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We expand upon our previous analysis of numerical moving-puncture simulations of the Schwarzschild

spacetime. We present a derivation of the family of analytic stationary 1þ log foliations of the

Schwarzschild solution, and outline a transformation to isotropic coordinates. We discuss in detail the

numerical evolution of standard Schwarzschild puncture data, and the new time-independent 1þ log data.

Finally, we demonstrate that the moving-puncture method can locate the appropriate stationary geometry

in a robust manner when a numerical code alternates between two forms of 1þ log slicing during a

simulation.
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I. INTRODUCTION

The binary black-hole problem is a cornerstone problem
in gravitational theory: solving for the inspiral and merger
of two black holes in full general relativity connects the
theory’s strong-field regime with astrophysics, and con-
nects issues with the mathematical understanding of the
theory with the emerging field of gravitational-wave as-
tronomy. Solutions of the binary black-hole problem re-
quire numerical simulations, but stable, long-term
numerical evolutions of orbiting black-hole binaries eluded
researchers for four decades. However, after a number of
insights and technical developments two independent
methods [1–3] were shown in 2005 to allow simulations
of the last orbits, merger, and ringdown of an equal-mass
nonspinning binary. One of these, the ‘‘moving puncture
method’’ [2,3], was quickly adopted by many research
groups and has since been applied to many, more general,
scenarios: unequal-mass binaries [4–7], spinning binaries
[8–23], three-black-hole spacetimes [24,25], and long
simulations of (so far) up to ten orbits [26–29].

At the technical level, the moving-puncture method
consists of a seemingly small modification of the earlier
‘‘fixed puncture’’ method [30,31]. However, in [32] (which
we will refer to as Paper I), we found that the numerical
slices behave in a way radically different from what was
observed in previous fixed-puncture evolutions, and indeed
in all previous numerical simulations of black-hole space-
times. We developed a geometrical picture of the behavior
of moving-puncture simulations, and our results suggested
a new paradigm for black-hole evolutions, centered around
manifestly stationary representations of black-hole space-
times and ‘‘asymptotically cylindrical’’ slices. This led to
further investigations in [33–35]. In this paper we expand
and discuss in more depth the results of Paper I, with
particular reference to the asymptotics of the initial and
final states of a moving-puncture simulation.

The initial data in a typical moving-puncture simulation
represent black holes using a wormhole topology [36]: as

we follow the coordinates toward one of the black holes,
we do not reach the black hole’s singularity but instead
pass through a wormhole to another exterior space, and
eventually find ourselves once again in an asymptotically
flat region. Data for N black holes can consist of N þ 1
asymptotically flat regions connected by N wormholes. In
the puncture approach to constructing initial data [37–40]
each ‘‘extra’’ asymptotically flat region is compactified so
that its spatial infinity is transformed to a single point
(‘‘puncture’’), and the entire N þ 1-wormhole topology
can be represented in a single three-dimensional space,
R3. All of the black-hole singularities are conveniently
avoided in this construction, and there is no need to ‘‘ex-
cise’’ any region when these data are used in a numerical
simulation.
This use of nontrivial topology to enforce the presence

of horizons can be regarded as a mere trick to conveniently
construct black-hole initial data. It comes at the expense of
using the entire Kruskal extension to the Schwarzschild
spacetime, part of which has no physical relevance in
typical numerical evolutions. Our analysis suggests that a
similar trick could be used to construct initial data that
leave out most of the unphysical region; we will later refer
to these as ‘‘trumpet’’ data.
Standard puncture data are smooth over the entire space,

except for a scalar function, the conformal factor  , which
diverges as 1=r near each puncture. One of the two inno-
vations of the moving-puncture method was that it pro-
vides a method to stably evolve the conformal factor. In
addition, the method uses gauge conditions (variants of
‘‘1þ log’’ slicing for the lapse function [41] and
~�-freezing for the shift vector [31,42]) that allow the
punctures to move across the numerical grid. The result
is that the punctures orbit each other and spiral inwards, as
if the black holes were being represented by point particles,
and the plots of the ‘‘puncture tracks’’ shown in many
papers easily match our intuitive picture of objects in orbit
(see, for example, [2,3,26,28]). Of course, the orbiting
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punctures are not point particles, they are the asymptotic
infinities of wormholes, or at least they were in the initial
data. Are these two extra copies of an asymptotically flat
region of spacetime orbiting each other on the numerical
grid? The answer turns out to be No, as we explain below.

In Paper I we studied moving-puncture simulations of a
Schwarzschild black hole, and found that the numerical
points quickly leave the extra copy of the exterior space.
Where the points near the puncture originally approached a
second asymptotically flat end, after a short time the grid
points instead asymptote to an infinitely long ‘‘cylinder’’
with radius R0 ¼ 1:31M. In addition, we solved the spheri-
cally symmetric Einstein equations for a stationary 1þ
log-sliced spacetime (see also [43]), and found that the one
solution with a lapse function that is non-negative every-
where agrees with that found by the numerical code. In
other words, there is one regular stationary 1þ log solu-
tion, and the moving-puncture method quickly finds it.
Whereas an embedding diagram of the initial data resem-
bles a wormhole, we will refer to that of the late-time slices
as a trumpet. This terminology becomes clear in Figs. 1
and 2.

This seemingly dramatic change in the appearance of the
numerical slices is achieved by the gauge conditions. We
start with moment-of-time-symmetry initial data for the
Schwarzschild solution, choose the initial lapse� � 1, and
propagate using the 1þ log condition. So far the configu-
ration is symmetric across the throat; wewill call this ‘‘left-
right’’ symmetry to be consistent with standard Kruskal
and Penrose diagrams, although we mean symmetry with
respect to the upper and lower halves of Fig. 1. So, the
initial configuration is left-right symmetric, and the slicing

condition preserves this symmetry. This means that all the
slices of the foliation will also be left-right symmetric and
run from one spacelike infinity to the other. As such, there
will not be a stationary limiting slice; we will elaborate on
this point in Sec. II. However, at late times a region of the
slice to the right (and a corresponding region to the left) is
asymptotically stationary. Now we have to consider the

effect of the ~�-driver shift condition. If we use puncture
data, this condition generates a very large shift, pointing to
the right, near the puncture. This has the effect of dragging
all the data points near the puncture into the region of the
Schwarzschild solution between the horizons and finally
onto the stationary part of the slicing. This happens ex-
tremely quickly. The closer the innermost data point is to
the puncture, the longer it takes, but it always happens. A
description of this phenomenon was also given in [34].
There exists a true stationary 1þ log slice through the

Schwarzschild spacetime. This is what we call the trumpet.
This is asymptotically flat at one end and cylindrical (of
radius R � 1:31M) at the other. The asymptotically sta-
tionary part of the wormhole foliation asymptotes to (part
of) this trumpet. The closer the data points are to the
puncture, the more of the trumpet we will finally see.
Further, we will see only the trumpet—there are no longer
any grid points on the nonstationary part of the slice, or any
of the slice on the left. We may say that the left half of the
slice is grossly under-resolved (in fact, it is not resolved at
all), but the nature of the asymptotic 1þ log slice is such
that a new asymptotics has formed, and the left half of the
slice is causally disconnected from the right: the nonreso-
lution of part of the slice no longer concerns us.
An example that closely mimics some of the behavior

described above was found in one of the first ever numeri-
cal simulations of a black-hole spacetime, as early as 1973,

FIG. 1. Embedding diagram of a two-dimensional slice (T ¼
const, � ¼ �=2) of the extended Schwarzschild solution. The
distance to the rotation axis is R. A wormhole with a throat at
R ¼ 2M connects two asymptotically flat ends.

FIG. 2. Embedding diagram of a two-dimensional slice (t ¼
const, � ¼ �=2) of the maximal solution (17)–(20). The distance
to the rotation axis is R. In contrast to Fig. 1 there is only one
asymptotically flat end. The other end is an infinitely long
cylinder with radius R0 ¼ 3M=2.
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by Estabrook et al. [44]. They evolved the Schwarzschild
solution with maximal slicing. The slices were reflection
symmetric about a ‘‘throat.’’ At late times the left and right
halves looked approximately stationary. In fact the right
half was translated to the right by the Killing vector while
the left half was dragged to the left. The throat region
approximated a cylinder of radius 3M=2, which grew
linearly with time.

