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Pax6 lights-up the way for eye development
Ruth Ashery-Padan* and Peter GrussT

Recent reports have exposed the temporal and spatial
functions of the transcription factor Pax6 in the developing
vertebrate eye. Pax6 is demonstrated to play essential roles in
successive steps triggering lens differentiation while in the
retina it functions to maintain multipotency and proliferation of
retinal progenitor cells. These findings, together with the
identification of Pax6 protein partners and downstream targets,
pave the way for future work aimed to understand the
molecular mechanism of eye development.
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Abbreviations
bHLH  basic helix-loop—helix
FGF fibroblast growth factor

NR neuroretina

ov optic vesicle

RPC retinal progenitor cell

RPE retinal pigmented epithelium
SE surface ectoderm

Shh Sonic hedgehog

Introduction

Eye development in vertebrates has been an excellent
model system to investigate fundamental processes in
developmental biology from tissue induction to the forma-
tion of highly specialized structures such as the lens and
the retina. This complex optic system develops primarily
from three embryonic parts: the optic vesicle (OV), which
is a lateral evagination from the wall of the diencephalon,
the surrounding mesenchyme and the overlying surface
ectoderm (SE). Successive signals between these tissue
components are thought to coordinate their development
(Figure 1a). The OV contacts the SE and triggers a
response that leads to a thickening of the ectoderm, the
lens placode, which later develops into the mature lens.
While the lens placode internalizes to form the lens vesicle,
the distal OV invaginates to form the optic cup with the
inner layer developing into the neuroretina (NR) and the
outer layer forming the retinal pigmented epithelium
(RPE). The proximal regions of the OV form the optic
stalk that connects the retina to the brain.

Recently, the expression and function of numerous genes
have been correlated with defined cell types and stages of
eye development. Comparison of gene expression, function

and regulation in development of the fly and vertebrate
eyes has revealed a surprising conservation of molecular
mechanisms. In particular, the study of the transcription
factor Pax6 promoted our understanding of the develop-
ment of ocular tissues. Pax6 is a member of the Pax family
of transcription factors. It contains two DNA-binding
motifs the paired domain and paired-type homeodomain [1].
In vertebrates this factor is essential for normal develop-
ment of several organs including the brain, pancreas and
the eye [2]. Pax6 has been reported to be a key regulator of
eye development as it is both essential for eye formation in
different organisms as well as sufficient to induce ectopic
eyes in flies and frogs upon misexpression [3,4°].
Interestingly, the correct dosage of Pax6 is essential for
normal eye development: overexpression of Pax6 in mice
results in a severe eye phenotype [5], whereas reduction of
Pax6 activity in heterozygotes for Pax6 mutation results in
ocular phenotypes such as Aniridia in humans [6] and
Small eye in mice and rats [7,8]. The conserved expression
pattern of Pax6 in the developing and adult vertebrate eye
and recent functional studies of Pax6 by conditional muta-
genesis document the involvement of this factor in a whole
spectrum of events essential for normal eye development.

In this review we highlight the recent results on the
molecular mechanisms underlying the development of the
eye as unraveled by the study of this gene. Readers are
directed to recent comprehensive reviews for further dis-
cussion on evolution of eyes [9,10] and on cell proliferation
and differentiation in the retina [11].

Lens induction from experimental embryology
to molecular mechanisms

The early, pioneering work of Spemann [12] described
lens induction as a single step process in which the OV
influences the development of the SE. Today, lens
induction is conceived as a multi-step process (Figure 1a)
[13,14]. The competence of the SE to respond to lens
inductive signals is acquired during gastrulation.
Subsequently, at the neural plate stage, planar signals from
the adjacent neural folds further bias the ectoderm
enhancing its lens-forming capacity. The expression
pattern and function of several genes correspond to these
early events (Figure 1b). Among them, the Sox3 transcription
regulator is implicated to confer lens competence [14,15°],
in fish and frogs, while Otx2 and Pax6 are associated with
the lens bias stage [14].

