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ABSTRACT

The problem of relativistic stellar pulsations is studied in a somewhat ad hoc
approximation that ignores all fluid motions. This Inverse Cowling Approximation
(ICA) is motivated by two observations. (1) For highly damped (w-mode)
oscillations the fluid plays very little role. (2) If the fluid motion is neglected, the
problem for polar oscillation modes becomes similar to that for axial modes. Using
the ICA, we find a polar mode spectrum that has all features of the w-mode
spectrum of the full problem. Moreover, in the limit of superdense stars, we find the
ICA spectrum to be qualitatively similar to that of the axial modes. These results
clearly show the importance of general relativity for the pulsation modes of compact
stars, and that there are modes whose existence does not depend on motions of the

fluid at all, namely pure ‘space—time’ modes.

Key words: radiation mechanisms: nonthermal — relativity — stars: neutron.

1 INTRODUCTION

The pulsations of relativistic stars have attained increasing
interest in the scientific community in the last five years.
Recent results have improved our understanding of both
this subject and the theory of general relativity itself. Never-
theless, one can easily identify issues that are far from being
well understood at the present time.

When Thorne and his colleagues established the theory
for relativistic stellar pulsations three decades ago (Thorne
& Campolattaro 1967; Thorne 1969), the main results were
not very different from the well-known ones of Newtonian
theory. Compact objects were found to oscillate at almost
exactly the frequencies that Newtonian theory predicted.
Relativistic effects only gave rise to a very slow damping of
the pulsation. The emission of gravitational radiation
implied that the oscillation frequencies were complex with a
relatively tiny imaginary part.

The situation recently changed considerably when a new
family of oscillation modes for compact stars was found
(Kojima 1988; Kokkotas & Schutz 1992). These modes have
no relation to the known p- and g-modes in Newtonian
theory. Rather, this new family of modes, the existence of
which was suggested by a simple model problem (Kokkotas
& Schutz 1986), comes from coupling the stellar fluid to the
space—time. A characteristic property of the new family is
that the fluid motion is very small, and the oscillations are
rapidly damped. These modes have been named w-modes
(gravitational wave modes), and their existence (together

with an additional part of the spectrum) has been verified by
Leins, Nollert & Soffel (1993). Moreover, we have recently
developed an accurate numerical code that gives reliable
results and also reveals the limitations of the specific
description of the pulsation problem that has been used in
all calculations so far (Andersson, Kokkotas & Schutz
1995).

The oscillations of relativistic stars are often described by
a system of four coupled ODEs (Detweiler & Lindblom
1985). Two equations correspond mainly to the fluid pulsa-
tions, and the other two to perturbations on the space—time.
The two sets of equations couple strongly in the case of
highly relativistic stars, but the coupling also depends on the
frequency. For slowly damped modes, the equations are, in
practice, decoupled in the high- and low-frequency limits.
These limits correspond to the fluid p- and g-modes, respec-
tively. The two space—time ODEs then hardly affect the
structure of the spectrum at all, and a relativistic generaliza-
tion of the Cowling approximation (Cowling 1941), in which
perturbations of the space-time itself are ignored, yields
the correct spectrum (see, e.g., Robe 1988, McDermott,
Van Horn & Scholl 1983, Finn 1988 and Lindblom &
Splinter 1990).

Inversely, as has been shown by Kokkotas & Schutz
(1992), Leins et al. (1993) and Andersson et al. (1995), the
fluid hardly pulsates at all in the case of w-modes. A simple
way to find the spectrum of such modes might therefore be
to omit the equations pertaining to the fluid perturbations
altogether — what we will from now on refer to as the Inverse
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Cowling Approximation (ICA). In the present work, which
is intended as a complement to studies of the full problem,
we examine the stellar pulsation problem in this approxima-
tion. The major motivation is to clearly show the degree of
involvement of general relativity. The ICA should indicate
which features of the w-mode spectrum that are related to
the fluid motion and which are due to the space-time per-
turbations. This is an important step towards a better under-
standing of the nature of the w-modes and the properties of
rapidly damped stellar oscillations.