Two phenomena associated with their simulations—
‘‘collapse of the lapse’’ and ‘‘slice stretching’’—were re-
curring topics in numerical studies of black-hole space-
times for the next 30 years [45–48]. However, what we
consider in this context to be the key feature of their result,
the formation of a cylindrical asymptotics, received little,
if any, attention before the work in Paper I. There we
suggested that the existence of a time-independent repre-
sentation of the foliation consistent with the new asymp-
totics, which a numerical code can find with the aid of an
appropriate shift condition, is one of the keys to the success
of the moving-puncture method. We also took the addi-
tional intuitive step of realizing that this time-independent
representation could be utilized from the outset of a simu-
lation, to allow the construction of fully time-independent
trumpet puncture data.

In this paper we extend the analysis that we provided in
Paper I. In Sec. II we discuss standard wormhole puncture
data, which cannot be time independent, and trumpet
puncture data, which can. The canonical examples are
the maximally sliced solution [44,49] and our stationary
1þ log solution. Here we provide a simple derivation of
the stationary 1þ log solution using a height function
approach, and illustrate some of its features in a Penrose
diagram. We also transform this solution to isotropic co-
ordinates, providing puncture trumpet data that should be
time independent in a moving-puncture simulation.

In Sec. III we present our numerical method. We start
with a brief description of the main features of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN)/moving-
puncture system, and outline a procedure to construct
Penrose diagrams from numerical simulations of the
Schwarzschild spacetime. Section IV contains the first set
of numerical results: a detailed study of a moving-puncture
evolution of wormhole puncture initial data. We show how
quickly the numerical data approach a trumpet geometry,
how they behave during the transition, and check the
accuracy with which they approach the analytic stationary
solution. It is important to emphasize that, although the
numerical solution is stationary in the sense of coordinate-
independent functions (for example, a plot of � vs R or of
TrðKÞ vs �), the numerical coordinates may still exhibit
some drift.

This is emphasized in Sec. V, where we evolve the
trumpet puncture data produced in Sec. II. We demonstrate
that these are indeed time independent, up to small nu-
merical errors. Furthermore, if we alternate between two

variants of 1þ log slicing during an evolution, we show
that the numerical data can alternate between two station-
ary solutions, but that some coordinate drift develops in the
process. This drift is minimized by choosing � ¼ 0 in the
~�-driver shift condition.
Finally, we conclude with some remarks about the po-

tential usefulness of trumpet puncture initial data for black-
hole binaries, which will be the subject of future work.

II. WORMHOLES AND TRUMPETS: ANALYTIC
TREATMENT

We begin by summarizing our notation and approach,
which is based on the standard ‘‘3þ 1’’ spaceþ time
splitting of Einstein’s equations [50]. We introduce the
Schwarzschild metric in Schwarzschild coordinates,
progress to isotropic coordinates, which are better adapted
to the standard puncture method, and then on to a deriva-
tion of the trumpet solution previously introduced in Paper
I. Our focus here is on solutions that are time independent,
because even in the black-hole binary problem we want to
choose coordinates that minimize the gauge dynamics; the
only dynamics we really want to see in a numerical code
are physical dynamics.

A. 3þ 1 decomposition and variables

We start by making a space plus time (3þ 1) decom-
position of the spacetime metric,

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ: (1)

The three-dimensional metric of a t ¼ const slice is de-
noted by �ij. The lapse function � gives the proper time

between the slice at time t, and the next slice at time tþ dt.
The shift vector �i prescribes how the coordinates shift
between the two slices. The complete data on one time
slice are given by �ij and the extrinsic curvature

Kij ¼ 1

2�
ðri�j þrj�i � @t�ijÞ; (2)

where ri denotes covariant differentiation with respect to
the spatial metric �ij, and we have used the Misner,

Thorne, and Wheeler [51], and Arnowitt, Deser, and
Misner [52] sign convention, not that given in Wald [53].
It proves convenient to also split the extrinsic curvature
into its trace K and tracefree part Aij, i.e.,

Kij ¼ Aij þ 1
3�ijK: (3)

We further decompose these data with respect to a
conformal metric, ~�ij, as follows:

�ij ¼  4 ~�ij; (4)

Aij ¼  �p ~Aij; (5)

K ¼ ~K; (6)
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�i ¼ ~�i: (7)

Note that in the standard conformal decomposition often
used to solve the constraint equations [50,54], one chooses
p ¼ �2, but for the BSSN decomposition used in the
moving-puncture method, p ¼ 4. Note also that the trace
of the extrinsic curvature and the contravariant components
of the shift vector are unchanged by the conformal rescal-
ing. The lapse function can also be transformed, but this is
not necessary for the present study. We could also have
made other choices of the conformal weights, but we are
not interested in those here. The complete data on one time

slice are ð�ij; KijÞ, or equivalently ð ; ~�ij; ~Aij; KÞ.
For the moment we will not worry about the details of

the constraint or evolution equations. In this section we
will be interested in finding time-independent representa-
tions of the Schwarzschild solution, for which the con-
straint equations are already satisfied, and the time
evolution of the data is trivial (i.e., they do not change in
time). Although we will make comments about numerical
simulations in this section, we will postpone concrete de-
tails until Sec. III, when we study numerically the time
development of our data.

B. Wormhole puncture data for a Schwarzschild
black hole

The Schwarzschild metric in Schwarzschild coordinates
is

ds2 ¼ �fdT2 þ f�1dR2 þ R2d�2; (8)

where f ¼ 1� 2M=R. Throughout this paper R and T
denote the Schwarzschild radial coordinate and
Schwarzschild time. The surface R ¼ 2M is the event
horizon, R ¼ 0 is a physical singularity, and R! 1 is
spatial infinity.

If we make the coordinate transformation R ¼  2r,
where

 ¼ 1þM

2r
; (9)

the Schwarzschild metric becomes

ds2 ¼ �
�
1� M

2r

1þ M
2r

�
2
dT2 þ  4ðdr2 þ r2d�2Þ: (10)

These are called (quasi- or spatially) isotropic coordinates.
Topologically, the constant-T slices areRþ�S2’R3 nf0g,
while geometrically (measuring proper areas or the
Schwarzschild radius R) the slices are wormholes. The
isotropic r does not reach the physical singularity at R ¼
0. For large r we see that R! 1, but for small r we see
that once again R! 1. There is a minimum of R ¼ 2M at
r ¼ M=2. We now have two copies of the space outside the
event horizon, R> 2M, and the two spaces are connected
by a wormhole with a throat at R ¼ 2M (Fig. 1). This
wormhole picture of a black hole forms the basis of the

initial data used in current moving-puncture black-hole
simulations. The point r ¼ 0, which represents the second
asymptotically flat end, is referred to as the puncture.
In terms of the conformal 3þ 1 quantities introduced

earlier, the Schwarzschild metric in isotropic coordinates is

~� ij ¼ �ij; (11)

 ¼ 1þM

2r
; (12)

~A ij ¼ 0; (13)

K ¼ 0: (14)

The lapse and shift are

� ¼ 1� M
2r

1þ M
2r

; (15)

�i ¼ 0: (16)

If we choose (11)–(14) as our initial data, and propagate
the data with the lapse (15) and shift (16), then the data will
remain unchanged: they are time-independent data.
As trivial as the time development of these data is, it is

difficult to reproduce numerically in a standard 3D black-
hole evolution code. The reason is that most codes are not
stable when the lapse is negative, which it is here for r <
M=2. In a numerical code we prefer to use a lapse that is
always positive, or at least non-negative. Unfortunately, it
is not possible to construct a time-independent, maximal
slice of Schwarzschild with two asymptotically flat ends
and an everywhere non-negative lapse, no matter what shift
conditions we employ [55–57]. Put another way, a maxi-
mal- or 1þ log-slicing evolution with two asymptotically
flat ends and with a non-negative lapse cannot reach a
stationary state. We will now see that the way around these
earlier results is to give up one of the asymptotically flat
ends.

C. Trumpet solution—maximal slicing

Since maximal initial data with two asymptotically flat
ends cannot be time independent, we seek an alternative.
One alternative is trumpet data. Consider the maximal slice
of the Schwarzschild spacetime [44,49]:

�RR ¼
�
1� 2M

R
þ C2

R4

��1
; (17)

Ki
j ¼ diagð�2C=R3; C=R3; C=R3Þ; (18)

�R ¼ �C

R2
; (19)
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R
þ C2

R4

s
; (20)

with C ¼ 3
ffiffiffi
3

p
M2=4 and R 2 ½1:5M;1Þ. We see that � �

0 for this domain, and at R0 ¼ 3M=2 the lapse goes to zero,
as does �R, while the spatial metric diverges as R! R0,
and so the proper distance from R0 to any R> R0 is
infinite. As we approach R0 the time slice becomes an
infinitely long cylinder of radius 3M=2. This behavior is
illustrated in Fig. 2 and we will refer to these data as
trumpets. These data, like (11)–(14) with (15) and (16),
are time independent.

