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We present a construction which associates an infinite sequence of Kac–Moody
algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this
reduces to the well known Kantor–Koecher–Tits construction. Our generalization
utilizes a new relation between different generalized Jordan triple systems, together
with their known connections to Jordan and Lie algebras. Applied to the Jordan
algebra of Hermitian 3�3 matrices over the division algebras R , C , H , O, the
construction gives the exceptional Lie algebras f4 , e6 , e7 , e8 for n=2. Moreover,
we obtain their infinite-dimensional extensions for n�3. In the case of 2�2 ma-
trices, the resulting Lie algebras are of the form so�p+n ,q+n� and the concomitant
nonlinear realization generalizes the conformal transformations in a spacetime of
signature �p ,q�. © 2009 American Institute of Physics. �DOI: 10.1063/1.3063628�

I. INTRODUCTION

Jordan algebras are commutative but nonassociative algebras, which were originally studied in
order to understand the foundations of quantum mechanics.1,2 Through their connection to Lie
algebras, Jordan algebras play an important role in fundamental physics and can be used to define
generalized spacetimes.3,4 The origin of this connection lies in the observation that the triple
product

�x,y,z� � �xyz� � ��x,��y��,z� �1.1�

in the subspace g−1 of a three-graded Lie algebra g−1+g0+g1, where � is an involution g−1→g1,
has the same general properties as the triple product

�x,y,z� � �xyz� � �xy�z + x�yz� − y�xz� �1.2�

formed from the multiplication in a Jordan algebra. In the Kantor–Koecher–Tits construction,5–7

any Jordan algebra gives rise to a 3-graded Lie algebra, such that the two triple products coincide.
In the present paper, we generalize this construction for a certain kind of Jordan algebras. We will
show that any such Jordan algebra gives not only one Lie algebra but an infinite sequence of Lie
algebras, labeled by a positive integer n. For n=1, we get back the original Kantor–Koecher–Tits
construction.

The Kantor–Koecher–Tits construction has already been generalized by Kantor from Jordan
algebras to Jordan triple systems and further to generalized Jordan triple systems.8 The generali-
zation of Jordan algebras to Jordan triple systems is needed for the inverse of the Kantor–
Koecher–Tits construction—any 3-graded Lie algebra with an involution � gives rise to a Jordan
triple system, but not all of them can be obtained from a Jordan algebra by �1.2�. Generalized
Jordan triple systems correspond to graded Lie algebras in general, not necessarily 3-graded.
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These well known connections between Jordan algebras, �generalized� Jordan triple systems, and
graded Lie algebras are tools that we will use to derive the results in this paper.

Our construction is based on a new generalization of a single generalized Jordan triple system
to an infinite sequence of such triple systems. We study the case when the Lie algebra associated
with the first one �the original generalized Jordan triple system� is a finite Kac–Moody algebra,
which means that it can be characterized by a Dynkin diagram. We find that continuing the
sequence then corresponds to adding more nodes to the Dynkin diagram. Each node will be
connected to the previous one by a single line, starting from an arbitrary node in the original
Dynkin diagram. For the classical Lie algebras br �r�3� and dr �r�4� and for the exceptional Lie
algebras f4 , e6 , e7 , e8, there is a unique node in the Dynkin diagram such that we get the affine
extension if we connect an additional node to it by a single line. In this case, our construction only
gives the current algebra extension, which means that the central element and the derivation must
be added by hand. In all other cases we get the full Kac–Moody algebra, whether it is finite
dimensional or not.

This work is motivated by the “magic square” constructions,9–12 which associate a Lie algebra
M�K ,K�� with any pair �K ,K�� of division algebras K=R ,C ,H ,O. These constructions involve
the simple Jordan algebras H3�K� of Hermitian 3�3 matrices over the division algebras K
=R ,C ,H ,O, where the product is the symmetrized matrix product. Our construction gives a Lie
algebra for each simple Jordan algebra and each positive integer value of a parameter n in the
following way. The Jordan algebra first leads to a Jordan triple system by �1.2� which in turn
generalizes to infinitely many generalized Jordan triple systems. Each of them has an associated
Lie algebra. We will show that when we apply the construction to the Jordan algebras H3�K�, we
obtain the third row in the magic square for n=1 �since this is the ordinary Kantor–Koecher–Tits
construction� and the fourth row for n=2. Moreover, we get the current algebra extension of the
algebras in the fourth row for n=3 �since the node that we add is the “affine” one� and their
hyperbolic extensions for n=4. Thus, our construction not only unifies the third and the fourth row
but also extends the magic square with infinitely many new rows. In particular, for K=O, we get
a unified construction of e8 , e9 , e10 and further extensions. When we instead apply our construc-
tion to the Jordan algebras H2�K� of Hermitian 2�2 matrices over the division algebras K
=R ,C ,H ,O, then the associated Lie algebras will always be finite dimensional, and we consider in
this case not only the complex Lie algebras but also their real forms. In particular, for K=O, we
get the pseudo-orthogonal algebras so�1+n ,9+n�, with the conformal algebra in a ten-
dimensional Minkowski spacetime as the well known case n=1.

Our method is useful for studying nonlinear realizations of Lie algebras.13,14 Any graded Lie
algebra can be realized nonlinearly on its subspaces of negative �or positive� degree.15 This
nonlinear realization can be expressed in terms of the corresponding generalized Jordan triple
system. When this in turn is obtained from an original one for some n in the way that we will
describe, then the nonlinear realization can be expressed in terms of the original generalized
Jordan triple system. We will illustrate this for so�p+n ,q+n�.

