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ShockWaves in Plane Symmetric Spacetimes
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We consider Einstein’s equations coupled to the Euler equations in plane symmetry,
with compact spatial slices and constant mean curvature time. We show that for a
wide variety of equations of state and a large class of initial data, classical solutions
break down in finite time. The key mathematical result is a new theorem on the
breakdown of solutions of systems of balance laws. We also show that an extension
of the solution is possible if the spatial derivatives of the energy density and the
velocity are bounded, indicating that the breakdown is really due to the formation
of shock waves.
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1. Introduction

A question of central interest in general relativity is that of the long-time behavior of
self-gravitating matter. Mathematically the starting point is to get suitable existence
and uniqueness theorems for the Einstein equations coupled to the equations of
motion of the matter. Since the resulting system of partial differential equations is
difficult to handle it makes sense to begin with solutions of high symmetry. One of
the most popular matter models in applications is the perfect fluid described by the
relativistic Euler equations. It is to be expected that, as in classical hydrodynamics, a
major difficulty in studying the long-time behavior of solutions of these equations is
the formation of shocks from smooth initial data. If the solution is to be continued
beyond these it is necessary to leave the realm of classical solutions of the equations.
It should be noted that until very recently most of the theorems on solutions of the
Euler equations involving shocks were a one-dimensional context (plane symmetric
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Shock Waves 2021

solutions). This may change following the recent work of Christodoulou [5] on the
formation of shocks in special relativity without symmetry assumptions.

One way to avoid the difficulties involved with fluids is to consider instead
collisionless matter described by the Vlasov equation. In that case quite a lot of
mathematical results are available for the coupled Einstein-matter equations [2, 15].
If, on the other hand, we face the problems associated with the fluid description,
as we do in this paper, several natural questions arise. First, are there global
existence theorems for weak solutions of the special relativistic Euler equations?
Some positive answers have been given in [4, 7, 17]. Second, do these results extend
to the case of a self-gravitating fluid? Theorems have been proved under certain
assumptions by [3] and [8]. Third, can it be proved that classical solutions of the
Einstein–Euler equations break down in finite time? It is the third question which is
addressed in the following.

The symmetry assumed in this paper is plane symmetry where the solutions are
invariant under the action of the full isometry group of the Euclidean plane. In
particular this reduces the full problem to a problem in one time and one space
dimension. It is assumed that the position space is compact. This circumvents the
need for boundary conditions and is the analogue of periodic boundary conditions
in the non-relativistic case. The notion of ‘finite time’ breakdown is subtle in general
relativity. In that theory there is a free choice of time variable and if it has been
proved that a solution breaks down after a finite amount of a particular time
coordinate it is necessary to think carefully about what this means geometrically.
This is what is relevant for physics. In this paper we use a constant mean curvature
(CMC) time coordinate. This means that the value of t at some point of spacetime
is equal to the mean curvature of the unique compact CMC hypersurface passing
through that point.

The main result of this paper (Theorem 5.2) shows that plane symmetric
classical solutions of the Einstein–Euler equations exhibit finite-time breakdown for
a wide variety of equations of state. The key new analytical result used to prove this
is a theorem on the breakdown of solutions of systems of balance laws which is of
interest in its own right. This is combined with general estimates for the Einstein
equations to give the final result.

In the last section we put the result into context, considering several issues. The
Euler equations are compared with other matter models. The assumptions on the
equation of state are compared with cases known in the literature, and the relations
to existing results on weak solutions are discussed.

2. The Einstein Equations

Let �M� g� be a spacetime, where the manifold is assumed to be M = I × T3, I is a
real interval and T3 = S1 × S1 × S1 is the three-torus. We require that the metric g
and the matter fields are invariant under the action of the Euclidean group E2 on
the universal cover, and that the spacetime has an E2-invariant Cauchy surface of
constant mean curvature (CMC). As was shown in [12], there is a local in time 3+ 1
decomposition of �M� g� where each spatial slice has constant mean curvature. We
can introduce spatial coordinates x, y and z on each slice, with ranges �0� 2�� and
period 2�, and a CMC time coordinate t = tr k where k is the second fundamental
form of the slices.
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2022 Rendall and Ståhl

The metric can be expressed as

ds2 = −�2dt2 + A2��dx + �dt�2 + a2�dy2 + dz2��� (1)

where �, A and � depend on t and x and a depends on t only. Here � is the lapse
and �	



1 is the shift. The coordinates can be chosen such that

∫ 2�
0 � dx = 0.

It is convenient to introduce the orthonormal frame

e0 = �−1�t − �−1��x�

e1 = A−1�x� (2)
e2 = �aA�−1�y�

e3 = �aA�−1�z�

We will use indices a� b� � � � to denote spatial coordinate components and i� j� � � � to
denote spatial frame components.

The frame components of the second fundamental form may be written

kij = −1
2
�K − t�	ij +

1
2
�3K − t�	1i	1j� (3)

where K is a function of t and x. We also introduce the notation 
 = T 00, j =
T 10 and Sik = T ik for frame components of the energy momentum tensor T
�. The
Einstein equations can then be written

K′ + �3K − t�A−1A′ = 8�Aj� (4a)

�
√
A�′′ = − 1

8A
5/2

[
K2 + 1

2 �K − t�2 − t2 + 16�

]
� (4b)

�′′ + A−1A′�′ = �A2
[
K2 + 1

2 �K − t�2 + 4��
+ tr S�
]
− A2� (4c)

�ta = a
[
− �′ + 1

2��3K − t�
]
� (4d)

�tA = −�KA+ �A��′� (4e)

�tK = �K′ −A−2�′′ +A−3A′�′ +��−2A−3A′′ +2A−4�A′�2+Kt−4��2S11− tr S+
���

(4f)

Here a prime denotes differentiation by x. Equation (4a) and (4b) are the
momentum and Hamiltonian constraints, respectively. The lapse equation (4c)
comes from the constant mean curvature condition, while (4d) and (4e) are
consequences of the choice of spatial coordinate conditions. The last equation (4f)
is the only independent Einstein evolution equation in this case.