With the benefit of hindsight we see that, rather than
adopting the wormhole puncture data (11)–(14) for nu-
merical evolutions, we might be better off transforming
(17)–(20) to isotropic coordinates (such that r ¼ 0 corre-
sponds to R ¼ 3M=2), and using those data instead. Such a
transformation was calculated numerically in [33], and it
was shown that these data can indeed be evolved stably,
and are time independent up to (convergent) numerical
errors. An analytic transformation to isotropic coordinates
was given in [58].

D. Trumpet solution—1þ log slicing

The data (17)–(20) are maximally sliced, K ¼ 0. In a
numerical simulation, we must solve an elliptic equation at
each time step to find the appropriate lapse function that
maintains maximal slicing (for these data we could assume
that the lapse remains constant, but this will not be true in
general black-hole simulations). This is computationally
expensive (i.e., slow), and it is therefore currently more
practical to choose a slicing condition so that the lapse can
be calculated from an evolution equation in the same way
as all of the other dynamical variables. One such slicing
condition is

@t� ¼ �n�K; (21)

where n is some constant, usually chosen to be n ¼ 2. We
see that if K ¼ 0, then the lapse does not evolve, and this
condition will maintain maximal slicing for our trumpet
data. This slicing condition is part of a class of conditions
called ‘‘1þ log’’ slicing [41]. The condition (21) is ac-
tually not a ‘‘geometric’’ slicing condition in the sense that
the slicing resulting from this condition also depends on
the shift �i, i.e., on the spatial coordinates [41,59].
Furthermore, in binary simulations it has been found that
unphysical gauge modes arise when (21) is used [60], and a
preferred choice is

ð@t � �i@iÞ� ¼ �n�K: (22)

This is equivalent to

L n̂� ¼ �nK; (23)

where n̂ is the unit timelike normal to the slice andL is the
Lie derivative. For the rest of this article, whenever we

refer to 1þ log slicing, we will mean (22). We will refer to
Eq. (21) as ‘‘asymptotically maximal slicing’’ because, if it
leads to a time-independent geometry, then that geometry
will be maximally sliced.
Since the slicing condition (22) has proven rather bene-

ficial in black-hole simulations, we would like to know
what the corresponding time-independent Schwarzschild
data are. A stationary 1þ log solution was found in Paper
I. An earlier result on stationary 1þ log slices can be
found in [43]; however, its exact relation to the present
discussion of punctures remains to be understood. Here we
will present one (of many possible) derivations of the
solution of Paper I.

1. Height function derivation

We begin with the Schwarzschild metric in
Schwarzschild coordinates, Eq. (8), and introduce a new
time variable, t, related to Schwarzschild time by a spheri-
cally symmetric height function, hðRÞ, as in [61],

t ¼ T � hðRÞ: (24)

The lapse, shift, and future-pointing normal vector in the
new coordinates are

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f

1� f2h02

s
; (25)

�R ¼ f2h0

f2h02 � 1
; (26)

n� ¼ ð��; 0; 0; 0Þ: (27)

Here again f ¼ 1� 2M=R, and we have introduced the
notation h0 ¼ @hðRÞ=@R. We note that only the derivative
of the height function appears in the new metric.
It is also useful to note that for any stationary spherically

symmetric spacetime the extrinsic curvature is given by

KRR ¼ �0

�2
; (28)

K�� ¼ R�; (29)

K		 ¼ R�sin2�; (30)

where � ¼ ffiffiffiffiffiffiffiffiffiffi
�i�

i
p

and �0 ¼ @�=@R, and the trace of the
extrinsic curvature K ¼ Ki

i is given by

K ¼ 2�

R
þ �0: (31)

For the Schwarzschild solution we also have the relation

�2 � �2 ¼ 1� 2M

R
: (32)

It will simplify the following calculations if we write h0
in terms of the lapse as
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h0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � f

p
f�

; (33)

and the shift is now written as

�R ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � f

q
; (34)

where we have chosen the sign of the root to give a non-
negative shift.

Following [61], the trace of the extrinsic curvature, K,
can be written as (noting once again the differing sign
convention in the definition of the extrinsic curvature)

K ¼ � 1ffiffiffiffiffiffiffi�gp ð ffiffiffiffiffiffiffi�gp
n�Þ;� ¼ � 1

R2
@RðR2h0f�Þ: (35)

In turn, our 1þ log gauge condition can be written for a
time-independent solution as

�R@R� ¼ n�K: (36)

Combining Eqs. (35) and (36) and solving for �0, we arrive
at the following first-order differential equation for the
lapse,

�0 ¼ � nð3M� 2Rþ 2R�2Þ
RðR� 2Mþ nR�� R�2Þ : (37)

The solution of this equation is an implicit equation for the
lapse,

n

2
½3 lnRþ lnð2M� Rþ R�2Þ� � � ¼ constant; (38)

or, more conveniently,

�2 ¼ 1� 2M

R
þ CðnÞ2e2�=n

R4
: (39)

We will now determine CðnÞ. The equation (37) is
singular when the denominator is zero. We search for a
CðnÞ such that the numerator and denominator are zero at
the same point, and the equation remains regular (the
singularity in the equation signifies a transition between
an elliptic and a hyperbolic problem as discussed in [35]).
The numerator is zero when

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M

2R

s
: (40)

We want solutions with an everywhere non-negative lapse,
so we choose the positive root. Substituting this into the
denominator of (37), we find that the denominator is zero
for a particular value of R,

Rc ¼ 3n2Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2M2 þ 9n4M2

p

4n2
; (41)

where we have chosen the positive root to ensure that Rc is
always positive. This allows us to evaluate the lapse at that
point as

�2
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9n2

p � 3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9n2

p þ 3n
: (42)

The value of the constant CðnÞ is now given as

C2ðnÞ ¼ ð3nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9n2

p Þ3
128n3

e�2�c=n: (43)

We now have the 1þ log trumpet solution, given by (39)
with (42) and (43) for the lapse, from which we calculate
�R from (34) and �RR ¼ 1=�2, and the extrinsic curvature
is given by (28)–(30).
Three special cases of the constant n deserve immediate

comment. When n ¼ 2we have the form of 1þ log slicing
commonly used in numerical simulations of black-hole
spacetimes. The results presented in [32–35] pertain to
this case, and we have Rc ¼ 1:54M, C2ðnÞ ¼
1:554 31M4, and the location of the throat (the smallest
real root of (39) with � ¼ 0) is R0 ¼ 1:312 41M. The
horizon is located at �ðR ¼ 2MÞ ¼ 0:376 179, which dif-
fers by over 20% from the common ‘‘� ¼ 0:3’’ rule-of-
thumb estimate of the horizon location.
In the limit n! 0, Eq. (36) is degenerate, and two

solutions exist. In one, �R ¼ 0, and we recover the stan-
dard Schwarzschild metric in Schwarzschild coordinates.
In the other, @R� ¼ 0, and so � ¼ 1 everywhere. As we
approach n! 0, the radius of the throat R0 approaches the

singularity as R0 � e�2=ð3nÞ=ð25=3nÞ.
The third case of interest is the limit n! 1. Now the

only physically meaningful solution is that K ¼ 0 every-

where, i.e., maximal slicing. We have Cð1Þ ¼ 3
ffiffiffi
3

p
M2=4,

and the radius Rc and the throat coincide at Rc ¼ R0 ¼
3M=2. This is the cylindrical maximal slice (17)–(20).
The behavior of R0 with respect to the parameter n is

shown in Fig. 3. This figure illustrates how R0 asymptotes

0.01 0.1 1 10 100 1000
n

0.5

1.0

1.5

R0

FIG. 3. Location of the throat, R0, as a function of the coeffi-
cient n in the slicing equation (36). In the limit n! 1 the
stationary slice is maximal and the throat is at R0 ¼ 1:5M,
indicated in the figure by a horizontal line. For small values of
n, the throat approaches the singularity.

MARK HANNAM et al. PHYSICAL REVIEW D 78, 064020 (2008)

064020-6



to the maximal value of 3M=2 as n! 1, and to the
singularity as n! 0.

2. Penrose diagrams

One advantage of working in spherical symmetry is that
redundant coordinates may be suppressed and we can
visualize the way the spacetime is sliced on two-
dimensional diagrams, such as the Carter-Penrose diagram.