The paper is organized as follows. In Sec. II, we show that any generalized Jordan triple
system corresponding to a finite Kac–Moody algebra generalizes to an infinite sequence of such
triple systems, labeled by a positive integer n, and that this corresponds to adding nodes to the
original associated Dynkin diagram. In Sec. III, we review the relation between Jordan algebras
and the magic square of Lie algebras. Then we show that the associated Lie algebras in the H3�K�
case are the exceptional Lie algebras and their extensions. The nonlinear realization of so�p
+n ,q+n�, with the linearly realized subalgebra so�p ,q�, is given in Sec. IV. In the Appendix we
review in detail how any generalized Jordan triple system gives rise to a graded Lie algebra and
how the graded Lie algebra can be nonlinearly realized.

II. KAC–MOODY ALGEBRAS

In this section, we will prove our main result �Theorem 2.1� about Kac–Moody algebras and
generalized Jordan triple systems. First, we will briefly recall how a complex Kac–Moody algebra
can be constructed from its �generalized� Cartan matrix or, equivalently, from its Dynkin diagram
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�for details, see Ref. 16� and then how it can be given a grading. We will assume that the
determinant of the Cartan matrix is nonzero, which, in particular, means that we leave the affine
case for now. The Kac–Moody algebra will then be finite dimensional �or simply finite� if and only
if the Cartan matrix is positive definite.

The Cartan matrix is of type r�r, where r is the rank of the Lie algebra. Its entries are
integers satisfying Aii=2 �no summation� and

i � j ⇒ Aij � 0, Aij = 0 ⇔ Aji = 0 �2.1�

for i , j=1,2 , . . . ,r. The Dynkin diagram consists of r nodes, and two nodes i , j are connected by
a line if Aij =Aji=−1 but disconnected if Aij =Aji=0 �these are the only two cases that we will
consider�.

In the construction of a Lie algebra from its Cartan matrix, one starts with 3r generators
ei , f i , hi satisfying the Chevalley relations �no summation�

�ei, f j� = �ijhj, �hi,hj� = 0,

�2.2�
�hi,ej� = Aijej, �hi, f j� = − Aijf j .

The elements hi span the Abelian Cartan subalgebra g0. Further basis elements of g will then be
multiple commutators of either ei or f i generated by these elements modulo the Serre relations �no
summation�

�ad ei�1−Aji
ej = 0, �ad f i�1−Aji

, f j = 0. �2.3�

It follows from �2.2� that these multiple commutators �as well as the elements ei and f i themselves�
are eigenvectors of ad h for any h�g0, and thus each of them defines an element � in the dual
space of g0, such that ��h� is the corresponding eigenvalue. These elements � are the roots of g

and the eigenvectors are called root vectors. In particular, ei are root vectors of the simple roots �i,
which form a basis of the dual space of g0. In this basis, an arbitrary root �=�i�i has integer
components �i, either all non-negative �if � is a positive root� or all nonpositive �if � is a negative
root�.

For finite Kac–Moody algebras, the space of root vectors corresponding to any root is one
dimensional. Furthermore, if � is a root, then −� is a root as well but no other multiples of �. For
any positive root � of a finite Kac–Moody algebra g, we let e� and f� be root vectors correspond-
ing to � and −�, respectively, such that they are multiple commutators of ei or f i. �This require-
ment fixes the normalization up to a sign.� Thus, a basis of g is formed by these root vectors
e� , f� for all positive roots � and by the Cartan elements hi for all i=1,2 , . . . ,r.

A. Graded Lie algebras

A Lie algebra g is graded, or has a grading, if it is the direct sum of subspaces gk�g for all
integers k, such that �gm ,gn��gm+n for all integers m , n. If there is a positive integer m such that
g�m�0 but g�k=0 for all k	m, then the Lie algebra g is �2m+1�-graded. We will occasionally
use the notation g�=g�1+g�2+¯.

Any simple root �i of a Kac–Moody algebra g generates a grading of g, such that gk is
spanned by all root vectors e� or f� with the component �i=−k �the minus sign is a convention�
corresponding to �i in the basis of simple roots and, if k=0, by the Cartan elements hj.

A graded involution � on the Lie algebra g is an automorphism such that �2�x�=x for any x
�g and ��gk�=g−k for any integer k. The simplest example of a graded involution in a graded
Kac–Moody algebra is given by e�↔ � f� and hi↔−hi. �With the minus sign, this is the Chev-
alley involution.�

On the subspace g−1 of a graded Lie algebra g with a graded involution �, we can define a
triple product, that is, a trilinear map �g−1�3→g−1, given by
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�x,y,z� � �xyz� = ��x,��y��,z� . �2.4�

Then, due to the Jacobi identity and the fact that � is an involution, this triple product will satisfy
the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� , �2.5�

which means that g−1 is a generalized Jordan triple system. As this name suggests and as we have
already mentioned, this kind of triple systems is related to Jordan algebras. We will explain the
relation in more detail in Sec. IV A.

B. Extensions of graded Lie algebras

We now consider the situation when a finite Kac–Moody algebra h is extended to another one
g in the following way for an arbitrary integer n�2:

The black node, which g and h have in common, generates a grading of g as well as of h.
�Here and below, this meaning of a black node in a Dynkin diagram should not be confused with
any different meaning used elsewhere.� We want to investigate how the triple systems g−1 and h−1,
corresponding to these two gradings, are related to each other. It is clear that dim g−1

=n dim h−1, which means that g−1 as a vector space is isomorphic to the direct sum �h−1�n of n
vector spaces, each isomorphic to h−1. The question is if we can define a triple product on �h−1�n

such that g−1 and �h−1�n are isomorphic also as triple systems. To answer this question, we write
a general element in �h−1�n as �x1�1+ �x2�2+ ¯ + �xn�n, where x1 ,x2 , . . . are elements in h−1. Fur-
thermore, we define for any graded involution � on h a bilinear form on h−1 associated with � by
�e� ,��f
��=��
 for root vectors e��h−1 and f
�h1. The answer is then given by the following
theorem, which is the main result of this paper.