Using (4) it is possible to show that many of the fundamental quantities are
bounded. This was done in [12] for plane, hyperbolic and spherical symmetry, when
the matter satisfies the dominant energy and the non-negative pressures conditions.
The non-negative pressures condition was subsequently relaxed to the strong energy
condition in [14] (note that plane symmetry is a special case of local U�1�× U�1�
symmetry). Also, a bound for �−1 in terms of the previously obtained geometric
bounds was found in [13].
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Shock Waves 2023

Theorem 2.1 (See [12–14]). Let a solution of the Einstein equations with plane
symmetry be given and suppose that when coordinates are chosen which cast the metric
into the form (1) with constant mean curvature time slices the time coordinate takes all
values in the finite interval �t0� t1� with t1 < 0. Suppose further that the dominant and
strong energy conditions hold. Then the following quantities are bounded on the interval
�t0� t1�:

�� �−1� �′� A�A−1� A′� �tA� a� a
−1� �ta�K� �� �

′� (5)

The bounds involve only

t0� t1� �a�0� �a−1�0� �A�0� �A−1�0� (6)

where � · �0 is the supremum norm on the initial surface t = t0.

3. The Euler Equations

In this section we will rewrite the matter equations for a perfect fluid in plane
symmetry as a system of balance laws.

The basic matter variables are the pressure p, the energy density 
 and the unit
4-velocity U
 of the fluid. Because of the plane symmetry the frame components of
U can be written as

U 0 = �1− u2�−1/2� U 1 = u�1− u2�−1/2 and U 2 = U 3 = 0� (7)

where u ∈ �−1� 1�. The energy momentum tensor for a perfect fluid is

T
� = �
 + p�U
U� + pg
�� (8)

which implies


 = T 00 = �
 + p�

1− u2
− p� (9a)

j = T 01 = �
 + p�u

1− u2
� (9b)

S11 = T 11 = �
 + p�u2

1− u2
+ p� (9c)

S22 = S33 = T 22 = T 33 = p� (9d)

It will be convenient to introduce two new variables

w =
(
dp
d


)1/2

� (10a)

� =
∫ 



−

(
dp
dm

)1/2 dm
m+ p

� (10b)

where m is a dummy integration variable and the constant 
− is arbitrary.
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2024 Rendall and Ståhl

The matter equations are given by the vanishing of the divergence ��T
�� of the

energy momentum tensor. The spatial frame components ��T
�2 and ��T

�3 vanish
identically. Expressing the remaining two components in terms of �, w and u gives

w�2ue0�u�+ �1+ u2�e1�u��+ �1− u2���1+ u2w2�e0���+ u�1+ w2�e1����

−w�1− u2��Ku2 + t − 2uA−1e1�A�− 2u�−1e1���� = 0� (11a)

w��1+ u2�e0�u�+ 2ue1�u��+ �1− u2��u�1+ w2�e0���+ �u2 + w2�e1����

−w�1− u2���K + t�u− 2u2A−1e1�A�− �1+ u2��−1e1���� = 0� (11b)

Adding and subtracting (11a) and (11b) we get

E0 = w�e0�u�+ e1�u��+ �1− u���1+ uw2�e0���+ �u+ w2�e1����

−w�1− u��Ku+ t − 2uA−1e1�A�− �1+ u��−1e1���� = 0� (12a)

E1 = w�e0�u�− e1�u��− �1+ u���1− uw2�e0���+ �u− w2�e1����

−w�1+ u��Ku− t + 2uA−1e1�A�− �1− u��−1e1���� = 0� (12b)

The linear combinations �1+ u��1± w�E0 + �1− u��1∓ w�E1 give

D+u+ �1− u2�D+� = �1− u2�

[
Ku+ tw − 2uwA−1e1�A�

1+ uw
− �−1e1���

]
� (13a)

D−u− �1− u2�D−� = �1− u2�

[
Ku− tw + 2uwA−1e1�A�

1− uw
− �−1e1���

]
� (13b)

with differentiation operators

D+ = e0 +
u+ w

1+ uw
e1 and D− = e0 +

u− w

1− uw
e1� (14)

Next, we introduce the variables

r = �+ 1
2
ln

1+ u

1− u
and s = �− 1

2
ln

1+ u

1− u
� (15)

These are analogues of the Riemann invariants found by Taub [18]. In contrast
with the special relativistic case, r and s are not invariant. In particular, it follows
from (13) that instead of a system of conservation laws, r and s satisfy a system of
balance laws:

D+r = tw + Ku− 2uwA−1e1�A�

1+ uw
− �−1e1���� (16a)

D−s =
tw − Ku− 2uwA−1e1�A�

1− uw
+ �−1e1���� (16b)

Here u and w should be regarded as functions of r and s given by (15) and (10).
We will now make some assumptions on the equation of state to ensure that

the maps between the different matter variables introduced in this section are well
behaved.
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Shock Waves 2025

Lemma 3.1. Suppose that the equation of state is given as a smooth function p of 

such that

1. the strong energy condition (
 + p ≥ 0 and 
 + 3p ≥ 0) holds,
2. the dominant energy condition (−
 ≤ p ≤ 
) holds,
3. 0 < dp

d
 < 1 and

4. d2p
d
2 ≥ 0.