In order to do this for a given solution (39), we first
integrate the height function h using (33) to obtain T for
every R. The singularity at R ¼ 2M can be handled (at
least numerically) by introducing a different quantity, such
as e�h, around the horizon. The undetermined value of t in
Eq. (24), which can be interpreted as the constant of
integration, expresses the fact that we do not calculate a
single slice but a foliation of the Schwarzschild spacetime.
As expected, the slices are related to each other by sliding
along the Killing vector field @T .

From the coordinates ðR; TÞ along one slice we trans-
form to Kruskal coordinates ðu; vÞ by either

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2M
� 1

s
eR=ð4MÞ cosh

T

4M
; (44)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2M
� 1

s
eR=ð4MÞ sinh

T

4M
; (45)

for R> 2M or

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

2M

s
eR=ð4MÞ sinh

T

4M
; (46)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

2M

s
eR=ð4MÞ cosh

T

4M
; (47)

for R< 2M. Compactifying the result via

u� v ¼ tanðU� VÞ; (48)

where U and V are the abscissa and the ordinate of the
Penrose diagram, yields the picture displayed in Fig. 4.
Note that we chose non-negative shift �R, which also
determines the sign of h [as well as u and v in Eqs. (44)
and (45)]. The opposite choice would lead to slices that are
mirror images of those in Fig. 4, connecting iþR to i0L.

3. Trumpet data in isotropic coordinates

We have now derived the stationary 1þ log solution. In
Paper I we compared this solution with the late-time data
from moving-puncture evolutions of wormhole puncture
data, which wewill discuss again in Sec. III. Wewould also
like to put this solution into isotropic coordinates, as was
done for the maximal trumpet data in [33,58]. This pro-
vides a good test case for numerical evolution codes, and

could be a starting point for generating trumpet data for
black-hole binaries.
The implicit nature of the solution (39) makes it difficult

to analytically construct the transformation to isotropic
coordinates. However, solving (39) for a function Rð�Þ
leads to four roots of a fourth-order polynomial, which, if
chosen appropriately, represent the analytical solution. In
this section, R should always be understood as this function
of �, whereas � becomes the independent variable that
parametrizes the spatial dependency. Apart from that, our
approach is similar to the one used in [58]. We note that the
�RR component of the stationary 1þ log metric can be
related to the �rr in isotropic coordinates by

�RR ¼
�
@r

@R

�
2
�rr (49)

¼
�
@r

@R

�
2
 4: (50)

We therefore find that, using R ¼  2r and �RR ¼ ��2,

@r

@R
¼ r

�R
; (51)

and a relation between the isotropic coordinate r and
Schwarzschild R may be found by either

r ¼ exp

�Z � 1

��R

dR

d�
ð ��Þd ��

�
; (52)

or

r ¼ R1=� exp

�
�
Z 1

�

lnR

��2
d ��

�
; (53)

where the last equation is obtained by integration by parts
and the upper integration limit is chosen such that r! R as
�! 1, i.e., towards spatial infinity. Both integrals (52) and

FIG. 4. The Penrose diagram of the slices defined by the sta-
tionary solution of the 1þ log condition with n ¼ 2. Every slice
approaches iþL along the curve R ¼ R0 � 1:31M and spatial
infinity i0R along a curve of constant T. The slices are displayed

in time steps of 4M.
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(53) diverge as �! 0, but (52) diverges less strongly, and
can be integrated numerically to arbitrarily small � with
sufficient accuracy to produce data suitable for a numerical
evolution. On the other hand, (53) has the attractive prop-

erty that as �! 1 the factor R1=� gives the asymptotic
behavior that we wish. In practice, we choose a point �s ¼
0:1, and for �< �s use

rð�Þ ¼ Rð�sÞð1=�sÞ exp
�
�
Z �s

�

1

��Rð ��Þ
dR

d�
ð ��Þd ��� C0

�
;

(54)

where

C0 ¼
Z 1

�s

lnRð�Þ
�2

d�: (55)

For �> �s we use

rð�Þ ¼ Rð�Þð1=�Þ exp
�Z �

�s

lnRð ��Þ
��2

d ��� C0

�
: (56)

Once we have the solutions Rð�Þ and rð�Þ, we may con-
struct rðRÞ to whatever accuracy is desired, and then trans-
form our data to isotropic coordinates via

 ¼
ffiffiffiffi
R

r

s
; (57)

�r ¼ @r

@R
�R; (58)

Krr ¼
�
@r

@R

��2
KRR: (59)

Note that the singularity in the conformal factor is now
milder than in the standard puncture case, where  � 1=r,
while here

 ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð�ðrÞÞ

r

s
’

ffiffiffiffiffiffi
R0

r

s
� 1ffiffiffi

r
p : (60)

This fact is intuitively expressed in the embedding dia-
grams in Figs. 1 and 2: the expansion of the wormhole
geometry as compared to the trumpet geometry leads to a
stronger singularity of the conformal factor. Since worm-
holes and trumpets both allow a representation on R3

where a coordinate singularity at r ¼ 0 is absorbed in the
conformal factor  , we refer to both cases as punctures.
All of the numerical calculations described here were

performed with MATHEMATICA, and the data output as
tables of physical quantities parametrized by the isotropic
coordinate r. The data files were then read into our full 3D
code [62,63], where they were transformed to Cartesian
coordinates and interpolated onto the numerical grid.
Examples of the resulting data for �, �x, and K are shown
in Fig. 5. The time independence of these data will be
explicitly demonstrated in numerical evolutions in Sec. V.

III. NUMERICAL SIMULATIONS

We now turn to the numerical evolution of wormhole
and trumpet puncture data for the Schwarzschild space-
time. We start with a brief description of the moving-
puncture method and our numerical techniques, as well
as a summary of our procedure for analyzing our results
(including the construction of Penrose diagrams), before
finally presenting our numerical results.
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FIG. 5. The lapse �, x-component of the shift vector �x, and K for time-independent 1þ log data in isotropic coordinates. The data
are shown along the x axis.
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A. The BSSN/moving-puncture system

The 3þ 1 decomposition provides evolution equations
for the spatial metric �ij and extrinsic curvature Kij [50].

The BSSN reformulation consists of rewriting the evolu-
tion equations in terms of conformally rescaled variables,

f ; ~�ij; ~Aij; Kg, where we now use p ¼ 4 in (5), and an

additional variable is introduced: ~�i ¼ �@j ~�ij.
When we deal with puncture data, the conformal factor

 diverges at each puncture, and this is handled in the
moving-puncture modification [2,3] of the BSSN system
by replacing  with either the variable 	 ¼ ln or 
 ¼
 �4 (or 
 ¼  �2 [64]), and one of these quantities is
evolved instead. The details of the BSSN system are given
in [65,66]. We use the BAM code, and provide details of our
implementation of the BSSN/moving-puncture system in
[62].

Given evolution equations for the variables

f~�ij; ~Aij; K; ~�ig and 	 or 
, and some initial data, we also

need to choose a lapse and shift during the evolution. We
have already discussed the 1þ log evolution equations (21)
and (22) for the lapse function; the stationary slices for
these slicing conditions are given in Sec. II D. For the shift

vector we use the ~�-driver condition [31,42],

@t�
i ¼ 3

4B
i; (61)

@tB
i ¼ @t~�

i � �Bi: (62)

This shift condition is crucial to the behavior of the
moving-puncture system. In black-hole binary simulations
it generates a shift that moves the punctures around the grid
on trajectories that match very well the motion that would
be seen from infinity [27,32]. This shift also allows the
wormhole puncture data to evolve to the stationary 1þ log
geometry, as shown in Paper I, and as we will see again in
Sec. IV. As we said in the Introduction, the approach to the
‘‘puncture geometry’’ requires a dramatic stretching of the
coordinate representation of the slices. We will illustrate
this extreme behavior in detail in the coming sections, but
it can be seen most immediately by calculating the norm of
the shift vector, �2 ¼ �ij�

i�j, during the first few M of

evolution: although �i remains finite, and in fact goes to
zero as we approach the puncture, �2 diverges. This can
also be seen analytically [67]. The wormhole slice is
stretched such that all of the numerical points extremely
quickly leave the part of the slice that cannot be stationary,
and the part of the slice in the second copy of the exterior
space, and the points relax onto the stationary 1þ log
slice. This could not happen with a zero shift, and of course
would not happen with an arbitrary shift. There may be a
large class of shift conditions that produce the same effect,
but the first to be found, and the one that is standard in

moving-puncture simulations, is the ~�-driver condition
(61) and (62), and variants.

