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bDipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna,

Via Irnerio 46, I-40126 Bologna, Italy
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1. Introduction

As has been recognized many years ago [1, 2] the quantized Einstein-Maxwell theory pre-

dicts the process of photon-graviton conversion in an electromagnetic field. The tree level

vertex for this amplitude is (see appendix A)

1

2
κhµν

(

Fµαf ν
α + fµ

α F να
)

− 1

4
κhµ

µFαβfαβ. (1.1)

Here hµν denotes the graviton, fµν the photon, and Fµν the external field. κ is the

gravitational coupling constant. The corresponding photon-graviton vertex in momentum

space reads − i
2κCµν,α, where

Cµν,α = (F · k)αηµν + Fµαkν + F ναkµ − (F · k)µηνα − (F · k)νηµα . (1.2)

This interaction leads, assuming sufficient coherence of propagation, to photon-graviton

oscillations which are analogous to the better-known neutrino flavour [3] and photon-axion

oscillations [4 – 6]. The true eigenstates of propagation in a background field will in general

be certain mixtures of photon and graviton states. Determining these eigenstates and their
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Figure 1: One-loop photon-graviton amplitude in a constant field. The double line represents the

propagator of a charged scalar or spin 1
2

particle in a constant field.

dispersion relations requires, at tree level and in Fourier space, the diagonalization of the

following matrix (see eqs. (A.6), (A.7), and (A.8)):
(

ηαβk2 − kαkβ i
2κCκλ,α

i
2κCµν,β k2

4 (ηµκηνλ+ηµληνκ−2ηµνηκλ +...)

)

( aβ(k)

hκλ(k)

)

= 0 . (1.3)

Here aβ(k) represents the photon and hκλ(k) the graviton. For many cases of physical

interest, this problem can be simplified assuming the field to be homogeneous or near-

homogeneous, and the modified dispersion relations to be close to the vacuum ones. An

efficient formalism for calculating the evolution of the photon-graviton or photon-axion

system under these conditions was developed in [6].

Due to the smallness of the gravitational coupling κ, the photon-graviton mixing case

has received less attention than the photon-axion one. Nevertheless, a number of authors

have studied possible observable effects [2, 6 – 11]. The chances of observing this process in

the laboratory appear very remote. As with other processes involving very small couplings,

the natural setting is astrophysics where one can hope to at least partially compensate this

smallness by large field strengths or exposure times. In principle, any process based on

photon-axion conversion in a field (see, e.g., [12 – 18]) must have an analogue based on

photon-graviton conversion. In [6] photon-graviton conversion was considered in a pulsar

field, as well as in the galactic magnetic field, but the effect was found to be very small.

Photon-graviton conversion in a primordial magnetic field has been proposed as a possible

contribution to the cosmic microwave background anisotropy [8, 9]. However, taking plasma

effects into account renders the effect negligible [10].

A natural enhancement of the photon-graviton oscillation occurs in theories with extra

dimensions [19] due to the existence of an infinite tower of Kaluza-Klein gravitons. In [20]

both the effect of the photon-graviton oscillation on the cosmic microwave background

and the conversion in a pulsar background were reconsidered in this context, but the

enhancement was found to be insufficient to lift these effects into the observable range.

To our knowledge, the photon-graviton process has previously been studied only at

the tree level. In the first part of this series [21] (referred to as ‘part 1’ in the following)

we considered the one-loop corrections to this amplitude due to massive charged spin 0

(denoted Π̄µν,α
scal ) and spin 1/2 particles (denoted Π̄µν,α

spin ) in the loop (figure 1).

Our motivation for considering this loop correction is twofold. First, the dispersion

relation (1.3) will be modified in the following way by the one-loop contributions (see

eqs. (A.6), (A.7), and (A.8)):
(

ηαβk2 − kαkβ − Π̄α,β i
2κCκλ,α − Π̄κλ,α

i
2κCµν,β − Π̄µν,β k2

4 (ηµκηνλ+ηµληνκ−2ηµνηκλ +...)−Π̄µν,κλ

)

( aβ(k)

hκλ(k)

)

= 0 . (1.4)
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This equation involves the full one-loop photon-photon, photon-graviton and graviton-

graviton amplitudes, computed in the constant external field, summed over all possible

loop particles (including, e.g., photons and gluons for the graviton propagator). As is

well-known, already in the pure QED case the one-loop corrected dispersion relation in an

external field

[

ηµνk2 − kµkν − Πµ,ν(k)
]

aν(k) = 0 (1.5)

leads to highly nontrivial deviations from the vacuum case [22 – 33]. We believe that it

will be very instructive to generalize this study to the mixed photon-graviton system (1.4),

particularly considering the fact that in curved backgrounds superluminal phase velocities

are known to occur [34 – 36]. See also [37] for recent studies on the photon vacuum po-

larization in curved space at arbitrary frequencies and related investigations on a possible

breakdown of microcausality.

Second, while the tree level interaction term (1.1) depends linearly on the background

field, the one-loop corrections depend nontrivially on the field strength as well as on the

photon/graviton energy. Thus, although at linear order in Fµν the one-loop corrections are

down by an explicit factor of α compared to the tree level term, it is a priori conceivable

that for sufficiently large fields and some range of photon energies the one-loop amplitudes

would dominate over the tree level one.

The plan of this paper is as follows. In section 2 we find choices of physical polarizations

well-adapted to the structure of the worldline parameter integrals obtained in part 1. In

section 3 we specialize to the on-shell case, and introduce some convenient notation. In

section 4 we consider the purely magnetic case, and explicitly evaluate the amplitude for

three ranges of parameters: in 4.1 we present a direct numerical evaluation for arbitrary

field strength and photon/graviton energies below threshold; in 4.2 closed-form results are

found for the zero energy limits; in 4.3 we consider the case of a weak field but arbitrary

energies.

It seems that photon-graviton conversion so far has been studied only for the magnetic

field case. Although the physical relevance of this process is even more hypothetical in the

electric field case, in part 1 we kept the electric field component since, quite generally, in

the worldline formalism calculations in a general electromagnetic field are not substantially

more difficult than in a purely magnetic field [38, 39]. In this sequel, too, we shortly consider

the electric field case in section 5, and present results for two cases where the electric result

can easily be inferred from the magnetic one, namely the zero energy and weak field cases.

We summarize our results in section 6.