Chandrasekhar & Ferrari (1991) recently showed that
axial quasi-normal modes could exist for very compact stars.
The possibility of axial modes had previously been dis-
carded, since axial perturbations do not couple to oscilla-
tions of the stellar fluid. However, Chandrasekhar & Ferrari
realized that ‘trapped’ modes can occur when the star is so
compact that the surface lies inside the peak of the familiar
Regge—Wheeler potential barrier (Chandrasekhar 1983).
That is, the axial modes can be understood in terms of a
potential well (see fig. 1 in Chandrasekhar & Ferrari 1991).
Initially, only a few such axial modes were found, and they
were all slowly damped: Recent work by Kokkotas (1994)
revealed that there are a large number of highly damped
axial modes as well. This new set of axial modes is in many
ways similar to the polar w-modes.

A good reason for studying the axial modes is that the
space—time perturbations do not couple to those of the
fluid, and thus the system of equations becomes a very
simple one. In fact, the problem is similar to that for a
perturbed black hole, although the boundary conditions
(now at r—0) are, of course, different. If we freeze the fluid
motion in the case of polar perturbations, we arrive at a
similar problem. Using the ICA, we can consequently study
the polar pulsations in a way similar to that used for the
axial ones. This should provide a better understanding of
the relation between the two sets of pulsation modes for
relativistic stars.

Recently, two of us have been involved in a study of
superdense stars close to the limit of compactness posed by
general relativity (Kojima, Andersson & Kokkotas 1995).
That study suggested that the origin of the axial modes and
the polar w-modes is the same. Both sets are ‘space—time’
modes that do not depend on the stellar fluid at all for their
existence. If that conclusion is correct, one would expect all
features of the w-modes to be present in the ICA.

2 THE INVERSE COWLING
APPROXIMATION

In Regge—Wheeler gauge, the perturbed metric can be
written

ds’= —e'(1 +r'Hye'Y,,) d¢?
—2iowr'*'H,e"Y,,, dt dr
+e*(1 —r'H,e'Y,,) dr’
+r*(1 —r'KeY,,)(d6? + sin* 6 d¢?), €))

with H,, H, and K functions of r only. Y,,, are the standard
spherical harmonics, and M (r) acts as an effective mass
inside radius r. It is assumed that all perturbations on time
as exp(iwt). We also have

© 1996 RAS, MNRAS 280, 1230-1234

Space—time modes of relativistic stars 1231

M
e i=1-". 0)
r

The metric function v, the pressure p and the mass M follow
from the Tolman-Oppenheimer—Volkov equations that
determine a stellar equilibrium model. Moreover, Einstein’s
equations imply the relation (Detweiler & Lindblom
1985)

¢=DC+2)

[3M+ 4n:r3p} H,

) £(f+1
={wzr3e“‘”— (2 )(M+4m3p)]H,

[ sa , (=1)(+2)
o e

el
—M—4nr’p + = M+ 4nr3p)2] K. 3

Hence only two metric functions remain undetermined.

The full pulsation problem consists of four coupled first-
order ODEs [equations (8)—(11) of Detweiler & Lindblom
(1985)]. These describe the two remaining space—time vari-
ables, H, and K, as well as two fluid ones, IV and W. In this
formulation, the ICA corresponds to V'=W=0, and the
perturbation equations for a specific multipole ¢ take the
following simple form inside the star:

rH=¢e*(Hy+K) —[¢ + €* + 4nr’e*(p — p)|H,, )

£(¢+1)

e (M + 4nr’p)

r

K’ =H, + H —|t+1 K, (5

where a prime denotes a derivtive with respect to r, and
equation (3) should be used to replace H,.

In the exterior the perturbation equations simplify to the
well-known Zerilli equation (Fackerell 1971; Chandrase-
khar 1983). It is, in fact, possible to transform equations (4)
and (5) into a single second-order equation, but we have
found the form of this equation to be rather complicated
and not numerically convenient. Instead, we approach the
above system of equations numerically in the present study.
The procedure used is a very simple one. The result of one
integration [initiated with the regular solution to equations
(4) and (5)] from the centre of the star to the surface is
matched to an exterior solution calculated according to the
method described by Andersson et al. (1995). The tech-
nique used for finding eigenfrequencies here is identical to
that discussed in our previous paper.

Before we discuss the numerical results obtained in this
way, a few words of caution are in order. We have not
defined the ICA in a gauge-invariant way here. Such a defi-
nition does not, in fact, seem possible. This does not mean
that the idea presented here is without merits, however. The
usefulness of an ad hoc approximation such as the ICA is
illustrated by the actual results obtained. Even though such
results should not be used as indication of new physical
phenomena, we will show in the following sections that they
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provide interesting information. We view the present study
as a mathematical experiment that provides information on
the relative importance of the space—time variables and the
fluid ones.