Theorem 2.1: The vector space �h−1�n , together with the triple product given by

�xaybzc� = �ab��x,��y��,z�c − �ab�x,y�zc + �bc�x,y�za �2.6�

for a ,b , . . . =1 ,2 , . . . ,n and x ,y ,z�h−1 , is a triple system isomorphic to the triple system g−1 with
the triple product �uvw�= ��u ,��v�� ,w�, where the involution � is extended from h to g by ��ei�
=−f i for the simple root vectors.

Proof: A basis of h−1 consists of all root vectors e� such that the component of � correspond-
ing to �n in the basis of simple roots is equal to 1. A basis of g−1 consists of all such basis elements
e� of h−1 together with all commutators �ei ,e��, where ei, for i=1,2 , . . . ,n−1, is the root vector

ei = �¯��ei,ei+1�,ei+2�, . . . ,en−1� �2.7�

of the an−1 subalgebra of g. We also define the root vector

f i = �− 1�n−1−i�¯��f i, f i+1�, f i+2�, . . . , fn−1� �2.8�

for the corresponding negative root, and the element

hi = hi + hi+1 + hi+2 + ¯ + hn−1 �2.9�

in the Cartan subalgebra of g, such that

�ei, f i� = hi, �hi,ei� = 2ei, �hi, f i� = − 2f i �2.10�

�no summation�. If i� j, then
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�hi,ej� = ej, �hi, f j� = − f j , �2.11�

while �ei ,ej� is either zero or a root vector of g that does not belong to g−1. �We stress the
difference between having the indices i , j , . . . on e , f , h upstairs and downstairs. The root vectors
ei correspond to the simple roots of the an−1 subalgebra, while the root vectors ei correspond to
roots of the an−1 subalgebra for which the component corresponding to the simple root �n−1 is
equal to 1, and these roots are not simple, except for �n−1 itself.� Using the relations �2.10� and
�2.11�, we get

��ei, f j�,e�� = − �ije�, ��ei, f j�, f
� = �ij f
,

�2.12�
��e�, f
�,ei� = − ��
ei, ��e�, f
�, f j� = ��
f j ,

and then

��ei,e��,�f j, f
�� = − �ij�e�, f
� − ��
�ei, f j� ,

�2.13�
��ei,e��, f
� = ��
ei, �e�,�f j, f
�� = − ��
f j .

Finally we have

��ei, f j�,ek� = � jkei + � jiek. �2.14�

We introduce the bilinear form on h−1 associated with �, defined by �e� ,��f
��=��
. Then, from
�2.12� and �2.13� we get

��e�,��e
��,ei� = − �e�,e
�ei, ��e�,��e
��, f j� = �e�,e
�f j ,

��ei,e��,�f j,��e
��� = − �ij�e�,��e
�� − �e�,e
��ei, f j� , �2.15�

��ei,e��,��e
�� = �e�,e
�ei, �e�,�f j,��e
��� = − �e�,e
�f j .

Consider now the direct sum �h−1�n of n vector spaces, each isomorphic to h−1, and write a general
element in �h−1�n as �x1�1+ �x2�2+ ¯ + �xn+1�n, where x1 ,x2 , . . . are elements in h−1. It is easy to see
that the map �, defined by e�

1�e� and �e��i+1� �ei ,e�� for i=1,2 , . . . ,n−1 is one to one. Using
the relations above, it is straightforward to show, case by case, that also ���uvw��
= ���u���v���w�� for all u ,v ,w� �h−1�n. �

III. JORDAN ALGEBRAS AND MAGIC SQUARES

In the Kantor–Koecher–Tits construction, any Jordan algebra J is associated with a 3-graded
Lie algebra g−1+g0+g1 spanned by the operators

u � g−1:x � u �constant� ,

�u,��v�� � g0:x � �uvx� �linear� , �3.1�

��u� � g1:x � − 1
2 �xux� �quadratic�

acting on the Jordan algebra, where

�xyz� = �xy�z + x�yz� − y�xz� . �3.2�

The associated Lie algebra g−1+g0+g1 is the conformal algebra con J, and g0 is the structure
algebra str J. If J has an identity element, then all scalar multiplications form a one dimensional
ideal of str J. Factoring out this ideal, we obtain the reduced structure algebra str� J, which in
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turn contains the Lie algebra der J of all derivations of J. Thus, g0=str J�str� J�der J. To see
why the resulting Lie algebra is called “conformal” we consider the Jordan algebras H2�K� of
Hermitian 2�2 matrices over the division algebras K=R ,C ,H ,O. We have

der H2�K� = so�d − 1� ,

str� H2�K� = so�1,d − 1� ,

con H2�K� = so�2,d� �3.3�

for d=3,4 ,6 ,10, respectively.17 It is well known that con H2�K� is the algebra that generates
conformal transformations in a d-dimensional Minkowski spacetime. Furthermore, str� H2�K� is
the Lorentz algebra and der H2�K� its spatial part.

The Kantor–Koecher–Tits construction can be applied also to the Jordan algebras H3�K� of
Hermitian 3�3 matrices over K. Then we obtain the first three rows in a magic square of Lie
algebras.9–12,17 The magic square construction associates a Lie algebra M�K ,K�� with any pair
�K ,K�� of division algebras R , C , H , O in a natural way that leads to the following symmetric
4�4 array:

K� \K R C H O
R a1 a2 c3 f4

C a2 a2 � a2 a5 e6

H c3 a5 d6 e7

O f4 e6 e7 e8

For simplicity, we only specify the complex Lie algebras here. In this magic square, the real Lie
algebras would actually be the compact forms of the complex Lie algebras that we have specified,
but we also get other magic squares of real Lie algebras if we replace K or K� by the corresponding
“split” algebras Cs , Hs , Os.18 When K� is split and K nonsplit, we get the derivation, reduced
structure, and conformal algebras of H3�K� as the first three rows. When K and K� are both split,
we get the split real forms of the complex Lie algebras above. We focus on the 3�3 subsquare in
the lower right corner, consisting of simply laced algebras, with the following Dynkin diagrams:

In the middle row of the 3�3 subsquare above, the black node generates the 3-grading of the
conformal algebra. The outermost node next to it in the last row generates the unique 5-grading
where the subspaces g�2 are one dimensional. With this 5-grading, the algebras in the last row are
called “quasiconformal,” associated with Freudenthal triple systems.13,19,20 This is usually the way
e8 is included in the context of Jordan algebras and octonions. Here, we are more interested in the
grading generated by the black node itself. Then we have the same situation in the last row as in
Sec. II B for n=2. With the notation used in Sec. II B we thus have g in the last row and h in the
second last row. Theorem 2.1 now implies that the algebras in the last row follow after those in the
second last row in the sequence of Lie algebras that is obtained from H3�K� via the �generalized�
Jordan triple systems. �This holds even for K=R, although we have not included it in the
illustration above.� However, this sequence does not end with n=2 but can be continued to infinity,
with one Kac–Moody algebra for each positive integer value of n. Since the node that we add to
each diagram in the last row is the affine one, we will get the corresponding current algebra for
n=3 and the hyperbolic extension for n=4.
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If we apply Theorem 2.1 to the Jordan algebras H2�K� instead of H3�K�, then we get dr+n

where r=2,3 ,5 for K=C ,H ,O, respectively. We will show this in detail in the next section.

IV. APPLICATION TO PSEUDO-ORTHOGONAL ALGEBRAS

In this section, we first give the nonlinear realization of so�p+n ,q+n� with a linearly realized
subalgebra so�p ,q�. Then we show that the special case n=1, which corresponds to conformal
transformations in a spacetime of signature �p ,q�, is related to the general case in the way it
should according to Theorem 2.1. Finally, we relate the generalized conformal realization to the
Jordan algebras H2�K� for Minkowski spacetimes in three, four, six, and ten dimensions.

We start with some basic facts. Let V be a real vector space with an inner product. The real Lie
group SO�V� consists of all endomorphisms F of V which preserve the inner product,

�F�u�,F�v�� = �u,v� , �4.1�

for all u ,v�V. The corresponding real Lie algebra so�V� consists of all endomorphisms f of V
which are antisymmetric with respect to the inner product,

�f�u�,v� + �u, f�v�� = 0, �4.2�

for all u ,v�V. If V is nondegenerate and finite dimensional with signature �p ,q�, then we can
identify SO�V� with the real Lie group SO�p ,q� consisting of all real �p+q�� �p+q� matrices X
such that

Xt�X = �, det X = 1, �4.3�

where � is the diagonal matrix associated with the inner product. Correspondingly, we can identify
so�V� with the real Lie algebra so�p ,q� consisting of all �p+q�� �p+q� matrices x such that

xt� + �x = 0. �4.4�

In other words, so�p ,q� consists of all real matrices of the form

x = �a ct

c b
� , �4.5�

where a and b are orthogonal p� p and q�q matrices, respectively. These groups and algebras are
said to be pseudo-orthogonal or, if p=0, orthogonal, written simply as SO�q� and so�q�.

We consider now the pseudo-orthogonal algebra so�p+n ,q+n�, with the inner product given
by

�4.6�

for some arbitrary positive integers n , p , q. It is spanned by all matrices GI
J, where the entry in

row L, column K is given by

�GI
J�

K
L = �I

L�K
J − �IK�JL, �4.7�

and I ,J , . . . =0 ,1 , . . . , p+q+2n−1. It follows that �GI
J�

t=GJ
I. If I�J, then the entry of GI

J in row
I, column J is 1 while the entry in row J, column I is �1 and all the others are zero. If I=J, then
GI

J=0. These matrices satisfy the commutation relations

�GI
J,G

K
L� = �I

LGK
J − �K

JG
I
J + �IK�JMGM

L − �JL�IMGK
M , �4.8�

and all those GI
J with I
J �say� form a basis of so�p+n ,q+n�.

For � ,
 , . . . =0 ,1 , . . . , p+q−1 and a ,b , . . . =1 ,2 , . . . ,n, with �

 and a
b, we take the
linear combinations
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Kab = 1
2 �− Ga+m+n

b+m+n + Ga+m
b+m+n − Ga+m+n

b+m + Ga+m
b+m� ,

K�
a = − G�

a+m+n − G�
a+m,

Da
b = 1

2 �Ga+m+n
b+m+n + Ga+m

b+m+n + Ga+m+n
b+m + Ga+m

b+m� , �4.9�

P�
a = − Ga+m+n

� − Ga+m
�,

Pab = 1
2 �− Ga+m+n

b+m+n − Ga+m
b+m+n + Ga+m+n

b+m + Ga+m
b+m�

as a new basis, where we have set m= p+q−1 for convenience. We note that Kab and Pab vanish
when n=1, since they are antisymmetric in the indices a , b. The basis elements �4.9� satisfy the
commutation relations

�G�

,Da

b� = �G�

,Pab� = �G�


,Kab� = 0,

�G�

,G�

�� = ��
�G�


 − ��

G�

� + ����
�G�
� − �
����G�

�,

�Da
b,Dc

d� = �a
dDc

b − �c
bDa

d,

�P�
a,K


b� = 2��a
bG


� − �

�Da

b� ,

�G�

,P�

a� = ��
�P


a − �
����P�
a, �G�


,K�
a� = − ��


K�
a + ����
�K�

a,

�Da
b,P�

c� = − �c
bP�

a, �Da
b,K�

c� = �a
cK

�
b, �4.10�

�P�
a,P


b� = − 2��
Pab, �K�
aK


b� = − 2��
Kab,

�Pab,P�
c� = 0, �Kab,K�

c� = 0,

�Da
b,Pcd� = �d

bPac − �c
bPad, �Da

b,Kcd� = �a
cKbd − �a

dKbc,

�K�
a,Pbc� = �c

a���P�
b − �b

a���P�
c, �P�

a,Kbc� = �a
c���K�

b − �a
b���K�

c,

�Pab,Pcd� = 0, �Kab,Kcd� = 0,

�Pab,Kcd� = �a
cD

b
d − �b

cD
a

d − �a
dDb

c + �b
dDa

c.