2. Polarization decomposition of the amplitude

Let us now project the photon-graviton amplitude on physical polarizations. We need to

choose two photon polarization vectors ε1,2 such that

εµ
i εjµ = δij , kµεµ

i = 0 . (2.1)

– 3 –
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Similarly, we need two symmetric, traceless, and transverse graviton polarization tensors

εµν
1,2:

εµν
i εjµν = 2δij , εµν

i = ενµ
i , εµ

iµ = 0, kµεµν
i = 0 . (2.2)

As we will see, substantial simplifications can be achieved by choosing polarization vectors

which are adapted to the background field. In part 1 we had, following [38, 39], written

the worldline Green functions using the matrix basis Ẑ±, Ẑ2
±,

Ẑµν
+ =

aFµν − bF̃µν

a2 + b2
, Ẑµν

− = −i
bFµν + aF̃µν

a2 + b2
,

(

Ẑ2
+

)µν

=
FµλF ν

λ − b2ηµν

a2 + b2
,

(

Ẑ2
−

)µν

= −FµλF ν
λ + a2ηµν

a2 + b2
. (2.3)

Here F̃µν = 1
2εµναβFαβ is the dual field strength tensor1 and a, b are related to the two

standard Maxwell invariants by a2 − b2 = B2 − E2, ab = E ·B.

Note the following properties of this basis [38, 39],

Ẑ3
± = −Ẑ±, (2.4)

Ẑ+ · Ẑ− = 0 . (2.5)

We now use this basis to define polarization vectors as follows,2

εµ
± ≡ (Ẑ± · k)µ

λ±
. (2.6)

Here the λ±’s are normalization factors,

λ+ ≡
√

(Ẑ+ · k) · (Ẑ+ · k) =

√

−k · (Ẑ2
+) · k ,

λ− ≡ −i

√

−(Ẑ− · k) · (Ẑ− · k) = −i

√

k · (Ẑ2
−) · k .

(2.7)

Together with the orthogonality relation (2.5) they ensure that ε+, ε− satisfy the con-

ditions (2.1). Both λ± can vanish; in this case the corresponding polarization vector is

lightlike and cannot be normalized. We also note that

λ2
+ + λ2

− = k2 (2.8)

(from (2.3)). The explicit form of ε± in terms of E and B is rather complicated in the

general case. However, as usual things simplify considerably if one specializes to a Lorentz

system where E and B are both pointing along the positive z - axis, E = (0, 0, E),B =

(0, 0, B). This implies that a = B and b = E. Here the dependence of λ±, ε± on the field

magnitudes drops out, leaving only a memory of the field direction:

λ+ =
√

(k1)2 + (k2)2 ≡ λ⊥, λ− = −i
√

(k0)2 − (k3)2 ≡ λ‖ , (2.9)

1We work in Minkowski space with ηµν = diag(− + ++) and ε0123 = 1.
2For the photon polarizations this basis has been introduced in [32] with different conventions and

notations (in particular, our b corresponds to −b there).
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and

εµ
+ =

(0, k2,−k1, 0)
√

(k1)2 + (k2)2
≡ εµ

⊥, εµ
− =

(k3, 0, 0, k0)
√

(k0)2 − (k3)2
≡ εµ

‖ . (2.10)

The subscripts ⊥, ‖ refer to the field direction. Such a Lorentz system exists provided that

E · B > 0. The case E · B < 0 differs from this only by a parity transformation, but the

case E ·B = 0 needs to be considered separately: This case can for E > B be transformed

into the purely electric and for B > E into the purely magnetic field case. In both cases

λ± and ε± are the same as in (2.9), (2.10) if the z-axis is chosen as the field direction. The

remaining possibility is that E ·B = 0 and E = B, the ”crossed field” case; here a = b = 0

and the above basis cannot be used.

To simplify further, without loss of generality we shall assume that the photon propa-

gation is in the y − z plane (k1 = 0, k2 > 0).

It will be useful to construct also the graviton polarizations using the same building

blocks. We define

ε⊕µν ≡ ε+µε+ν − ε−µε−ν ,

ε⊗µν ≡ ε+µε−ν + ε−µε+ν . (2.11)

Then the conditions (2.2) are fulfilled as a consequence of (2.1).

This basis is extremely convenient since, when contracting Π̄µν,α
scal,spin with these polar-

ization vectors/tensors, many terms in the integral representations obtained in part 1 (eqs.

(3.13) and (4.11) there) drop out on account of the orthogonality relation (2.5) and the

antisymmetry of Ẑ±. In particular, all terms involving a factor of ṠB12 · k or S̈B12 · k will

vanish.

We remark that a more standard, but less convenient, basis would be obtained by

removing the time component of ε‖ by a longitudinal shift,

ε̃µ

‖
= εµ

‖
− k3kµ

k0
√

(k0)2 − (k3)2
(2.12)

The equivalence of these two choices may not seem obvious for the gravitational part, since

neither Cµν,α nor Π̄µν,α
scal,spin are transversal in the graviton indices. However, using the

gravitational Ward identity ((A.13) of part 1) it is easily shown that the shift makes no

difference for the matrix elements.

In the following, we will denote

CAa ≡ εA
µνCµν,αεa

α (2.13)

etc. where A = ⊕,⊗ and a =⊥, ‖. At the tree level, one obtains the following simple

result:

C⊕⊥ = −2Bλ⊥ ,

C⊕‖ = 2iEλ‖ ,

C⊗⊥ = −2iEλ‖ ,

C⊗‖ = −2Bλ⊥ . (2.14)
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The fact that for a purely magnetic (electric) field ε⊕ couples only to ε⊥ (ε‖) and ε⊗ only

to ε‖ (ε⊥) is a consequence of CP invariance (see [6]). It must therefore also hold for the

loop corrections.

For the one-loop correction, using the polarization choices (2.6), (2.11) in (3.13) resp.

