NON-VACUUM ADaM FIELD EQUATIONS*
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The canonical version of the vacuum Einstein field equations formulated ten
years ago by Arnowitt, Deser, and Misner (ADalM) [iJhas stimulated several attempts
to quantize certain cosmological models, most notably Misner's so-called ixmaster
Universe [2] . Some researchers have begun recently to extend these methods to
non-vacuum spacetimes; for example, Nutku earlier at this conference described the
canonical theory of a scalar field in Schwarzschild spacetime., The purpose of this
talk is to generalize the ADaM field equations to include an arbitrary stress-
energy tensor. This is not a "first step" toward a canonical formulation of the
full non-vacuum field equations; rather, it is simply a possible starting point.

Essentially, the ADaM field equations are a linear combination of Einstein's
Gy = 0 equations that is particularly well=suited to a "three-plus-one split" of
spacetime, i.e., a division of spacetime into three-dimensional spacelike sections

labelled by the parameter time. The metric of each section is the spacelike part

of the metric for all of spacetime:

_ 4
Byy = By - (1a)

(Superscript "4" denotes quantities referred to the full four-dimensional spacetime,

while no superscript implies three-dimensional quantities., Latin indices run from
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1 to 3, Greek from 0 to 3, Signature is - 2,) ADaM replace the remaining four
metric components - which give information on how one hypersurface fits into the

next. 3 - with: a three-scalar

- 4 oo,
Nz (- g) (1b)

and a covariant three-vector
N, = g . . (1c)
The ADaM field equations are derived from the usual variational principle,
4 Lo 4
§I=8)"r¢-"m)"d'x=0. (2)

Were one to use IAguv} as the set of independent variables, one would obtain
-

Guv = 0 from Eq. (2) [4] . Using the ADaM variables {N'Ni'gij}' on the other

hand, gives the ADaM equations.

To obtain the non-vacuum equations, let L be the Lagrangian for the non-

gravitational fields. Then Eq. (2) generalizes to

4 %
81:85‘(41’\1\2&1,)(- o) d% =n . (3)
Using {fguv} as the variables gives [5]
Guv = x Tuv " (4)
where
4 oL 2 42 __2oL
Tow=L g "2 7 0% (‘3) % v
A » » 4 \% M e (5)
o " 55 ) 1.

The non-vacuum ADaM equations follow from Eq. (3) if one uses the set {a 8}
a

of ADaM variables, defined by

_ 4 oo,k 4 4 4
30 * (8 ) 5 Boi © Boi’ P40 ° Bip aij - gij * (6)

It is convenient in what follows to ignore the symmetry of a & and Ag .
a uv

For instance, variations of a ; will be taken while holding a; fixed. The final
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results will, of course, be symmetrized.

. 4 v ; .
Because the transformation from { gu to {haﬂ} is nonsingular and does
>
; 4 yv
not involve derivatives of gu or explicit dependence upon the spacetime

coordinates, the equations obtained from varying ag will be the linear combination

5T _ 29" s1 o
Sa“p Ba“p 343)*"

0=

of the equations obtained from varying Aguv. We therefore need only find

4+ uy
° 9 /aa“' s in which it is understood that the derivative 1is taken holding all

other ayg fixed, This 1s the key to the difference between Einstein and ADaM: it
4 ol 4
means, for example, that p 9 /98.“ is not the same as 3 gm /3 agm
4 1 4 4
_4goo 4gl , because in the first case one holds *goo, 'goz i 4303 i ag,,}
1]

fixed while in the second case one holds 4 4 4g Ag., fixed,
8o0? Eo2 03 ! 13

Bearing this in mind, we write down the equations of transformation:

5 4 uv _ 4gul Ang % ngu égov NEIS ; (8a)
ij
b uv _ _ 4gou bovi _ bgou 4.0V i (8b)

3 b ouv _ _ 4gu1 agvo _ 4gou Agov Ni ) (8¢)

(8d)

4
A 480u Agov N

It is straightforward to use Eqs. (7) and (8) to find the non-vacuum ADall
field equations. (Here ﬂ'iJ is the momentum canonical to Bijs defined by Eq. (9c¢)
below. Indices on it and N, are raised and lowered by the three-dimensional

metric, covariant differentiation with respect to which is denoted by a slash,

"M

1. . i 21
‘82[3R+8 Logw? -vlJvij)] = - 2k Ng % (9a)