We see that so�p+n ,q+n� has the following 5-grading, which reduces to a 3-grading when n
=1 :

Subspace g−2 g−1 g0 g1 g2

Basis Pab P�
a G�


 , Da
b K�

a Kab

Furthermore, we see that Da
b satisfy the commutation relations for gl�n ,R�. Since they also

commute with G�

, we have g0=so�p ,q� � gl�n ,R� as a direct sum of subalgebras. Finally, a

graded involution � is given by

��P�
a� = ��
K


a = − Ga+m+n
� + Ga+m

�,
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��K�
a� = ��
P


a = − G�
a+m+n + G�

a+m,

��Da
b� = − Db

a, ��Kab� = Pab,

��G�

� = G�


 ��Pab� = Kab. �4.11�

Thus g−1 is a generalized Jordan triple system with the triple product

�P�
aP


bP�
c� = ��P�

a,��P

b��,P�

c� = ��P�
a,�
�K�

b�,P�
c� = − 2�ab������

�P

c − �
����P�

c�

+ 2�bc��
P�
a = 2�ab��
�P�

c − ���P

c� + 2�bc��
P�

a. �4.12�

If we now insert �4.12� in �A29� �but rescale the elements in g−2 according to Ref. 14� and use the
isomorphism �A20� so that we identify any operator f with the vector field −f�

a��
a− fab�

ab, then
we get the realization

Pab = − 2�ab,

P�
a = ��

a − 2x�b�
ab,

G�

 = x
a�

�a − x�
a�


a,

�4.13�
Da

b = x�
b��

a + 2xbc�
ac,

K�
a = − 2x


ax�
b�


b + x

ax
b�

�b − xab�
�b − 2x


ax�
bx
c�

bc + 2xabx�
c�

bc,

Kab = x�
ax


bx�c�

c − x�

bx

ax�c�


c − xacx
�

b��
c + xbcx

�
a��

c + 2x�
ax


bx�cx
d�
cd − 2xacxbd�

cd.

Straightforward calculations show that these generators indeed satisfy the commutation relations
�4.10�. When n=1, the gl�n ,R� indices a ,b , . . . take only one value, so we can suppress them, and
everything antisymmetric in these indices vanishes. We are then left with the conformal realization

P� = �� �translations� ,

G�

 = x
�

� − x��
 �Lorentz transformations� ,

�4.14�
D = x��� �dilatations� ,

K� = − 2x
x��
 + x
x
�
� �special conformal transformations� .

We will now show that the 5-grading of so�p+n ,q+n� in this section is generated �as de-
scribed in Sec. II A� by the simple root corresponding to node n in the Dynkin diagram below of
dr for p+q=2r. We will then show that the cases n=1 and n	1 are related in the way that we
described in Sec. II B.

For this, we must relate the P� basis of g−1 used in this section to the basis consisting of root
vectors. The relation will of course be different for different Lie algebras so�p+n ,q+n�. We
consider first the case n=1. Below we give explicitly the relations �with a suitable choice of
Cartan–Weyl generators� for two examples, �p ,q�= �5,5� in the first table and �p ,q�= �1,9� in the
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second table:

� e� f�

0
1
2 �P5+ P0� 1

2 �K5+K0�10000
0

1
2 �P6+ P1� 1

2 �K6+K1�11000
0

1
2 �P7+ P2� 1

2 �K7+K2�11100
0

1
2 �P8+ P3� 1

2 �K8+K3�11110
0

1
2 �P9+ P4� 1

2 �K9+K4�11110
1

1
2 �P9− P4� 1

2 �K9−K4�11110
1

1
2 �P3− P8� 1

2 �K3−K8�11111
1

1
2 �P7− P2� 1

2 �K7−K2�11121
1

1
2 �P1− P6� 1

2 �K1−K6�11221
1

1
2 �P5− P0� 1

2 �K5−K0�12221

� e� f�

0
1
2 �P5+ P0� 1

2 �K5+K0�10000
0

1
2 �P6− iP1� 1

2 �K6+ iK1�11000
0

1
2 �P7− iP2� 1

2 �K7+ iK2�11100
0

1
2 �P8− iP3� 1

2 �K8− iK3�11110
0

1
2 �P9− iP4� 1

2 �K9+ iK4�11111
1

1
2 �P9+ iP4� 1

2 �K9− iK4�11110
1

1
2 �iP3+ P8� 1

2 �iK3−K8�11111
1

1
2 �P7+ iP2� 1

2 �K7− iK2�11121
1

1
2 �iP1+ P6� 1

2 �iK1−K6�11221
1

1
2 �P5− P0� 1

2 �K5−K0�12221

We have indicated the roots by their coefficients in the basis of simple roots, corresponding to the
nodes in the Dynkin diagram above. �For example, e�= �e1 ,e2� in the second row and e�

= ��e1 ,e2� ,e3� in the third.� It is evident from these tables how to generalize them to arbitrary
values of p , q �with p+q even�. It follows that the bilinear form associated with the involution

��P�� = ��
K
 �4.15�

is given in the P� basis by �P� , P
�=2��
.
When we extend so�p+1,q+1� to g=so�p+n ,q+n� for n	1, we put a superscript 1 on P� in

the expressions for the root vectors e� of the subalgebra h=so�p+1,q+1� in h−1 �and a subscript
1 on K��. Then the graded involution �4.11� on g is indeed the extension of the original involution
�4.15� on h that we described in Theorem 2.1, and we get
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�P�
aP


bP�
c� = 2�ab�
�P�

c − 2�ab���P

c + 2�bc��
P�

a = 2�ab�
�P�
c − 2�ab���P


c + 2�ab��
P�
c

− 2�ab��
P�
c + 2�bc��
P�

a = �ab�P�P
P��c − 2�ab��
P�
c + 2�bc��
P�

a

= �ab��P�,��P
��,P��c − �ab�P�,P
�P�
c + �bc�P�,P
�P�

a, �4.16�

as we should, according to Theorem 2.1.