Then the maps

�r� s� �→ �u� ��� R2 → �−1� 1�× R� (17)


 �→ �� �0�
� → ��−�
�� −
 ≤ �− < 0 (18)

are smooth bijections,

�
� u� �→ �
� j� S� (19)

is smooth and 1-1 on �0�
�× �−1� 1�,


 �→ w� �0�
� → �0� 1� (20)

is smooth and increasing, and

dw
d�

≥ 0� (21)

Proof. From (15),

� = r + s

2
and u = tanh

r − s

2
� (22)

which establishes (17) without any restrictions on the equation of state. Applying
conditions 1 and 3 to (10b) shows that � is a smooth strictly increasing function of

 and thus 1-1. Moreover, from conditions 4 and 2 it follows that

lim

→
� = 
� (23)

Thus � is a smooth bijection from �0�
� to ��−�
�, where �− = lim
→0+ � ≥ −
.
That 
, j and S are smooth functions of 
 and u is evident from (9). The

map is 1-1 since p is 1-1 because of condition 3. Finally, (20) follows directly from
conditions 3 and 4, and

dw
d�

= dw
d


/
d�
d


= 1
2
�
 + p�

(
dp
d


)−1 d2p

d
2
≥ 0 (24)

because of conditions 1, 3 and 4. �
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2026 Rendall and Ståhl

4. Balance Laws

In this section we will obtain a blowup result for the system of balance laws

D+r = e0�r�+ ��r� s�e1�r� = f�t� x� r� s�� (25a)

D−s = e0�s�+ ��r� s�e1�s� = g�t� x� r� s�� (25b)

where �e0� e1� is a pseudo-orthonormal frame with respect to a Lorentzian metric
on �t0� t1�× S1 for some real interval �t0� t1�. The operators D+ = e0 + �e1 and
D− = e0 + �e1 are called characteristic derivatives and we denote the corresponding
integral curves (or characteristics) by �x and �x. The suffix shows where the curves
intersect the surface t = t0, i.e., �x�0� = �t0� x� and �x�0� = �t0� x�. We also denote
the commutation coefficients by ckij so that �ei� ej� = ckijek.

Let �	 be an open subset of R2, to be further specified below. We assume that
at least one of � and � is genuinely nonlinear on �	, i.e., ��/�r �= 0 or ��/�s �= 0.
Without loss of generality we may assume that ��/�r > 0. We also assume that � −
� �= 0 on �	 so that the system is strictly hyperbolic.

Let the initial values of r and s be r0�x� = r�t0� x� and s0�x� = s�t0� x�. We will
show that for certain choices of r0 and s0, r and s are bounded while �xr or �xs
blow up in finite time, indicating the presence of a shock wave. There are similar
results for systems of conservation laws (see, e.g., [6]), but we cannot hope for the
same generality here. For more specific results, a better control of the source terms
f and g is needed. For example, if the sources are superlinear in r and s we can
expect blowup of r and/or s themselves [11]. On the other hand, global existence
of smooth solutions have been shown under certain conditions [20]. We will leave
these considerations aside and aim for a more general but less sharp result.

4.1. Bounds on r and s

First we need to specify the set �	. The initial data �r0� s0� is a smooth map S → R2.
The image is a plane curve with convex hull �0. For any 	 > 0 we define

�	 = �P ∈ R2� d�P��0� < 	� and �	 = �t0� t1�× S1 ×�	� (26)

where d is the Euclidean distance in R2. Note that �	 is convex as well, as follows
easily from the triangle inequality.

To be able to perform integrations along lines of constant r in a well defined
way we need to introduce the following construction. Since S1 is compact, there
are points �r−� s−� and �r+� s+� on the initial data curve in R2 where r0 attains its
minimum and maximum, respectively. These are also global extremal points of r in
�0 since �0 is convex. By construction, �r− − 	� s−� and �r+ + 	� s+� are extremal
points of r in the closure of �	, and we let s = ��r� be the straight line between
those two points. We can now state the following lemma. Here � · � is the supremum
norm on S1.

Lemma 4.1. The line from �r� s� to �r� ��r�� is contained in �	 for all �r� s� ∈ �	.
Moreover, ��′� ≤ 	−1�s0� and �s − ��r�� < 2�s0� + 	 on �	.

Proof. Since r− − 	 < r+ + 	, the line s = ��r� intersects the balls with radius 	
around �r−� s−� and �r+� s+�. It follows from the convexity of �	 that s = ��r� is
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Shock Waves 2027

contained in �	 except for its endpoints �r− − 	� s−� and �r+ + 	� s+�. The first
statement then follows directly from the convexity of �	.

The second statement is just the rough estimate

��′� = �s+ − s−�
r+ − r− + 2	

≤ �s0�
	

� (27)

and the third follows from the fact that ���r�� ≤ �s0� and �s� < �s0� + 	 on �	. �

Let

F = sup
�	

��f �� �g�� and E = inf
�	

�e00 + �e01� e
0
0 + �e01�� (28)

The following lemma provides a crude estimate of r and s.

Lemma 4.2. If F is finite and E > 0, any smooth solution �r� s� of (25) with initial
data �r0� s0� remains within �	 for t < min�t0 + 2−1/2	EF−1� t1�.

