysis incur the additional computational cost of
generating signal waveforms on the fly. In grid-based
methods, on the other hand, waveforms can be com-
puted and stored in advance of processing the data.
Stochastic methods can, therefore, lose their advantage
if the computational cost of generating waveforms be-
comes too high.
The performance of a stochastic method may be sensi-

tive to the values to which its design variables are tuned.
Since the tuning is usually done on simulated data, it is
not clear how robust current stochastic methods are
against features of real data such as nonstationarity and
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non-Gaussianity. Additionally, the number of design
variables that require careful tuning is fairly large for
some of the methods. In such cases, tuning becomes
more of an art than a well-defined procedure and this
may also affect robustness. In some methods, prior infor-
mation is used about generic features of the function to be
maximized. This may not be reliable if the assumptions
behind the prior information, such as a particular noise
model, become invalid. To properly address issues such as

these it is important that a wide variety of stochastic
methods be explored in GW data analysis.

Particle swarm optimization (PSO) [11], first proposed
by Kennedy and Eberhardt in 1995, is a stochastic method
that has been garnering a lot of attention recently in many
application areas [12]. An attractive feature of PSO is that,
in its basic form, it has a small number of design variables.
On standard testbeds, PSO has been found to have compa-
rable or superior performance to other well-known meth-
ods such as MCMC.

This paper presents the first application of PSO to GW
data analysis. We pose the following specific questions:

(1) Is PSO a viable method when applied to a function
that is highly multimodal and essentially stochastic
in nature? This is the typical case in GW data
analysis.

(2) How many design variables are there in PSO, and
how many of them need to be tuned well?

(3) Can the tuning of these variables be done without
requiring prior information about features of the
function, thus increasing the robustness of the
method?

(4) What is the computational cost of the method and
what are the most important technical improve-
ments required for the future?

To answer these questions in the most direct and reliable
manner, we construct a testbed based on the well under-
stood task of detecting and estimating binary inspiral sig-
nals in data from a single ground-based detector. This
problem involves low-dimensionality but offers the more
serious challenge of high multimodality. To keep the focus
on the latter, a simplification is made regarding the shape
of the search region such that it admits unphysical wave-
forms. Thus, the implementation of PSO presented here is
not directly applicable to binary inspiral searches at
present. The required technical refinements are discussed
in the paper. In addition, a novel and systematic tuning
procedure is introduced that is based on data containing
only noise. This procedure may be useful for other sto-
chastic methods also.

The rest of the paper is organized as follows: Section II
describes the testbed, and Sec. III describes the PSO
method. We explain our procedure for tuning the design
variables of PSO in Sec. IV. Section V then presents results
from numerical simulations. Our conclusions and pointers
to future work are presented in Sec VI.

A. Notation

x, y, etc. A time series with a finite number,N, of samples.
The kth sample, 0 � k � N � 1, is denoted by x½k�.
�s, T The sampling interval and the duration of x, respec-
tively. The number of samples in x is N ¼ ½T=�s�, where
the square brackets denote truncation to the nearest integer.
� The set of parameters describing a family of signals.
sð�Þ The time series of the signal corresponding to pa-
rameter values �. The kth sample of sð�Þ is denoted by
s½k; ��. In our case, signals have a well-defined start and
stop time, and the interval between them may be less than
T. However, sð�Þ still consists of N samples with the
samples outside the interval enclosed by the start and
stop times set to 0 (zero-padding).
~x The discrete Fourier transform (DFT) of x. The DFT
value at the frequency k=T, k ¼ 0; 1; . . . ; ½N=2þ 1�, is
denoted as ~x½k�. The DFT of sð�Þ is denoted by ~sð�Þ and
its value at the kth frequency by ~s½k; ��.
hx; yi The time series introduced above are elements of
RN , the vector space of real N tuples. From the point of
view of detection and estimation of a signal in data with
additive stationary noise, a natural inner product can be
introduced on this vector space,

hx; yi ¼ 4R
� X½N=2þ1�

k¼0

~x�½k�~y½k�
Sn½k�T

�
; (1)

where Sn½k� is the one-sided power spectral density (PSD)
of the noise.
kyk The norm on RN ,

kyk2 ¼ hy; yi; (2)

induced by the inner product defined above. The SNR of a
signal sð�Þ is defined as ksð�Þk.

II. TESTBED

In this section, we describe the testbed to which PSO is
applied. The testbed is constituted by the noise model,
signal family, and the function to be maximized.

A. Noise model

A GW signal incident on an interferometric ground-
based detector produces a difference in the lengths of its
two arms. After calibrating out the common arm length and
the transfer function of the detector, the data, x, contains
the measured GW-induced strain added to instrumental and
environmental noise n. Thus, x ¼ n when no GW signal is
present, and x ¼ sð�Þ þ n when there is. In our simula-
tions, n is a realization of a stationary, Gaussian noise
process with a PSD, Sn½k�, that matches the initial LIGO
[13] design sensitivity curve in shape [14].
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B. Signal waveforms

We use the signal family associated with a nonspinning
inspiraling binary system, computed up to the second post-
Newtonian (2PN) order [15]. This system consists of two
nonspinning compact stars (neutron stars or black holes)
losing orbital binding energy through GW emission.
Members of this signal family have chirp waveforms
with monotonically increasing instantaneous amplitude
and frequency.

For the case of a single detector, the parameters specify-
ing the 2PN signal waveforms can be grouped into two
sets. The first set is that of the chirp-time [16] parameters,
f�ag, a ¼ 0, 1, 1.5, 2, that are constructed out of the masses
of the two components of the binary. Expressions for the
chirp-time parameters are provided in the Appendix. The
second set consists of the time of arrival, ta, the initial
phase,�a, and the amplitude,A. Interferometric ground-

based detectors have a sharp rise in seismic noise below
some frequency fa ( ¼ 40 Hz for the initial LIGO). The
chirp signal from a binary inspiral is essentially unobserv-
able when its instantaneous frequency is below fa. The
time at which the signal becomes visible is ta and the
corresponding instantaneous phase of the signal is �a.
Since all the four chirp times depend on the masses of

the two compact stars, only two of them are independent.
We choose �0 and �1:5 as the two independent chirp-time
parameters. Thus, the set of signal parameters is � ¼
fA;�a; ta; � ¼ f�0; �1:5gg.
As discussed in Sec. I, the computational cost of gen-

erating waveforms on the fly is important for stochastic
methods like PSO. The 2PN signal family is amenable to a
fast implementation because a sufficiently accurate ana-
lytical form exists for the Fourier transform of these wave-
forms [17],

~s½k;�� ¼
8><
>:
0; k � ½faT�;
AN f�7=6 exp½�2�ifta þ i�a � ic ðf; �Þ þ i �4�; ½faT�< k � ½fcT�;
0; k > ½fcT�

(3)

where, the lower cutoff frequency fa was explained above
and the upper cutoff frequency fc follows from the termi-
nation of the inspiral waveform when the binary reaches its
last stable orbit [18]. The expression for c ðf;�Þ is given in
the Appendix. The normalization constant N is defined
such that, ksðfA ¼ 1;�a; ta; �gÞk2 ¼ 1. It follows thatA
is the SNR of the signal.