A. Connection to Jordan algebras

When n=1, the triple product �4.12� becomes

�P�P
P�� = 2�
�P� − 2���P
 + 2��
P�. �4.17�

If we introduce an inner product in the vector space g−1 by P� · P
=��
, then this can be written
as

�xyz� = 2�z · y�x − 2�z · x�y + 2�x · y�z . �4.18�

Let U be the subspace of g−1 spanned by Pi for i=1,2 , . . . , p+q−1. Then we can consider g−1 as
the Jordan algebra J�U�, with the product

Pi � Pj = �Pi · Pj�P0 �4.19�

for i , j=1,2 , . . . , p+q−1 and P0 as identity element. If we introduce a linear map

J�U� → J�U�, z � z̃ , �4.20�

which changes sign on P0 but otherwise leaves the basis elements P� unchanged, then we can
write the inner product as

2�u · v� = u � ṽ + v � ũ . �4.21�

Inserting �4.21� in �4.18�, we get

�xyz� = �z̃ � y� � x − �z̃ � x� � y + �x̃ � y� � z + �z � ỹ� � x − �z � x̃� � y + �x � ỹ� � z

= �y, z̃,x� + �y, x̃,z� + �z � ỹ� � x + �x � ỹ� � z . �4.22�

It is easy to see that the associators in the last line remain unchanged if we move the tilde from
one element to another. Thus, we get

�xyz� = �y, z̃,x� + �y, x̃,z� + �z � ỹ� � x + �x � ỹ� � z

= �ỹ,z,x� + �ỹ,x,z� + �z � ỹ� � x + �x � ỹ� � z = 2�z � ỹ� � x − 2�z � x� � ỹ + 2�x � ỹ� � z .

�4.23�

If we instead use the involution given by

��P̃�� = ��
K
, �4.24�

then we can remove the tilde,

�xyz� = 2�z � y� � x − 2�z � x� � y + 2�x � y� � z . �4.25�

Any Jordan algebra J is also a Jordan triple system with this triple product. The associated Lie
algebra, defined by the construction in the Appendix or in �3.1�, is its conformal algebra con J.

Consider now the case p=1 �and still n=1�. Then U is a Euclidean space, and J�U� is a
formally real Jordan algebra. For q=2,3 ,5 ,9, there is an isomorphism from J�U� to H2�K�, where
K=R ,C ,H ,O, respectively, given by
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P0 � �1 0

0 1
�, P1 � �0 1

1 0
�, Pi+1 � �0 − ei

ei 0
�, Pp+q−1 � �1 0

0 − 1
� �4.26�

for i=1,2 , . . . , p+q−3. �Here, ei are the “imaginary units” that anticommute and square to �1.�
The involution �4.24� becomes ��P��=K�, and we see from the tables that the associated bilinear
form on g−1 has the simple form �x ,y�=tr�x �y�. If we instead consider the split form �p=q� for
p=3,5 ,9, then �4.26� is still an isomorphism if we replace K=C ,H ,O by the split algebra Ks

which is obtained by changing the square of, respectively, 1, 2, and 4 imaginary units from �1 to
1 but otherwise leaving the multiplication table unchanged. Furthermore, the bilinear form on g−1,
associated with the graded involution �4.24�, still has the form �x ,y�=tr�x �y�.

To sum up, we have in this section given the 3-grading of so�p+1,q+1� and shown that it is
generated by the simple root corresponding to the leftmost node in the Dynkin diagram. If we add
n−1�1 nodes to the left, then this simple root will instead generate a 5-grading of the resulting
algebra so�p+n ,q+n�. Theorem 2.1 tells us how the two triple systems, associated with the
5-graded Lie algebra so�p+n ,q+n� and its 3-graded subalgebra so�p+1,q+1�, respectively, are
related to each other. It follows that so�p+n ,q+n� for �p ,q�= �1,2� , �1,3� , �1,5� , �1,9� is the Lie
algebra associated with the generalized Jordan triple system H2�K�n for K=R ,C ,H ,O, with the
triple product

�xaybzc� = 2�ab��z � y� � x�c − 2�ab��z � x� � y�c + 2�ab��x � y� � z�c − �ab�x,y�zc + �bc�x,y�za,

�4.27�

where a ,b ,c=1,2 , . . . ,n and �x ,y�=tr�x �y�. The same holds if we replace these pseudo-
orthogonal algebras by the split forms of the corresponding complex Lie algebras, and C , H , O
by Cs , Hs , Os.

V. CONCLUSIONS

In this paper, we have shown that any Jordan algebra H2�K� or H3�K�, via �generalized�
Jordan triple systems, leads to an infinite sequence of Kac–Moody algebras, labeled by a positive
integer n. The generalized Jordan triple product is given by �4.27� where a ,b ,c=1,2 , . . . ,n, and
�x ,y� is the bilinear form associated with the graded involution on the Lie algebra in the n=1 case.
We have shown that it is given by �x ,y�=tr�x �y� in the H2�K� case but not checked it for H3�K�.
However, the bilinear form is well defined by �e� ,��f
��=��
 and possible to determine if one
would like to study the H3�K� case in detail, as we have done for H2�K�. This would be an
interesting subject of future research.