Only after the newly formed OV contacts the overlying
ectoderm is the small region juxtaposed to the OV specified
to a lens fate. In most vertebrates, lens specification is
dependent on the OV as ablation of the OV or arrest in OV
development (e.g. L/Ax2 and Rx mutants; [16,17]) prevents
the formation of lens structures. Recently, the secreted
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Development of the vertebrate eye. (@) Schematic illustration of eye
development in the mouse. At embryonic day 8.5 (E8.5) the
evagination that will give rise to the optic vesicle (OV, black) is
extending laterally from the brain. In response to inductive signals
from the OV the overlying surface ectoderm (SE, orange) thickens,
forming the lens placode (LP), which then internalizes (E10) and
detaches from the ectoderm (lens vesicle, LV) (E11). The posterior
cells of the lens vesicle differentiate to lens fiber cells (LFC) while
the anterior cells become the lens epithelial cells, a layer that
maintains mitotic potential (E15). The corresponding embryonic

stages according to [13] are indicated. (b) The sequential
expression of factors during early stages of lens development.
Several genes that play a role in the corresponding stages of lens
development and the timing of their expression in the lens are
presented. The developmental stage at which gene function is
essential based on mutant analysis is marked by X. COR, cornea;
LE, lens epithelium; NR, neuroretina; ON, optic nerve; OS, optic
stalk; RPE, retinal pigmented epithelium. 'Sox2 in mouse, Sox2 and
Sox3 in chicken and Sox3 in frog and fish. 2Suggested to regulate
the expression of crystallins.

factor BMP4 has been associated with the inductive
activity of the OV in mice [18]. In chick, however, probably
other BMPs mediate this function as neither BMP4 nor
BMP7 are expressed in the OV during lens induction [19].

The contact with the OV is followed by abrupt changes in
gene expression profile in the SE, which reflects lens
specification (Figure 1b). Specifically, the expression of
some genes is downregulated (e.g. Orx2) whereas the
expression of others (e.g. Pax6) is maintained [14,20].
Finally, upregulation of transcription factor expression in
the SE (e.g. Six3, Sox2/Sox3, LLamf, Prox1 and FoxE3) is
evident during lens placode formation [21-24,25°°,26°].
Some of these proteins also play a role during later stages

of lens differentiation in controlling the expression of
crystallins and cell cycle regulators (Figure 1b; reviewed in
[27]). However, the regulatory mechanisms that mediate
the initiation of lens differentiation have been only recently
addressed by molecular and functional studies.

Pax6 in early lens development

Several findings document an essential role of Pax6 during
carly stages of lens induction: first, Pax6—/Pax6- cells are
excluded from the SE of chimeric embryos [28], second,
the expression of the lens-specification marker Sox2 fails
in Pax6—/Pax6—embryos (Figure 2d) [18,29], and third, tissue
recombination between OV and SE from Pax6-/Pax6—and
wild-type rat embryos suggested that Pax6 is not essential
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The lens phenotype of Pax6~/Pax6~ and Le-mutant points to an
essential function for Pax6 in two successive stages prior to the onset
of lens differentiation. At embryonic day 10 transverse sections of
(a,b) wild-type control, (c,d) Pax6-/Pax6- and (e,f) Le-mutant embryos
were immunolabeled with specific antibodies to (a,c,e) Pax6 or (b,d,f)
Sox2. (a,b) In wild-type embryos both Pax6 and Sox2 are detected in
the lens placode. (d) In Pax6-/Pax6~ Sox2 is not detected in the SE
(white arrow heads), whereas (f) in the Le-mutant expression of Sox2
in the SE is evident. LP, Lens placode; OC, optic cup; OS, optic stalk.
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for the inductive activity of the OV, but rather has a cell
autonomous function in the SE [30]. These results, how-
ever, could not define the step in which Pax6 is required
during the successive events preceding lens differentiation.

To address the molecular function of Pax6 in the SE
Ashery-Padan ez a/. [31°°] employed the Cre//loxP approach
to somatically delete Pax6 exclusively from the SE of
the Pax6%Pax6-;Le-Cre (Le-mutant) embryos. In the
Le-mutants Pax6 protein was eliminated from the ectoderm
after the lens bias stage during lens specification
(Figure 2). This somatic mutation resulted in absence of
all lens structures. Comparison of the lens phenotype of
Pax6=/Pax6— mice with the Le-mutant revealed that Pax6
function is essential in each of the two successive stages of
lens induction (Figures 2 and 3). Initially, Pax6 is essential
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A model of the regulatory interactions during early stages of lens
development in vertebrates. Early expression of Pax6 during neural
plate stages (bias) is required for the upregulation of the high mobility
group transcription factor Sox2 and for maintaining of Pax6 expression
in the SE in the next step of lens specification. BMP4 in mice and yet
unknown factors (gray) [18] secreted from the OV elicit the
upregulation of Sox2 and the expression of the basic leucine zipper
transcription factor Lmaf [24]. During this stage Pax6 is essential for
the expression of Six3 and Prox1 but not for maintenance of Sox2
expression [31°]. The maintenance of Sox2 and Pax6 expression is
dependent, however, on BMP7 [29]. The combined function of Pax6,
Sox2 and Lmaf seems to trigger the expression of structural proteins,
while expression of Prox1 primarily influences the expression of cell
cycle regulators [25°°,33°°].