(4.11) of part 1 yields the following:

Π̄Aa
scal =

eκ

64π2

∫ ∞

0

ds

s
e−ism2

{

z+z−
sinh(z+) sinh(z−)

∫ 1

0
du e−isΦJ̃Aa

scal +
2

3
ieCAa

}

,

Π̄Aa
spin = − eκ

32π2

∫ ∞

0

ds

s
e−ism2

{

z+z−
tanh(z+)tanh(z−)

∫ 1

0
du e−isΦJ̃Aa

spin − 4

3
ieCAa

}

, (2.15)

where now z+ = ieBs, z− = −eEs and (repeated indices a, b, . . . are to be summed over

±)

Φ = −1

2

Āa

za
λ2

a , (2.16)

J̃⊕⊥
scal =

2

s
(z+A+

B11 − z−A−
B11)Ā

+
B12λ+

+
2

s
z+

[

(S+
B12)

2 − Ā+
B12

(

A+
B12 +

1

z+

)]

λ+

+iĀ+
B12λ+

[

(

(S+
B12)

2 − (Ā+
B12)

2
)

λ2
+ +

(

S+
B12S

−
B12 + (Ā−

B12)
2
)

λ2
−

]

,

J̃⊗⊥
scal =

2

s

[

S+
B12z−S−

B12 − Ā−
B12z+

(

A+
B12 +

1

z+

)]

λ−

+iĀ−
B12λ−

[

S+
B12S

a
B12λ

2
a − 2(Ā+

B12)
2λ2

+

]

, (2.17)

J̃⊕⊥
spin =

2

s

[

z+(A+
B11 − A+

F11) − z−(A−
B11 − A−

F11)
]

(Ā+
B12 + A+

F22)λ+

+
2

s
z+

[

(S+
B12)

2 − (S+
F12)

2 + (A+
F12)

2 − (Ā+
B12 + A+

F11)
(

A+
B12 +

1

z+

)]

λ+

+iĀ+
B12λ+(S+

B12S
a
B12 − S+

F12S
a
F12)λ

2
a

−iĀ+
B12

[

(Ā+
B12 + A+

F11)
2 − (A+

F12)
2
]

λ3
+

+iĀ−
B12

[

(Ā−
B12 + A−

F11)(Ā
+
B12 + A+

F11) − A−
F12A

+
F12

]

λ+λ2
− ,

J̃⊗⊥
spin =

2

s

[

(S+
B12S

−
B12 − S+

F12S
−
F12)z− − (Ā−

B12 + A−
F11)z+

(

A+
B12 +

1

z+

)

+ z+A+
F12A

−
F12

]

λ−

+iĀ−
B12λ−(S+

B12S
a
B12 − S+

F12S
a
F12)λ

2
a

−iĀ−
B12

[

(Ā+
B12 + A+

F11)
2 − (A+

F12)
2
]

λ2
+λ−

−iĀ+
B12

[

(Ā−
B12 + A−

F11)(Ā
+
B12 + A+

F11) − A−
F12A

+
F12

]

λ2
+λ− . (2.18)

The remaining components are obtained using the symmetry

J̃
⊕‖
scal,spin = −J̃⊕⊥

scal,spin(+ ↔ −) ,

J̃
⊗‖
scal,spin = J̃⊗⊥

scal,spin(+ ↔ −) . (2.19)
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The integrands are written in terms of the standard worldline functions (see (3.21) and

(4.9) of part 1)

S±
B12 =

sinh(z±(1 − 2u))

sinh(z±)
,

A±
B12 =

cosh(z±(1 − 2u))

sinh(z±)
− 1

z±
,

A±
B11 = A±

B22 = coth(z±) − 1

z±
,

Ā±
B12 = A±

B12 − A±
B11 =

cosh(z±(1 − 2u)) − cosh(z±)

sinh(z±)
,

S±
F12 =

cosh(z±(1 − 2u))

cosh(z±)
,

A±
F12 =

sinh(z±(1 − 2u))

cosh(z±)
,

A±
F11 = A±

F22 = tanh(z±) . (2.20)

Note that, as usual in this formalism [38, 39], the scalar loop integrands (2.17) are obtained

from the spinor loop ones (2.18) simply by nullifying all fermionic worldline correlators

S±
F ij, A

±
F ij .

3. On-shell amplitudes

In vacuum at this point we would use the dispersion relation

k2 = 0 . (3.1)

The modifications of this relation due to gravitational corrections are not relevant for our

present purposes, since they would produce terms of higher order in κ. However, this is less

clear for the field-induced corrections to the electromagnetic Πµ,ν . The question of under

which conditions (1.5) can still be well-approximated by (3.1) was, for the magnetic case,

studied in [32]. There it was shown that this is the case at least for moderate fields and

frequencies, B ≤ O(Bcr) and ω ≤ O(m), where Bcr = m2

e
denotes the “critical” magnetic

field strength (Bcr = 4.4×109 T for electrons). Here the restriction on the photon frequency

is not very significant, since for frequencies beyond the pair creation threshold ω = 2m

processes involving electron-positron pair creation become possible, and then are usually

physically more relevant than the dispersive processes which we are concerned with here.

To the contrary, the bound on the field strength may pose a restriction for applications

to magnetars which are believed to carry field strengths up to several orders of magnitude

higher than Bcr [40].

In the following, we will assume that the use of k2 = 0 is justified, and work out the

consequences. Using k0 = ω = |~k| eqs. (2.9), (2.10) simplify to (with k1 = 0)

εµ
⊥ = (0, 1, 0, 0) ,

εµ
‖ =

1

sin θ
(cos θ, 0, 0, 1) , (3.2)

– 7 –
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and

λ⊥ = ω sin θ ,

λ‖ = −iω sin θ , (3.3)

where θ is the angle between the z-axis (the field direction) and the direction of the photon

propagation. Since in this approximation the amplitude depends on ω and θ only in the

combination ω sin θ, there is no point in keeping the dependence on θ. We will therefore

restrict ourselves in the following to the case sin θ = 1 (propagation perpendicular to the

field direction). For a general field we are then left with the four parameters m, ω, B, and

E. It will be convenient to work with the three dimensionless variables

ω̂ ≡ ω

m
,

B̂ ≡ eB

m2
=

B

Bcr
,

Ê ≡ eE

m2
=

E

Ecr
. (3.4)

Here Ecr = m2

e
denotes the electric “critical” field strength (1.3 × 1018V/m for electrons).

Similarly, for the calculation of the integrals it will be useful to change to the dimensionless

proper-time variable ŝ ≡ m2s. Moreover, as usual in this type of calculations we will change

from u to v ≡ 1 − 2u.