Although in reality, fc depends on the mass of the binary
system, we set fc ¼ 700 Hz for our testbed. Because of the

f�7=3 falloff in signal power, j~sj2, the bulk of signal SNR is
accumulated at much lower instantaneous frequencies
(about 92% by �256 Hz [10]). Thus, though the actual
inspiral in the case of low mass systems lasts until
�1:5 kHz (for a double neutron star system), there is
practically no effect on the function to be maximized by
keeping fc ¼ 700 Hz. On the other hand, the cost of gen-
erating the templates is reduced by nearly half due to the
reduction in the number of frequency samples at which Eq.
(3) needs to be evaluated. For high mass systems, fc ¼
700 Hz is much higher than the actual termination fre-
quency for the inspiral. However, allowing higher noise
frequencies in this case leads to a rougher function than
normal. Thus, our choice of fc keeps the challenge of
multimodality for PSO intact while allowing the testbed
to remain simple and computational costs, that are domi-
nated by the low mass inspirals, to remain manageable.

Later in the paper, we use the fact that Eq. (3) can be
used to generate perfectly normal waveforms even for
values of � that do not correspond to valid binary mass
components. These waveforms are also chirps but their
phase evolution does not correspond to any physical binary
system.

C. Fitness function

The function to be maximized is

�ðta; �jxÞ ¼ ½hq0ðta; �Þ;xi2 þ hq�=2ðta; �Þ;xi2�1=2; (4)

q �ðta; �Þ ¼ sðfA ¼ 1;�a ¼ �; ta; �gÞ: (5)

This function is obtained by maximizing the log likelihood,
hx; sð�Þi � ð1=2Þksð�Þk2 analytically over A and �a.
For a given �, the evaluation of hq�ðta; �Þ;xi over ta ¼

m�s, m ¼ 0; 1; . . . ; N � 1, is a cross-correlation operation
that can be computed efficiently using the fast Fourier
transform. Thus, the function that is maximized using
PSO is

�ð�jxÞ ¼ max
ta

�ðta; �jxÞ: (6)

In the remainder of the paper, �ð�jxÞ will be called the
fitness function in keeping with the standard terminology
used in much of the literature on stochastic methods.
The presence of noise in x makes the fitness function

highly multimodal as shown in Fig. 1. The large number of
local maxima with random locations and sizes poses a
strong challenge to stochastic methods. When the noise
is stationary and Gaussian, and the signal present in the
data is from the waveform family that one is searching for,
certain characteristic features are present in the fitness
function. For example, the shape of the peak in Fig. 1 is
elongated on the average along a predictable direction.
MCMC methods in the GW literature use this type of prior
information about the fitness function in tuning the design
variables [7].
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III. PARTICLE SWARM OPTIMIZATION

The PSO algorithm is first described in terms of a
general fitness function �ð�Þ, over some parameter set �.
Later, we specialize the discussion to the case of the binary
inspiral testbed.

A. The PSO algorithm

Let � ¼ f�1; �2; . . . ; �Dg denote a point in RD, and �ð�Þ
be the fitness function. The essential idea behind PSO is to
compute �ð�Þ simultaneously at several locations and use
these samples to influence the locations for computing the
next set of samples. This process continues iteratively until
some stopping rule is satisfied. The process can be visual-
ized by treating the sample locations as a swarm of parti-
cles that moves in RD, hence the name of the algorithm. A
precise description now follows.

Let the coordinates in RD of the ith particle in a swarm
of Np particles be Qi½k� at the kth step in the search (k ¼
0; 1; . . . ). Associated with this particle is a velocity vector
Vi½k� that determines Qi½kþ 1�,

Qi½kþ 1� ¼ Qi½k� þ Vi½k�: (7)

The PSO algorithm is usually started with randomly
chosen particle locations and velocities. In our implemen-
tation, we position the particles initially on a regular grid
while the initial velocities are kept random.

Let the maximum value of �ð�Þ found by the ith particle
over k steps be RiðkÞ and the location of RiðkÞ, called the
particle’s best location pbest, be Pi½k�. Thus,

RiðkÞ ¼ �ðPi½k�Þ � �ðQi½j�Þ; j � k: (8)

Let the maximum over fRiðkÞg, i ¼ 1; . . . ; Np, be RgðkÞ and
its location, called the global best location gbest be Pg½k�,

RgðkÞ ¼ �ðPg½k�Þ � �ðPj½k�Þ; 8 j: (9)

At any step, there is always one particle in the swarm
whose pbest is also the gbest. We call this particle the
best particle at step k. Note that both pbest and gbest are
locations found over the entire past history of the motion of
the particles. They need not necessarily change at every
step.
The velocity for the ith particle at the next step, kþ 1, is

determined by the dynamical equation,

Vi½kþ 1� ¼ wVi½k� þ c1�1ðPi½k� �Qi½k�Þ
þ c2�2ðPg½k� �Qi½k�Þ; (10)

where w, which can depend on k, is called the inertia
weight, c1 and c2 are called acceleration constants, and
�1, �2 are random numbers drawn independently at each
step from the uniform distribution on [0, 1].
Finally, for any component Vi;m½p� of the particle veloc-

ity Vi½p� ¼ ðVi;1½p�; . . . ; Vi;D½p�Þ,

Vi;m½p� ¼
�
Vmax;m; Vi;m½p�> Vmax;m

�Vmax;m; Vi;m½p�<�Vmax;m
; (11)

where Vmax;k > 0, k ¼ 1; . . . ; D, and Vmax ¼
ðVmax;1; . . . ; Vmax;DÞ is called the maximum velocity.

