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Massive motion in Brans–Dicke geometry and beyond

Raffaele Punzi,1, ∗ Frederic P. Schuller,2, † and Mattias N.R. Wohlfarth1, ‡

1Zentrum für Mathematische Physik und II. Institut für Theoretische Physik,

Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

2Max Planck Institut für Gravitationsphysik, Albert Einstein Institut,

Am Mühlenberg 1, 14467 Potsdam, Germany

Gravity theories that can be viewed as dynamics for area metric manifolds, for which

Brans–Dicke theory presents a recently studied example, require for their physical interpre-

tation the identification of the distinguished curves that serve as the trajectories of light

and massive matter. Complementing previous results on the propagation of light, we study

effective massive point particle motion. We show that the relevant geometrical structure is a

special Finsler norm determined by the area metric, and that massive point particles follow

Finsler geodesics.

I. INTRODUCTION

The non-metric geometry underlying Brans–Dicke theory [1] was revealed in a recent letter [2].

The metric and scalar field were unified into the single geometric structure of an area metric [3],

and the Brans–Dicke equations for vanishing parameter ω were those of the area metric refinement

of Einstein–Hilbert gravity [4]. As far as the vacuum equations are concerned, the area metric

interpretation is fully equivalent to the scalar tensor interpretation.

But the inclusion of matter leads to a surprise. As we will show in this article, the motion

of massive particles in area metric spacetime does not follow metric geodesics, but special Finsler

geodesics. The present discussion of massive matter complements previous results on the motion

of light rays [5], which remarkably is governed by the same Finsler geometry. We emphasize that

these results are valid for any area metric spacetime.

For the particular area metric identified in the context of ω = 0 Brans–Dicke theory, the non-

geodesic motion renders the theory consistent with solar system physics to post-Newtonian order [2].

This is not the case if matter is coupled only to the metric [6], and the special contribution of the
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scalar field dictated by area metric geometry is ignored. The idea of employing the scalar field to

modify the metric matter coupling in scalar tensor theories is not new [7, 8]; but the area metric

point of view uniquely links the ω = 0 theory to a distinguished and consistent matter coupling.

Quite generally area metric geometry presents a way to extend metric gravity theories beyond

simple scalar tensor theories. Our results on the motion of massive particles presented here and

the motion of light rays are essential to discuss the phenomenology of area metric spacetimes, and

thus the physical consistency of any particular gravitational dynamics.

In the technical part of this article, we will determine a class of distinguished curves which are

associated with massive motion on area metric manifolds. This is possible despite the fact that

area metrics a priori do not define a natural length measure. Neither do they admit the standard

notion of a perfect fluid. But there exist refined fluids whose fundamental mechanical constituents

can be thought of as classical strings; this is discussed in section II. In section III, we will identify

interaction terms that cause the strings to clump together so that they effectively behave as a

particle fluid. Our central result is that the motion of the effective particles follows the geodesics

of a special Finsler norm determined by the area metric. The consistency of this result with any

diffeomorphism invariant gravity action for area metric backgrounds is shown in section IV. We

conclude with a discussion in section V.

II. STRING FLUIDS

Perfect fluids on area metric backgrounds feature a refined structure which can be viewed as

arising from strings rather than point particles being their constitutive matter. In this section we

briefly review and elaborate on some known results on string fluids, based on a precise definition

of area metric geometry.

Area metric manifolds (M,G) feature a smooth covariant fourth-rank tensor field Gabcd with

the symmetries Gabcd = Gcdab and Gabcd = −Gbacd. Further the area metric is required to be

invertible in the sense that there exists a smooth contravariant fourth-rank tensor field Gabcd so

that GabpqGpqcd = 4δ
[a
c δ

b]
d . All matter on area metric backgrounds is described by a fourth rank

source tensor T abcd which arises from the variation of the matter action with respect to the area

metric, and is defined in [4]. Important for the present paper is the observation that independent

of any assumed gravitational dynamics, diffeomorphism invariance of the matter action implies a

conservation equation for the source tensor, which can be written in the form

− |Det G|1/6T ijkl∂pGijkl + 4∂a

(

|Det G|1/6T ijkaGijkp

)

= 0 . (1)



3

We now consider a particular form of matter on area metric backgrounds, namely string fluids [4,