-wijlj = kNg (1 + Ni1%%) (9b)
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-l
atgij = 2Ng 2C"ij - %gij1r) + N + N'l s (9¢)

ily 7 V4l

. 1 : 1
3,:11’ oo g 1R - gl 3y 4 gt C“mn'"mn - %)

=% im 1 i g
~ang Per' e 3 - wwtd) 4 gl giJN'"‘,,,o

i - 3
+ @ lem)lm - Nilnf'mj o N’lm Mo
L .
+ K Ngz(le - T°°NiNj) . (9d)

I wish to remark on a few features of these equations, First, as we would
expect, they do not contain L, since they are simply a linear combination of Eqgs.
(4)., This means they can be used even if a Lagrangian is not available. Second,
Eqs. (9) are instructive in understanding even the ADaM vacuum equations, since
the particular linear combination used by ADaM is manifest. And third, the
equations contain Tuv’ the contravariant components of the four-dimensional
stress—energy tensor. ILn many situations (e.g., scalar field) one might feel that
the covariant components, Tuv‘ are physically more meaningful in a 3 + 1 split,

in which case one can rewrite the equations as follows. Using the unit normal to

the three-~hypersurface, na = = N Ago‘ , one can define a "preferred" energy and
momentum density for the matter:
o« B 4
Es o T, (10a)
o 4
e =n T . (10b)

i

Then the stress tensor in the hypersurface is

fT‘ 4T (10¢)

ik = tik .

In terms of these quantities, the relevant parts of Eqs. (9) become
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2 1. oo L
- 2KN g/i'l‘ =-2Kg2€ s (11a)
1 . : L
kNg (10 + §11°%) = - kg @1 <11b)
T . 1s £ 2 5 i o 1
kg irt - N1 = kT 4 e+ viet) (11c)

where all indices on ® and :T’ are raised by the three-dimensional metric.
Steps toward a full canonical theory could well begin here, One method
would be to specify in advance the motion of the matter in terms of the metric
tensor (e.g., homogeneous cosmology), and then to solve the constraint Eqs. (9a,b)
by analogy with vacuum ADaM. A more general approach must include a canonical
formulation for the fields present in spacetime, In any case, the basic

gravitational constraints and dynamical equations will be Eqs. (9).
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GENERAL RELATIVITY AS A DYNAMICAL SYSTEM ON THE MANIFOLD Q

OF RIEMANNIAN METRICS WHICH COVER DIFFEOMORPHISMS

-f.-i-
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1, Introduction

In this paper we consider the geometrodynamical formulation of general
relativity, due most recently to Arnowitt, Deser, and MMisner [2:] , DeWitt [3:
and Wheeler [8] , from the point of view of manifolds of maps (function spaces)
and infinite-dimensional geometry.

Hydrodynamics is approached from this point of view by Arnold [].] and
by Ebin-Marsden [4]1; in Fischer-Marsden [5, 6] the function spaces appropriat
for a dynamical formulation of general relativity are introduced. We hope that
our approach will clarify the basic dynamical structure of the Einstein equations
and the associated infinite-dimensional geometry in a spirit analogous to that
which has been done in hydrodynamics.

The key to our approach is the group B= Diff (M) of smooth (C*)
diffeomorphisms of a fixed 3-dimensional manifold M. For hydrodynamics one
concentrates on fa‘ , the volume preserving diffeomorphisms [4] . For
relativity one uses the manifold @ of Riemannian metrics which cover diff-

eomorphisms, We begin with a description of Q. .
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" The Manifold (@A and the Einstein Svstem

Let M be a fixed (no changes in topology) closed (compact without

boundary) 3-dimensional oriented smooth manifold, and let

Riem (M) = manifold of smooth Riemannian (positive-definite)

%

metrics on Mj;

Diff(M) = the group (under composition) of smooth orientation-

@
1]

preserving diffeomorphisms of M; and

SZ(M) = vector space of smooth symmetric 2-covariant tensor fields
on M,
Note that SZ(M) is a linear space and that in any decent topology, M is an open

convex cone in SZ(M).