B. Penrose diagrams from numerical data

A convenient way to view the numerical evolution of our
data is to represent them in a Penrose diagram. Given the
Schwarzschild coordinates R and T of a given point, it is
straightforward to calculate the corresponding point on a
Penrose diagram. From our numerical data we can easily
calculate the Schwarzschild coordinate, Rðr; tÞ; see Sec. IV
and Eq. (73). Each point on the initial slice is at a constant
Schwarzschild time Tðr; 0Þ ¼ T0, which we are free to
choose, but Tðr; tÞ is not known. Although a variety of
ways to compute an appropriate coordinate representation
suggest themselves, it actually turned out to be somewhat
tricky to find one that works reliably with our numerical
data, see also the discussion in [68] where the transforma-
tion to Kruskal coordinates is implemented. Care has to be
taken near the horizon at R ¼ 2M, and in our case some
issues arose at mesh-refinement boundaries.
An outline of the procedure that we settled on is as

follows. The method is also illustrated in Fig. 6. We first
choose a numerical point r0 far from the black hole (in
practice a numerical point that does not pass through the
horizon during the evolution). As we have already said, on
the initial slice that point has Schwarzschild time
Tðr0; 0Þ ¼ T0. We use a differential equation for _T ¼
@T=@t to integrate forward in time through our numerical
data and produce Tðr0; tÞ. Then, on each time slice, t ¼ ti,
we use a second differential equation, this time for T0 ¼
@T=@r, to integrate across the slice and calculate Tðr; tiÞ.
The equation we use is badly behaved near the horizon, and
for a set of five points across the horizon we integrate
instead a differential equation for u0 ¼ @u=@r, where u is
the Kruskal coordinate defined by (44) and (46).
We derive the required differential equations by consid-

ering the transformation of the spacetime metric between
Schwarzschild and numerical coordinates. A differential
equation for _T can be found using the transformation

FIG. 6. A sketch of the method we use to obtain Tðr; tÞ. The
lines are drawn from actual data with r0 ¼ 3:25M for the
integration in time and t ¼ 10M for the integration in space.
Only a subset of the grid points is displayed.
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gtt ¼
�
@T

@t

�
2
gTT þ

�
@R

@t

�
2
gRR: (63)

We therefore find

_T ¼
�
1� 2M

R

��1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 �

�
1� 2M

R

�
gtt

s
: (64)

This expression is valid for R> 2M and u > 0, and we
choose r0 ¼ 3:25M, where this is always true. The metric
component gtt is given by gtt ¼ �ð�2 � �i�

iÞ. Using (64)
we can integrate the Schwarzschild time along the constant
r0 ¼ 3:25M curve for the duration of the simulation. For
the numerical coordinate r0 ¼ 3:25M, we now know R and
T throughout the numerical evolution.

A differential equation for T0 on a slice of constant
numerical coordinate time can be found by transforming
the spatial part of the metric,

�rr ¼
�
@T

@r

�
2
gTT þ

�
@R

@r

�
2
gRR (65)

) T02 ¼ �rr � R02gRR
gRR

(66)

¼
�
1� 2M

R

��2
�
R02 �

�
1� 2M

R

�
�rr

�
: (67)

Note that R and R0 can be readily computed from the
numerical data, since we are dealing with data on one
numerical time slice. In order to integrate (67), we must
take a square root and choose the sign such that the slices
go smoothly through the horizon, and to define which ends
of the computational domain belong to which side of the
Penrose diagram. The result is

T0 ¼ �
�
1� 2M

R

��1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 �

�
1� 2M

R

�
�rr

s
: (68)

Equation (68) is integrated along the entire numerical slice,
except at the points near the horizon, where T0 is singular.
We overcome this difficulty by instead integrating the
Kruskal coordinate u through five points that cross the
horizon. A differential equation for u0 can be found by
transforming the ðr; tÞ coordinates to ðu; RÞ:

�rr ¼
�
@u

@r

�
2
guu þ 2

@u

@r

@R

@r
guR þ

�
@R

@r

�
2
gRR: (69)

The metric components guu, guR, and gRR can be written in
terms of only u and R by making use of the Schwarzschild
metric in Kruskal coordinates, gK��:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �

�
R

2M
� 1

�
eR=ð2MÞ

s
ðv > 0Þ; (70)

guu ¼ gKuu þ
�
@v

@u

�
2
gKvv ¼

�
1� u2

v2

�
32M3

R
e�R=ð2MÞ;

guR ¼ @v

@u

@v

@R
gKvv ¼ 4u

v2
1

M
;

gRR ¼
�
@v

@R

�
2
gKvv ¼ � R

2M

1

v2
eR=ð2MÞ: (71)

Producing an equation for u0 from (69) once again requires
the appropriate choice of sign for a square root. The final
result is

u0 ¼ 1

guu
ð�guRR0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðguRR0Þ2 þ guuð�rr � R02gRRÞ

q
Þ:
(72)

Once Eqs. (68) and (72) have been integrated along a slice,
a constant of integration is chosen to give the value already
calculated at r0 ¼ 3:25M using (64), and a choice of T0 for
the time on the initial slice.

IV. THE NUMERICAL TRANSITION FROM A
WORMHOLE TO ATRUMPET

A. Setup

Simulations were performed with computational grids
consisting of eight nested cubical boxes using the BAM

code, as described in [62]. The boxes are labeled by l ¼
0; 1; . . . ; 7. Each box contains N3 points, and the grid
spacing in each box is hl ¼ H=2l, where H is the grid
spacing of the largest box. We denote hmin ¼ hlmax

. The

simulations were performed in only one octant of a three-
dimensional Cartesian grid (the data in the other octants
being easily deduced by exploiting the known spherical
symmetry of the Schwarzschild spacetime). The grid
points are staggered across the coordinate axes, such that
the boundaries of the cubical domain are the six planes
defined by x ¼ hmin=2, y ¼ hmin=2, z ¼ hmin=2, x ¼ X,
y ¼ Y, and z ¼ Z, with X ¼ Y ¼ Z ¼ 192M, which de-
fine the standard ‘‘outer boundary’’ of the computational
domain. Three simulations were performed to make a
convergence series, with N ¼ 64, 96, 128, and H ¼ 6M,
4M, 3M, hmin ¼ M=21:33, M=32, M=42:67. Note that
these grid configurations are the same as used for the single
black-hole tests in [62]. The highest-resolution simulation
took approximately 60 hours of wall time on eight
2.66 GHz Intel-Xeon processors of a linux cluster.
The numerical simulations discussed in this section start

with the initial data (11)–(14), and initial shift �i ¼ 0 and
initial lapse � ¼ 1. A number of additional simulations
were performed with initial lapse � ¼  �2 for
comparison.
The results of the numerical evolution are shown in

Figs. 7–18. The data for these figures were produced by
interpolating numerical data onto the x coordinate axis.
The spherical symmetry of the solution allows us to ana-
lyze the simulation using these data only. The
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Schwarzschild radial coordinate can be calculated by relat-
ing the numerical spatial metric to the Schwarzschild
metric (8). We know that ��� ¼ R2, and because of the
spherical symmetry we also have ��� ¼ ð@xi=@�Þ�
ð@xj=@�Þ�ij ¼ ð@xi=@�Þð@xj=@�Þ 4 ~�ij. Along the x-axis,

� ¼ �=2, and so @x=@� ¼ @y=@� ¼ 0 and @z=@� ¼ x,
and we have

R2jy¼z¼0 ¼  4x2 ~�zz: (73)

