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A formal “small tension” expansion of D = 11 supergravity near a spacelike singularity is shown to
be equivalent, at least up to 30th order in height, to a null geodesic motion in the infinite-dimensional
coset space E;o/K(Ey), where K(E ) is the maximal compact subgroup of the hyperbolic Kac-Moody
group E,(R). For the proof we make use of a novel decomposition of E | into irreducible representa-
tions of its SL(10, R) subgroup. We explicitly show how to identify the first four rungs of the E;, coset
fields with the values of geometric quantities constructed from D = 11 supergravity fields and their
spatial gradients taken at some comoving spatial point.
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The consideration of limits where some (possibly di-
mensionful) parameter is taken to be small is often a way
of revealing the hidden symmetry structure of physical
theories. A very prominent example is the high-energy
limit of spontaneously broken gauge theories. Similarly,
in [1], it was argued that the small tension limit 7y, — 0 of
string theory gives rise to an infinite number of relations
between string scattering amplitudes, indicating the pres-
ence of an enormous symmetry. In this Letter, we shall
consider the bosonic sector of M theory, and more spe-
cifically its low energy limit, D = 11 supergravity [2],
in a limit which can likewise be (intuitively) thought
of as a small tension limit 7, — 0, where T, :=
c*(327wGy) ! is the bulk tension governing the propaga-
tion of small excitations (e.g., gravitational waves) in
the ten-dimensional spatial geometry. Indeed, taking
T, — 0 in the linearized Einstein-Hilbert action S =
1 [dTd"x[py(d7h;;)* — Tp(d,h;j)*] is equivalent to tak-
ing the limit of vanishing velocity of propagation ¢ =
T,/ pp; alternatively, it may be viewed as a strong cou-
pling limit (Gy — o0) [3]. Physically, this limit can be
realized near a spacelike singularity, where the different
spatial points become causally disconnected as the hori-
zon scale €y ~ ¢T becomes smaller than their spacelike
separation (7 being the proper time). Near such a singu-
larity one therefore expects the time derivatives of the
fields to dominate their spatial gradients, thereby realiz-
ing an effective “(1 + 0)-dimensional reduction” of the
theory. As shown recently [4,5], this is indeed the case
for the massless bosonic sector of D = 11 super-
gravity. Furthermore, as 7 — 0, the metric exhibits the
chaotic oscillations originally discovered by Belinskii,
Khalatnikov, and Lifshitz (BKL) for the generic cosmo-
logical solution to Einstein’s equations in four dimensions
[6]. The oscillatory evolution of the metric at each spatial
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point can be asymptotically described as a relativistic
billiard taking place in the fundamental Weyl chamber
of some indefinite Kac-Moody (KM) algebra [4,5]. Chaos
occurs when this KM algebra is hyperbolic, in particular,
for EIO [7]

In this Letter we extend these tantalizing results much
beyond the leading order by relating a BKL-type expan-
sion to an algebraic expansion in the height of the positive
roots of the Lie algebra of E,. We show how to map, up to
height 30, geometrical objects of M theory onto coordi-
nates in the infinite-dimensional coset space E o/ K(E ),
where K(E,) is the maximal compact subgroup of the
canonical real form of E;y. Under this correspondence,
the time evolution of the geometric M theory data at each
spatial point is mapped, up to height 30, onto some (con-
strained) null geodesic motion of E;y/K(Ey). Our results
underline the potential importance of E/,, whose appear-
ance in the reduction of D = 11 supergravity to one
dimension had been conjectured already long ago by
Julia [8], as a candidate symmetry underlying M theory
(see also [9], and [10] where E;; was proposed as a
fundamental symmetry of M theory).

Introducing a zero-shift slicing (N = 0) of the 11-
dimensional spacetime, and a time-independent spatial
zehnbein 6%(x) = E%(x)dx’, the metric and four-form
F = dA become

ds? = —NZ(dx())Z + Gabeaeb’ )
F= %TOabcdxo YN AN AN
+ %fabcdea NN AR

We choose the time coordinate x° so that the lapse

N = /G, with G := detG,, (note that x° is not the proper
time 7 = [Ndx?; rather, x° — c0 as 7 — 0). In this
frame the complete evolution equations of D = 11 super-
gravity read
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30(G*99G ) = tGFPY° Frpys — G F PV F o504
— 2GR4(T, C),
ao(Gj:'Oabc) — l}ﬂgabca]a2a3b1b2b3b4j:'0ala2a3 :Fb]bzb3b4
+ %G:Fde[abcc]de _ Gcede:f‘dabc
- 0,(GF ),
d0F abea = 6 F 0etan C* .y + 491aF obear 2)

where a,b €{1,...,10} and o, B €{0,1,...,10}, and
R, (I, C) denotes the spatial Ricci tensor; the (frame)
connection components are given by 2G ,,I'¢ pe = Cape T
Cbca - Ccab + ab(;ca + ac(;ab - aa(;bc with Cabc =
G C . being the structure coefficients of the zehnbein
dfg* =3C°, 0" A6°. The frame derivative is o, =
E',(x)d; (with E*,E', = &%). To determine the solution
at any given spatial point x requires knowledge of an
infinite tower of spatial gradients: one should thus aug-
ment (2) by evolution equations for 9,Gp., 9, Fopeas
94 F bede» €tc., which in turn would involve higher and
higher spatial gradients.

