English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Finite mass beam splitter in high power interferometers

MPS-Authors

Harms,  Jan
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

368027.pdf
(Publisher version), 358KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Harms, J., Schnabel, R., & Danzmann, K. (2004). Finite mass beam splitter in high power interferometers. Physical Review D, 70(10): 102001. doi:10.1103/PhysRevD.70.102001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4FC5-A
Abstract
The beam splitter in high-power interferometers is subject to significant radiation-pressure fluctuations. As a consequence, the phase relations which appear in the beam splitter coupling equations oscillate and phase modulation fields are generated which add to the reflected fields. In this paper, the transfer function of the various input fields impinging on the beam splitter from all four ports onto the output field is presented including radiation-pressure effects. We apply the general solution of the coupling equations to evaluate the input-output relations of the dual-recycled laser-interferometer topology of the gravitational-wave detector GEO 600 and the power-recycling, signal-extraction topology of advanced LIGO. We show that the input-output relation exhibits a bright-port dark-port coupling. This mechanism is responsible for bright port contributions to the noise density of the output field and technical laser noise is expected to decrease the interferometer’s sensitivity at low frequencies. It is shown quantitatively that the issue of technical laser noise is unimportant in this context if the interferometer contains arm cavities.