Let 7 : Pos(M) = ! denote the tensor bundle of symmetric positive

-1
definite bilinear forms so that (m) = space of inner products on M. A

Riemannian metric which covers a diffeomorphism eD is a smooth ma

g, ¢+ M *Pos(M) such that the following diagram commutes:

Pos (M)

>
M n
(that is, Tro gy = Ne ). Thus gnassigns to each point m € M an inner

product of the tangent space TrL(m)M' We let Q. denote the manifold of all such

maps for all N€ O . Q. is the manifold of Riemannian metrics which cover

diffeomorphisms. One can prove that @ has the structure of a smooth infinite

dimensional manifold , cfe [4, § 2]; we shall not require this structure.
There is a natural projection T : QA *® defined by ;I’.(g,L) = Mo gy =

nNexr . Also, if gn€ A. , observe that 8y © n,'lem is an "ordinary"

Riemannian metric for M, Now & is diffeomorphic to XM by the map
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in:a,-bﬁx‘m_ ) In - <l’9‘_° YL-W :
(§R= right translation) with inverse

T PxM > (n,q) » gen .

Thus information on @ can be transferred to O XM and vice-versa via the

mapping §“ . It is convienient to think of ®X‘M as a realization of Q. .

Let T = C*% (M;R) = the vector space of smooth real-valued functions
£ : M®»R (scalar fields or O-covariant tensor

fields on M),

We will refer to 9 as the relativistic time-translation group. Note that the

constant functions on M form a subgroup of T which is isomorphic to R, the

classical time-translation group., The manifold TxA = TxDx M

is the proper configuration space for a seomgtrodynamical formulation

of general relativity as we now explain, We will bLe concerned with the
propagation of initial Cauchy data (suho) € M x SZ(M) off

some 3-dimensional hypersurface M of, a yet to be constructed, Ricci-flat
(vacuum) space-time V,e Here h = 2= 394& is the velocity canonically conjugate
to the configuration fields g. As g, is determined only up to its isometry
class, the evolution is determined only up to an arbitrary curve "‘t"e

of diffeomorphisms called the actual shift (with (o =idM = e = the identity

diffeomorphism); that is, 8, and (nt")*gt are isometric evolutions, where

-1 -
(nt )* 8t (m) - (Ymnzm) = B¢O 'lt' (m) '(Tn;r(Ym): T)l;‘(zm)): YM;ZmeTmM:

is the "push-forward" of a covariant tensor field. Moreover, one 1is free

to specify on M an arbritrary system of clock rates, or equivalently of clock

settings, given as a curve Et «T of time functions (the clock settings) with

§O = 0 = the zero function on M (all clocks start at high noon). This
arbitrariness or degenency is reflected in the evolution equations as follows:

The Einstein System: Let ! be a closed oriented 3-dimensional manifold.

Let X, be an arbitrary time-dependent vector field called the shift vector field

and N, an arbitrary positive scalar field called the lapse functionj; Nt(m) >0




]
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for all (t,m) € Rx M, Let g be a given Riemannian metric on 1, and let k be-a
ol S

given symmetric 2-covariant tensor field on M such that

§(k-(rkgq) =0,

5 ((Tr k)2 - k-k) + 22R2(g) = 0.

The problem is to find a time-dependent metric field gt on Il such that gt and

the supplementarv variable

R
kt-‘ Nt(%"'lﬂxtgt) ’

satisfv:

(i) the given initial conditions: (8osko) = (gyk)

(ii) the evolution equation

Ike
- Sgt (kc) =24, Ric(g,) + 2 Hess(N.) - th L

Qur notation is the following:
dk = divergence of k = (Sk)i = kijlj ( |j = covariant derivative

with respect to the time-dependent metrics) 5

Trk = Trace k = gijkij = kli ’
kek = dot product for symmetric tensors = kijliO

2

kxk = cross-product for symmetric tensors = kilk 5

knk - -&-(Trk)k = ki!klj - %(gmnkmm)kij = DeWitt sprav on TR,

1]

Sg(k)

g
Ix, Bt

Lie derivative of gy with respect to the time-dependent
vector field X, = Xilj + lei ’

. R 2 2

ay = + D,

Ltht Lie derivative of kt X kijlﬁ kiQY 13 + kle i 9
Ric(g,) = Ricci curvature tensor formed from 8y = Ry =

k k k n 2k

Ciye "Mea,y 040 Mol o

R(gt) = Scalar curvature = R& ’

Hess(N) = Hessian of N = double covariant derivative = Nlilj 5
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We now explain how the Einstein system, the lapse function Nt, the shift
vector field Xes and the configuration space Tx®xYL are interrelated (see

Fischer-Marsden ES] for more details).