Proof. From (25) we have that �r − r0� ≤ F� along a characteristic �x as long
as t < t1, where � is the parameter along �x, chosen such that D+ = �/�� and
�x�t0� = �t0� x�. By the definition of D+, dt/d� = e0

0 + �e1
0 ≥ E, so � ≤ E−1�t −

t0� and �r − r0� ≤ FE−1�t − t0�. We can obtain similar estimates for s along
the characteristics �x. Thus the distance between �r� s� and �r0� s0� is at most√
2FE−1�t − t0�, and the conclusion follows. �

As we saw in Lemma 3.1, 
 �→ � � �0�
� → ��−�
� is smooth and 1-1. It is
quite possible that �− is finite, i.e., that 
 = 0 for finite r and s. This is indeed the
case for a relativistic polytropic perfect fluid, for example. This complication can be
circumvented by a further restriction on 	.

Lemma 4.3. Let �0 = 1
2 infx∈S�r0�x�+ s0�x��. If

0 < 	 < �0 − �− (29)

then � > �− on �	.

Proof. If 
 = 0 at some point on the initial surface, then � = �r0 + s0�/2 = �−
there. Thus the right hand side of (29) vanishes and the statement is void. On the
other hand, if 
 > 0 for all x ∈ S1 at t = 0, the right hand side of (29) is a positive
number because S1 is compact. The conclusion follows from the fact that if �r� s� ∈
�	 then

�− �− = 1
2
�r + s�− �− > �0 − �− − 	 > 0� (30)

�

4.2. The Blowup Equation

For a homogeneous system of two conservation laws, it is possible to show that
shock waves will form for suitable initial data by introducing a new unknown which
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2028 Rendall and Ståhl

is a rescaling of the spatial derivative of r. The scale factor can be chosen such that
the new unknown satisfies a differential equation which does not involve derivatives
of s. We follow a similar route, but as we will see below it is a bit harder to decouple
the equations when source terms are present.

We are interested in the spatial derivative e1�r�. First note that

�e1� e0� = c010e0 + c110e1 = c010D+ + �c110 − �c010�e1 (31)

from the definition of D+. It follows that

D+e1 = �e1 − c010�D+ − ��re1�r�− �se1�s�+ c110 − �c010�e1� (32)

We adopt the convention of denoting partial derivatives by subscripts, and we also
write fe1 = e01ft + e11fx for the partial frame derivative of f with respect to e1, i.e.,
e1�f� with r and s are regarded as constants.

Applying the operator D+e1 to r and using (25a) gives

D+e1�r� = −�re1�r�
2 − �se1�s�e1�r�− �c110 − �c010�e1�r�

+ fe1 + fre1�r�+ fse1�s�− c010f� (33)

In particular, there is a term quadratic in e1�r� which might cause blowup of e1�r�.
The problem is that there is a term involving both e1�r� and e1�s�. As in the
homogeneous case, the mixed term can be eliminated by introducing a function
h�r� s� by

h�r� s� =
∫ s

��r�
�� − ��−1 ��

�s
ds� (34)

where � is defined in Lemma 4.1. Now let R = −eh e1�r�. Differentiating R and
simplifying gives

D+R = a2R
2 + a1R+ a0 − ehfse1�s�� (35)

where

a2 = e−h�r� (36a)

a1 = fr + fhr + �� − ��−1g�s + c101 − �c001� (36b)

a0 = −eh�fc001 + fe1�� (36c)

We would like to use (35) to show that R has to blow up for appropriately
chosen initial data. But there is still a problematic term involving e1�s� which
cannot be estimated using bounds on r and s alone. This term is not present in the
homogeneous case since then fs vanish. It is of course possible to define a quantity
similar to R based on e1�s� instead of e1�r�. The result is a system of two coupled
equations, but then we cannot use ODE techniques directly.

It is, however, possible to remove the e1�s� term by the following procedure. By
construction,

D+s = D−s + �� − ��e1�s� = g + �� − ��e1�s�� (37)
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Shock Waves 2029

where we have used (25b). Since � − � �= 0, we can introduce a function

��t� x� r� s� = −
∫ s

��r�
eh�� − ��−1fs ds� (38)

By the chain rule, (37) and (25a),

D+� = �e0
+ ��e1

+ �s�� − ��e1�s�+ �sg + �rf� (39)

where �e0
and �e1

are the frame partial derivatives of �, regarding r and s as
constants. Applying (38) to (39) gives

D+� = �e0
+ ��e1

− ehfse1�s�+ �sg + �rf� (40)

Now (35) may be written

D+�R− �� = A2�R− ��2 + A1�R− ��+ A0� (41)

where the coefficients are

A2 = e−h�r� (42a)

A1 = fr + fhr + �� − ��−1g�s + c101 − �c001 + 2 e−h�r�� (42b)

A0 = e−h�r�
2 + �fr + fhr + �� − ��−1g�s + c101 − �c001��

−eh�fc001 + fe1 − fs�� − ��−1g�− �rf − �e0
− ��e1

� (42c)

Note that (41) is a first order ODE in R− � whose coefficients can be estimated in
terms of r and s.

4.3. Blowup of R

We start with a simple lemma about blow-up of solutions to an ODE with a
quadratic nonlinearity (see, e.g., [1, p. 72] or [9, Lemma 1.3.2]).