9, 10]. As on metric backgrounds [11, 12, 13, 14], these can be thought of as collections of

strings. Geometrically, their description features a field of local tangent areas Ω = ẋ ∧ x′, i.e.,

Ωij = ẋix′j − ẋjx′i, to the two-dimensional string worldsheets x : Σ → M . This is analogous to

perfect fluids in general relativity, which can be understood as a collection of point particles, and

whose description involves the velocity field tangent to the particle worldlines. Even though string

fluids are not derived from an action, their source tensor must satisfy the conservation equation

above in order to ensure a consistent coupling to any theory of area metric gravity which is derived

from an action by variation with respect to the area metric G.

The simplest string fluid is non-interacting string dust with source tensor

T ijkl = ρ̃ΩijΩkl . (2)

That this indeed describes non-interacting strings will now be shown by proving that the source

conservation equation is equivalent to the equation of motion of the free classical string, i.e., the

minimal surface equation, and the string continuity equation.

To see this, consider the string worldsheet tangent areas to be normalized as G(Ω,Ω) = −1

for Ω = u ∧ v, where u = ẋ, v = x′. Substituting the source tensor (2) into the conservation

equation (1), one obtains

0 = |Det G|1/6ρ̃
{

vq∂q(Gapcdu
aucvd) + uq∂q(Gpbcdv

bucvd) − 1

2
∂pGabcdu

avbucvd
}

+ Gijkpu
ivj

[

∂l

(

|Det G|1/6ρ̃Ωkl
)]

. (3)

The minimal surface equation for strings on area metric backgrounds is derived as the stationarity

condition of the integrated worldsheet area [3], and requires the vanishing of the curly brackets in

the expression above. The continuity equation [4] on the other hand requires the vanishing of the

square brackets. Hence both these conditions together imply source conservation; this direction of

the argument was already given in [4].

Now to show also the converse, observe that the first line in the equation above vanishes if

contracted with Ωpq; hence the second line does. With the notation Ωpq = GpqrsΩ
rs one thus

concludes

Σmk∂l

(

|Det G|1/6ρ̃Ωkl
)

= 0 (4)

for Σmk = ΩmqΩ
qpΩpk. The next step is to show that Σmk in this equation can be replaced simply by

Ωmk. This follows from the easily checked identity ΩabΩbcΩ
cd = Ωad, whence ΣmkΩ

kl = ΩmkΩ
kl.
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By linear independence of the vectors u and v (otherwise the tangent area Ω = 0 would be

degenerate), it follows that Σmku
k = Ωmku

k and Σmkv
k = Ωmkv

k, i.e., that Σmk can be replaced

by Ωmk in contractions with u and v. This is precisely what we need for the replacement of Σ by

Ω in (4), and so we see from (3) that source conservation implies the minimal surface condition for

string dust. Finally, we may rewrite (4) as

G(u, v, u, ·) ∂l

(

|Det G|1/6ρ̃vl
)

− G(u, v, v, ·) ∂l

(

|Det G|1/6ρ̃ul
)

= 0 . (5)

Evaluating this one-form on u and v, respectively, shows that both divergence terms must vanish

separately. Hence also the continuity equation, in the form of vanishing square brackets in (3),

holds.

With this new converse result, it is now rigorously proven that non-interacting string dust on

area metric backgrounds is described by the source tensor given in (2). Any modification of this

source tensor by other terms depending on the background geometry G or the worldsheet tangent

areas Ω, hence describes an interacting string fluid.

Finally consider the familiar case of a purely metric spacetime (M,g) where areas are simply

measured by the induced area metric Gabcd = 2ga[cgd]b. Then the source conservation equation (1)

for string dust with source tensor (2) reduces to ∇aTeff
a
b = 0 for Teff

a
b = ρ̃ΩabΩpb. Writing

Ω = u ∧ v as we did before, and choosing the basis g(u, v) = 0, g(u, u) = −1 and g(v, v) = 1, one

obtains

Teff
a
b = ρ̃(uaub − vavb) (6)

for string dust. This special case of our construction is known from the literature, and has been

used to describe string energy momentum coupled to standard metric theories of gravity [11, 12].