Like all stochastic methods, PSO involves a competition
between wide ranging exploration of the fitness function
and convergence to a best value. In order to avoid trapping
by a local maximum, the method must be able to explore
other parts of the parameter space, while to find the global
maximum, the method must eventually explore a progres-
sively smaller region around some point. The way this
competition is implemented in the PSO algorithm is seen
clearly from Eqs. (10). The first term simply moves a
particle along a straight line, while the remaining two
terms are sources of acceleration, one pulling it toward
its pbest and another pulling it toward gbest. The last two
effects are combined with random weights �1 and �2. The
random deflections and inertial motion allow a particle to
explore the fitness function, while the attractive pulls of
pbest and gbest counter this behavior. With a dynamic
inertia weight that decreases in time, the attractive pull
eventually wins over. A rudimentary emulation of real
biological swarming behavior is built in through each
particle being aware of gbest.
The PSO algorithm has another interesting feature. The

best particle, by definition, has its pbest Pi½k� coincident
with gbest, Pg½k�, making the terms Pi½k� �Qi½k� and

Pg½k� �Qi½k� equal for it. This particle then accelerates

toward gbest alone and only moves along a straight line
through this location. This situation continues until a new
gbest is found. In effect, one particle at any step shows a
convergence behavior, exploring the neighborhood of the
current gbest, while the other particles continue their
exploration.
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FIG. 1. A realization of the fitness function for the binary
inspiral testbed. The data contains a signal with an SNR ¼
8:0. In the absence of noise, the fitness function has only one
extremum at the location identified by the chirp times of the
signal. The presence of noise leads to a forest of local maxima.
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B. Termination criterion

For stochastic methods, the probability of convergence
to the global maximum is usually guaranteed only in the
asymptotic limit. Hence, any practical implementation of a
stochastic method must include a criterion for terminating
the search. The criterion we adopt for termination is spe-
cific to the fitness function for the binary inspiral testbed
and, accordingly, � now refers to the chirp-time
parameters.

If the particles in PSO continue to move over several
steps but do not find a significantly different gbest, it is
likely that the current gbest lies close to the global maxi-
mum. A natural criterion for termination then is to check if
gbest stays confined to a small region over a predetermined
number of steps.

When the data contains only a signal, x ¼
sðfA;�a; ta; �gÞ, the fitness function is maximum at the
location � of the signal. (sð�Þ � sðfA;�a; ta; �gÞ for brev-
ity in the following since the other parameters do not figure
in the fitness function.) The fractional drop in the fitness
function for a small displacement �� ¼ ð��1 ¼
��0;��2 ¼ ��1:5Þ is given by

1� �ð�þ ��jsð�ÞÞ
�ð�jsð�ÞÞ ’ �P

2
i;j¼1 H ij��i��j

2�ð�jsð�ÞÞ ; (12)

H ij ¼ @2�ð�0jsð�ÞÞ
@�0i@�0j

���������0¼�
; (13)

where � is the location of the signal. For a small fractional
drop �, therefore, we get an ellipsoidal region S�ð�Þ
centered at � such that �ð�0jsð�ÞÞ � ð1� �Þ�ð�jsð�ÞÞ if
�0 2 S�ð�Þ.

Now, the neighborhood of the global maximum in the
presence of noise is also S�ð�Þ on the average for a frac-
tional drop �. Therefore, it is natural to choose the region
of convergence to be S�ð�Þ in general. This reduces the
task of specifying the region to simply choosing a value for
�. Following a convention widely used in the GW litera-
ture [3], we fix � ¼ 0:03.

Thus, we arrive at the following criterion for terminating
PSO. At each step k, (i) obtain the ellipsoid around gbest,
that is, S�ðPg½k�Þ. (ii) If the best location Pg½kþ 1� falls
outside S�ðPg½k�Þ, then reset the region of convergence to

the new best location, i.e., use S�ðPg½kþ 1�Þ. (iii) If the
region of convergence is not found to change over Nt

successive steps, then terminate PSO.
The termination criterion implies that if PSO terminates

near the true global maximum, the fitness value found will
have a fractional drop less than �. Consequently, it will
have a performance comparable to a grid-based search in
which the templates are spaced according to the minimal
match criterion [5] and the minimal match is 1� �. This is
important for situations where a grid-based search is in-
feasible as it guarantees that PSO will perform as well or

better. The probability of convergence to the global maxi-
mummust be high, however, and this is the objective of the
tuning process described later.

C. Search boundary

Even with the termination criterion in place, the search
region must be finite in order for PSO to terminate in a
finite number of steps. Otherwise, the swarm may continue
to find a better gbest and the termination criterion may
never be satisfied. This is especially relevant in the case
when the data has only noise. Thus, the PSO dynamics
must be supplemented with appropriate boundary condi-
tions. Many approaches to this problem have been pro-
posed, with a good summary provided in [19]. In this
paper, we use the invisible wall boundary condition, but
we also briefly describe some of the others below.

1. Types of boundary conditions

The boundary conditions proposed in the PSO literature
are as follows: (This list is taken from [19] and is by no
means an exhaustive one.)
Absorbing walls—When a particle crosses a rectangular

boundary, the velocity component perpendicular to the
boundary is zeroed. Eventually, this allows the particle to
be pulled into the search domain.
Reflecting walls—As with the absorbing walls condi-

tion, the particle velocity is altered but instead of being
zeroed, the velocity component perpendicular to the wall is
reversed in sign. This throws the particle back into the
search domain.
Invisible walls—No change is made to the dynamics of

the boundary crossing particle but �ð�jxÞ is set to zero, and
it is not evaluated as long as the particle stays outside the
boundary.

We have tried all three boundary conditions but, like the
authors of [19], we find that the invisible wall condition
tends to perform better than the other two. As observed in
[19], it appears that keeping the particles moving according
to the PSO dynamical equations [Eq. (10)] is important for
achieving good performance even though particles that
cross the boundary effectively do not contribute to the
search until they are drawn back inside. The first two
conditions not only change the dynamics of the particles,
but for any reasonable value of Vmax, they disturb it
drastically.