Lemma 4.4. Let v�t� be a solution on �t0� t1� of

dv
dt

= A2�t�v
2 + A1�t�v+ A0�t�� v�t0� = v0� (43)

where A2, A1 and A0 are continuous and bounded on �t0� t1� with A2 ≥ 0. Put

K1�t� =
∫ t

t0

A1 dt� K0�t� =
∫ t

t0

�A0�e−K1 dt� K2�t� =
∫ t

t0

A2e
K1 dt� (44)

If v0 > K0�t1� then

K2�t1� < �v0 − K0�t1��
−1 (45)

and we have the following lower bound on v in �t0� t1�:

e−K1�t�v�t� ≥ K0�t1�− K0�t�+ ��v0 − K0�t1��
−1 − K2�t��

−1� (46)
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2030 Rendall and Ståhl

Proof. The linear term can be dealt with by putting V = v e−K1 , which transforms
(43) into

dV
dt

= A2 e
K1V 2 + A0 e

−K1� V�t0� = v0� (47)

Let W be the solution of

dW
dt

= A2 e
K1�W − K0�t1�+ K0�t��

2 − �A0� e−K1� W�t0� = v0� (48)

which can be found explicitly as

W�t� = K0�t1�− K0�t�+ ��v0 − K0�t1��
−1 − K2�t��

−1� (49)

We want to show (46), i.e., V ≥ W . Now

dW
dt

≤ A2e
K1W 2 + A0 e

−K1� (50)

so subtracting (47) from (50) gives

d
dt

�W − V� ≤ A2e
K1�W + V��W − V�� (51)

and a Gronwall estimate implies that W − V ≤ 0 as long as W + V ≥ 0. Whenever
W − V ≤ 0, W + V ≥ 2W , so V ≥ W as long as W ≥ 0. By definition, W ≥ 0
when K2�t� < �v0 − K0�t1��

−1. But W → 
 as K2�t� → �v0 − K0�t1��
−1, so since V is

bounded on �t0� t1� we must have K2�t1� < �v0 − K0�t1��
−1. �

Note that in [1] and [9], the factors involving K1 are moved outside the integrals.
We avoid this since we want to keep the simple form of (46).

Lemma 4.5. Let � be an open set in R2 and put � = �t0� t1�× S1 ×�. Assume that

1. �r� s� remains in � for t ∈ �t0� t1�,
2. e00 + �e01 is continuous and positive on �,
3. A2, A1 and A0, given by (42), are continuous with A2 > 0 and

C2 = inf
�

A2� C1 = sup
�

�A1� and C0 = sup
�

�A0� (52)

are all finite with C2 > 0, and
4. � is bounded on �.

If

R�t0� x� ≥ ��t0� x� r0�x�� s0�x��+ C0��t1�+ �C2��t1��
−1 + C1/C2 (53)

for some x ∈ S1, where

��t1� =
{
�eC1��t1� − 1�/C1 if C1 > 0�

��t1� if C1 = 0
(54)
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Shock Waves 2031

and ��t1� is the parameter value along the characteristic �x corresponding to the time t1,
then R cannot be bounded on �t0� t1�× S1.

Proof. Assumption 1 ensures that the other assumptions apply along the
characteristic �x for t ∈ �t0� t1�. Along �x, the parameter � satisfies dt/d� = e00 + �e01,
so it follows from assumption 2 that � is a continuously differentiable and increasing
function of t along �x.

Because of assumption 3 and assuming that R− � is bounded, we can apply
Lemma 4.4 to (41) along �x, giving

R�t0� x�− ��t0� x� r0�x�� s0�x�� < K0���t1��+ K2���t1��
−1� (55)

If C1 > 0, we have

�K1� ≤ C1��t�� K0 ≤
C0

C1

�eC1��t1� − 1� and K2 ≥
C2

C1

�1− e−C1��t1��� (56)

so

R�t0� x�− ��t0� x� r0�x�� s0�x�� < C0��t1�+ �C2��t1��
−1 + C1/C2� (57)

where ��t1� = �eC1��t1� − 1�/C1. When C1 = 0 the same inequality holds but with
��t1� = ��t1�. This contradicts the assumptions of the lemma and so in fact R− � is
unbounded. It follows that R must blow up since � does not. �

Theorem 4.6. Let �	 and �	 be as in (26). Assume that

I. �, �r , �s, �r and �s are continuous and bounded on �	, with �r and � − � bounded
away from 0,

II. f , fr , fs, fse0 , fe1 and g are continuous and bounded on �	,
III. e00 + �e01 and e00 + �e01 are continuous, bounded, positive and bounded away from 0

on �	, and
IV. c001 and c101 are continuous and bounded on �t0� t1�× S.

Suppose also that

e1�r��t0� x� ≥ e−h�r0�s0����t0� x� r0� s0�+ C0��t̂1�+ �C2��t̂1��
−1 + C1/C2� (58)

for some x ∈ S, where t̂1 = min�t0 + 2−1/2	EF−1� t1�, F and E are given by (28), h is
given by (34), � by (38), Ci by (52) and � by (54). Then there is no smooth solution
of (25) on �t0� t1� with initial data �r0� s0�.

Moreover, the right hand side of (58) can be estimated in terms of �r0�, �s0�, t0,
t1, x, 	 and the bounds in assumptions I–IV.

Proof. First of all, that �r� s� ∈ �	 for t ∈ �t0� t̂1� follows from Lemma 4.2, which
applies because of assumptions II and III. Thus condition 1 of Lemma 4.5 holds.
Condition 2 follows directly from assumption III.