3., The Geometry of the Shift Vector Field

Let B = Diff(M), the group of all smooth orientation preserving
diffeomorphisms of M., Now ® is a manifold modeled on a Frechet space; (see
Ebin~Marsden [4] and related references for the structure of & ). The tangent
space Tlﬁ at a point N€® is the manifold of smooth maps X R T which

cover n , that is, such that the following diagram commutes:

™

> |

M —F—M

R
where T, denotes the canonical projection of TM to M. To see this let )[te.b
be a curve in B , M = N, so that ih' represents a tangent vector
o dt t=0
in Tl% . But form € M fixed, o (t) = "‘t(m) is a curve in !f with o (0) =

e T’l.(m tM4 . Thus ::" is a map

N (») and with tangent a'(0)= dRe (m)
* dt i )

from M to TM covering W .

We refer to X as a vector field which covers W , so that TRy is the

manifold of vector fields covering diffeomorphisms. In particular, TeB = % (1

= the vector space of smooth vector fields on M = the Lie algebra of e .
As with the manifold (. , there is a natural projection T: TP =>D defined by

%(X”.) =TM ° X'l.

Let &)\. : P*D denote right translation by M ;; ( RlO\) = AN, ).
|} ]

=NeD,

Then
TQk‘:Tb-»Tb s Xy v Xo* 1y ,
-1
so that for X, € T, ®, Tﬂ‘:| Xy ) =Xpo R € Teﬁ is an "ordinary"

vector field on !, called the pull-back of Xl by right translation.




Now let Xt M -» TM be a time-~dependent vector field on . Then the flow

Y{t of Xt with Y(O = identity is a smooth curve in B (as X, is time-dependent,

nt is not a one-parameter subgroup of ® ) which satisfies

-1
—JLL_*'.:X*"\*, o'-dr"".'oﬂ_'t =Xt
dt dat
: 5 . dnt =i
Conversely, given a smocth curve Vl.t €D with YLO = identity, -E—t--o n, =
XYL ° nt-' = X, is a time-dependent vector field which generates "~: as its flow,

t
Thus in the Einstein system, if one gives the shift vector field X., then

the actual shift of M is its flow Ylt €D , acurve in ® . Equivalently one
may specify the actual shift nt TS and compute the shift vector field as
above. It is because of the presence of the shift vector field that the group
must be included in the configuration space.

The relationship between the Lie derivative terms and the shift vector
field can be explained geometrically as follows. Suppose that for Et =1, 'ﬁt =0,

(gt,ﬁt) €M X S,(M) is a solution to the Einstein system with initial conditions

(Bosky) 3 that is,

9% -
t -k
5 t t 2
%, - )
g = Sgt (kt) - 2 Ric (g,)
Now let X; be an arbitrary shift vector field with flow )'l_t, Ylo = identity. Then

-1 % -
(gt,kt) = ((“t ) Bes (ut l)'“'kt) are solutions to the evolution equations with
Ny = 1, X; = given shift vector field, and the same initial data as before. This

follows by a direct verification:

3gt _ 3('!{' X Et
%t ~ @8t

' DE
- (Yt - o (R
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where we have used the fact that

d -y * —1 M

rr3 (Ylt) g=-LXt(n1: ) gisee [7] ,p.32.
Similiarly,

ok, 2T,
At ot

-} *)Et - E -
(nt X th(nt ) ke

= Sgt (kt) -2Ric (gt) - th kt

- - .
since S§ (k) and Ric (g) are tensors and hence commute with ("‘t|) ; that is,
-‘. * - . =i ® -’ .
(Ylt ) Ric @) = RlC(( L ) g) = Ric(g) .
The significance of this result may be clarified as follows: Besides

the realization of @ as WxM. by'right translations,' there is a

realization of & as WxM by "left translations" defined as follows:
. - B w . -4 * -1
iL * Q x - Sl e (n ) ( 3)‘ ° ’L )

These two realizations of @, are entirely analogous to the two realizations of
TSO0(3) for the rigid body into body and space coordinates respectivelv; see
Arnold [1] . Thus the introduction of a shift may be viewed merely as shifting

from body to space coordinates by use of the coordinate change Ny -

4, The Lapse Function and the Intrinsic Shift Vector Field

To discuss the lapse we assume that the shift vector field Xg= 0.
(They can be handled simultaneously by using the semi-direct product on Tx®,)
If we choose the lapse N.,_'l » then the evolution of g is parameterized by a
canonical evolution parameter, the proper time T. But suppose that g is a
solution of the Einstein gystem for an arbitrary lapse N. One constructs a

space~time on RXM in a tubular neighborhood of M by the Lorentz metric

(in coordinates)
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2
vdx)"dxv s -N dtz +