2. Search region for the testbed

The simplest search region in � parameter space is a
rectangle �0;min � �0 � �0;max and �1:5;min � �1:5 �
�1:5;max. A part of this region, however, admits waveforms

that do not correspond to a physically valid binary system.
This is due to the dependence of �0, �1:5 on the symmetric
combinations of binary component masses M and 	, the
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total and reduced mass of the binary, respectively, and the
inequalityM � 4	. Nonetheless, as remarked in Sec. II B,
there is no technical problem in generating waveforms
corresponding to the unphysical chirp times and nothing
strange happens to the fitness function there. See Fig. 1, for
example, where a part of the parameter region shown is
unphysical. Since the primary utility of the binary inspiral
problem in this paper is to provide a testbed for PSO, this
physical constraint is ignored.

The rectangular search region allows the coordinate
transformation

x1 ¼ ð�0 � �0;minÞ=ð�0;max � �0;minÞ; (14)

x2 ¼ ð�1:5 � �1:5;minÞ=ð�1:5;max � �1:5;minÞ; (15)

such that xi 2 ½0; 1�, i ¼ 1, 2. In our codes, all PSO
equations use x1 and x2 and the corresponding velocity
components.

We choose �0;min ¼ 0:94 sec , �0;max ¼ 37:48 sec ,
�1:5;min ¼ 0:234 sec , and �1:5;max ¼ 1:021 sec . With �0
and �1:5 along the horizontal and vertical axes, respec-
tively, the upper, right-hand corner corresponds to binary
component masses (in M�) m1 ¼ 1:1 and m2 ¼ 1:1. The
lower, left-hand corner corresponds to m1 ¼ 10:5 and
m2 ¼ 9:7.

D. PSO design variables

One of the questions posed at the beginning was about
the number of design variables in PSO. In our implemen-
tation, there are a total of 9 that are listed below for
reference.
Np Number of particles in the swarm.

c1; c2 Acceleration constants.
Vmax Maximum velocity of a particle.
�, Nt The parameters used to specify the termination
criterion for PSO. These parameters are not part of the
standard PSO algorithm.
Parameters governing the inertia decay law The inertia
weight is decreased in value as PSO progresses through a
search. The PSO literature is full of different types of decay
laws but, in general, it is known that a strictly linear decay
law is not very useful. We have developed the following
decay law that has elements of both linearity and nonline-
arity. Let w½k� be the value of the inertia weight at step k,

w½k� ¼ w0 �mðk� k0Þ=Nt; (16)

where w0 > 0 and m> 0. The parameter k0 starts with an
initial value of k0 ¼ 0 and is kept fixed as long as gbest
stays within the current region of convergence. If gbest
exits the convergence region at some step k0 without ter-
mination, k0 is set equal to k

0. Thus, the value of the inertia
is reset to the starting value of w0 every time termination
fails and the linear decay of the inertia starts anew.
Nrep For given data x, independent runs of PSO yield

different values of �ð�jxÞ corresponding to the different

fitness values at termination. This is unavoidable for any
stochastic method. However, termination near the true
global maximum in independent runs of PSO on the
same data should result in the clustering of the different
values found and their locations. We can turn this argument
around by running PSO independently several times on the
same data and using the formation of a cluster as an
indicator of successful termination in the vicinity of the
global maximum. The number of independent runs of PSO
on the same data, Nrep, is also a design variable.

IV. TUNING THE DESIGN VARIABLES

For any stochastic method, convergence to the global
maximum can only be quantified as a probability. In some
asymptotic limit, such as particle number Np ! 1 for

PSO, this probability becomes unity. However, this also
implies an infinitely large computing cost. Thus the design
variables must be tuned to find the best trade-off between
the probability of convergence and the associated computa-
tional cost. We present here the procedure followed for
tuning the design variables of PSO.
In contrast to the tuning procedure used for most MCMC

methods in the GW literature, our approach is not based on
data containing a signal but data that is purely noise. The
latter is the worst case scenario for any stochastic method.
However, good performance in the pure noise case more or
less guarantees success when a signal is present. Moreover,
this approach to tuning avoids any bias due to the use of a
particular set of signals or SNRs.
The tuning procedure presented here can be used, in

principle, to tune all the nine design variables of PSO
(cf. Sec. III D). However, applying the procedure to all of
them is computationally too expensive, at least for the
objectives of this paper. We focus instead on two of the
most important variables for the performance of PSO, Np

and Nt. For the rest, we either choose values commonly
used in the literature or simply pick reasonable ones based
on our experience with PSO. Thus, we set c1 ¼ c2 ¼ 2,
Vmax ¼ ð0:5; 0:5Þ, w0 ¼ 0:9, m ¼ 0:4, � ¼ 0:03, and
Nrep ¼ 5.

A. Criterion for optimal tuning

Measuring the probability of convergence for the pure
noise case presents a practical problem. In simulations
where a large SNR signal is present, we know that the
true maximum is most likely to be in close proximity to the
location of the signal and it can be found reliably using,
say, a small area grid-based search. For the pure noise case,
however, the location is not known a priori, even approxi-
mately, and the only reliable solution is a grid-based search
over the entire search region. However, we avoid this
solution because (i) the simulations become computation-
ally very expensive, and more importantly, (ii) it would fail
for higher dimensional problems where grid-based
searches are infeasible.
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To circumvent this problem, we invoke the argument
outlined in Sec. III D for using Nrep wherein termination in

the vicinity of the global maximum is indicated by the
clustering of the fitness and parameter values over inde-
pendent runs of PSO. One way to further confirm the
association between a cluster and the global maximum is
to increase the number of particles significantly and verify
that a cluster forms around the same location. This is
similar to what is done, for example, in the numerical
solution of differential equations. To check that a given
solution is valid, the computational grid is made denser and
the new solution is compared with the old one. The above
ideas can be quantified as follows, allowing an objective
criterion for tuning to be developed.

Let there be a number of independent trials, in each of
which a new realization n of noise is obtained and PSO is
run Nrep times on n. Thus, in each trial, Nrep values are

obtained for each of the chirp times �0 and �1:5, and the
corresponding fitness values �ð�jnÞ. We define a set of
Nrep ¼ 5 numbers to be clustered if at least 3 of them lie in

a range that is less than 30% of the entire range of the 5
numbers. This definition of clustering is applied to each of
the three sets of Nrep values above. We then define:

Probability of clustering: Let P�0 , P�1:5 and P� be the

fraction of trials in which clustering occurs for �0, �1:5
and �ð�jnÞ respectively. The maximum among P�0 , P�1:5

and P� is defined as the probability of clustering.
Consistency of clustering: If, for a given realization of
noise, the Nrep fitness values are found to be clustered,

then the cluster is defined to be consistent if (i) the fitness
values are also clustered for N0

p sufficiently greater than

Np, and (ii) the absolute difference between the maximum

fitness values 
 and 
0, corresponding to Np and N0
p,

respectively, is � 10% of their mean, ð
þ 
0Þ=2. We
define the consistency of clustering as the fraction of trials
in which the clusters are consistent.