To simplify the presentation we will denote the supremum norms over S, �	

and �	 with the same symbol � · �. From the definition (34) and Lemma 4.1, h is
continuous on �	 with

�h� ≤ ��� − ��−1���s��2�s0� + 	�� (59)
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2032 Rendall and Ståhl

It follows that h is bounded because of assumption I. Differentiating (34) by r and
performing a partial integration to get rid of the mixed second partial derivative �rs

gives an estimate

�hr� ≤ ��� − ��−1��2��r� + ��s��+ ��� − ��−1�2���r���s� + ��s���r���2�s0� + 	��
(60)

so it follows from assumption I that hr is bounded as well.
From the definition (38) and assumptions I and II, � is continuous on �	 with

��� ≤ ��� − ��−1�e�h��fs��2�s0� + 	�� (61)

Differentiating � with respect to r and performing a partial integration to avoid the
term involving frs gives an estimate

��r� ≤ e�h���� − ��−1��2�fr� + �fs� + ��fr��Hs� + �fs��Hr���2�s0� + 	��� (62)

where H = h− ln�� − ��. Differentiating � with respect to e0 gives the estimate

��e0
� ≤ e�h���� − ��−1��fse0��2�s0� + 	�� (63)

while for �e1
we perform a partial integration before estimating, giving

��e1
� ≤ e�h���� − ��−1��fe1��2+ �Hs��2�s0� + 	��� (64)

By assumptions I and II, �, �r , �e0
and �e1

are bounded. We conclude that all terms
in (42) are continuous and bounded.

Now inf�	
A2 > 0 because of assumption I, so all conditions of Lemma 4.5

are met. Since R = ehe1�r�, e1�r� cannot be bounded on the characteristic �x if (58)
holds.

Finally, the only quantity in the right hand side of (58) whose dependence on
the estimates has not been established by the arguments above is ��t̂1�. From the
definition (28) of E and F , t̂1 can be estimated both from below and above by t0, t1,
x, 	, �r0�, �s0� and the bounds in assumptions I–IV. That the same holds for ��t̂1�
follows from the definition (54) of � together with the estimate of A1 above. �

The condition on fse0 can of course be replaced by a condition on fe0 by
performing a partial integration as we did with hr , frs and fse1 . The reason for not
doing so will become evident below. Note also that there is no explicit dependence
of fe0 in (42).

Let us define the blowup time as

t∗ = sup�t > t0� �r� s� is smooth on �t0� t��� (65)

Then we also have the following.

Corollary 4.7. Under the conditions of Theorem 4.6, the blowup time t∗ satisfies
��t∗� ≤ �∗ where �∗ is the smaller root of

e1�r��t0� x� = e−h�r0�s0����t0� x� r0� s0�+ C0� + �C2��
−1 + C1/C2�� (66)
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Shock Waves 2033

5. Blowup in Spacetime

We will now combine the results of the preceding sections to show finite life span of
solutions to the Einstein–Euler equations. We first need to control higher derivatives
of some geometric quantities, given bounds on the matter variables.

Lemma 5.1. If the conditions of Lemma 3.1 are satisfied and r and s are bounded with
r + s > 2�−, the following quantities are bounded:

K′� A′′� �′′� �tK� �
′′ and �tA

′� (67)

The bounds involve only those in (6) and the a priori bounds on r and s.

Proof. From Lemma 3.1, 
, j and S can be bounded in terms of r and s for a given
equation of state. Using these bounds together with (5) in (4a), (4b), (4c) and (4f)
immediately gives bounds on K′, A′′, �′′ and �tK. Differentiating (4d) by x gives �′′

expressed in �, �′, K, K′ and t, so it is bounded too. Finally, differentiating (4e) by
x gives a bound on �tA

′ in terms of the previously obtained bounds. �

The previous results can now be combined to show a blow up result for the
Einstein–Euler equations in plane symmetry.

Theorem 5.2. Let t0 < t1 < 0 and suppose that the conditions of Lemma 3.1 hold. Then
there are smooth initial data on the surface t = t0 such that the corresponding smooth
solution of the Einstein–Euler equations (4) and (11) does not extend beyond t = t1.

Proof. Theorem 2.1 shows that all the geometric quantities in (5) are bounded in
terms of the quantities in (6). Let �	 and �	 be as in (26), with 	 as in (29). Then
�	 and �	 depend on r0, s0, t0, t1 and 	, and 	 is limited by �0 − �−, which in turn
depends only on the equation of state and the minimum of r0 + s0. By construction,
r and s can be bounded on �	 in terms of 	 and the maximum values of r0 and s0.
It then follows from Lemma 5.1 that the geometric quantities (67) also are bounded,
in terms of (6) and

	� �r0�� �s0�� (68)

We need to establish the bounds in Theorem 4.6. First Theorem 2.1 and
Lemma 5.1 give that

e00 + �e01 = e00 + �e01 = �−1 (69)

are continuous, positive and bounded away from 0 and

c001 = �−1e1��� and c101 = �−1Ae1���− A−1e0�A� (70)

are continuous and bounded in terms of (6).
From the definition of u and the construction of �	, ln�1− u2�, �1− u2�−1 and

�1± uw�−1 can be bounded in terms of (68). Also,

1
2
inf
S1
�r0 + s0�− 	 < � <

1
2
sup
S1

�r0 + s0�+ 	� (71)
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2034 Rendall and Ståhl

so for a given equation of state, Lemma 3.1 gives that w−1, �1− w2�−1 and dw
d� are

bounded in terms of (68) and

��0 − �− − 	�−1 =
(
1
2
inf
S1
�r0 + s0�− �− − 	

)−1

� (72)

The balance law coefficients can be read off directly from (16). They are

��r� s� = u+ w

1+ uw
� (73a)

��r� s� = u− w

1− uw
� (73b)

f�t� x� r� s� = tw + Ku− 2uwA−1e1�A�

1+ uw
− �−1e1���� (73c)

g�t� x� r� s� = tw − Ku− 2uwA−1e1�A�

1− uw
+ �−1e1���� (73d)

From the previously obtained bounds it follows that � and � are continuous on �	

and can be bounded in terms of (68). Differentiating and using that wr = ws = 1
2
dw
d�

and ur = −us = 1
2 �1− u2� we get

�r =
1− u2

2�1+ uw�2

(
1− w2 + dw

d�

)
� (74)

with similar expressions for �s, �r and �s. These quantities are continuous on �	

and can be bounded in terms of (68) and (72). Moreover, �r and

� − � = 2w�1− u2�

1− u2w2
(75)

are positive, and �−1
r and �� − ��−1 are bounded in terms of (68) and (72).