I

The proper time function <€ (t,m) = 'I:t(m)

of M) is then just the time coordinate in
(-c(t,xk), ?{i(t,xk) ), where }‘:i(t,};k) is the

To find the relation between tie lapse N,

3;4- dxidx“ -

k
= <t (t,x ) (in this tubular neighborhood
Gaussian normal coordinates
space part of the Gaussian coordinates,

and T, we consider the transformation

. . . =00 _ MY Ot _OT .

of Buw £O Gaussian normal coordinates; writing out g g ;—-x# Tx" yields
2
_1=-_L(.§I'—) +gk£.}_tk.at ’
g VR 3x axt

which is solved for Nt to give

N, = i

t dt -

V1+ “grad 'Ctu
2 : ’
where “grad t u = gklit_ _Idt is computed with respect to the inverse ;‘,1‘1
dxk dx

of the time-dependent metric Big (=79

4 ij

since the shift is zero). The factor

1 takes into account the fact that in general the lapse depends on

v1+ lgrad< }f Z

space coordinates and therefore pushes up

unevenly,

the hypersurface M through WRx M

The single first order partial differential equation for <

(d_'cz- Niogkt dx dt
dt de de

2
N

can be reduced to a system of eight firsteorder ordinary differential equations

by the Cauchy method of characteristics,
differential equations is just the system
metric g)‘v (for unit timelike geodesics)

the non-characteristeric hypersurface t =

(]

(corresponding to geodesics normal to t

<« (t,m) that satisfies the above equation

Of course this system of ordinary

of geodesic equations of the Lorentz
in Hamiltonian form. If we choose on
0 the initial condition: =T (0,m) =0

0), then we are assured of a unique

with the initial condition w(0,m) = 0.

Note that f?‘-u on this initial hypersurface.
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The condition

jei_ g e L3 [gmmam ) oap
3 "a‘:?atat*ax"( >

—' k . -
gives an equation for the space part xl(t,x ) of the Gaussian normal coordinate

system,
- NG, x)
Xxt ., K . x° Ky [ vn 2T
ZX (4 xN) = = (t,x5) G,xH) T ¢.x9)
ot [+ llqrade |2 9% 3 .- :
NGt x ¥)

grad® ; then the above equation can be written as
d

where N is the spatial part of the Gaussian normal coordinates and DcPG is,

in coordinates, the Jacobian matrix of "G . But the identity

-y -df ldft-dg DG ° -
%(¢.€>_“~F+Df :t——&t€+ ‘Yo f, =0

-t
then shows that this equation is solved by qu‘Ft if 'Ft is the flow of Yt-

We call Y, the intrinsic shift of the lapse since it describes the "tilting"

of the Gaussian normal coordinates due to the space dependence of the lapse
function. The above argument shows that the partial differential equation for the
space part of the Gaussian normal coordinate system can be solved by an ordinarv
differential equation, namely finding the flow of the intrinsic shift. Finally,

the inverse to the contravariant metric

3z ax®, R, = g;: (t,x‘)gf;(t ) g™ x") Jz 3 (t £2y 3"‘ t,x%)

1 wl, . T K “'-t, k)
.ﬁ.(-t_x") ﬁ,.xk) (‘*-m")- thr q ("'»")f;;_f (-L,x)g G&,x

‘éE%’ét)xh)
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solves the evolution equations with N = 1 (and the same initial data) if Szj('t,xk)
solves the Linstein equations with an arbitrary N, Writing g_l for the con-

travariant components of g, the above equation can be written intrinsically as

gred T (t,m) ® amd't(t,ru)

Vidlgradz]?  Visfaradd]®

3 (TCtim), 9 (t.m)) = Doy (t,m) @ Deg (b, [ g™ (2 =

Our prescription shows how, given a solution to the Linstein eauation
with an arbitrary N, to find the solution to the Einstein equations with N = 1 and
the same initial data by solving ordinary differential equations only, A similiar
prescription is available to go from solutions for N = 1 to solutions for arbitrary
N; see [5] To take into account the lapse function we introduce the relativistic

time translation group I~ = C”(M;R) (a group under pointwise addition of

functions). As 7 is a vector space, TT=TxT ., rFor a given lapse Nt and

a solution to Einstein's equations with this lapse, we construct a curve T CT
9+ q pse, +

such that
2
(%) - Nz usra.d‘l:"z = Nz

and 'Co = 0. Thus to find the curve in T corresponding to a given lapse N we
must first solveEinstein's equations with this particular lapse.