for the activation of Sox2 in the ectoderm, thus implying
a role for Pax6 in maintaining lens-bias of the SE. Then
Pax6 activity is essential for the initiation of lens differ-
entiation. During this stage, Pax6 controls the expression
of other regulatory genes such as the homeobox genes
§8ix3 and ProxI but is not required for maintaining Sox2
expression (Figure 3) [31°°]. Sox2 alone, however, cannot
support lens formation in the absence of Pax6. This is in
agreement with a recent finding that Pax6 binds cooper-
atively with Sox2 to the dcrystallin enhancer forming a
ternary complex that mediates dcrystallin expression in
the lens placode in chick embryos [32°,33°°]. It has also
been suggested that the basic leucin zipper Maf transcrip-
tion factor synergizes with Pax6 and Sox2 in activating
crystallin expression [27].

Other candidates that function with Pax6 in conferring
lens specification are homologs of the Drosophila eye
specification genes: 8ix3, ¢Six4 and Eyal [21,34,35]. From
these, Six3 has been demonstrated to induce ectopic
lenses in fish [36]. Interestingly, Pax6 and Six3 seem to
positively regulate each other. Pax6 is required for Six3
expression [31°°] while Six3 can induce Pax6 expression
reminiscent of the regulatory interaction between the fly
homologs eyeless and sine oculis (G Goudrou, personal com-
munication). Furthermore, members of the Six family have
been suggested to activate transcription by cooperative
interaction with Eya proteins [37°,38°°]. In contrast, the
Six proteins, in particular Six3, have been recently shown
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to interact with the co-repressor Groucho to repress
transcription of target genes in fish [39°] and to repress the
murine YFcrystallin promoter in cell lines [40]. Further
functional studies are required to determine the iz vivo
function of Six3 in triggering lens differentiation.

Pax6 in early retina development

The growing OV contains bipotential progenitors that
could give rise to both RPE and NR cell types. Separation
of these progenitors to NR and RPE domains is mediated
by external cues. Fibroblast growth factors (FGFs) secreted
from the SE promote NR cell fate, whereas the ocular
mesenchyme directs RPE formation (Figure 4a)
[41,42,43°,44°]. Finally, Sonic hedgehog (Shh) secreted
from the ventral forebrain seems to influence the patterning
of the OV [45°]. These early positional cues impose region-
alization of the OV and early optic cup as manifested by
the distribution of factors, which are instrumental during
later stages of retinogenesis (Figure 4b) [43°-45°].

Pax6 is expressed in the anterior neural plate in the cells
that will give rise to the OV. Surprisingly Pax6 function
seems to be dispensable for the formation of OV and the
establishment of NR and RPE domains, as indicated by
the expression of early retinal markers in the Pax6=- optic
rudiment ([20,46]; 'T' Marquardt, personal communication).
Possibly other transcription regulators compensate for the
loss of Pax6 by initiating retinal specification.

Following the establishment of RPE and NR domains, the
OV invaginates to form the optic cup (Figure 4c¢). This step
is completely dependent on the development of a lens
placode as demonstrated by analysis of the Le-mutant
embryos where the loss of Pax6 activity in the SE resulted
in genetic ablation of the lens placode (Figure 4c¢,d). In
Le-mutants the optic cup did not form. Instead, several
neuroretina folds separated by patches of RPE evolved
from the OV (Figure 4d). Hence, the early lens structures
provide the molecular and mechanical cues required for
the invagination of the optic vesicle to an optic cup. This
step is probably essential for the lens to be perfectly
positioned with respect to the retina. Remarkably in each
fold neurons differentiated in a central to peripheral
pattern similar to the pattern of neuronal differentiation in
the normal retina, and at postnatal stages all neuronal
subtypes were detected in the Le-mutant eyes [31°°]. Thus,
the subsequent steps of retinal development and differ-
entiation seem to be independent of the lens. Indeed
ablation of the lens during later stages of development in
chick and mice revealed that after the optic cup and lens
vesicle are formed the lens is no longer required for either
retinal survival or differentiation [47-50]. In some fish
species, however, the lens might play a more essential role
for retinal survival [51°].