From (73), f and g are continuous on �	 and bounded in terms of (6) and (68).
Since wr = ws = 1

2
dw
d� and ur = −us = 1

2 �1− u2�, the same holds for their r and s
derivatives.

Finally the quantities appearing in fse0 and fe1 not present in f are �tK, K′, �tA′,
A′′ and �′′. It follows from Lemma 5.1 that fse0 and fe1 are continuous and bounded
in terms of (6), (68) and (72). Note that fse0 does not depend on �t�

′ since the term
in (73c) containing � is independent of s. This is the reason for not replacing fse0 by
fe0 in Theorem 4.6.

Now all the conditions of Theorem 4.6 have been established and we can
conclude that if the initial data satisfies (58) for some x, there is no smooth solution
on �t0� t1�. By definition, e1�r� = A−1�xr. Since all quantities in (58) except �xr can be
estimated in terms of the geometric initial data (6) and the matter initial data (68)
and (72), choosing initial data with sufficiently large gradient �xr will prevent a
smooth extension up to t = t1. �

The question, how big the class of solutions of the constraints is which satisfy
the hypotheses of the theorem will not be treated in great generality here. It will,
however, be shown that there are some data which do so for which the time of
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Shock Waves 2035

existence is arbitrarily short. Consider data for which u is identically zero. Then
a particular solution of equation (4a) is given by K = t/3. Substituting this into
the remaining constraint (4b) gives �

√
A�′′ = − 1

8A
5/2�− 2

3 + 16�
�. The equation to
be solved is a special case of one treated in [10] where the existence of a solution
A was shown by the method of sub- and supersolutions. This method also gives
uniform bounds for the solution which in particular shows that the derivative 
′ at
a point can be made arbitrarily large within a family of solutions while maintaining
a fixed L
 bound for A. At the same time fixed L
 bounds for 
 and 
−1 can be
maintained. This suffices to show that e1�r� becomes arbitrarily large within the
family and provides the desired data for which the time of existence is arbitrarily
short.

6. An Extension Result

In the previous section we established that if the initial data has sufficiently large
gradients, there is no smooth solution of the Einstein–Euler equations beyond a
certain time. It seems quite plausible that the obstruction to extending the solution
is the blowup of first derivatives of the matter variables, although it must be pointed
out that we have not shown that. To investigate this further, we will show that if
the first derivatives of the matter variables are bounded then the spacetime can be
extended. The argument will be similar to that in [12]. First we need bounds on r
and s, which can be established under a mild extra condition on the equation of
state.

Theorem 6.1. Assume that in addition to the conditions in Lemma 3.1, dp/d
 is
bounded away from 1. Then the following quantities are bounded:

r� s� 
� j� S� (76)

Proof. The extra condition and Lemma 3.1 implies that the factors in the
denominators of (73) are positive and bounded away from 0. Thus the right hand
sides of (25 can be bounded in terms of the geometric quantities (5). Integrating (25)
shows that r and s are bounded along the characteristics. We may pass from these
estimates to estimates in time because of (69). Finally, 
, j and S must also be
bounded because of Lemma 3.1. �

Lemma 6.2. Under the conditions of Lemma 3.1, if all spatial derivatives of order up
to n of the geometric quantities (5) and the matter quantities (76) are bounded, the
spatial derivatives of order up to n+ 1 of the geometric quantities (5) are bounded.

Proof. Note first that some of the spatial derivatives are already included in (5). As
was shown in the proof of Lemma 5.1, we can solve (4) for the remaining quantities
�′′, A′′, �tA′, K′ and �′′. Differentiating the resulting equations n times gives the
desired bounds. �

Lemma 6.3. Suppose that the conditions of Lemma 6.2 hold, dp/d
 is bounded away
from 1 and �xr and �xs are bounded. Then the spatial derivatives of the matter
quantities (76) of order up to n+ 1 are bounded.
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2036 Rendall and Ståhl

Proof. Note first that because of the definition (2) of e1, using en1 instead of �nx
introduces spatial derivatives of A−1 of order at most n− 1, which are bounded by
assumption.

Put rn = en1�r� and sn = en1�s�. Applying (32) to rn+1 gives

D−rn+1 = �e1 − c010�D+rn − ��re1�r�− �se1�s�+ c110 − �c010�rn+1� (77)

If we can show that (77) is a linear equation in D+rn+1 with the coefficients given
by smooth functions of spatial derivatives of r and s of order up to n and of
the geometric quantities (5) of order up to n+ 1, we would be done because of
Lemma 6.2.

Putting n = 1 and using the expression (33) for D+r1 shows that D+r2 is linear
in r2, and the coefficients have the right dependence because of (73) and (70). For
n > 2 the coefficients of D+rn are differentiated by x at most once in (77) so the
result follows by induction. The case with s is completely analogous. �

Lemma 6.4. Under the conditions of Lemma 6.3, if all derivatives of the geometric
quantities (5) and the matter quantities (76) of the form �kt �

n
x with n ≥ 0 and 0 ≤ k ≤ m

are bounded then the �m+1
t �nx derivatives of the matter quantities (76) are bounded.