III. EFFECTIVE FINSLER GEODESICS

We are now prepared to derive the key result of this paper. In this section we will demonstrate

the existence of a class of interacting string fluids that behave precisely the same way as non-

interacting particle dust. We prove that these string fluids effectively propagate along non-null

Finsler geodesics with respect to a special Finsler norm determined by the area metric.

Consider again the case of non-interacting strings on a metric background with effective energy

momentum (6). It is clear that such energy momentum cannot be interpreted as that of a point

particle fluid: the string worldsheet singles out a preferred spatial direction v which destroys
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isotropy around the particle trajectory u. The term ρ̃vavb represents anisotropic pressure. From

this observation, which is not new for metric backgrounds, we learn the following lesson for area

metric geometry. Two issues must be taken into account to derive string fluids which effectively

behave like non-interacting point particle fluids: we must

• isotropically superpose string fluids by implementing an average over the spatial directions

of the respective worldsheets; and

• adjust the string interaction terms so to achieve effective point particle motion.

This is the procedure we will now implement. In IIIA, we will define the isotropic average of string

dust matter; in IIIB, we then determine the necessary string interaction terms responsible for non-

interacting particle motion. The fact that interaction terms have to be added to an isotropic average

of non-interacting strings agrees with the physical intuition that strings, in order to effectively

behave like point particle dust, must clump together by some form of interaction.

A. Isotropization of string dust

As discussed above, the first step in finding string fluids that effectively move as non-interacting

particle fluids is the definition of an isotropic average over the spatial worldsheet directions. We

define this average with respect to a vector field u which later emerges as the velocity field of the

resulting particle fluid. The construction will be independent of coordinates.

Note first that the local tangent spaces can be decomposed as TM = 〈u〉 ⊕ V (the following

construction will not be affected by the non-uniqueness of the complement V ), which in turn

induces a decomposition of the antisymmetric tensor bundle as Λ2TM = Λ2
uTM ⊕ Λ2

V TM for

Λ2
uTM =

{

Ω ∈ Λ2TM |Ω ∧ u = 0
}

. (7)

Thus any element of the space Λ2
uTM can be written in the form Ω = u∧v for v ∈ V , but Λ2

uTM is

independent of the choice of complement V , since u∧ v = u∧ (v + λu) for any scalar λ. Moreover,

Λ2
uTM is a three-dimensional linear subspace of Λ2TM to which the area metric hence can be

sensibly restricted. The restriction then defines a unique metric g̃ : Λ2
uTM × Λ2

uTM → R by

g̃ = −G|Λ2
uTM (8)

on all areas in the set u∧ V independent of the choice of V . We assume that g̃ is positive definite;

note that this is not a restriction on the background geometry, but distinguishes particular vector

fields u that can play the role of velocity field in our final particle fluid.
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The sought-for isotropic average over the spatial worldsheet directions will now essentially be

the integration over the linear subspace Λ2
uTM with metric measure g̃. But since the volume of

this space is non-compact, we must restrict the integration to the two-dimensional unit sphere S2
u

consisting of areas with g̃(Ω,Ω) = 1. Let φ∗ denote the pullback from Λ2
uTM to S2

u and use

coordinates θ1, θ2. Then vol S2
u =

∫

d2θ
√

det φ∗g̃ = 4π, which is most easily seen by choosing the

Cartesian frame {e0̂, eα̂} with e0̂ = u and 〈eα̂〉 = V such that g̃α̂β̂ = g̃(e0̂ ∧ eα̂, e0̂ ∧ eβ̂) = δα̂β̂. We

now calculate the average of the string dust source tensor (2) over S2
u,

〈

T abcd
〉

=
ρ̃

vol S2
u

∫

S2
u

d2θ
√

det φ∗g̃ Ω(θ)abΩ(θ)cd . (9)

The integral is performed using the same Cartesian frame as above; for elements of S2
u we then

have Ω = Ωα̂e0̂ ∧ eα̂/
√

g̃(Ω,Ω) and hence the coordinates Ωα̂/||Ω||. As a result we find

〈

T 0̂α̂0̂β̂
〉

=
1

3
ρ̃δα̂β̂ . (10)