Finally, since we wish to compare the one-loop and the tree level contributions, we

normalize the former by the latter. Thus we will have to compute

Π̂Aa
scal,spin(ω̂, B̂, Ê) ≡ Re

(

Π̄Aa
scal,spin

− i
2κCAa

)

= α Re

∫ ∞

0

dŝ

ŝ
e−iŝ

∫ 1

0
dv π̂Aa

scal,spin(ŝ, v, ω̂, B̂, Ê) (3.5)

with dimensionless integrands π̂Aa
scal,spin.

4. The magnetic field case

We specialize to the purely magnetic case, E = 0. Then z− = 0 so that

S−
B12 = v ,

S−
F12 = 1 ,

A−
B12 = 0 ,

A−
F12 = 0 ,

Ā−
B12

z−
=

1

2
(v2 − 1) . (4.1)

Using these identities in eqs. (2.17), (2.18), (2.19) one can immediately show that

Π
⊕‖
scal,spin = Π⊗⊥

scal,spin = 0 . (4.2)

– 8 –
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This is in accordance with the CP analysis mentioned above.

The integrands of the nonvanishing components are, using (3.2), (3.3),

π̂⊕⊥
scal =

1

8π

{

z+

sinh(z+)
exp

[

z+

(

Ā+
B12

z+
+

1

2
(1 − v2)

)

ω̂2

2B̂

]

×
[

(S+
B12)

2−Ā+
B12

(

Ā+
B12+

1

z+

)

+Ā+
B12

(

(S+
B12)

2−(Ā+
B12)

2−vS+
B12

)

ω̂2

2B̂

]

− 2

3

}

,

π̂
⊗‖
scal =

1

8π

{

z+

sinh(z+)
exp

[

z+

(

Ā+
B12

z+
+

1

2
(1 − v2)

)

ω̂2

2B̂

]

×
[

vS+
B12 −

Ā+
B12

z+
+ Ā+

B12v(S+
B12 − v)

ω̂2

2B̂

]

− 2

3

}

(4.3)

for the scalar case and

π̂⊕⊥
spin = − 1

4π

{

z+

tanh(z+)
exp

[

z+

(

Ā+
B12

z+
+

1

2
(1 − v2)

)

ω̂2

2B̂

]

×
[

(S+
B12)

2−(S+
F12)

2+(A+
F12)

2−
(

Ā+
B12 + A+

F11

)(

Ā+
B12+

1

z+
+A+

F11

)

+Ā+
B12

(

(S+
B12)

2−(S+
F12)

2−(Ā+
B12+A+

F11)
2+(A+

F12)
2−vS+

B12+S+
F12

)

ω̂2

2B̂

]

+
4

3

}

,

π̂
⊗‖
spin = − 1

4π

{

z+

tanh(z+)
exp

[

z+

(

Ā+
B12

z+
+

1

2
(1 − v2)

)

ω̂2

2B̂

]

×
[

vS+
B12 − S+

F12 −
1

z+

(

Ā+
B12 + A+

F11

)

+ Ā+
B12

(

vS+
B12 − S+

F12 + 1 − v2

)

ω̂2

2B̂

]

+
4

3

}

(4.4)

for the spinor case. Here z+ = iB̂ŝ and S+
B12, Ā

+
B12 etc. are as in (2.20) with 1−2u replaced

by v.

The resulting integrals (3.5) have a structure similar to the parameter integrals for the

photon vacuum polarization in a constant magnetic field obtained by Tsai and Erber [29].

Evaluating this type of integral for the whole range of field strengths and photon energies

is known to be difficult [29, 31, 41, 42, 33], and in fact appears to have never been done

in full generality for the photon-photon case. For energies below the pair creation energy

a direct numerical calculation is unproblematic after rotating to Euclidean proper time,

T̂ ≡ iŝ. From eqs. (3.5), (4.3), (4.4), (2.20) it is evident that the v - integral is always finite,

and the integrand of the resulting T̂ - integral is exponentially falling for small ω̂. The pair

creation threshold ω̂cr can be recognized precisely through the fact that for ω̂ > ω̂cr the T̂

— integral becomes divergent at large T̂ . Thus, analyzing the asymptotic behaviour of the

integrands for large T̂ at fixed B one finds that, for the scalar case, the critical value ω̂cr

is the same for both polarization components, while for the spinor case it depends on the
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polarization:

ω̂⊕⊥
cr,scal = ω̂

⊗‖
cr,scal = 2

√

1 + B̂ ,

ω̂⊕⊥
cr,spin = 1 +

√

1 + 2B̂ ,

ω̂
⊗‖
cr,spin = 2 . (4.5)

This divergence signals the onset of real pair creation, although to study the pair cre-

ation process itself one would have to consider the full photon-graviton polarization matrix

(see (1.4) above). All four threshold values (4.5) agree with what one finds for the corre-

sponding photon-photon amplitudes [22, 26, 38, 42].

Beyond the critical energy Euclidean proper time cannot be used any more, while a

numerical integration in the original proper — time variable ŝ poses enormous difficulties,

due to the combined effect of the oscillatory behaviour of the universal exponential factor

and the poles of the trigonometric prefactor functions.

Thus we will restrict our investigation to the two regimes which have also been well-

studied in the photon-photon case, namely (i) photon energies below the pair creation

threshold with arbitrary B and (ii) arbitrary photon energies at low field strength. Special

attention will be given to the limit of zero photon energy, since, as we will see, here one

can obtain the amplitudes in closed form.

4.1 Photon energies below threshold

As mentioned above, below the pair creation threshold the parameter integrals (3.5) are, af-

ter a Wick rotation T̂ = iŝ, suitable for a direct numerical evaluation at arbitrary magnetic

field strength. Figure 2 shows the results of such an evaluation, using MATHEMATICA,

for the spinor loop amplitude ratio Π̂⊕⊥
spin(ω̂, B̂). The amplitude ratio is shown for field

strengths in the range Bcr < B < 104Bcr and photon/graviton energies ω̂ ≤ 2. A global

factor of − α
4π

has been omitted.