We deem a given combination of design variable values
acceptable if both the probability and the consistency of
clustering exceed 0.9 for that combination. Of all the
combinations that are acceptable, the optimal is chosen
to be the one that has the lowest computational cost in
terms of the mean number of template evaluations.

B. Simulations

The tuning procedure described above is now applied to
the two design variables Np and Nt. The following set of

points is used to find the acceptable combinations:

Np 2 f42; 81; 121g Nt 2 f20; 40; 80; 120; 160g
This particular domain in the Np-Nt plane is chosen based

on our empirical experience with PSO. (Np ¼ 42 corre-

sponds to a 7-by-6 grid of initial positions, 81 to a 9-by-9

and 121 to an 11-by-11 one.) The number of trials is 50 and
each realization of noise is 64 seconds long with sampling
interval �s ¼ 1=2048 sec .
The tuning procedure proceeds as follows:
(a) Computational cost—For each point in the Np-Nt

plane, we record the mean number of fitness func-
tion evaluations. The results are shown in Table I.

(b) Probability of clustering—Table II lists the proba-
bility of clustering for each combination of Nt and
Np. Note that for the combination Np ¼ 121 and

Nt ¼ 40, P�0 ¼ 94% is very different from P� ¼
76% and P�1:5 ¼ 80%. This suggests that the abnor-

mally high value of P�0 here is most likely a statis-

tical outlier. Therefore, we do not consider this
combination as having a probability of clustering�
90%.

TABLE I. Computational cost of PSO on data with no signals.
For each combination of Np and Nt, the mean number of fitness

function evaluations is listed along with the maximum (super-
script) and minimum (subscript) over 50 trials. The mean values
have been rounded off to the nearest integers.

Np ¼ 42 81 121

Nt ¼ 20 830912 7685250 16 28421 4658910 25 00639 68813 310

40 17 40124 4869618 31 69440 82419 521 44 63261 10525 410

80 28 92037 33822 302 52 66966 82535 559 74 11595 46953 119

120 38 56751 45032 550 69 98285 29349 410 101 495143 99075 262

160 48 14768 88038 808 86 759109 75568 040 126 346161 53598 010

TABLE II. Probability of clustering for different combinations
of Np and Nt. For each combination, the fraction of trials (in %)

P�, P�0 and P�1:5 for which the fitness, �0 and �1:5 values,

respectively, were found to be clustered are listed. The proba-
bility of clustering, shown in bold, is the maximum over P�, P�0

and P�1:5 . The number of trials for each combination is 50.

Np ¼ 42 81 121

Nt ¼ 20 ðP�Þ66 60 70

ðP�0 Þ74 72 82
ðP�1:5 Þ68 72 82

40 72 76 76

82 88 94
86 76 80

80 84 84 90

84 90 92
88 86 92

120 72 88 96
78 92 92

68 88 96

160 82 86 94

88 86 94
78 80 92
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(c) Consistency of clustering—Referring to Table II, we
see that the consistency test is required only for
Np � 81 and Nt � 80 for which, as per the defini-

tion of acceptability above, the probability of clus-
tering is � 90%. Further, for a given Nt, the
computational cost is lower for Np ¼ 81 than Np ¼
121. Hence, we only tune over Nt � 80 for Np ¼
81. No extra work is required for obtaining these
results since for each trial, the same data realization
was used for both Np ¼ 81 and Np ¼ 121 and the

latter can be used to check if a cluster found by the
former was consistent or not. In other words, Np ¼
81 and N0

p ¼ 121 in the definition of the consistency

of clustering given earlier.
We obtain the following results for the consistency of

clustering: 91%, 93%, and 95% for Nt ¼ 80, 120 and 160,
respectively. Thus, according to our final criterion, we pick
Np ¼ 81 andNt ¼ 80 as this is the acceptable combination

with the lowest computing cost (cf. Table I).

C. Trials with no clustering

So far, we have focussed on clustering as the main
indicator of success in locating the true global maximum.
Does this imply that in the trials in which there is no
clustering, PSO fails to locate the global maximum? To
address this, we carried out the following test. First, we
retain the maximum among the Nrep fitness values from

each trial. For each combination of Np and Nt, we divide

the set of maximum fitness values into two disjoint subsets:
one in which all parameters, the two chirp times and the
fitness, were clustered and the other in which at least one
parameter did not show clustering. For the former set,
clustering of all three parameters is a strong indicator of
successful termination near the global maximum. A two-
sample Kolmogorov-Smirnov test [20] is carried out to see
if the two subsets were drawn from the same parent distri-
bution. The results are summarized in Table III.

As can be seen from the table, in all cases the test
supports the hypothesis that the maximum fitness value is
drawn from the same distribution irrespective of the clus-

tering of the parameters. That this is a nontrivial result is
further supported by the fact that if the same test is done
with fitness values other than the maximum one, the null
hypothesis is rejected strongly. Table III shows the results
from the same test but using the set of minimum fitness
values. In this case, it is seen that the values are drawn from
different distributions, at least for Np ¼ 81. Thus, we

conclude that even in the absence of clustering, the PSO
run that yields the maximum fitness value terminates, with
high probability, in the vicinity of the global maximum for
the Np ¼ 81 and Nt ¼ 80 combination.

We have traced the lack of clustering to the presence of
distant peaks in the fitness function that are similar in
value. The probability of this happening in the presence
of a sufficiently strong signal is very small, but this need
not be so for noise-only data.

D. Comments

We have demonstrated a systematic tuning procedure for
the design variables of PSO. It is important to note that no
prior information about any special features of the fitness
function was used. Hence, the procedure would stay the
same if the testbed were changed.
A larger number of trials or a finer spacing of grid points

in Np and Nt will probably lead to a different end result.