Although Pax6 is not required for optic vesicle formation,
it does play a role in subsequent steps of retinogenesis. At
the optic cup stage, Pax6 seems to be required for cell

Figure 4
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The influence of the lens ectoderm on the development of the optic
vesicle and optic cup. (a) The initial patterning of the optic vesicle to distal
NR and proximal RPE domains is mediated by the head surface ectoderm
(SE) and surrounding mesenchyme. FGFs secreted from the SE (blue
arrows) promote NR differentiation while a transforming growth factor
(TGFB) family member secreted from the mesenchyme (yellow arrows) is
a candidate for promoting RPE cell fate. Finally sonic hedgehog (Shh)
emanating from the ventral forebrain (red arrows) promotes formation of
the optic stalk from the ventral portion of the OV. (b) The external cues
instruct the early regionalization of the optic vesicle and optic cup. Several
transcription factors are expressed in restricted manner in response to
these external signals. For example, Chx10 is upregulated in the NR and
Mitf expression is restricted to prospective RPE [43°-45°]. (c) The
earliest lens structure, the lens placode (LP), is essential for instructing
the formation of an optic cup with a single retina fold facing the lens. In
the absence of early lens structures the optic vesicle does not invaginates
to form the optic cup (d) but after a delay, several folds of retina are
formed and these develop to multiple retina folds (white arrows)
separated by patches of RPE (black arrows). E, embryonic day of mouse
development; LE, lens epithelium.
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Figure 5

The possible regulatory pathways leading to
neuronal cell differentiation from multipotential

retinal progenitor cells (RPCs). Several
transcription factors expressed early in retinal
development seem to maintain and modulate
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known. It is conceivable that the distribution
of these early retinal determinates in the
RPCs will define the cell sensitivity and
response (competence) to the changing
external cues. The external signals influence
both the onsets of cell differentiation and
cell-fate specification. For example; Shh
regulates ganglion cell fate while EGF and

Notch/Delta seem to influence cell
proliferation and to promote Muller glia cell
fate [68°°,59,60,79°°]. It is the expression of
proneural genes in the progenitor that bias
the cell towards specific cell fate. Proneural
genes seem to restrict cell fate both by
activating factors that are essential for the

differentiation of specific cell type
(specification factors), and possibly by
restricting expression of other proneural
genes. For example, Math5 promotes ganglion
cell differentiation by activating Brn3b [85]
and Math5 seems to be instrumental in
restricting amacrine cell production [70°°].

proliferation and differentiation as both are affected in
Pax6=/Pax6~ retinal rudiment (R Ashery-Padan, unpublished
data). The relatively normal retinogenesis in the absence
of alens in the Le-mutant points to an autonomous function
of Pax6 in the retina, which is further supported by the
expression of Pax6 during the ensuing stages of retino-
genesis. Following optic cup formation, Pax6 is
downregulated in the optic stalk and the RPE, but
retained in the neuroretina. Expression in the NR is
maintained in the proliferating retinal progenitor cells
(RPGCs), while it is downregulated in most cells upon
differentiation. In the mature retina, Pax6 expression
persists in amacrine and ganglion cells. This dynamic
expression pattern is conserved among vertebrates thus
reflecting a conserved function for Pax6 during retinogenesis
and in subtypes of mature neurons [1,52].

Pax6 in retinal progenitors cells

The vertebrate retina is composed of six types of neurons
and one type of glia, which are interconnected in a
complex, highly ordered cytoarchitecture [53]. During
retinogenesis the different retinal cell types are generated
in a defined birth order from a population of multipotent
retinal progenitor cells (RPCs) residing in the inner layer
of the optic cup. Retinal ganglion cells, cone photoreceptors
and horizontal cells are born first, followed by amacrine
and rod photoreceptor cells, while bipolar and Muller cells
appear last [54]. This histogenic order is largely conserved
among vertebrates suggesting a conservation of the regu-
latory mechanisms mediating the onset of differentiation
of each cell type [55]. A variety of extrinsic factors have
been demonstrated to influence retinogenesis, among
them the secreted factors FGFs, Shh, EGFs and contact-
mediated regulators of the Notch/Delta signaling pathway