The corresponding plots for Π̂
⊗‖
spin and Π̂⊕⊥

scal, Π̂
⊗‖
scal are very similiar for photon/graviton

energies below the corresponding thresholds (the numerical integration becomes unstable

for ω too close to ωcrit). In particular, all four amplitude ratios display a logarithmic growth

in B for large B ≫ Bcr. And indeed, for fixed ω < ωcr and B̂ → ∞ it is easy to show the

following asymptotic behaviour of (the nonvanishing components of) Π̂Aa
scal,spin(ω̂, B̂),

Π̂Aa
scal(ω̂, B̂)

B̂→∞∼ − α

12π
ln(B̂) ,

Π̂Aa
spin(ω̂, B̂)

B̂→∞∼ − α

3π
ln(B̂) . (4.6)

Thus this asymptotic behaviour is independent of the photon energy, as well as of the

polarization choice. Moreover, it is easy to see that it relates directly to the renormalization

terms in the integrands (4.3), (4.4). Thus we recognize here a connection between the short-

distance behaviour and the strong-field limit of this amplitude which is familiar from the

photon-photon case, as well as other external field processes [43, 44].
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Figure 2: Numerical plot of the amplitude Π̂⊕⊥

spin(ω̂, B̂) for B̂ between 1 and 104 and ω̂ ≤ 2. A

global factor of − α

4π
has been omitted.

4.2 Zero photon energy at arbitrary magnetic field strength

Closed-form results can be obtained in the zero energy limit. Setting ω̂ = 0 in (4.3), (4.4)

one finds that the v integrals can be done analytically, yielding trigonometric functions of

z+:

∫ 1

0
dv π̂⊕⊥

scal =
1

8π

[

−3

2
z+ cosech3z+ − z2

+coth2z+ − 6z+cothz+ + z2
+ + 2

2z+sinhz+
− 2

3

]

,

∫ 1

0
dv π̂

⊗‖
scal =

1

8π

[

2 cosh z+

sinh2 z+
− 2

z+ sinh z+
− 2

3

]

,

∫ 1

0
dv π̂⊕⊥

spin = − 1

4π

[

3 cosech2z+ − coth z+

(

2z+ cosech2 z+ +
1

z+

)

+
4

3

]

,

∫ 1

0
dv π̂

⊗‖
spin = − 1

4π

[

2 cosech2z+ − 2
coth z+

z+
+

4

3

]

. (4.7)

Thus the remaining proper-time integrals are of the same type as the standard proper-time

representations of the magnetic Euler-Heisenberg Lagrangians (see, e.g., [45]),

LEH
scal(B̂) = − m4

16π2

∫ ∞

0

dŝ

ŝ3
e−iŝ

[

B̂ŝ

sin(B̂ŝ)
− (B̂ŝ)2

6
− 1

]

(Scalar QED)

LEH
spin(B̂) =

m4

8π2

∫ ∞

0

dŝ

ŝ3
e−iŝ

[

B̂ŝ

tan(B̂ŝ)
+

(B̂ŝ)2

3
− 1

]

(Spinor QED) (4.8)

In fact, they can be expressed in terms of the derivatives of these Lagrangians as follows:

Π̂⊕⊥
scal,spin(ω̂ = 0, B̂) = −2πα

m4

( 1

B̂

∂

∂B̂
+

∂2

∂B̂2

)

LEH
scal,spin(B̂) ,

Π̂
⊗‖
scal,spin(ω̂ = 0, B̂) = −4πα

m4

1

B̂

∂

∂B̂
LEH

scal,spin(B̂) . (4.9)
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The existence of this connection between the photon-graviton amplitudes and the Euler-

Heisenberg Lagrangians is not an accident. Eqs. (4.9) have been obtained before by Gies

and Shaisultanov [46] using the linear coupling of the graviton to the Maxwell stress tensor

(see eq. (A.2)), and exploiting the relation between the vacuum expectation value of the

Maxwell tensor and the effective action,

〈T µν〉 =
2√−g

δΓ

δgµν
. (4.10)

Applying (4.9) to the explicit representations of the Euler-Heisenberg Lagrangians in terms

of the Hurwitz ζ - function [47 – 49, 45]

LEH
scal(B) = −(eB)2

4π2

{

ζ ′H

(

−1,
1

2
+

m2

2eB

)

+ ζH

(

−1,
1

2
+

m2

2eB

)[

1 + ln

(

m2

2eB

)]

+
3

4

(

m2

2eB

)2}

,

LEH
spin(B) =

(eB)2

2π2

{

ζ ′H

(

−1,
m2

2eB

)

+ ζH

(

−1,
m2

2eB

)

ln

(

m2

2eB

)

− 1

12
+

1

4

(

m2

2eB

)2}

(4.11)

(the prime on ζH refers to a derivative in the first variable) one obtains

Π̂⊕⊥
scal(0, B̂) =

α

8π

{

16ζ ′H

(

−1,
1

2
+

1

2B̂

)

+
1

B̂2
ψ

(

1

2
+

1

2B̂

)

− 6

B̂
ln Γ

(

1

2
+

1

2B̂

)

+
3

B̂
ln(2π) − 2

3
ln(2B̂) − 2

B̂2

}

,

Π̂
⊗‖
scal(0, B̂) =

α

8π

{

16ζ ′H

(

−1,
1

2
+

1

2B̂

)

− 4

B̂
ln Γ

(

1

2
+

1

2B̂

)

+
2

B̂
ln(2π)

−2

3
ln(2B̂) − 1

B̂2
+

1

3

}

,

Π̂⊕⊥
spin(0, B̂) = − α

4π

{

16ζ ′H

(

−1,
1

2B̂

)

− 6

B̂
ln Γ

(

1

2B̂

)

+
1

B̂2
ψ

(

1

2B̂

)

+
1

B̂
ln

(

4π3

B̂

)

+
4

3
ln(2B̂) − 2

B̂2
+

1

B̂

}

,

Π̂
⊗‖
spin(0, B̂) = − α

4π

{

16ζ ′H

(

−1,
1

2B̂

)

− 4

B̂
ln Γ

(

1

2B̂

)

− 2

B̂
ln(B̂/π)

+
4

3
ln(2B̂) − 1

B̂2
− 2

3

}

. (4.12)

Here ψ(x) = Γ′(x)/Γ(x) is the digamma function.

4.3 Weak magnetic field and arbitrary photon energy

We proceed to the case of arbitrary photon energy but weak magnetic field, i.e., B ≪ Bcr.