In the case that N depends only on the time coordinate, then T, and
N, are simply related by T, = j:Nxdk. Moreover, if (gt'it) is a solution to the
Einstein system with initial conditions (go,io) and lapse Et = 1, then the solution

with Nt = f(t) (and Xt = O) and the same initial conditions is just the re-

parameterized curve (gg,k.) = (E'c(t)' Et(t:))' This is easily seen, as

%_ - Frw | By dey _ Ny o = Nk,

T ot 3t 4t T(t) t

and

ok _ kg de@®) _ (S- Kee) - 2Rie(3 )
i:t = a-t.t(t) B a-:ﬁ ot N, Sut)( b e(Few)

= N, Sq (k) - 2N, Ricla) .
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5. The Einstein Lagrangian on Tx& = Tx Dx M

Since W_ is an open convex cone in SZ(M)' TM= WL X SZ(M). On M. we

define the DeWitt metric (see DeWitt [3] , and Fischer-Marsden [5]) by

Yy TyMxTM = S, (M) x S (M) = R

ZyCh) = § (Teh)(Trha) = hohe) g

where }J.J is the volume element associated with the metric g (in coordinates

Mg = m dxl A dx2 A dx3). Al 1is a non-degenerate but weak metric

on ‘ML ; here weak means that the map 21:: Tg'm, -> T:'m. , defined by ﬂ;(hﬂ'hf
ﬁﬂ (hyyhy) is an injection, by the non-degeneracy, but is not an

isomorphism,

We now introduce a potential V :*M_® IR defined by
Vig) = 2 g R<3)/"'3
M
(twice the integrated scalar curvature), If on T"_ we consider the Lagrangian

L=T=-V:TM = Mx S,0D*R ,

defined by L(g,h) = < Yy (hyh) - V()
then a computation shows that Lagrange's equations give the Einstein system with
lapse Ny = 1 and shift Xt = 0,

The DeWitt metric Y on M. 1is extended to DxM = A by
defining on each fiber T ®am) = T. B x S_(M)

n,q9) n 2
A,g): (Tu® xS (M) « (T B xS (M)) - R

4 (x, 3) ((x". ’hl)) (xn-_ .hz)) = '83(‘\-* Lx,‘.. Ll h_+ an.,[_' 3) .

The Lagrangian L on T'M_. 1is now extended to a Lagrangian on T(B®xM_) by
LiT(BxM ) = THD & M & 5,00 =R

L (Xpogeh) =L (g, b+ an_-n:‘ )
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='é_’%(h+l‘xn°":|gi h+LX,L°YI:'g) -V(g) ]

Note that the factor B is now essential as X'\. is explicitly involved in L.

Now Y is a degenerate metric on Px°M. since if

Yn,g) ( h+ LX,,_-n." 3, k-« LY&.n:'ﬁ) =0 for al1(Y, k)& T,DxS (M),
then
h+ Lx\uc' g=0,

but h and X, need not be zero independently. This degeneracy has the effect of

n

introducing some ambiguity into the equations of motion, However, the degeneracy
of Y is such that we are free to specify a curve of diffeomorphisms N, € B;
thus the ambiguity in the equations of motion is completely removed by the
specification of the shift vector field Xt'

Using'l_‘ : T(BxmM. ) - R , we construct on T(T 2DxY. ) the

Einstein Lagrangian

Lyt (T xDxM)

defined by

h+ ° -'J. h+L 'S "5 ht -t
LeCS, N’X,“a,k) = N L:l / :UL o —H‘i—l My

N

-2 j‘N R(ﬂ)}ka .
M

LE now picks up a degeneracy in the Y~ direction, as well as in the ® direction,
allowing for the arbitrary specification of N. as well as X,. However, once Nt
and X, are specified, the degeneracy of Lp is completely removed and the evolution
equations are well-defined. A computation then shows that Lagrange's equations

in the "non-degenerate direction', together with the arbitrarily specified lapse

function Nt and shift vector field X., are the Einstein equations of evolution

(see [5] for details).
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