Instead of Np ¼ 81, for example, Np ¼ 121 may turn out

to be the right choice. However, the main goal in this paper
is to test the viability of PSO and, for this purpose, a coarse
tuning such as the one presented here is adequate. Besides,
a significant investment in refining the results of the tuning
procedure would be rendered obsolete with future im-
provements in the implementation of PSO. Until a version
of PSO is developed that is hard to improve upon, a strong
focus on the results from tuning, as opposed to improve-
ments to the tuning procedure itself, is not of much use.
For Np ¼ 121, Table III shows that the minimum fitness

values obtained with and without clustering are also mu-
tually consistent. This observation suggests an alternative
approach to tuning where one of the measures used for
picking the optimal combination is this type of consistency.
We leave this for future work to address.

V. RESULTS WITH SIGNAL PRESENT

In this section, we describe the results of simulations
performed with signals added to data. We quantify the
performance of PSO at four different values of signal
SNR and four different locations in the �0, �1:5 plane,

SNR2 f9:0;8:0;7:0;6:0g;
ð�0; �1:5Þ 2 fð5:0;0:6Þ; ð10:0;0:75Þ; ð16:0;0:762Þ; ð20:0;0:9Þg:
(The units for both �0 and �1:5 are in seconds). The corre-
sponding masses (in M�) of the binary components are,
respectively, fðm1 ¼ 7:78; m2 ¼ 1:91Þ; ð4:71; 1:35Þ;
ð2:40; 1:40Þ; ð2:61; 1:03Þg. Figure 2 shows the physical

TABLE III. Statistical difference in the distribution of maxi-
mum fitness values. The table entries are the significance values
from a two-sample Kolmogorov-Smirnov test with the null
hypothesis: the maximum fitness values from trials that show
clustering of all parameters and trials that do not are drawn from
the same parent distribution. The numbers in parentheses are the
significance values for the test done with minimum fitness
values.

Np ¼ 81 121

Nt ¼ 80 0:5ð2	 10�2Þ 0.9(0.7)

120 0:9ð2	 10�2Þ 0.4(0.4)

160 0:7ð8	 10�4Þ 0.4(0.9)
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part of the search region mapped into the m1, m2 plane
along with the signal locations.

For each combination of signal location and SNR, 50
independent data realizations are generated. The length of
each realization is 64 sec, with �s ¼ 1=2048 sec , and the
signal is added at an offset of 10 sec from the start.

A. Qualitative changes induced by a signal

It is instructive to observe how a signal affects the
behavior of the swarm. In general, the presence of the
signal leads to a broadening of the peak in the fitness
function. As is well known, the broadening is more pro-
nounced in one direction, due to the correlation between
estimation errors, leading to the appearance of a thin ridge-
like feature (cf. Fig. 1).

The particles begin by moving randomly in the parame-
ter space but each time a particle crosses the ridge, its pbest
tends to fall closer to the flanks of the ridge. As time
progresses, the pbest of all particles cluster around the
ridge. This increases its attractive power in the acceleration
of the particles, progressively drawing more particles into
exploration of the fitness function along the ridge.

Figure 3 shows snapshots of PSO at different stages in
the search and the progressive clustering of pbest locations
is seen clearly. A key point to note here is that no prior
knowledge is built into PSO about the ridgelike feature. It
is found by the particles as they explore the search region.

B. Figures of merit

In order to quantify the performance of PSO in the
presence of a signal, we look at two figures of merit. The

first is the probability of clustering defined in Sec. IVA.
Since the tuning procedure requires a minimum value of
90%, the probability of clustering in the presence of a
strong signal should be significantly higher but it should
be consistent with the pure noise case for weak signals.
When a signal is added to the data, we do not need the

consistency of clustering criterion of Sec. IVA in order to
confirm the association of a cluster with the global maxi-
mum. Since we know the location of the signal and since
the expectation of the fitness function must be maximum at
that location, it suffices to check if the maximum fitness in
the cluster is larger than the value at the signal location.
Our second figure of merit, therefore, is the fraction of
trials in which this occurs. Ideally, this figure of merit
should be unity.
Table IV reports the first figure of merit for each combi-

nation of signal SNR and location. As expected, for the
case of strong signals (SNR � 7) the probability of clus-
tering is always, and often significantly, higher than 90%.
For the weak signal SNR of 6.0, the probability of cluster-
ing has an average value of 91% which is statistically
consistent with the pure noise case of 90%.
As far as the second figure of merit is concerned, we find

that it is unity for all combinations of signal SNR and
locations except for one, namely, SNR ¼ 8:0, �0 ¼
10:0 sec and �1:5 ¼ 0:75 sec , for which it was 0.98.
Figure 4 shows the scatterplot between the maximum fit-
ness found by PSO and the value at this signal location for
all signal SNR values. It is seen that in one trial the

5 10 15 20 25 30 35

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
0
 (sec)

τ 1.
5 (

se
c)

FIG. 3 (color online). Evolution of a swarm in the presence of
a signal. The ‘
’ and ‘�’ markers show the pbest locations of
Np ¼ 81 particles when 5% and 60% of the total number of

steps were completed, respectively. The lines show the paths
followed by the pbest locations of 5 representative particles
between these two steps. With time, the pbest locations tend to
congregate around the ridgelike feature produced by a signal.
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FIG. 2 (color online). The region in the m1, m2 plane corre-
sponding to the physically valid part of the �0, �1:5 plane. The
region is indicated by taking a regular grid of points in the �0,
�1:5 plane and mapping them to the corresponding values of m1,
m2, where by convention m1 � m2. The ? markers shows the
signal locations used in the simulations.
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maximum fitness fell below the value at the signal location.
However, the two values are so close that the figure of merit
should be considered to be practically unity for this case
too.

Taken together, the figures of merit show that PSO
almost always terminates near the true global maximum
when a sufficiently strong signal is present. When the
signal is weak, we recover the performance ensured by
the tuning procedure for the pure noise case.

C. Signal detection and parameter estimation

In order to cast the results obtained so far in terms of
signal detection and parameter estimation performance, we
choose the maximum fitness value found over theNrep runs

as the detection statistic and the location corresponding to
the maximum fitness value as the estimator for the chirp-
time parameters.