3 ICA MODES FOR POLYTROPES

We have calculated the quadrupole quasi-normal-mode
spectrum in the ICA for the four stellar models of Kokkotas
& Schutz (1992). The results are interesting. First of all, we
could not find the p- and g-mode spectra. This was certainly
expected, since these modes are clearly associated with fluid
perturbations which are absent in our approximation
(McDermott et al. 1983).

In Fig. 1 we compare the w-mode spectrum to the ICA
mode spectrum for model 2 of Kokkotas & Schutz (1992).
The similarities between the two spectra are evident. The
highly damped part of the ICA spectrum, i.e., the w-modes,
is in excellent qualitative agreement with the results of an
analysis of the full problem. In fact, the real parts of the
frequencies agree surprisingly well. The spacing between
consecutive modes is roughly 10 per cent smaller in the ICA
than in the full problem. This means that the absolute dif-
ference between the real parts for ‘corresponding’ modes in
the ICA and the full problem increases drastically
with the frequency. Nevertheless, the relative difference
[(Re w,,; —Re w,)/Re w, . ;, where n is an integer labelling
the modes] is typically smaller than 10 per cent. As for the
damping rates, the ICA imaginary parts are some 20-30 per
cent smaller than those for the w-modes of the full problem.
As the oscillation frequency increases, this difference
decreases and the two spectra approach each other. All
characteristic features of the spectrum, such as the existence
of a few overdamped modes with small real part (what Leins
et al. 1993 referred to as w,-modes) are found where
expected.

Even though a discussion of physical effects here must
carry a disclaimer because of the gauge-dependency of the
ICA, it is interesting to speculate on reasons for why the
damping of the ICA modes is slower than that of the w-
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Figure 1. The w-mode spectrum compared to the ICA spectrum
for a simple polytropic stellar model. Here, the equation of state is
p=100km’ p? and the star has characteristics: p, =3 x 10" gcm ™,
R=8.861 km, M=1.266 M, i.e., 2M/R =0.422. This corresponds
to model 2 of Kokkotas & Schutz (1992).

modes of the full problem. A hand-waving argument is the
following. In the full problem the fluid is also ‘radiating’
gravitational waves with the signature of a w-mode (the
perturbations are coupled). The fluid thus acts as a kind of
‘gravitational-wave pump’, and it seems plausible that the
dissipation rate increases. The observed result would follow
if the fluid is ‘a more efficient radiator of gravitational
waves’ than the space-time itself. However, does not the
evidence from oscillations mainly associated with the fluid
(the p-modes) indicate the opposite? The damping of these
modes due to gravitational radiation is slow, and the fluid
would seem to be a poor radiator. This is certainly true, but
it is important to remember that the origin of the fluid
modes and the ‘space—time’ modes we discuss in this paper
is quite different. For the fluid modes the space—time per-
turbations are negligible compared to the fluid ones, and
the modes are slowly damped because the coupling between
matter and gravitational waves is weak. The situation is
different for the w-modes, for which the space—time pertur-
bations play the dominant role. The results in Fig. 1 suggest
that the space-time curvature traps gravitational waves
more effectively than does the stellar fluid. This seems plau-
sible, but further study of this problem is needed if we are to
understand the actual physics involved.

4 ICA MODES FOR SUPERDENSE STARS

Let us now compare the polar modes obtained in the ICA to
the axial modes. To do this, we consider the uniform density
model that was studied by Chandrasekhar & Ferrari (1991),
Kokkotas (1994) and Kojima et al. (1995). For this model
the surface of the star can be inside the peak of the curva-
ture potential. In this way we have a problem that can
loosely be characterized as a ‘potential with a well inside a
barrier’, and one would expect modes with small imaginary
part (which come mainly from the potential well, i.e., act as
quasi-bound states in quantum language) to exist. Further-
more, as was shown by Kokkotas (1994), there are modes
with high damping.

Before we proceed to discuss the present results, it is
necessary to discuss the discrepancy between previous
results for axial modes. In the study of Kokkotas (1994) the
damping rate of the modes was found to be roughly half that
found by Chandrasekhar & Ferrari (1991). When investigat-
ing this issue, we found it to be due to a misprint in equation
(19) of Chandrasekhar & Ferrari (1991). If the erroneous
equation is used in the numerical calculations, the results of
Kokkotas follow. Once the equation is corrected, the
numerical results are in good agreement with those of
Chandrasekhar & Ferrari. It is, however, important to stress
that the results of Kokkotas are qualitatively correct. An
infinite spectrum of highly damped modes does, indeed,
exist (Kokkotas 1995).