B. Early-time behavior

Figure 7 illustrates the main global feature of the time
development of the numerical slices, namely, the transition
from wormhole to trumpet asymptotics. The upper panels
shows the proper distance of a given point from the horizon
at R ¼ 2M versus that point’s Schwarzschild coordinate R.
The thick line indicates the t ¼ 0 data. Initially R ¼ 2M is
the minimal surface, and the data contain two copies of the
space outside the horizon. This is the initial wormhole that
we have referred to several times. If we consider a surface
of revolution around the proper time axis, we obtain just
another version of the standard picture of a spacetime
wormhole, as shown earlier in Fig. 1. We show the data
only up to coordinate R ¼ 10M; the upper and lower lines
in the figure quickly asymptote to�45 degrees, and do not
add extra information to the figure. If we follow the upper

line outwards, we move further from the origin (the punc-
ture), and the plot ends at r ¼ 8:25M. If we follow the
lower line outwards, we move closer to the puncture, and in
this case the plot ends at r � M=40. The corresponding
picture of R in terms of coordinate r is shown in the lower
panels of Fig. 7.
At early times two notable things happen. First, the

minimal surface shifts to R< 2M, and the numerical do-
main contains two surfaces with R ¼ 2M, which we will
call the ‘‘inner’’ and ‘‘outer’’ horizons. The proper distance
in Fig. 7 is with respect to the outer horizon. Second, the
points in the lower right part of the figure rapidly move to
the left. In other words, the Schwarzschild R corresponding
to those points rapidly decreases. The numerical points do
not ‘‘go’’ anywhere, of course; they are points on a fixed
grid. But their location in the Schwarzschild spacetime
does change, and quickly. Within only 3M all of the points
have passed the inner horizon, and it has ceased to be part
of the numerical domain.
At later times (t > 40M) the points close to the puncture

settle at a constant value of R, which we will soon see is
close to R0 ¼ 1:31M, the location of the throat in the
stationary 1þ log solution derived in Sec. II D. This is
shown in the upper right panel. At first sight this does not
correspond to the cylindrical asymptotics shown in Fig. 2;
the cylinder looks too short. The reason is that the spatial
metric now diverges more slowly as we approach the
asymptotic region, and so a point initially ‘‘close’’ to the
second asymptotically flat end was a larger proper distance
from the outer horizon than it is now that it is close to the
cylinder.
The lower two panels in Fig. 7 give a complementary

picture. These plot Schwarzschild R versus the numerical
coordinate r to illustrate directly how the Schwarzschild R
of each grid point changes. The behavior at early times in
terms of Rðr; tÞ is also shown in Fig. 8, which shows several
contour plots of R (indicated by variations in color) at
different values of coordinate r and time t. These figures
illustrate many of the main features of the early-time
evolution of the wormhole puncture data. We can clearly
see that the horizon, initially at r ¼ M=2, splits into two
copies, and also that values of R< 2M, which are not
present in the initial data, appear as time progresses. We
can also see that for larger r the value of R changes very
little, although it does decrease for all r.
The behavior of grid points close to the puncture is

shown in Fig. 9. This plot uses data from a simulation
that used extremely high resolution at the puncture: 16
nested boxes, each containing 643 points, with a coarsest
resolution of H ¼ 4M and a finest resolution of hmin ¼
M=8192; the simulation was run for t ¼ 5M, in order to
obtain the results displayed in Fig. 9.
As shown in Paper I, the numerical data become discon-

tinuous across the puncture. This means that finite-
difference derivatives (which are used to calculate many
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FIG. 7. The top two panels show the proper separation from
the (outer) horizon versus the Schwarzschild coordinate R. The
left panel shows the slices at t ¼ 0, 1, 2, 3M, and the right panel
shows the slice at t ¼ 50M. The final numerical slice terminates
at R � 1:31M. The vertical line indicates the horizon at R ¼
2M, and the six points represent x=M ¼ 1=40, 1=20, 1=8, 2, 5, 8
on each slice. The lower two panels show Schwarzschild R
versus numerical r for the same points at the same times. The
horizontal lines show R ¼ 2M and R ¼ 1:31M.
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quantities in the BSSN evolution) will have even worse
discontinuities, and the numerical method cannot converge
for points that are within a stencil width of the puncture,
which for the simulations discussed here includes the two
grid points closest to the puncture. Fortuitously, the nature
of the BSSN/moving-puncture system is such that these
errors do not seem to propagate out from the puncture, and
clean convergence can be seen up to the last few grid
points. (This is shown in Figs. 2 and 3 of [62].) In the
left panel of Fig. 9 we show the time development of R for
the third, fourth, and fifth closest points to the puncture of
our extremely high-resolution simulation, at r ¼
f3; 4; 5gM=8192. Although the points closer to the puncture
are not expected to show clean convergence, we see in the
right panel of Fig. 9 that they display similar behavior.

Initially the points in the left panel are at R ¼
ð1þ 2M=rÞ2r ¼ f684; 513; 410gM. The value does not
change significantly for the first M=2 of the simulation,
but then quickly deceases.

How quickly are our numerical slices flung out of the
second copy of the exterior space? Figure 10 shows the
time a point takes to reach the inner horizon, parametrized
by the point’s isotropic coordinate r. The point at r ¼ M=2
is at the horizon at t ¼ 0, and so ‘‘reaches’’ the inner
horizon immediately. The time for points with r <M=2
to reach the inner horizon appears to grow linearly as we
move toward the puncture. Very close to the puncture,
however, the time grows logarithmically, and even the
closest grid point, at r ¼ M=8192 and initially at R ¼
2049M, reaches the inner horizon by about t ¼ 3:3M. A
similar result is shown in [34].

C. Late-time behavior and approach to the stationary
solution

To follow the behavior of RðrÞ at later times, we return
to our standard convergence series simulations. Figure 11
shows R as a function of time for a grid point at
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FIG. 9. Evolution of R for fixed r for the first 5M of an extremely high-resolution simulation. Left panel: the evolution of the third,
fourth, and fifth closest points to the puncture, at r ¼ f3; 4; 5gM=8192, are shown. We do not expect the closest two points to be
reliable, due to finite-difference errors across the puncture, although they show similar behavior, shown in the right panel.

FIG. 8 (color online). Contour plots showing the behavior of Rðr; tÞ on the numerical grid for the first 20M of a simulation. The axes
of the figures give r and t in units ofM for three different coordinate ranges. The contour labels and the colors indicate the value of R.
We clearly see that R changes rapidly for a given value of the r coordinate for the first few M of evolution before settling down to
approximately stationary values at later time. Points with r >M=2 accelerate towards the black hole (R decreases) before settling
down again at some smaller value of R. As the slice moves towards the Schwarzschild singularity, the horizon, initially at r ¼ M=2 and
R ¼ 2M, splits into two copies, and values of R < 2M, which are not present in the initial data, appear as time progresses. The initial
slice covers the interior of the black hole from R ¼ 2M to R ¼ þ1 for r ¼ M=2 to r ¼ 0. This region is quickly squeezed towards
zero extent in r, as the lines of constant R in the lower left of the panels indicate. Note that for given r, the coordinate motion Rðr; tÞ is
not monotonic in t, but Rðr; tÞ approaches its asymptotic value via a damped oscillation, see also Fig. 11.
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r ¼ 3M=32. We see that the point, having retreated quickly
through the inner horizon, overshoots R0 ¼ 1:31M (indi-
cated by a dashed line in the figure), before returning and
settling to a value just larger than R0. We may expect that a
point’s Schwarzschild coordinate R can decrease but not
increase: a point that falls into the black hole cannot rise
back toward the surface, unless the lapse becomes negative

and time progresses backward. We will return to this
surprising behavior when we represent the time develop-
ment of the numerical slices on a Penrose diagram.
Having described the general behavior of moving-

puncture simulations of Schwarzschild wormhole puncture
data, we would like to verify that the numerical solution
converges to the analytic one. A natural quantity to look at
would be R at the grid points closest to the origin. In Figs. 2
and 3 of [62], we have seen that the metric quantities are
approximately fourth-order convergent for at least 50M of
evolution. However, the convergence is not so precise that
it is retained in quantities derived from the evolution

variables. In particular, R ¼  2x
ffiffiffiffiffiffiffi
~�zz

p
does not exhibit

clean fourth-order convergence, and is not suitable for
verifying convergence towards the analytic 1þ log
geometry.
As an alternative, we look at the value of TrðKÞ on the

horizon. Although locating the horizon once again requires
an estimation of R, the accuracy is much better far from the
origin, and a more systematic analysis of the convergence
and accuracy of the solution is possible.
Figure 12 shows the value of TrðKÞ at the horizon for

simulations that begin with � ¼ 1 and � ¼  �2. In both
cases the value relaxes to the analytic result of KH ¼
0:0668. Figure 13 shows the convergence of KH for the
convergence series described earlier. With a ‘‘precol-
lapsed’’ initial lapse of  �2 we see no sign of convergence
at early times, but reasonably clean fourth-order conver-
gence after about 15M of evolution. With an initial lapse of
� ¼ 1, we see fourth-order convergence after only a fewM
of evolution, although the convergence deteriorates at later
times.
Figure 14 shows the deviation of KH from the analytic

value on a logarithmic plot. The values are scaled assuming
fourth-order convergence, and we see clearly that the dis-
agreement between the numerical KH and the value for the
stationary 1þ log slice converge to zero at fourth order at
late times. This provides strong evidence that the numeri-
cal slice does indeed approach the analytic stationary slice
with high accuracy.