The geodesic Lagrangian on Eq/K(E ) is defined by
generalizing the standard Lagrangian on a finite dimen-
sional coset space G/K, where K is a maximal compact
subgroup of the Lie group G. All the elements entering
the construction of £ have natural generalizations to the
case where G is the group obtained by exponentiation of a
hyperbolic KM algebra. We refer readers to [11] for basic
definitions and results of the theory of KM algebras, and
here recall only that a KM algebra g = g(A) is generally
defined by means of a Cartan matrix A and a set of
generators {e;, f;, h;} and relations (Chevalley-Serre pre-
sentation), where i, j =1,...,r =rankg(A). The ele-
ments {4;} span the Cartan subalgebra (CSA) [), while
e; and f; generate an infinite tower of raising and low-
ering operators, respectively. The “maximal compact™
subalgebra f is defined as the subalgebra of g(A) left
invariant under the Chevalley involution w(h;) = —h;,
w(e;)) = —f;, w(f;) = —e;. In other words, f is spanned
by the “antisymmetric” elements E,, — EL,, where
El = —w(E,,) is the “transpose” of some multiple
commutator E, ; of the e;’s associated with the root «
{ie., [h E,s]= a(h)E,, for h€bh}. Here s=
1, ..., mult(a) labels the different elements of q(A) hav-
ing the same root «.

The o model is formulated in terms of a one-parameter
dependent group element V = V() € E;, and its Lie
algebra valued derivative

'U(t) = %‘Vl(t) S g = Lie EIO‘ (3)

In physical terms, 'V can be thought of as a vast extension
of the vielbein of general relativity (an “‘co-bein’’), and
E,y and K(E ) as infinite-dimensional generalizations of
the GL(d, R) and local Lorentz symmetries of general
relativity. The action is [ dtL with

L= n(l)71<vsym(t)|vsym(t)> (4)
221601-2

with a “lapse” function n(¢) (not to be confused with N),
whose variation gives rise to the Hamiltonian constraint
ensuring that the trajectory is a null geodesic. The “sym-
metric” projection v, *=3(v + v") eliminates the
component of v corresponding to a displacement ‘‘along
f,” thereby defining an evolution on the coset space
E o/K(E). {.|.) is the standard invariant bilinear form
on the KM algebra [11]. We note the existence of tran-
scendental KM invariants [12] that might be added to (4)
to represent nonperturbative effects.

Because no closed form construction exists for the
raising operators E, ; nor their invariant scalar products
(EqlEg,) = N80, 5, we have devised a recursive ap-
proach based on the decomposition of E into irreducible
representations of its SL(10, R) subgroup. Let ay, ..., aqy
be the nine simple roots of Ag = sI(10) corresponding to
the horizontal line in the E;y Dynkin diagram, and « the
“exceptional” root connected to aj5. Its dual CSA element
hy enlarges Aqg to the Lie algebra of GL(10). Any positive
root of Ejy can be written as

9
a="{a;+ Z mla;
j=1
We call € = €(«) the ““level” of the root . This definition
differs from the usual one, where the (affine) level is
identified with m° and thus counts the number of appear-
ances of the overextended root ag in « [13,14]. Hence,
our decomposition corresponds to a slicing (or ‘‘grad-
ing”) of the forward light cone in the root lattice by
spacelike hyperplanes, with only finitely many roots
in each slice, as opposed to the lightlike slicing for the
Eq representations (involving not only infinitely many
roots but also infinitely many affine representations for
m® =2 [13,14]).