Our treatment of this case parallels the one introduced by Tsai and Erber for the photon-

photon case [29] (see also [32]).
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Assuming B̂ ≪ 1, we can expand the trigonometric functions appearing in the inte-

grands (4.3), (4.4), in the common exponential factor (which is the same as in the photon-

photon case [38]) as well as in the prefactor functions, keeping only the terms of lowest

order in z+. However, since we do not wish to make any assumption on the ratio ω̂2

B̂
, this

truncation has to be done separately for the terms with and without a factor of ω̂2

B̂
. For

example, the prefactor of π̂⊕⊥
scal involves (see eq. (4.3))

(S+
B12)

2 − Ā+
B12

(

Ā+
B12 +

1

z+

)

+ Ā+
B12

(

(S+
B12)

2 − (Ā+
B12)

2 − vS+
B12

)

ω̂2

2B̂

=
1

2
+

v2

2
+ O(z2

+) +
ω̂2

B̂

[

1

48
(v2 − 1)2(3 − v2)z3

+ + O(z5
+)

]

. (4.13)

Although the first term in the square bracket is O(z3
+), at this stage it cannot be ne-

glected over the leading 1
2 + v2

2 term. Similarly, the expansion of the universal exponent in

eqs. (4.3), (4.4) yields

z+

(

Ā+
B12

z+
+

1

2
(1 − v2)

)

ω̂2

2B̂
=

1

48
(1 − v2)2

ω̂2

B̂
z3
+ + O(z5

+) . (4.14)

Here the leading order term, although of order O(z3
+), cannot be neglected with respect to

the exponent of the global factor e−iŝ.

After performing these truncations, the amplitude ratios turn out to depend on B̂ and

ω̂ only in the combination B̂ω̂. This motivates the introduction of a new parameter λ,

λ ≡ 3

2
B̂ω̂ . (4.15)

Moreover, for the following it will be useful to interchange the orders of integrations in (3.5),

and perform a v - dependent change of variables of the global proper-time variable from ŝ

to x,

ŝ = ρx (4.16)

where

ρ =

(

6

λ(1 − v2)

)
2
3

. (4.17)

After this truncation and change of variables, the amplitude ratios take the following form:

Π̂⊕⊥
scal(λ) =

α

8π
Re

∫ 1

0
dv

∫ ∞

0

dx

x

[

1

2

(

v2 + 1
)

(e−iΞ − e−iρx) − i

3
(3 − v2)x3e−iΞ

]

,

Π̂
⊗‖
scal(λ) =

α

8π
Re

∫ 1

0
dv

∫ ∞

0

dx

x

[

1

2

(

v2 + 1
)

(e−iΞ − e−iρx) − i
2

3
v2x3e−iΞ

]

,

Π̂⊕⊥
spin(λ) =− α

4π
Re

∫ 1

0
dv

∫ ∞

0

dx

x

[

1

2

(

v2 − 3
)

(e−iΞ − e−iρx) +
i

3
(3 + v2)x3e−iΞ

]

,

Π̂
⊗‖
spin(λ) =− α

4π
Re

∫ 1

0
dv

∫ ∞

0

dx

x

[

1

2

(

v2 − 3
)

(e−iΞ − e−iρx) + i
2

3
(3 − v2)x3e−iΞ

]

. (4.18)
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The common exponential factor e−iΞ is now of the Airy form,

Ξ = ρx +
1

3
x3 . (4.19)

Note that we have also rewritten the counterterms in a way which will be convenient in

the following.

Now, the two different x - integrals appearing here can both be expressed in terms of

the modified Airy function Gi(ρ), defined by

Gi(ρ) ≡ 1

π

∫ ∞

0
dx sin

(

ρx +
1

3
x3

)

. (4.20)

Namely, one has

f1(ρ) ≡
∫ ∞

0

dx

x

[

cos
(

ρx +
1

3
x3

)

− cos(ρx)
]

=

∫ ∞

0

dx

x

[

cos
(1

3
x3

)

− x

∫ ρ

0
dρ′ sin

(

ρ′x +
1

3
x3

)

− cos(ρx)

]

= −π

∫ ρ

0
dρ′ Gi(ρ′) + ln ρ +

2

3
γ +

1

3
ln 3, (4.21)

and

f2(ρ) ≡
∫ ∞

0
dxx2 sin

(

ρx +
1

3
x3

)

= −π Gi′′(ρ) = 1 − πρGi(ρ) . (4.22)

This brings us to our final result,

Π̂⊕⊥
scal(λ) =

α

8π

∫ 1

0
dv

[

1

2

(

v2 + 1
)

f1(ρ) − 1

3
(3 − v2)f2(ρ)

]

,

Π̂
⊗‖
scal(λ) =

α

8π

∫ 1

0
dv

[

1

2

(

v2 + 1
)

f1(ρ) − 2

3
v2f2(ρ)

]

,

Π̂⊕⊥
spin(λ) = − α

4π

∫ 1

0
dv

[

1

2

(

v2 − 3
)

f1(ρ) +
1

3
(3 + v2)f2(ρ)

]

,

Π̂
⊗‖
spin(λ) = − α

4π

∫ 1

0
dv

[

1

2

(

v2 − 3
)

f1(ρ) +
2

3
(3 − v2)f2(ρ)

]

. (4.23)

Using (4.21), (4.22) these integrals can be done numerically without difficulties for any

value of λ.

As in the photon-photon case [29], exact results can be obtained in the limits of small

and large λ. Using the known asymptotic properties of the function Gi(x) [50, 51] it is

easy to show that, for small ρ,

f1(ρ) ∼ ln(ρ) +
2

3
γ +

1

3
ln 3 + O(ρ) ,

f2(ρ) = 1 + O(ρ) , (4.24)
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while for ρ → ∞

f1(ρ) ∼ 2

3

1

ρ3
+ O

(

1

ρ6

)

,

f2(ρ) ∼ − 2

ρ3
+ O

(

1

ρ6

)

. (4.25)

Using the leading terms of the expansions (4.25) in (4.23) yields the following results for

the leading order terms of the amplitude ratios in the small λ limit:

Π̂⊕⊥
scal(λ) =

α

8π

32

945
λ2 + O(λ4) ,

Π̂
⊗‖
scal(λ) =

α

8π

8

945
λ2 + O(λ4) ,

Π̂⊕⊥
spin(λ) =

α

4π

128

2835
λ2 + O(λ4) ,

Π̂
⊗‖
spin(λ) =

α

4π

40

567
λ2 + O(λ4) . (4.26)

Using the leading terms of the expansions (4.24) gives the asymptotic behaviour for large λ:

Π̂⊕⊥
scal(λ) =

α

8π

[

−4

9
ln(λ) +

4

9
γ +

2

3
ln 3 − 4

9
ln 2 +

2

27
+ O(λ− 2

3 )

]

,

Π̂
⊗‖
scal(λ) =

α

8π

[

−4

9
ln(λ) +

4

9
γ +

2

3
ln 3 − 4

9
ln 2 +

20

27
+ O(λ− 2

3 )

]

,

Π̂⊕⊥
spin(λ) =

α

4π

[

−8

9
ln(λ) +

8

9
γ +

4

3
ln 3 − 8

9
ln 2 +

16

27
+ O(λ− 2

3 )

]

,

Π̂
⊗‖
spin(λ) =

α

4π

[

−8

9
ln(λ) +

8

9
γ +

4

3
ln 3 − 8

9
ln 2 − 2

27
+ O(λ− 2

3 )

]

. (4.27)

Note that the leading logarithmic terms in (4.27) are independent of the polarization choice.

As in the case of the leading asymptotic growth for large field strength, eq. (4.6), their co-

efficients are directly related to the UV counterterms. This is another fact which is familiar

from the photon-photon case. Figure 3 shows the result of a numerical evaluation, using

MATHEMATICA, of the parameter integral (4.23) for the amplitude Π̂⊕⊥
spin(λ). The small

and large λ approximations (4.26), (4.27) are also shown.

5. The electric field case

The photon-graviton conversion process in a constant field seems to have been studied

hitherto exclusively for the magnetic field case. The reason is, of course, the absence of

evidence for the existence of very strong macroscopic electric fields anywhere in nature.

Still, in the near future it may be possible to reach field strengths of the order of Ecr in

the laboratory using optical or X-ray lasers [52 – 54]. Thus it seems worthwhile to shortly

discuss also the electric case. Moreover, some of our results for the magnetic case carry

over to the electric case simply by analytic continuation. Namely, electric-magnetic duality
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Figure 3: Numerical plot of the amplitude Π̂⊕⊥

spin(λ) for λ between 0 and 20. The small and large

λ approximations are also shown. A global factor of α

4π
has been omitted.

for this amplitude takes the following form (see eqs. (2.14) and (2.19)),

Π̂
⊕‖
scal,spin(ω̂, 0, Ê) = Π̂⊕⊥

scal,spin(ω̂, B̂, 0)

∣

∣

∣

∣

B→iE, ω→−iω

Π̂⊗⊥
scal,spin(ω̂, 0, Ê) = Π̂

⊗‖
scal,spin(ω̂, B̂, 0)

∣

∣

∣

∣

B→iE, ω→−iω

(5.1)

Despite of this formal duality, there is a structural difference between the electric and

magnetic amplitudes. While the magnetic amplitude ratios are real for photon energies

below the pair creation threshold, the integrands of the corresponding electric ones have

poles in the Euclidean proper-time variable T = is, indicating the existence of an imaginary

part for all photon energies. This again agrees with the photon-photon case [41], and

physically corresponds to the fact that both the photon/graviton and the electric field are

capable of pair production, while in the magnetic case the field alone cannot induce an

absorptive part. Although we are interested here only in the real parts, technically this

implies that a calculation of the full electric amplitudes through numerical computation

of the parameter integrals (3.5) is even more difficult than for the magnetic amplitudes.

In particular, the rotation to Euclidean proper-time is much less useful here, even for ω

below threshold, since the rotated integrand has poles, both in the prefactor functions and

in the exponent. We will therefore restrict our discussion to two limiting cases where we

can directly draw on our results for the magnetic case, the zero photon energy case and

the weak field case.

5.1 Zero photon energy and arbitrary electric field strength

For ω = 0, in eqs. (4.12) we have the magnetic amplitudes in an explicit form involving only

the functions Γ, ψ, and ζH . Implementing the analytic continuation B → iE is therefore

straightforward. In particular, for large E the amplitude ratio shows the same logarithmic
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growth as we had found in the magnetic case (eq. (4.6)),

Π̂Aa
scal(ω̂ = 0, Ê)

Ê→∞∼ − α

12π
ln(Ê) ,

Π̂Aa
spin(ω̂ = 0, Ê)

Ê→∞∼ − α

3π
ln(Ê) . (5.2)

5.2 Weak electric field and arbitrary photon energy

Things become even simpler in the weak field limit. The approximation used in section 4.3,

based on a weak field expansion and truncation to the leading order terms, removes the

additional poles contained in the electric integrand, leading to a complete symmetry be-

tween the electric and magnetic cases. Since in this approximation the amplitude ratios

depend only on the single variable λ = 3
2B̂ω̂, eqs. (5.1) turn into

Π̂
⊕‖
scal,spin

(

λ =
3

2
Êω̂

)

= Π̂⊕⊥
scal,spin

(

λ =
3

2
B̂ω̂

)

,

Π̂⊗⊥
scal,spin

(

λ =
3

2
Êω̂

)

= Π̂
⊗‖
scal,spin

(

λ =
3

2
B̂ω̂

)

. (5.3)

Therefore all the results of section 4.3 carry over to the electric case mutatis mutandis.

6. Conclusions

We have analyzed the parameter integral representations obtained in part 1 for the one-

loop photon-graviton amplitudes in a constant field at about the same level of detail as

was previously achieved for the analogous QED photon-photon case [27, 29, 31 – 33, 41].

In the purely magnetic case, we have shown that our representation is amenable to a

direct numerical evaluation for photon/graviton energies below threshold, at arbitrary field

strength. For weak magnetic fields, a one-parameter integral representation involving Airy

functions has been obtained, and shown to be suitable to numerical evaluation. Closed-

form results have been found for the zero energy limit. We have also transformed our

results for the weak field and zero energy magnetic cases to corresponding results for the

electric field case.

The qualitative properties of the photon-graviton amplitudes turn out to be closely

analogous to the ones of the corresponding photon-photon amplitudes. In particular, in

the magnetic case they have the same same pair creation thresholds, and a similar asymp-

totic growth for strong fields or large photon/graviton energies. This is, of course, not

surprising, particularly considering that the photon-photon and photon-graviton ampli-

tudes are connected by the gravitational Ward identity ((A.13) of part 1). Apart from the

pair creation thresholds (4.5), none of our results show any substantial differences between

the scalar and spinor loop cases.