D. Penrose diagrams of numerical results

We now represent the time development of the numeri-
cal slices on Penrose diagrams, using the technique de-
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FIG. 12 (color online). Time development of K at the horizon, for simulations with initial lapse (a) � ¼  �2, and (b) � ¼ 1.
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FIG. 10. Time for grid points to pass the inner horizon, as a
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R ¼ 2031M, and reaches the inner horizon in T2M ¼ 3:35M.
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FIG. 11 (color online). The Schwarzschild coordinate R of a
point at r ¼ 3M=32 as a function of time. The point overshoots
R0 ¼ 1:31M, indicated by a dashed horizontal line, but for t >
40M settles on a value slightly larger than R0.
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scribed in Sec. III B. Figure 15 shows such a diagram. The
initial conditions are chosen such that the initial data are at
T ¼ 0 and therefore correspond to the horizontal line
between i0L and i0R. During the evolution, the slices move
upwards symmetrically in the diagram. We can clearly see
that the points move quickly to the right as the slices move
up, and very soon the region near i0L (the second asymptoti-
cally flat end) is extremely poorly resolved. In effect the
numerical slices lose contact with the second asymptoti-
cally flat end and congregate near the cylinder at R ¼
1:31M, which is shown by a dashed line.

We can also see in Fig. 15 (and as was also clear in
Fig. 11), that the slices first penetrate R0, before retreating
later to a location just outside R0. We focus on this behav-
ior in Fig. 16.

Our initial reaction to Fig. 11 might be that this is a
numerical error: the Schwarzschild R associated with a
point can decrease, but it cannot increase unless the lapse
is negative and time progresses backwards. We have al-
ready seen that the lapse is everywhere non-negative, so
this behavior appears to be contradictory. However, the
points can move to larger values of R and move forward

in time with the aid of a nonzero shift. Figure 16 illustrates
how this is possible.
As a further illustration of this point, consider an arbi-

trary slice through the Schwarzschild solution. Choose
� ¼ 0 and �R ¼ 1. The data points march along the slice,
some with decreasing R, some with increasing R, depend-
ing on the slice we chose. Thus there is no connection
between the change of R and the allowed time vectors.
It should also be clear that if we were to run our

simulation without a shift, then the slices would penetrate
R0, but would not be able to retreat toR0 at later times. This
is illustrated in Fig. 17, which was produced from a nu-
merical simulation with �i ¼ 0. This behavior is in direct
contrast to what happens in the case of true maximal
slicing [where the maximal slicing condition is imposed
throughout the evolution, and is not approached only
asymptotically, as with the case of the maximal variant
of the 1þ log condition, (21)], where the slices approach
R0 ¼ 3M=2, but cannot pass through it. Maximal slicing is
an elliptic condition and thus generates ‘‘barriers,’’ while
1þ log slicing is hyperbolic and so no barriers exist.
Note once again that the slices are isometric across the

throat, as shown in Figs. 15 and 17. The shift only relabels

FIG. 15. Penrose diagram produced from numerical data. We
can clearly see the numerical slice retract from the second
asymptotically flat end. The times shown are t=M ¼ 0, 0.25,
0.75, 1.25, 2.0, 2.5, 3.5, 8.
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FIG. 13 (color online). Convergence ofK at the horizon, for simulations with initial lapse (a) � ¼  �2, and (b) � ¼ 1. The � ¼  �2

simulations are not convergent at early times, while the � ¼ 1 simulations lose clean convergence after about 50M.
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FIG. 14 (color online). Logarithm of the deviation of K at the
horizon from the analytic value K ¼ 0:066 811. The deviations
are scaled assuming fourth-order convergence, and the results
indicate that K converges to the analytic value with fourth-order
accuracy.

MARK HANNAM et al. PHYSICAL REVIEW D 78, 064020 (2008)

064020-14



points within the slices and grid points move accordingly,
so the figures show identical slices covered by different
numerical grids.

It is difficult to see what happens to the numerical points
at late times in Fig. 15, because all of the points bunch up in
the upper right corner of the diagram. We can change this
by choosing T < 0 for the initial slice when constructing
the diagram. Figure 18 shows the slices at numerical times
t ¼ 30, 37.25, 40, 50M, with the initial time chosen as
Schwarzschild time T0 ¼ �40M. We see clearly that the
slices approach the cylinder at R ¼ 1:31M. In addition the
figure shows the analytic solution evaluated at the same
times, and we see that the numerical points lie perfectly on
top of the analytic solution, and that since we have reached
the stationary slice, the numerical and Schwarzschild times
coincide.

V. NUMERICAL EVOLUTION OF TRUMPET
INITIAL DATA

In the previous section we evolved wormhole puncture

data with 1þ log slicing and the ~�-driver shift condition,
and found that the numerical data quickly evolved from a
wormhole to a trumpet geometry. In this section we start
with trumpet data. We first show explicitly that they are
time independent (up to numerical errors, which converge
to zero with increasing resolution). We then demonstrate
that, if we alternate between variants of 1þ log slicing
during the evolution [in practice (21) and (22)], the nu-
merical slice alternates accordingly between the respective
stationary trumpet geometries. This process also allows us
to illustrate how the coordinates can drift in these evolu-
tions, while invariant quantities remain unchanged.

A. Evolution of time-independent data

If we evolve the stationary 1þ log solution in isotropic
coordinates, given in Sec. II D 3, we expect the data to be
time independent. This is certainly the case when we look
at the data by eye: the evolution variables do not appear to
change at all.
A more systematic test is shown in Fig. 19, where we

show the error in ~�xx at t ¼ 50M. The conformal spatial
metric is flat in the stationary data, ~�ij ¼ �ij, and sowe can

calculate the error by simply evaluating ~�xx � 1. We see
that some error has developed by t ¼ 50M, and it has a
peak at around x ¼ 3M. The errors are scaled consistent
with fourth-order convergence, and we indeed see fourth-
order convergence up to around x ¼ 145M. Since the outer
boundary is at x ¼ 192M, by t ¼ 50M lower-order errors
from the outer boundary will have propagated to around
x ¼ 142M, and so we do not expect to see fourth-order
convergence beyond this point.

FIG. 17. Penrose diagram of an evolution identical to that used
for Fig. 15, except that in this case the shift is zero throughout
the evolution and the data points are joined in the plot. We see
that the numerical slices no longer retract from the second
asymptotically flat end, and now penetrate R0, and stay there.
The times shown are the same as in Fig. 15.

FIG. 18. The numerical data at Schwarzschild times t ¼ 30,
37.25, 40, 50M, with the initial time chosen as T0 ¼ �40M. The
analytic solution, evaluated at the same times, is shown by a
solid gray line. We see that the numerical points lie perfectly on
the analytic solution.

FIG. 16. A close-up of the region near the cylinder at R0 ¼
1:31M. Although the time has elapsed from ta � 4:5M to tb ¼
13M (with non-negative lapse), R at the innermost gridpoint has
increased, Ra < Rb.
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In Fig. 20 we show the L2 norm of the error in ~�xx along
the x axis as a function of time. The lines are once again
scaled assuming fourth-order convergence to zero. We see
reasonably clean fourth-order convergence, which appears
to deteriorate slightly near the end of the simulation,
although by this time lower-order errors from the outer
boundary will have contaminated the solution, as is clear in
Fig. 19.

These figures indicate that the data are indeed time
independent, up to small numerical errors that converge
to zero at the expected rate. Since the analytic value of ~�xx
is unity, we can easily calculate the percentage error from
the figures: we see that at t ¼ 50M the largest error in ~�ij is

0.12%, for the lowest-resolution simulation. As such, we
see that these data provide an excellent testing ground for
the accuracy of a numerical code. This point needs to be
emphasized. The moving-puncture approach as used here
is currently the most popular method for simulating black-
hole binaries. For such a code there is no analytic black-
hole solution that can be used to test the code, except for

the 1þ log and stationary maximal trumpet solutions pre-
sented here and in [33,58]. These analytic solutions could
be invaluable not only for testing a new code, but also in
analyzing and reducing the sources of error in current
codes.