Note that in this frame δα̂β̂ = g̃α̂β̂ which is defined as the inverse of g̃α̂β̂ regarded as a 3×3 matrix:

g̃α̂β̂ =
1

2det g̃
ǫ0̂α̂µ̂ν̂ǫ0̂β̂ρ̂σ̂ g̃µ̂ρ̂g̃ν̂σ̂ . (11)

Since the areas over which we averaged are elements of Λ2
uTM , the result of the average, which

is a linear operation, must be a tensor Λ2 ∗
u TM × Λ2 ∗

u TM → R. Hence there is an extension

g̃−1 : Λ2 ∗
u TM × Λ2 ∗

u TM → R with components g̃−1 abcd that in the frame chosen above reduces

to g̃−1 0̂α̂0̂β̂ = g̃α̂β̂. In other words, this allows us to write the result of the average in the fully

covariant form

〈

T abcd
〉

=
1

3
ρ̃g̃−1 abcd =

1

3
ρ̃
1

2
u[au[chd]b] (12)

with

hab = G(u, u, u, u)−1ωarmn
GC ωbspq

GC GC
rmtpG

C
vnsqu

tuv , (13)

Gabcd = − 1

24
ωijkl

GC ωmnpq
GC GC

ijm(aG
C
b|kn|cG

C
d)lpq . (14)

The antisymmetrizations in g̃−1 act only on the index pairs, GC denotes the cyclic part

Gabcd − G[abcd] of the area metric, and the volume form is ωabcd
GC = |Det GC |−1/6ǫabcd, where Det is

the determinant taken over GC : Λ2TM × Λ2TM → R regarded as a 6 × 6 matrix by considering

its antisymmetric index pairs.

We remark that the equations that could now be obtained from the conservation of the isotropic

averaged source tensor (12) only involve the vector field u and the background geometry determined

by the area metric G, so they are already equations for a particle fluid, albeit an interacting one.
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B. Matter trajectories

We now come to the second part of the programme for this section, and determine the necessary

string interaction terms that have to be added to the isotropic averaged source tensor (12) so that

the resulting string fluid moves as a non-interacting particle fluid.

It will turn out to be sufficient to consider interaction terms Σ(G)abcd that only depend locally

on the background geometry. Our ansatz for the particle string fluid source tensor therefore is

T abcd =
1

3
ρ̃g̃−1 abcd +

4

3
ρ̃Σabcd . (15)

We will now determine the term Σ so that the source conservation equation (1) implies the standard

continuity equation for point particles,

∂l

(

|Det G|1/6ρ̃Ãul
)

= 0 (16)

for effective energy density ρ̃Ã, in which also Ã(G) depends only locally on the background. In a

second step we will then be able to derive the equation of motion for the point particle fluid; this

will turn out to be the equation for non-null Finsler geodesics.

We substitute the ansatz (15) for the particle string fluid source tensor into the source conser-

vation equation. The result can be rewritten in the form

0 = |Det G|1/6det g̃−1ρ̃ ∂pG̃ijklu
iujukul − 4∂l

(

|Det G|1/6ρ̃
Gpijku

iujuk

G(u, u, u, u)
ul

)

−|Det G|1/6ρ̃Σijkl∂pGijkl (17)

+4∂l

(

|Det G|1/6ρ̃ΣlijkGpijk

)

− 2∂p

(

|Det G|1/6ρ̃
)

.

Here G̃abcd = |Det GC |1/3Gabcd. The derivation of this result requires the following identities, whose

proof is rather technical, but can be performed with relative ease in the frame {e0̂, eα̂} with e0̂ = u:

g̃−1 aijkGpijk = −2δa
p − 4

Gpijku
iujuk

G(u, u, u, u)
ua , (18)

δG̃(u, u, u, u)

δGC
abcd

= −1

4
det g̃g̃−1 abcd . (19)

A first restriction on the term Σ can now be obtained by using the fact that it depends only

locally on the background geometry: hence any condition on Σ that is derived for constant area

metric components Gabcd must also hold for general backgrounds. We therefore set all partial

derivatives of G in (17) to zero, and contract with up. This is the only possible scalar contraction,

and so must imply the continuity equation (16). This requires

ΣlijkGpijk =
1

2
δl
p . (20)
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Substituting this into the full equation (17), the last line is precisely cancelled. We again contract

with up to obtain a scalar equation, now for generic backgrounds G. To conveniently simplify

the calculation we use the normalization G(u, u, u, u) = 1 = |Det GC |−1/3det g̃ in terms of the

totally symmetric tensor G defined in (14). It is then straightforward to show that the continuity

equation (16) can be obtained for interaction terms Σ that also satisfy the condition

Σijkl∂pGijkl = ∂p ln B , (21)

for some scalar density B(G). The function Ã is then determined by Ã = Ã0|Det GC |−1/12B.