An important difference between the H2�K� and H3�K� cases is that the Lie algebra associated
with H2�K�n is 3-graded for n=1 and then 5-graded for all n�2, while the Lie algebra associated
with H3�K�n is 3-graded for n=1 but 7-graded for n=2, and for n=3,4 ,5 , . . ., we get infinitely
many subspaces in the grading, since these Lie algebras are infinite dimensional. In the affine case,
we only get the corresponding current algebra directly in this construction, which means that the
central element and the derivation must be added by hand. The construction might be related to the
“affinization” of generalized Jordan triple systems used in Refs. 21 and 22 �see also Ref. 23�.
Finally, concerning the hyperbolic case and further extensions, we hope that our new construction
can give more information about these indefinite Kac–Moody algebras, for example, e10 and e11,
which both �but in different approaches� are conjectured to be symmetries underlying
M-theory.24,25 In spite of great interest from both mathematicians and physicists, these algebras are
not yet fully understood.
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APPENDIX: THE LIE ALGEBRA ASSOCIATED WITH A GENERALIZED JORDAN TRIPLE
SYSTEM

In the end of Sec. II A, we saw that any graded Lie algebra with a graded involution gives rise
to a generalized Jordan triple system. In this section, we will show the converse that any gener-
alized Jordan triple system gives rise to a graded Lie algebra with a graded involution. The
associated Lie algebra has been defined in a different �but equivalent� way by Kantor26 and called
the Kantor algebra.27

We recall from Sec. II A that a generalized Jordan triple system is a triple system that satisfies
the identity

�uv�xyz�� − �xy�uvz�� = ��uvx�yz� − �x�vuy�z� . �A1�

For any pair of elements x , y in a generalized Jordan triple system T, we define the linear map

sxy:T → T, sxy�z� = �xyz� . �A2�

Thus, �A1� �for all z� can be written as

�suv,sxy� = s�uvx�y − sx�vuy�. �A3�

For any x�T, we also define the linear map

vx:T → End T, vx�y� = sxy , �A4�

which we will use in the following subsection.

1. Construction

Let T be a vector space and set Ũ0=End T. For k
0, define Ũk recursively as the vector space

of all linear maps from T to Ũk+1. Let Ũ− be the direct sum of all these vector spaces,

Ũ− = Ũ−1 � Ũ−2 � ¯ , �A5�

and define a graded Lie algebra structure on Ũ− recursively by the relations

�u,v� = �ad u� � v − �ad v� � u . �A6�

Assume now that T is a generalized Jordan triple system. Let U0 be the subspace of Ũ0 spanned

by suv for all u ,v�T, and let U− be the subspace of Ũ− generated by vx for all x�T. Furthermore,
let U+ be a Lie algebra isomorphic to U−, with the isomorphism denoted by

�:U− → U+, u � u�. �A7�

Thus, U+ is generated by vx
� for all x�T. Consider the vector space

L�T� = U− � U0 � U+. �A8�

We can extend the Lie algebra structures on each of these subspaces to a Lie algebra structure on
the whole of L�T� by the relations

�sxy,vz� = v�xyz�, �vx,vy
�� = sxy, �sxy,vz

�� = − v�yxz�
�. �A9�

Furthermore, we can extend the isomorphism � between the subalgebras U− and U+ to a graded
involution on the Lie algebra L�T�. On U+, it is given by the inverse of the original isomorphism,
�u���=u, and on U0 by sxy

�=−syx.
Theorem A.1:8 Let g be a graded simple Lie algebra generated by its subspaces g�1, with a

graded involution �. Let g−1 be the generalized Jordan triple system derived from g by
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�uvw� = ��u,��v��,w� . �A10�

Then the Lie algebra L�g−1� is isomorphic to g .
Proof: Define the linear map � :g→L�g−1�, with gk→Uk for all integers k, recursively by

u � g−:��u��x� = ���u,��x��� ,

s � g0:��s��x� = �s,x� , �A11�

��u� � g+:����u�� = ��u��,

where x�g−1. We will show that � is an isomorphism.

• � is injective. Suppose that r and s are elements in g0 such that ��r�=��s�. Then �r−s ,x�
=0 for all x�g−1, which means that �r−s ,g−�=0 since g− is generated by g−1. But then the
proper subspace

�
k�N

�ad�g0 + g+��k�r − s� � g+ + g0 �A12�

of g is an ideal. Since g is simple, it must be zero, but r−s is an element of this subspace, so
r=s. Suppose now that u and v are elements in g− with ��u�=��v�. Then ���u ,��x���
=���v ,��x��� for all x�g−1, and by induction we can show that this implies �u−v ,��x��=0
for all x�g−1. Now we can use the same argument as before �but with g+ replaced by g−� to
show that u and v must be equal. The case u ,v�g+ then easily follows by

����u�� − ����v�� = ��u�� − ��v�� = ���u� − ��v���. �A13�

• � is a homomorphism. It is sufficient to show this when u�gi and v�g j for all integers i , j
and we will do it by induction over 	i	+ 	j	. One easily checks that ���u ,v��= ���u� ,��v��
when 	i	+ 	j	�1. Thus, suppose that this is true if 	i	+ 	j	= p for some integer p�1. For i , j

0 we now have

���u�,��v���x� = ���u�,��v��x�� − ���v�,��u��x�� = ���u�,���v,��x���� − ���v�,���u,��x����

= ���u,�v,��x��� − �v,�u,��x���� = ���u,v���x� �A14�

by the assumption of induction in the third step and by the Jacobi identity in the last one. We
use this for the case i , j	0, where we have

�����u�,��v��� = �����u,v��� = ���u,v��� = ���u�,��v��� = ���u��,��v��� = �����u��,����v��� .