1. Detection

It was discussed in Sec IVC that, after tuning PSO, the
distribution of the detection statistic in trials with and
without clustering remains the same. As the simultaneous
clustering of the two chirp times and the fitness values
indicates termination in the vicinity of the global maxi-
mum, it follows that the probability distribution of the PSO
detection statistic is about the same as that of the global
maximum. Strictly speaking, the PSO detection statistic
will always have a value less than the global maximum but,
given our termination criterion, the relative difference
between the two is less than 3%. Thus, the false alarm
probabilities, for a given detection threshold, correspond-
ing to the PSO detection statistic and the true global
maximum are also nearly the same, with the former being
slightly smaller.
In the presence of signals with an SNR of 8 or higher,

which is the typical value sought in a real detection, it was
shown that almost all trials exhibit clustering and that the
detection statistic value was always higher than the fitness
at the true signal location. Hence, the distribution of the
detection statistic in the presence of a signal also closely
follows that of the true global maximum. Strictly speaking,
as with the false alarm probability, the detection probabil-
ity will be slightly smaller for the PSO detection statistic,
for a given threshold, as compared to that for the true
global maximum.
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FIG. 4 (color online). Scatterplot of maximum fitness value
found by PSO (Y axis) against the value at the known signal
location, �0 ¼ 10:0 sec , �1:5 ¼ 0:75 sec , for all signal SNR
values. In one trial, the maximum fitness value (near 6.0 on the Y
axis) dips below the line of equality (dashed).

TABLE IV. Probability of clustering for simulations with signal present in the data. For each
combination of signal SNR and location, the fraction of trials (in %) P�, P�0 and P�1:5 for which

the fitness, �0 and �1:5 values, respectively, were found to be clustered are listed. The probability
of clustering, shown in bold, is the maximum over P�, P�0 and P�1:5 . The number of trials for

each combination is 50.

ð�0; �1:5Þ ¼ ð5:0; 0:6Þ (10.0, 0.75) (16.0, 0.762) (20.0, 0.9)

SNR ¼ 9:0 ðP�Þ98 94 94 90

ðP�0 Þ94 92 96 98
ðP�1:5 Þ94 94 94 94

8.0 96 98 98 94

96 96 92 92

92 96 92 96
7.0 96 92 98 92

96 90 94 88

90 88 98 90

6.0 92 82 88 94

94 86 86 96
84 86 84 96
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The above line of reasoning suggests that the receiver
operating characteristics (ROC) of the PSO detection sta-
tistic should nearly be the same as that of the true global
maximum. The only way to rigorously verify this is to
carry out simulations with a large number of trials in which
both PSO and grid-based searches are performed. This is a
computationally expensive task, which we plan to under-
take in the future. However, it is important to note that such
a comparison may not be possible for searches that are too
expensive for a grid-based search.

2. Estimation

Table V summarizes the errors in the estimation of the
chirp-time parameters for signal SNR values � 8 at the
different signal locations used in the simulations. Each
entry in the table is an estimate of the root mean-squared
error (rmse) defined as

rmse ð�Þ ¼ ½E½ð�̂� �Þ2��1=2; (17)

where �̂ is the estimator of �. The rmse includes the effects
of both estimator variance and bias.

Since the search region in the current testbed includes
unphysical chirp-time parameters, the global maximum
and, hence, the estimated chirp times fall there in some
trials. Figure 5 shows an example where the estimates from
all the trials are shown for a signal SNR of 8. In an
improved implementation of PSO, blocking the unphysical
region should improve parameter estimation accuracy sig-
nificantly. As an indicator of this, we also show in Table V,
the rmse obtained by dropping the trials where the estimate
fell in the unphysical region. It is seen that the errors are
reduced significantly, especially for the lower signal SNR
value for which there is more scatter into the unphysical
region.

A comparison of Table V with existing results [21]
shows that the estimation errors due to PSO are consistent
with grid-based searches.

D. Computational cost

The number of fitness function evaluations for each
combination of signal SNR and location are shown in

Table. VI. It is seen that for a signal SNR of 9.0, the
maximum number of evaluations is about the same as the
mean in the pure noise case (cf. Table I). This reduction is
consistent with the fact that a strong signal makes it easier
for the swarm to find the global maximum.
For ground-based detectors, the dominant computational

cost comes from the pure noise case. Although our tuning
procedure produced Np ¼ 81 and Nt ¼ 80 as the optimal

combination, there is statistical uncertainty in this result
due to the finite and somewhat small number of trials used.
To make our estimate of the computational cost conserva-
tive, we use the combination Np ¼ 121 and Nt ¼ 80 in-

stead for which all the performance measures are
significantly better. From Table I, the typical number of
fitness evaluations required for the testbed considered here
is �7	 104 with a spread of about �2	 104. Of this, the

TABLE V. Signal parameter estimation errors with PSO. Each entry in the table is of the form
aðbÞ, where a and b are the estimated rmse for �0 and �1:5, respectively (expressed as a
percentage of the true parameter value). In each row, the top and bottom pairs of numbers refer to
mse obtained without and with the physical boundary cut, respectively. All the numbers have
been rounded off, given the expected precision from the 50 trials used per combination of signal
SNR and location.

ð�0; �1:5Þ ¼ ð5:0; 0:6Þ (10.0, 0.75) (16.2, 0.762) (20.0, 0.9)

SNR ¼ 9:0 2(13) 1(11) 0.3(6.0) 1(11)

2(12) 0.5(6) 0.2(4) 0.2(4)

8.0 44(13) 32(16) 12(16) 11(17)

10.5(10) 1(10) 0.3(5) 12(10)
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FIG. 5 (color online). Estimation of parameter values for a
signal SNR of 8.0. The true locations of the signals are indicated
by the ? marker and each of the markers, d, þ, � and 	,
indicates an estimated location corresponding to one of the true
locations. The association between the markers and the true
signal locations is indicated in the figure. For each true signal
location, the simulation consisted of 50 trials.
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termination criterion itself accounts for a fixed number,
ðNt ¼ 80Þ 	 ðNp ¼ 121Þ ¼ 9680, of evaluations.

A grid-based search provides a convenient perspective
for evaluating the computational cost of PSO. According to
[5], for 2PN waveform and initial LIGO noise PSD, the
number of fitness function evaluations required in a single
grid with a minimal match of 0.97 ( ) � ¼ 0:03) is 1:1	
104 if the minimum mass used for constructing the tem-
plate waveforms is 1M�. In the current testbed, the search
region in the mass plane (cf. Fig. 2) is not the simple one
considered in [5] although the minimum masses are simi-
lar. Additionally, [5] uses an analytic fit for the noise PSD
that differs from the one used here. Ignoring these differ-
ences we find that the current implementation of PSO
requires about 7 times as many evaluations, on the average,
as a grid-based method.