We now employ the two conditions (20) and (21) for Σ in the source conservation equation (17)

which yields the simplified equivalent expression

0 = ∂τ (Gpijku
iujuk) − 1

4
|Det GC |−1/3∂pG̃ijklu

iujukul

− Gpijku
iujuk∂τ ln

(

Ã/Ã0

)

+ ∂p ln
(

|Det GC |1/12Ã/Ã0

)

(22)

where ∂τ = up∂p. Note that all dependence on the string fluid’s energy density ρ̃ has cancelled. It

is not hard to prove now that this equation can be equivalently derived as the stationarity equation

from the point particle action

∫

dτ Ã−4G(ẋ, ẋ, ẋ, ẋ) (23)

together with the normalization constraint G(ẋ, ẋ, ẋ, ẋ) = 1.

Thus we have shown that all string fluids with the source tensor (15) and string interaction

terms Σ solving both conditions (20) and (21) behave as non-interacting particle fluids. The

source conservation equation for these string fluids not only implies the particle fluid conservation

equation (16), but also an equation of motion for the fluid worldlines: the equation for non-null

Finsler geodesics [15] with respect to the Finsler norm Ã−1(G(ẋ, ẋ, ẋ, ẋ))1/4. This Finsler norm

is fully determined by the area metric G through its associated totally symmetric dual Fresnel

tensor G, see definition (14).

The continuity equation (16) shows that the appearance of the function Ã originates from a

redefinition of the resulting particle fluid’s energy density ρ = ρ̃Ã/Ã0 in terms of the string fluid

variable ρ̃. Mathematically, Ã simply presents a conformal rescaling of the Finsler norm. This

function can be fixed as Ã/Ã0 = 1 by identifying the tension per area ρ̃ of the strings with the

energy density ρ of the effective point particles [14].
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IV. CONSISTENCY

Recall that a diffeomorphism invariant coupling of point particles to any gravity theory for a

metric spacetime already determines the motion of these particles along Riemannian geodesics.

This is because diffeomorphism invariance will result in some Bianchi identity for the gravitational

curvature tensor and energy momentum conservation of the point particles. The latter requires the

worldlines to follow geodesics. So given the same initial conditions, point particles will follow the

same worldlines, independent of their masses. We will now explicitly demonstrate an analogous

result for area metric spacetimes. Also here the motion of point particles along Finsler geodesics

can be understood as a consequence of diffeomorphism invariance; thus these point particles can

be consistently coupled to any area metric gravitational field equations.

In the previous section we found that the point particle limit of a string fluid leads to the

action (23) with Ã/Ã0 = 1. The corresponding source tensor is then

Tijkl(y) = −m

∫

dτ
δ(y − x(τ))

|Det G|1/6

δGabcd(y)

δGijkl
ẋaẋbẋcẋd , (24)

where m denotes either the energy of a photon, or the mass of a massive particle. Since this source

tensor is obtained from an action, it satisfies the conservation equation (1). We will now show that

this equation can be rewritten as

− m

∫

dτδ(y − x(τ))

[

∂pGabcdẋ
a ẋb ẋc ẋd + 4

d

dτ
(Gpabc ẋa ẋb ẋc )

]

= 0 . (25)

Since this equation must hold for any point y, the expression in square brackets must vanish, which

is precisely the equation of a geodesic in a Finsler geometry determined by the Fresnel tensor G.