Here we have used the method of Andersson et al. (1995)
to approach the exterior problem and verify the qualitative
behaviour of the recent axial-mode results of Kokkotas
(1994). It is worth noticing at this point that, although the
numerical results of Chandrasekhar & Ferrari (1991) are
correct, their method of outward numerical integration is
very sensitive to the choice of end-point representing
‘infinity’. Integration from the surface of the star towards
infinity is, in fact, not very reliable in this kind of problem,
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especially not when one deals with numbers of the order of
107%, as one must to identify the long-lived modes. Integra-
tion towards the surface of the star, as in the method used
here, is considerably more stable and accurate.

For these ultracompact models we find that the ICA spec-
trum is quite similar to the axial-mode spectrum obtained by
Kokkotas (1994); see Fig. 2. The ICA modes are generally
slower damped than the axial modes throughout the spec-
trum. This is reminiscent of the result for polar modes of
polytropes discussed in the previous section. Our calcula-
tions have also unveiled highly damped modes with rela-
tively small real parts in both spectra; see Fig. 2. These
modes are, in many ways, similar to the ‘new’ polar modes
identified by Leins et al. (1993) and Andersson et al. (1995).
That similar modes exist also for axial perturbations was not
known previously, but is evident from our Fig. 2.

The slowest damped modes for very compact stars should
be viewed as modes trapped inside the curvature potential
barrier (Kojima et al. 1995). The slight difference in damp-
ing between the ICA modes and the axial modes in the first
part of the spectrum could be due to the difference between
the Regge—Wheeler and the Zerilli potential. Although
similar, these two potentials are not the same (Chandrase-
khar 1983), and a difference in the stellar spectra should be
expected at some level.

The rapidly damped modes cannot easily be viewed as
trapped modes in this sense. Rather, they are analogous to
the w-modes for less compact stellar models discussed in the
previous section. In fact, it is worth stressing the consider-
able qualitative similarity between the rapidly damped axial
modes and the polar w-modes (compare Figs 1 and 2). It
should also be remembered that the results of Kojima et al.
(1995) show that the axial and the polar spectra approach
each other as the star becomes increasingly compact. By
extending that study to less compact stellar models, one may
hope to shed further light on the relationship between the
axial modes and the polar w-modes (Andersson, Kojima &
Kokkotas 1996). At present, it seems clear that, although
axial perturbations do not couple to the stellar fluid
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Figure 2. The axial and ICA spectra for a very compact uniform
density star. This specific example is a star for which R/M =2.28,
i.e., 2M/R=0.88. The modes that correspond to the ‘new’ polar
modes identified by Leins et al. (1993) lie above the general ‘string’
of modes. That such axial modes exist was not known previously.
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(Thorne & Campolattaro 1967), rapidly damped axial
modes should exist also for less compact stellar models. That
is, models for which the surface of the star lies well outside
the peak of the Regge—Wheeler potential barrier should
support a branch of strongly damped axial modes.

5 CONCLUDING DISCUSSION

In this short paper we have presented results for a new
approximation relevant to stellar pulsation problems in
general relativity. The Inverse Cowling Approximation,
which neglects perturbations of the stellar fluid, provides a
useful tool for probing the role of the space—time degrees of
freedom in their problem. We have compared (1) the spec-
trum of highly damped modes for polar perturbations (the
w-modes) to the corresponding ICA modes for polytropic
neutron star models, and (2) the polar ICA modes to the
modes for axial perturbations of extremely compact uni-
form density stars. The results are unequivocal: all essential
features of the w-mode spectra are present in the ICA. This
is strong support for the idea that the w-modes are ‘space—
time’ modes that do not rely on the motions of the fluid for
their existence.

Motivated by the present results, we would argue that this
kind of approximation can be used to further improve our
present understanding of the stellar pulsation problem. In
fact, it works much in the same way as the Cowling approxi-
mation does for pulsations mainly associated with the fluid
degrees of freedom. In that case, calculations are facilitated
by neglecting the perturbations of space—time (McDermott
et al. 1983). When relativistic stars are considered, that
approximation on its own does not make much sense. It is
clear, e.g., from the existence of w-modes, that the gravita-
tional field must be considered as dynamic if all features of
the problem are to be accounted for. So, only if the Cowling
approximation is complemented with something like the
present approximation can one infer the relevant physics.
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