VI. CONCLUSIONS

We applied PSO to the binary inspiral testbed where the
main challenge was to locate the global maximum of a
highly multimodal fitness function. Such functions, with an
unpredictable number of extrema having random locations
and sizes, are typical in GW data analysis.

In response to the questions posed at the beginning, the
results obtained from simulations show clearly that:

(1) PSO is a viable method for signal detection and
estimation in GW data analysis as it can success-
fully handle the challenge of high multimodality
presented by such problems.

(2) Good performance was achieved by tuning only two
out of the nine design variables involved in the
method. Thus, PSO is a stochastic method that
offers the possibility of having a small number of
design variables in practice.

(3) The design variables were tuned using a systematic
procedure that does not require any prior informa-
tion about features of the fitness function. As such,
the procedure should be widely applicable to other
stochastic methods also.

(4) PSO is about 7 times more expensive than a grid-
based search in the number of fitness function evalu-
ations required.

The higher cost of PSO is not surprising since grid-based

searches are usually more efficient than stochastic methods
in low-dimensional problems such as the one considered
here. The performance gain of stochastic methods appears
due to the slower rise in their computational cost, with
increase in dimensionality, compared to the exponential
one of grid-based searches. Therefore, we expect PSO to
be cheaper than grid-based searches in higher dimensional
problems. However, a definitive answer requires an actual
test on problems such as the inspiral of high mass spinning
binary components or the LISA Galactic Binary resolution
problem [22]. The demonstration in this paper that PSO
can handle the more serious challenge of high multimo-
dality is the first step toward such future investigations.
The computational cost of PSO may be significantly

reduced by taking into account the physical boundary in
parameter space (see Fig. 5). The current implementation
of PSO requires the search to extend over a large unphys-
ical region. In fact, as far as the binary inspiral problem
goes, we find this to be the most outstanding issue. We have
tried the invisible walls condition with the curved physical
boundary but find that the performance of PSO is nega-
tively affected. Specifically, termination takes a much lon-
ger time and the probability of clustering is significantly
reduced. This behavior is attributable to the curved shape
of the boundary allowing a significantly larger number of
particles to escape the search domain. Once outside, par-
ticles contribute nothing to the search and keep moving
until they are pulled back. The particles can be prevented
from crossing the curved boundary by using a reflecting
walls type of boundary condition, but preliminary tests
showed that there is no significant improvement over the
invisible walls condition.
To solve this problem, it appears inevitable that the

dynamical equations of PSO must be modified. For signals
other than binary inspirals, such as galactic binaries in the
case of LISA, the nature of the boundary problem would be
different and it may not be an issue in some applications.
Finally, a comment about the use of Gaussian, stationary

noise in the testbed. We emphasize here that PSO is a
method for finding the global maximum of a fitness func-
tion irrespective of what produces that peak, a genuine GW
signal or an instrumental transient. Since, the implementa-
tion of PSO in this paper uses no prior information about
features of the fitness function, it should find the peak

TABLE VI. Computational cost of PSO on data containing a signal. For each combination of
signal SNR and location, the mean number of fitness function evaluations, over 50 trials, is listed
along with the maximum (superscript) and minimum (subscript). All numbers are in units of 104

and rounded off to a single digit of precision.

ð�0; �1:5Þ ¼ ð5:0; 0:6Þ (10.0, 0.75) (16.0, 0.762) (20.0, 0.9)

SNR ¼ 9:0 4:45:23:8 4:75:74:1 4:85:64:2 4:75:84:2

8.0 4:56:03:8 4:76:53:7 4:85:64:1 4:85:94:2

7.0 4:76:43:6 4:86:33:9 4:96:23:7 4:85:93:8

6.0 4:56:13:3 4:87:02:9 4:75:93:2 4:76:03:6
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regardless of its source. Thus, there should be no signifi-
cant difference in the performance of PSO and a grid-based
method even for nonstationary, non-Gaussian noise. In
future work, we will verify this explicitly by using non-
GW signals in our simulations.
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APPENDIX: DETAILS OF THE SIGNAL
WAVEFORM

1. Chirp-time parameters

The chirp-time parameters, f�ag, a ¼ 0, 1, 1.5, 2, are
given in terms of the masses, m1 and m2 � m1, of the
binary components (we use c ¼ G ¼ 1),

�0 ¼ 5

256
M�5=3��1ð�faÞ�8=3; (A1)

�1 ¼ 5

192	ð�faÞ2
�
743

336
þ 11

4
�

�
; (A2)

�1:5 ¼ 1

8	

�
M

�2fa
5

�
1=3

; (A3)

�2 ¼ 5

128	

�
M

�2fa
2

�
2=3

�
3 058 673

1 016 064
þ 5429

1008
�þ 617

144
�2

�
;

(A4)

where M ¼ m1 þm2 is the total mass of the compact
binary, 	 ¼ m1m2=M is the reduced mass and � ¼ 	=M.

Since all the chirp-time parameters depend on m1 and
m2, only two of them are independent. It is convenient to
choose �0 and �1:5 as the independent parameters since M
and 	 can be obtained algebraically from them,

	 ¼ 1

16f2a

�
5

4�4�0�
2
1:5

�
1=3

; (A5)

M ¼ 5

32fa

�1:5
�2�0

; (A6)

allowing �1 and �2 to be obtained algebraically from �0 and
�1:5.

2. The phase function

In Eq. (3), the function c ðf;�Þ is given by

c ðf; �Þ ¼ X
i2f0;1;1:5;2g

�iðfÞ�i; (A7)

�0ðfÞ ¼ 2�f� 16�fa
5

þ 6�fa
5

�
f

fa

��5=3
; (A8)

�1ðfÞ ¼ 2�f� 4�fa þ 2�fa

�
f

fa

��1
; (A9)

�1:5ðfÞ ¼ �2�fþ 5�fa � 3�fa

�
f

fa

��2=3
; (A10)

�2ðfÞ ¼ 2�f� 8�fa þ 6�fa

�
f

fa

��1=3
: (A11)

The functions �a, a ¼ 0, 1, 1.5, 2, and the f�7=6 factor in
the amplitude of the signal [Eq. (3)] can be precomputed
and stored, reducing the computational cost of generating
waveforms.
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