From a quantitative point of view, our analysis of the one-loop photon-graviton ampli-

tude can be summarized as follows. For small photon energies and large magnetic or electric

field strengths, this ratio grows logarithmically in the field strength (see (4.6) resp. (5.2)).

For weak fields and large photon energies it grows logarithmically with the photon energy
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(see (4.27), (5.3)). In these limits it is clearly not possible to compensate the small pref-

actor α/4π for physically relevant values of the parameters. While we have not been able

to perform a quantitative analysis in the whole two-parameter space of field strengths and

energies, a compound effect of large field strengths and large energies appears to be exluded

by the fact that the integrand of (3.5) contains ω only in the combination ω̂2/B̂ resp. ω̂2/Ê.

This is also borne out by the numerical results of section 4.1. Overall, we conclude that the

magnitude of the one-loop contribution to this amplitude will not amount to more than a

few percent of the tree level one for physically realistic values of the parameters.

It should be mentioned, though, that there is also a qualitative difference to the tree-

level amplitude. As has been stressed in [10], the tree level photon-graviton conversion does,

contrary to the photon-axion case, not lead to a dichroism effect for photon beams. This is

because, according to (2.14), both photon polarization components have equal conversion

rates. This symmetry does not extend to the one-loop level (except for the strong field

limit).

As we have seen, in the worldline formalism the calculation of the photon-graviton

polarization tensor in a constant field is only moderately more difficult than the one of the

photon-photon polarization tensor [38]. We expect that even the graviton-graviton case

will be quite feasible. In a future sequel, we intend to analyze this case at the same level

of the photon-graviton one, which then would make it possible to study the complete set

of one-loop photon-graviton dispersion relations (1.4).
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A. Quadratic expansion of the Einstein-Maxwell theory

The Einstein-Maxwell theory is described by

S[g,A] =

∫

dDx
√

g

(

1

κ2
R − 1

4
FµνFµν

)

(A.1)

where the metric gµν has signature (−,+,+, . . . ,+), g = |det gµν |, and κ2 = 16πGN .

The spacetime dimension of interest is D = 4, but in this section we may as well keep it

arbitrary. We expand gµν = ηµν + κhµν and Aµ = Āµ + aµ. Then using the short-hand

notation hµ ≡ ∂αhαµ and h ≡ ηµνhµν one obtains the following quadratic approximation

in the fluctuations (hµν , aµ) around the background (ηµν , Āµ)

S(2) =

∫

dDx

{

1

4
(hµν hµν − h h + 2h∂µhµ + 2hµhµ) +

1

2
(aµ aµ + (∂µaµ)2)

+
κ

2
hµν

(

F̄µαF̄ ν
α − 1

4
ηµν F̄ 2

)

+ κhµν

(

F̄µαf ν
α − 1

4
ηµν F̄αβfαβ

)

−κ2

4

[(1

8
h2 − 1

4
h2

µν

)

F̄ 2 + hµνhαβF̄µαF̄νβ + (2hµαhν
α − hhµν)F̄µβ F̄ν

β
]

}

. (A.2)
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In the second line of this expression we recognize the linear coupling κ
2hµν T̄ µν of the

graviton hµν with the stress tensor of the background electromagnetic field T̄ µν = F̄µαF̄ ν
α−

1
4ηµν F̄ 2. This tadpole vertex indicates that the nontrivial background stress tensor tends

to curve the space. The third line in (A.2) gives instead the tree level graviton-photon

mixing in the electromagnetic background. Using plane waves

hµν(x) = ǫµνeikx , aα(x) = ǫαeik2x (A.3)

we get for this mixing term the vertex

∆S(2) = (2π)DδD(k + k2) ǫµνǫα (−iκ)
[

Fµαkν − (F · k)µηνα +
1

2
ηµν(F · k)α

]

(A.4)

which appears in the path integrals as ei∆S(2) (see eq. (1.2)).

The two-point functions (which we denote by Π), in either coordinate or momentum

space, are contained in S(2) (or in the quadratic part of the full effective action Γ(2) =

S(2) + Γ
(1−loop)
(2) + · · ·) as follows

S(2) =

∫

dDx

{

1

2
hµν(x)Πµν,λρ(∂)hλρ(x) +

1

2
aα(x)Πα,β(∂)aβ(x)

+hµν(x)Πµν,α(∂)aα(x) +
κ

2
hµν(x)T̄ µν(x)

}

=

∫

dDk

(2π)D

{

1

2
hµν(k)Πµν,λρ(k)hλρ(−k) +

1

2
aα(k)Πα,β(k)aβ(−k)

+hµν(k)Πµν,α(k)aα(−k) +
κ

2
hµν(k)T̄ µν(−k)

}

(A.5)

where the Fourier transform of a field is given by hµν(x) =
∫

dDk
(2π)D eikxhµν(k), its inverse

by hµν(k) =
∫

dDx e−ikxhµν(x) and Π(k) = Π(∂ → −ik).

The equations of motion in term of these two-point functions then read3

δaα(k) : Πα,β(k)aβ(−k) + Πµν,α(−k)hµν(−k) = 0

δhµν(k) : Πµν,λρ(k)hλρ(−k) + Πµν,α(k)aα(−k) = −κ

2
T̄ µν(−k) (A.6)

and, in particular, one obtains from (A.2)

Πα,β
tree(k) = kαkβ − k2ηαβ

Πµν,α
tree (k) = − iκ

2
Cµν,α(k) (A.7)

with Cµν,α(k) as in (1.2). Also, one gets

Πµν,λρ
tree (k) =

k2

2

(

ηµνηλρ − 1

2
(ηµληνρ + ηµρηνλ)

)

− 1

2
(ηµνkλkρ + kµkνηλρ)

+
1

4
(ηµλkνkρ + ηνλkµkρ + ηµρkνkλ + ηνρkµkλ) + F̄ terms. (A.8)

Finally, note that a constant T̄ µν gives T̄ µν(k) = (2π)2δD(k)T̄ µν .

3A minus sign in the euclidean formulas (A.11) of paper I is correctly taken into account by the Wick

rotation, as one can easily check by looking at the euclidean tree level Maxwell action S =
R

dDx 1
4
FµνF µν ,

which indeed is positive definite in euclidean space (as it should).
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