The adjoint action of the Ag subalgebra leaves the level
{(a) invariant. The set of generators corresponding to a
given level € can therefore be decomposed into a (finite)
number of irreducible representations of Ag. The multi-
plicity of « as a root of E| is thus equal to the sum of its
multiplicities as a weight occurring in the SL(10, R)
representations. Each irreducible representation of Ag
can be characterized by its highest weight A or, equiva-
lently, by its Dynkin labels (py, ..., pg) where p;(A) :=
(ag, A) = 01is the number of columns with k boxes in the
associated Young tableau. For instance, the Dynkin labels
(001000000) correspond to a Young tableau consisting of
one column with three boxes, i.e., the antisymmetric
tensor with three indices. The Dynkin labels are related
to the 9-tuple of integers (m!, ..., m°) appearing in (5)
(for the highest weight A = —a) by

(€, m’ = 0). (5)

9
SB¢— > Sp;=m =0, (6)

j=1
where S is the inverse Cartan matrix of Agy. This relation
strongly constrains the representations that can appear at
level €, because the entries of S/ are all positive, and the
9-tuples (py, ..., pg) and (my, ..., mg) must both consist
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of non-negative integers. In addition to satisfying the
Diophantine Egs. (6), the highest weights must be roots
of Ey, which implies the inequality

9
2 g2 = iy — L=

A2 =q i;p,s P 10{5 =2. (7
All representations occurring at level £ + 1 are contained
in the product of the level-{ representations with the
€ = 1 representation. Imposing the Diophantine inequali-
ties (6) and (7) allows one to discard many representa-
tions appearing in this product. The problem of finding a
completely explicit and manageable representation of E
in terms of an infinite tower of Ay representations is
thereby reduced to the problem of determining the outer
multiplicities of the surviving Ag representations, namely,
the number of times each representation appears at a
given level €. The Dynkin labels (all appearing with outer
multiplicity one) for the first six levels of E;, are

¢ =1: (001000000),
¢ =2: (000001000),
¢ =3: (100000010),
¢ =4: (001000001), (200000000),
¢ =5: (000001001), (100100000),
¢ =6: (100000011), (010001000),

(100000100), (000000010). ®)

The level € =< 4 representations can easily be determined
by comparison with the decomposition of Eg under its A,
subalgebra (see [15,16]) and use of the Jacobi identity,
which eliminates the representations (000000001) at level
three and (010000000) at level four. By use of a computer
and the E;, root multiplicities listed in [14,17], the cal-
culation can be carried much further [18].

From (8) we can now directly read off the GL(10)
tensors making up the low level elements of E,. At level
zero, we have the GL(10) generators K“, obeying
[K9,, K¢,] = K*,65; — K¢, 649. The ¢, elements at levels
€ =1,2,3 are the GL(10) tensors E%%% [ 4 and
E@laras with the symmetries implied by the Dynkin
labels (for the first three levels these representations occur
for all E,; see [10,19]). The o model associates with these
generators a corresponding tower of “fields” (depending
only on the “time” 7): a zehnbein h%,(¢) at level zero, a
three-form A,,.(7) at level one, a six-form A, ..., (¢) at
level two, a Young-tensor A, ..., (t) at level 3, etc.
Writing the generic Ey group element in Borel (triangu-
lar) gauge as V(r) = expX, (1) expX,(f) with X, (1) =
}lz“thu andl ”).(A(z) = %Aahc.Eaf’C + & Ay g BT +
o1 Aaglay-ag B0 + ..., and using the Ej, commuta-
tion relations in GL(10) form together with the bilinear
form for E;y, we find up to third order in level

nl = i(gacgbd - gabng)gabgcd + % %DAalaZ@DAalazaS
+ % éDAal“'tlf,DAalmab + % %DAGOHM"‘asDAa()lalmas’
©))
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where g% = e e, with e”, = (exph),, and all “con-
travariant indices” have been raised by g?’. The “cova-
riant” time derivatives are defined by (with dA = A)

DAy 4,05 *= 044 0,0y (10)
DAy, .qp = 9Agap + 10410 00, 0Agasac]
DAgjaray = 0Aala-ay T 42A(0,a,0,0A
— 42040, 0000y a0)

+ 280A 4, 30, A dyasag A

ay ag)

a;agag):

Here antisymmetrization [---], and projection on the
€ = 3 representation (- - -), are normalized with strength
one (e.g., [[--]] = [ - -]). Modulo field redefinitions, all
numerical coefficients in (9) and (10) are uniquely fixed
by the structure of E;y. Our expressions are reminiscent
of similar algebraic constructions in [10,15]. However,
this is the first time that an algorithmic scheme based on a
Lagrangian in terms of the invariant bilinear form on the
hyperbolic KM algebra has been proposed and worked
out to low orders. Likewise, the general formulas (6) and
(7) and the higher level representations in (8) have not
been exhibited before.