Proof. As was the case with e1 and �x, we may use e0 instead of �t because of (2).
The balance laws (25) can be used to bound an extra time derivative by introducing
an extra space derivative, which is bounded by Lemma 6.3. �

Lemma 6.5. Under the conditions of Lemma 6.3, if

1. all derivatives of the geometric quantities (5) and the matter quantities (76) of the
form �kt �

n
x with n ≥ 0 and 0 ≤ k ≤ m are bounded, and

2. all derivatives of the matter quantities (76) of the form �m+1
t �nx are bounded,

then the derivatives of the geometric quantities (5) of the form �m+1
t �nx are bounded.

Proof. See [12]. �

Putting together Theorem 6.1 and Lemma 6.2–6.5 we see that under the
hypotheses of Lemma 6.3, all derivatives of the geometric and matter quantities are
bounded. When all the derivatives are bounded on a given interval, the solution can
be smoothly extended to the closure of that interval. This results in a new initial
data set and applying the local existence and uniqueness result from [12] gives an
extension of the solution. We thus have the following theorem.

Theorem 6.6. Let a solution of the Einstein equations with plane symmetry be given.
Suppose that when coordinates are chosen which cast the metric into the form (1) with
constant mean curvature time slices, the time coordinate takes all values in the finite
interval �t0� t1� with t1 < 0. Assume that the equation of state satisfies the conditions in
Lemma 3.1, and that dp/d
 is bounded away from 1. If the first spatial derivatives of
the energy density 
 and the velocity parameter u are bounded on �t0� t1�, the solution
can be extended beyond t = t1.
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7. Discussion

In this paper it has been shown that plane symmetric classical solutions of
the Einstein–Euler system can break down in finite time under some general
assumptions on the equation of state. Time here is measured with respect to a CMC
foliation. That the formation of singularities is due to the fluid and not just to a
breakdown of the CMC foliation is shown by the following fact. If instead of the
Euler equations we describe the matter content of spacetime by a collisionless gas
satisfying the Vlasov equations and maintain all other assumptions the solutions
exist globally in the future [12]. In the case of the Euler equations for a fluid without
pressure (dust) a non-existence result was proved in [13]. The proofs of all these
results have common elements. It is shown that the spacetime geometry has certain
good properties right up to the singularity. Using this it is shown that when there are
no singularities in flat spacetime there are also none after coupling to the Einstein
equations (Vlasov) while in the cases there are singularities (Euler with pressure,
dust) the mechanisms of blow-up in the flat space case (formation of shocks, blow-
up of the density) provide a reliable guide as to what quantities are bounded or not
and how to prove it in the case of coupling to the Einstein equations.

A family of data along which the time of existence becomes arbitrarily small
can be used to show that the results of [10] on solutions of the Einstein-dust system
generalize to the case of fluids with non-zero pressure. The conclusion is that there
are data for the Einstein–Euler equations with an equation of state of the kind
considered in the present paper on a CMC hypersurface such that the corresponding
maximal Cauchy development cannot be foliated by compact CMC hypersurfaces.
To see that the proofs of [10] can be adapted note first that under the assumption
u = 0 the constraints for the fluid with pressure are identical to those for dust so that
many of the arguments can be taken over directly. Cauchy stability for the Einstein–
Euler system with 0 < dp

d
 < 1, which is necessary for the argument, follows from
the fact that it can be written in symmetric hyperbolic form so that standard results
apply. See for instance [16], in particular p. 140. The final element which is required
is to know that the argument for breakdown of the solution can be localized in
space. Since the contradiction to existence on a certain time interval is obtained by
an analysis of the evolution of certain quantities along a single characteristic it is
only necessary to show that in a short time interval the characteristic can only move
a short (coordinate) distance in space. This follows immediately from the available
a priori bounds for the geometry.

The assumptions on the equation of state in Theorem 5.2 are compatible with
cases of physical relevance. Consider, for instance, the relativistic polytrope with


 = m+ Knm1+ 1
n � p = Km1+ 1

n (78)

where n > 1 and K > 0 are constants and m the rest mass density. In this case all
the assumptions are satisfied. They are also satisfied for an equation of state leading
to a linear relation p = K
 with K > 0, as considered in [3] and [17]. This is true
in spite of the fact that if a full thermodynamic treatment of this case is attempted
the internal energy is negative at low densities and so its physical interpretation is
questionable.

In the case of Theorem 5.2 the density remains bounded on the maximal interval
of existence of a classical solution. This cannot be expected to hold for dust,
although it is not actually proved in [13] that the density is unbounded. Thus some
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restrictions on the equation of state are to be expected. It is probable that blow-
up of the density occurs when the equation of state is such that the pressure is a
bounded function of the density (cf. [19]). In Theorem 5.2 this case is excluded by
condition 4 of Lemma 3.1.

Ideally, there would be a useful interaction between the results of [3] and
those of the present paper. It would then be possible to conclude that the classical
solutions with finite-time breakdown can be continued as weak solutions and on
the other hand that the weak solutions which have been constructed are not always
classical. Unfortunately the time coordinates used in the two cases are different so
that a direct comparison is not possible.

Finally, some possible extensions of the results of this paper will be mentioned.
In the case of a special relativistic fluid the analogue of Theorem 5.2 holds with
the same proofs. In that case the time is the ordinary Minkowski time. Also,
Theorem 6.6 shows that under the extra condition that dp/d
 is bounded away from
1, a solution for which the first derivatives of m and u remain bounded remains
smooth, i.e. it can be extended smoothly to a longer time interval. The results
obtained here therefore support the picture that the breakdown of the classical
solutions is due to the formation of shock waves.
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