Indeed, the variation of the Fresnel tensor with respect to the inverse area metric, as it appears

in the source tensor (24), can be expressed as a variation with respect to the cyclic part GC of the

area metric G as

δGabcd

δGijkl
=

δGabcd

δGC
αβγδ

δ(Gαβγδ − G[αβγδ])

δGijkl
= −1

4

δGabcd

δGC
αβγδ

(

GαβijGγδkl − Gij[αβGγδ]kl

)

. (26)

The first term of the source conservation equation can now be evaluated as

first term = m

∫

dτ δ(y − x(τ))
δGabcd

δGC
αβγδ

(

δrstu
αβγδ − δrstu

[αβγδ]

)

∂pGrstuẋaẋbẋcẋd , (27)

which via the chain rule already yields the first term of the Finsler geodesic equation, in the square

brackets of (25). The simplification of the second term of the source conservation equation is

slightly more involved. First observe that

δGabcd

δGC
αβγδ

= − 1

12
(GC)−1αβγδGabcd + |Det G|−1/3 δG̃abcd

δGC
αβγδ

, (28)
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where we defined the Fresnel tensor density G̃abcd = |DetGC |1/3Gabcd. Using this the second term

becomes

− 2m

∫

dτ
∂

∂yp
δ(y − x(τ))Gabcdẋ

aẋbẋcẋd + 4m

∫

dτ
∂

∂yβ
δ(y − x(τ))|DetG|−1/3Aβ

p , (29)

where we have introduced a shorthand for the quantity

Aβ
p =

δG̃abcdẋ
aẋbẋcẋd

δGC
αβγδ

GC
γδαp . (30)

This quantity is most efficiently calculated using a non-holonomic frame {ek̂} with e0̂ = u, and a

dual frame ek̂. After considerable algebra one finally arrives at

Aβ
p = |DetG|1/3

(

Gpabcẋ
a ẋb ẋc ẋβ +

1

2
δβ
pGabcdẋ

a ẋb ẋc ẋd

)

. (31)

Insertion of this result into (29) then provides the second term of equation (25):

second term = 4m

∫

dτ ẋp ∂

∂yp
δ(y − x(τ))Gabcpẋ

aẋbẋc . (32)

Hence in any diffeomorphism invariant theory of area metric gravity, the field equations con-

sistently couple to effective point particles propagating along Finsler geodesics. This coupling is

universal for all point particles, irrespective of their mass (or energy for light). This in fact shows

consistency with the experimentally supported weak equivalence principle.

V. CONCLUSIONS

In this article, we have calculated the paths of massive point-like matter on general area metric

manifolds. Even though point-like particles do not arise as fundamental mechanical objects on

area metric backgrounds, their effective description is of phenomenological relevance.

Intriguingly, we find that an area metric background impresses itself as a Finsler geometry on

the motion of all point-like matter. Free motion is described by Finsler geodesics, and the relevant

Finsler norm is determined by the area metric. To obtain this result, we have constructed the

class of classical string fluids that admit a particle fluid limit through a geometrically well-defined

averaging process. It turned out that the massive case considered here is governed by precisely

the same Finsler geometry as the propagation of light [5]. Taking into account recent studies of

Finsler geometries in connection to the quantization of deformed general relativity [16, 17] and to

quantum generalizations of the Poincaré algebra [18], it is interesting to note that the area metric

structure of spacetime attaches a prominent role to a particular Finsler geometry when it comes

to the description of the effective motion of light and matter.
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Of course, the Finsler geodesics found here simply reduce to the standard metric geodesics in

case the area metric is induced by a metric. However, already ω = 0 Brans–Dicke theory determines

a true area metric background with an additional degree of freedom, namely, the scalar field [2]. In

this case the Finsler geodesics are the geodesics of a particular conformally rescaled metric, with

the result that the theory is rendered consistent with solar system physics.

The general result that light and massive matter propagates along Finsler geodesics becomes

inevitable if the area metric structure is taken seriously as the geometry of spacetime. Indeed,

spacetime backgrounds described by a more general structure than metric geometry arise in var-

ious approaches to quantum gravity, and in string theory where additional massless background

fields appear. Especially important for the physical interpretation of generalized geometries are

the classical tests of gravity in the solar system that require a model of planetary motion via dis-

tinguished curves. Similarly in cosmology, the trajectories of galaxies in an area metric spacetime

must be understood as arising from a fluid model of the cosmological matter distribution. Our

result identifies this mechanism.

Thus the findings of this article are essential in order to test the viability of the hypothesis of

any generalized geometric backgrounds.
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