The Lagrangian (4) is invariant under a nonlinear
realization of E;, such that V(1) — kg(t)V(t)g with
g € Ejp; the compensating “‘rotation” k,(t) being, in
general, required to restore the ““triangular gauge.” When
g belongs to the nilpotent subgroup generated by the E“*¢,
etc., this symmetry reduces to the rather obvious “shift”
symmetries of (9), and no compensating rotation is
needed. The latter are, however, required for the trans-
formations generated by F,,. = (E“*°)T, etc. The associ-
ated infinite number of conserved (Noether) charges are
formally given by J = M~19M, where M = VTV,
The compatibility between the closed form solution
M(r) = M(0) exp(¢J) [indicative of the integrability of
(9)] and the chaotic behavior of g,,(f) near a spacelike
singularity will be discussed elsewhere.

The main result that we report in this Letter is the
following: there exists a map between geometrical quan-
tities constructed at a given spatial point x from the
supergravity fields G,,,(x°, x) and A ,,,(x°, x) and the
one-parameter-dependent quantities g, (2), Agpc (), . ..
entering the coset Lagrangian (9), under which the super-
gravity equations of motion (2) become equivalent, up to
30th order in height, to the Euler-Lagrange equations of
(9). In the gauge (1) this map is defined by r = x° =
[dT/\/G and

gab(t) = Gab(tr )C), (11)
DAa]a2a3 (t) = T001a2a3 (t: )C),
DA”I“'“ﬁ(t) - _ ﬁSa‘"'aﬁb‘b2b3b4fh1hzb3b4(t: x),
DAv i) = Jen o [Ch , () + 381, 5 (0]

The expansion in height ht(a) = € + Y m/, which con-
trols the iterative validity of this equivalence, is as fol-
lows: the Hamiltonian constraint of the coset model (9)
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contains an infinite series of exponential coefficients
exp[—2a(B)], where « runs over all positive roots of
E,op, and where 3¢ = —h?, parametrize the CSA of E.
Previous work has shown that, near a spacelike singular-
ity (t — o0), the dynamics of the supergravity fields and
of truncated versions of the E|, coset fields is asymptoti-
cally dominated by the (hyperbolic) Toda model defined
by keeping only the exponentials involving the simple
roots of E;y. Higher roots introduce smaller and smaller
corrections as t increases. The “small tension expansion”
of the equations of motion is then technically defined as a
formal BKL-like expansion that corresponds to such an
expansion in decreasing exponentials of the Hamiltonian
constraint. On the supergravity side, this expansion
amounts to an expansion in gradients of the fields in
appropriate frames. Level one corresponds to the simplest
one-dimensional reduction of (2), obtained by assuming
that both G, and A, depend only on time [4]; levels
two and three correspond to configurations of G,, and
A )., With a more general, but still very restricted x
dependence, so that, e.g., the frame derivatives of the
electromagnetic field in (2) drop out [20]. When neglect-
ing terms corresponding to ht(a) = 30, the map (12)
provides a perfect match between the supergravity evolu-
tion Eqgs. (2) and the E | coset ones, as well as between the
associated Hamiltonian constraints. (In fact, the match-
ing extends to all real roots of level = 3.)

It is natural to view our map as embedded in a hier-
archical sequence of maps involving more and more
spatial gradients of the basic supergravity fields. Our
BKL-like expansion would then be a way of revealing
step by step a hidden hyperbolic symmetry, implying the
existence of a huge nonlocal symmetry of Einstein’s
theory and its generalizations. Although the validity of
this conjecture remains to be established, we can at least
show that there is “‘enough room” in E;, for all the spatial
gradients. Namely, the search for affine roots (with
m® = 0) in (6) and (7) reveals three infinite sets of ad-
missible Ay Dynkin labels (00100000#), (00000100#),
and (10000001x) with highest weights obeying A = 2,
at levels € =3n + 1,3n + 2, and 3n + 3, respectively.
These correspond to three infinite towers of ¢, elements

Eu ...a”b'bzb3, E ]ma"bow]”'bs’ (]2)

l b, E,

ap tay,

which are symmetric in the lower indices and all appear
with outer multiplicity one (together with three trans-
posed towers). Restricting the indices to a; = 1 and b; €
{2, ..., 10} and using the decomposition 248 — 80 + 84 +
84 of Eg under its SL(9) subgroup one easily recovers the
affine subalgebra Eq C E|y. The appearance of higher
order dual potentials (a la Geroch) in the Eq-based linear
system for D = 2 supergravity [21] indeed suggests that
we associate the E;; Lie algebra elements (12) with
the higher order spatial gradients 99 ---9%A,  p.,

221601-4

94 - 9Ay . and 9 - 9N AY, 1, g O tO sOmE Of
their nonlocal equivalents. Of course, the elements (12)
generate only a tiny subspace of ¢y, suggesting the
existence of further M theoretic degrees of freedom and
corrections beyond D = 11 supergravity. Finally, we note
that our approach based on a height expansion can be
extended to other physically relevant KM algebras, such
as BE|( [5,22] and AE, [7].
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