[56,57°°,58°°,59-62]. The cell-extrinsic factors seem to
influence intrinsic regulators of retinal cell differentiation.
The basic helix-loop—helix (bHLLH) transcription factors
are important regulators of neurogenesis in invertebrates
and vertebrates [63]. In the vertebrate retina the bHLH
factors Hesl and Hes2 (related to /Aairy and enhancer of
split in Drosophila) appear to function downstream of the
Notch/Delta signaling pathway as negative regulators of
neuronal cell differentiation [64,65,66°¢]. These factors
seem to repress the expression of other bHLLH factors,
which have been demonstrated to play an essential role in
directing progenitor cell fate (e.g. the proneural genes
Math5, Mashl, Ngn2 [67,68]). Mutational analyses have
implicated Math5 in promoting ganglion cell fate while
restricting differentiation into amacrine cell fate
[69,70°°]. Mash1 regulates bipolar cell differentiation and
NeuroD promotes amacrine and rod but restricts bipolar

cell fates [71,72].

Additional transcription factors that are expressed before
and during retinal differentiation are the homeodomain
proteins Rx, LLhx2, Pax6, Six3, Six6/Optx2 and Chx10.
Several lines of evidence document the involvement of
these factors as early retinal determinants and later in
cell fate specification of RPCs. First, ectopic expression
of Six3, Six6/0ptx2, Pax6 and Rx induces retinal tissue
[4°,17,73°=75°]. Second, Pax6, Rx/Rax and Lix2 are
essential for optic cup formation in mice [16,17,20], and
Chx10 is required for RPC proliferation [76]. Third, §ix3,
Pax6 and Rx are expressed in retinal stem cells in
Xenopus [77], and Chx10 is expressed and influences the
proliferation of mammalian retinal stem cells [78°°]. Fourth,
Rx has been shown to regulate the expression of Notch
and Hesl1 in the retina [79°°].
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Marquardt ez a/. investigated the role of one of these
early retinal determinants Pax6 in cell fate specification
of RPCs by somatic deletion of this gene from the distal
optic cup before onset of cell differentiation [80°°].
Paxo-deficient RPCs exhibited reduced proliferation,
did not acquire early or late neuronal cell fates but
differentiated exclusively into amacrine interneurons.
Interestingly, Pax6-deficient amacrine cells did not give
rise to the glycinergic amacrine cell subtype. Taken
together, these results suggest that Pax6 is essential for the
multipotency of RPCs and for their normal proliferation.
Furthermore, Pax6 seems to have a later function in the
specification of a subtype of mature amacrine cells. This
work further revealed that Pax6 activity in RPCs is
directly required for the expression of some of the
proneural genes including Ngn2, Mashl and Math5, but
not for the expression of NeuroD. Thus, the combined
loss of several proneural genes appears to account for the
inability of Paxé-deficient RPCs to acquire all neuronal
cell fates.

These observations lead to several suggestions concerning
the role of Pax6 in determination of neuronal cell fate
in the retina (Figure 5): Pax6, Hes1, Hes5 and possibly
the other early retinal determinants maintain the mul-
tipotency and proliferation of RPCs. Some act as
repressors (Hes1, Hes5) and others as activators (Pax6)
of proneural genes. Recent studies revealed hetero-
geneity between RPCs in respect of gene expression and
competence to differentiate to different cell types [81].
The intrinsic determinants seem to change over time
and to mediate the competence of the RPC to acquire
specific cell fate [82°°,83°]. It is therefore conceivable
that the distribution and expression levels of the factors
that mediate the multipotency of RPCs, modulate the
intrinsic competence of RPCs. Finally, Pax6 seems to be
necessary for normal proliferation of RPCs and possibly
in other cells where it is expressed, including the cerebral
cortex [84]. The challenge ahead is to understand how
Pax6 function coordinates the two critical processes of
proliferation and differentiation, both of which are crucial
for normal development.

Conclusions

Recent studies have revealed that Pax6 mediates two
sequential steps during early lens development: lens-bias
and lens-specification. In contrast to the complete depen-
dence of lens specification on Pax6 activity, during retinal
development Pax6 function seems to be partly compensat-
ed by factors acting in parallel to confer retinal identity.
The combined function of these factors probably confers
the competence of RPC to differentiate into the different
cell types. Further analysis of the role of Pax6 in different
organs, at defined developmental stages and in various
species, will unravel on the one hand the conservation of
the underlying molecular mechanisms and on the other the
mode by which these mechanisms evolved to accommodate
tissue-specific functions.
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