�A15�

Finally, we consider the case where i�0 and j�0. Again, we show it by induction over
	i	+ 	j	, which means that i− j in this case. One easily checks that it is true when i=1 and j
=−1, so we can assume that j�−2 �or, analogously, i�2�. Then v can be written as a sum
of elements �x ,y� where x�gm and y�gn for j
m , n
0. We consider one such term and,
using what we have already proven, we get

���u�,���x,y��� = ���u�,���x�,��y��� = ����u�,��x��,��y�� − ����u�,��y��,��x��

= ����u,x��,��y�� − ����u,y��,��x�� = ����u,x�,y� − ��u,y�,x�� = ���u,�x,y���
�A16�

by the assumption of induction in the third and fourth steps.
• � is surjective. Since � is a homomorphism, this follows from the fact that g and L�g−1� are

generated by g�1 and U�1, respectively. The proof is complete. �
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As we have seen, the theorem is useful when a generalized Jordan triple system T happens to
be isomorphic to g−1 because it then tells us how to construct g from T.

2. Realization

The construction of the Lie algebra in the previous subsection may seem rather abstract, where
the elements are linear operators acting on vector spaces of other linear operators, which in turn
act on other vector spaces, and so on. However, once the Lie algebra is constructed, it can also be
realized in a way such that the elements act on the same vector space, but in general nonlinearly,
and there is a very simple formula for this, as we will see in this subsection.

Let V be the direct sum of �infinitely many� vector spaces V1 ,V2 , . . .. We write an element
v�V as v=v1+v2+¯, where vk�Vk for k=1,2 , . . .. With an operator on V of order p we mean
a map f :V→V such that for any i=1,2 , . . ., there is a symmetric �p1+ p2+¯�-linear map,

Fi:�V1�p1 � �V2�p2 � ¯ → Vi, �A17�

where p1+2p2+3p3+ ¯ = i+ p, that satisfies

f�v�i = Fi�v1,v1, . . . ,v1;v2,v2, . . . ,v2; . . .� . �A18�

We define the composition f �g of such an operator f and another operator g, of order q, as the
operator of order p+q given by

�f � g�i�v� = p1Fi�g�v�1,v1, . . . ,v1;v2,v2, . . . ,v2; . . .� + p2Fi�v1,v1, . . . ,v1;g�v�2,v2, . . . ,v2; . . .� + ¯

�A19�

for all i=1,2 , . . . and a Lie bracket as usual by �f ,g�= f �g−g � f . Let Mp be the vector space of all
operators on V of order p, and let M�V� be the direct sum of all Mp for all integers p �note that
they can also be negative�. It follows that M�V� is a graded Lie algebra. It is isomorphic to the Lie
algebra of all vector fields f i�i on V, where f �M�V�, with an isomorphism given by

f � − f i�i. �A20�

Any graded Lie algebra g=g−+g0+g+ is isomorphic to a subalgebra of M�g−�. It can be shown8,15

that an injective homomorphism � :g→M�g−� is given by

��u�:x � � ad x

1 − e−ad x Pe−ad x��u� , �A21�

where P is the projection onto U− along U0+U+, and the ratio should be considered as the power
series

ad x

1 − e−ad x = 1 +
ad x

2
+

�ad x�2

12
−

�ad x�2

720
+ ¯ . �A22�

3. Examples

We will now illustrate the ideas in two cases, where the generalized Jordan triple system
satisfies further conditions. First of all, we assume that the triple systems are such that if �xyz�
=0 for all y ,z, then x=0. This allows us to identify x with vx for all x in the triple system, that is,
we can identify U−1 with T and we can consider any element �vx ,vy��U−2 as a linear map on T,
which we denote by 
x ,y�. Since

�vx,vy��z� = �vx,vy�z�� − �vy,vx�z�� = �vx,syz� − �vy,sxz� = v�xzy� − v�yzx�, �A23�

this linear map is given by
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x,y��z� = �xzy� − �yzx� . �A24�

A generalized Jordan triple system is generalized in the sense that this linear map does not have to
be zero—in a Jordan triple system,28 the triple product �xyz� is by definition symmetric in x and
z. Accordingly, the Lie algebra associated with a Jordan triple system is 3-graded, g=g−1+g0

+g1, and it can be realized on its subspace g−1 by applying the formula �A21�. Everything that is
left from the power series expansion �A22� is then the identity map

ad x

1 − e−ad x = 1, �A25�

and we get

u � g−1:x � Pu = u

�u,��v�� � g0: x � P��u,��v�� − �x,�u,��v���� = − �x,���u�,v�� = �suv,x� = �uvx� ,

��u� � g1: x � P���u� − �x,��u�� + 1
2 �x,�x,��u���� = 1

2 �x,�x,��u��� = − 1
2 �sxu,x� = − 1

2 �xux� .

�A26�

This is the conformal realization of g on g−1.
We now turn to Kantor triple systems29 �or generalized Jordan triple systems of second

order26�. These are generalized Jordan triple systems that in addition to the condition �A1� satisfy
the identity



u,v��x�,y� = 
�yxu�,v� − 
�yxv�,u� . �A27�

It follows that the Lie algebra associated with a Kantor triple system is 5-graded, and the only part
of �A22� that we have to keep is

ad x

1 − e−ad x = 1 +
ad x

2
. �A28�

Then we get

�u,v� � g−2:z + Z � 
u,v� ,

u � g−1:z + Z � u + 1
2 
u,z� ,

�u,��v�� � g0:z + Z � �uvz� − 
u,Z�v�� , �A29�

��u� � g1:z + Z � − 1
2 �zuz� − Z�u� + 1

12
�zuz�,z� − 1
2 
Z�u�,z� ,

���u�,��v�� � g2:z + Z � − 1
6 �z
u,v��z�z� − Z�
u,v��z�� + 1

24
�z
u,v��z�z�,z� + 
Z�u�,Z�v�� ,

where z�g−1 and Z�g−2, which is the same realization as in Ref. 14 apart from a rescaling of the
elements in g−2 by a factor of 2.
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