B. Alternating slices

We start with 1þ log trumpet data, as in the previous
section. We evolve the data for t ¼ 22:5M, and then switch
the slicing evolution equation from (22) to (21), i.e., we
change to the slicing condition that asymptotes to maximal
slicing. After a further 50M of evolution, at t ¼ 72:5M, we
switch back to the original slicing condition, which, as-
suming robustness of the method, should asymptote back
to the stationary 1þ log solution.
Figure 21 shows the value of K at the horizon for this

simulation. The value is K ¼ 0:0668 on the horizon in the
initial data, and remains at this value for the first 22:5M of
evolution. Then, when the slicing condition changes, K
quickly evolves towards K ¼ 0. Within about 30M we
have K � 0. At t ¼ 72:5M, the slicing condition is
changed again, and within another 30M the slice has
settled back to the stationary 1þ log value. Simulations
were performed with the same low, medium, and high
resolutions as the puncture data case in Sec. IV. At t ¼
125M, when the simulations ended, the respective values
of K on the horizon were 0.0679, 0.0670, 0.0669.
These results illustrate the robustness of the moving-

puncture method to locate the appropriate stationary 1þ
log slice. Potentially more challenging tests have also been
performed using excision initial data with the interior filled
in, and the method is again seen to be robust [69–71].
In Fig. 22 we show the coordinate distance r of the

horizon from the origin. For the stationary 1þ log data,
the horizon is at r ¼ 0:8304M, and deviates by no more
than 0.0014% in the first 22M of evolution in the highest-
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FIG. 21 (color online). The value of K at the horizon, for a
simulation where the slicing condition alternates between stan-
dard 1þ log and asymptotically maximal 1þ log, Eqs. (21) and
(36). The dashed horizontal lines indicate the respective analytic
values of K at the horizon.
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simulations at three resolutions are scaled assuming fourth-order
convergence, and we indeed see that the errors converge to zero
at fourth order.
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resolution simulation. When the slicing condition is
switched to asymptotically maximal 1þ log, and then
back to standard 1þ log, we see that the horizon does
not return to its original position, at least not on the same
time scale as the geometry returns to the stationary 1þ log
geometry. (See the dashed line in the figure.) This illus-
trates that, although the numerical slices quickly approach
a stationary geometry, the coordinates may still drift. This
effect is at least partially due to the damping parameter �

in the ~�-driver shift condition. If we repeat the simulation
with � ¼ 0, we produce the solid line in Fig. 22: now the
horizon location returns to its original location to a com-
parable accuracy that coordinate-invariant quantities return
to the stationary 1þ log solution.

VI. DISCUSSION

A. Setting wormholes and trumpets in motion

One of the directions for future work suggested by our
results (and already proposed in Paper I) is the construction
of trumpet (as opposed to wormhole) initial data for black-
hole binaries.

Trumpet black-hole binary initial data would have the
advantage that our numerical code would not need to
evolve the fast transition from wormholes to trumpets. In
addition, current binary puncture initial data start with zero
speed across the numerical grid. When the simulation

begins, the 1þ log=~�-driver gauge conditions both trans-
form the wormholes into trumpets, but also generate an
advection component to the shift vector, which moves the
trumpets across the grid (Paper I). One could attempt to
choose a ‘‘better’’ initial shift, so that the wormholes move
from the outset, but if we begin with wormhole puncture
data, there is no way to prevent this shift changing non-
trivially as the wormholes evolve to trumpets. Although

one could produce a ‘‘best’’ initial shift by some trial-and-
error process, a more attractive proposal would be to start
with trumpet data, and hope to find a procedure to choose
an initial shift that imbues the boosted trumpets with their
appropriate coordinate speeds. We would then hope that,
from the outset, almost all of the evolution of the data
would represent the evolution of physical quantities (the
black holes’ motions and the evolution of their spins,
surface geometry, etc.) and mere gauge evolution would
be minimized. This might help reduce the gauge compo-
nent to the black-hole motion seen in, for example, the first
few hundredM of evolution in Fig. 18 in [27]. Further, and
more practically, we would hope that such data would
reduce the initial noise in wave quantities (for example,
Figs. 1, 2, 4, and 6 in [27]).
Before we become too optimistic, however, we should

emphasize that the bulk of the initial noise in most numeri-
cal simulations probably comes from the burst of junk
radiation present in the initial data. For example, the
excision data evolved in [72] already have most of the
properties we have just advertised: the gauge is not ex-
pected to evolve significantly in the early stages of the
simulation, and the initial shift is precisely that which
should cause the black holes to follow a quasicircular
inspiral. As we would hope, the black-hole motion is in-
deed smooth from the outset. Nonetheless, noise still re-
duces the accuracy of some wave quantities at early times
(see, for example, Fig. 7 of [72]), and the most likely
culprit is the junk radiation, which has a similar magnitude
to that in moving-puncture simulations. We expect that the
ideal initial data for moving-puncture simulations would
produce minimal junk radiation and be in trumpet form.

B. Summary

We have extended the analysis of the behavior of the
analytical and numerical slices in moving-puncture simu-
lations of the Schwarzschild spacetime that we began in
Paper I. For a general form of the 1þ log slicing condition
(36) we have derived the stationary Schwarzschild trumpet
solution: the slice extends from spatial infinity to an infi-
nitely long cylinder, or trumpet, with a throat at some finite
radius R0. When the parameter n in this condition is set to
n ¼ 2, we obtain the solution given in Paper I with R0 ¼
1:31M. In the limit n! 1 we recover the maximal trum-
pet solution [44,49], with R0 ¼ 1:5M.
For a given choice of the 1þ log slicing condition, there

is a unique regular stationary solution. In numerical simu-
lations that apply the moving-puncture technique to worm-
hole puncture Schwarzschild initial data, and use the
~�-driver shift condition, the numerical slice quickly
evolves to the stationary slice. This cannot happen to the
analytic slice: this must remain connected to the two
asymptotically flat ends in the wormhole data. It also
cannot happen with numerical data if the shift is zero.
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FIG. 22 (color online). The coordinate location the horizon,
for two simulations with an alternating slicing condition. The
dashed line is for a simulation with the standard choice of � ¼
2=M. The solid line is for a simulation with � ¼ 0. In this case,
the horizon location almost returns to its original value when the
solution returns to the 1þ log stationary geometry.
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However, the ~�-driver shift condition generates a shift that
stretches the numerical slice such that all of the numerical
points extremely quickly move onto the stationary 1þ log
slice; the nonstationary part of the slice no longer contains
any grid points. The stretching of the slice is so extreme
that no matter how many numerical points we place near
the puncture (so long as there is no point on the puncture)
that point will quickly move onto the stationary slice. Even
a grid point initially at r ¼ M=8192 and R � 2000M on
the second copy of the exterior space, passes through R ¼
2M in less than 3:5M of evolution, and soon after settles
near R ¼ 1:31M.

An alternative to wormhole puncture data are trumpet
puncture data. We have transformed the stationary 1þ log
solution to isotropic coordinates, and shown that these data
are indeed time independent when evolved, up to small
numerical errors. In addition, we have shown that the
numerical data can easily change from one stationary
geometry to another, if the 1þ log condition is changed
during the evolution, indicating a certain robustness of the
method. Finally, we are able to see clearly that, although
the data approach a stationary slice, the numerical coor-
dinates may still drift.

The realization that the moving-puncture method is
really based on trumpet puncture data, and that this type
of geometry naturally avoids most of the unphysical re-
gions of spacetime in black-hole evolutions, establishes a
new paradigm for the numerical evolution of black holes

and suggests many directions of possible future research.
One of the most promising is the construction of trumpet
initial data for black-hole binaries, as discussed above.
Additionally, one may use the stationary data to make
precise tests of numerical codes, for example, to improve
treatment of mesh-refinement boundaries and outer
boundaries, to determine the resolutions necessary to
most accurately resolve black-hole spacetimes, and to ex-
plore different gauge choices. The stationary solution also
provides an ideal background for mathematical studies of
the stability properties of the BSSN/moving-puncture sys-
tem and other evolution systems, that could even be par-
ticularly tailored to evolve trumpet puncture data.
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arXiv:0712.3787.
[22] S. Dain, C.O. Lousto, and Y. Zlochower,

arXiv:0803.0351.
[23] J. G. Baker et al., arXiv:0802.0416.
[24] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.

Rev. D 77, 101501 (2008).
[25] C. O. Lousto and Y. Zlochower, Phys. Rev. D 77, 024034

(2008).
[26] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. D 73, 104002 (2006).

MARK HANNAM et al. PHYSICAL REVIEW D 78, 064020 (2008)

064020-18



[27] M. Hannam, S. Husa, J. A. González, U. Sperhake, and B.
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