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Abstract. We develop a formalism that can be used to model slowly rotating superfluid Newtonian neutron stars.
A simple two-fluid model is used to describe the matter, where one fluid consists of the superfluid neutrons that
are believed to exist in the inner crust and core of mature neutron stars, while the other fluid is a charge neutral
conglomerate of the remaining constituents (crust nuclei, core superconducting protons, electrons, etc.). We include
the entrainment effect, which is a non-dissipative interaction between the two fluids whereby a momentum induced
in one of the fluids will cause part of the mass of the other fluid to be carried along. The equations that describe
rotational equilibria (i.e. axisymmetric and stationary configurations) are approximated using the slow-rotation
approximation; an expansion in terms of the rotation rates of the two fluids where only terms up to second-order
are kept. Our formalism allows the neutrons to rotate at a rate different from that of the charged constituents.
For a particular equation of state that is quadratic in the two mass-densities and relative velocities of the fluids,
we find an analytic solution to the slow-rotation equations. This result provides an elegant generalisation to the
two-fluid problem of the standard expressions for the one-fluid polytrope E ∝ ρ2. The model equation of state
includes entrainment and is general enough to allow for realistic values for, say, mass and radius of the star. It
also includes a mixed term in the mass densities that can be related to “symmetry energy” terms that appear in
more realistic equations of state. We use the analytic solution to explore how relative rotation between the two
fluids, the “symmetry energy” term, and entrainment affect the neutron star’s local distribution of particles, as
well as global quantities as the Kepler limit, ellipticity, and moments of inertia.
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1. Introduction

Pulsars were first discovered over 34 years ago (Hewish
et al. 1968). Since then, nearly 1300 such rapidly rotating,
highly magnetised neutron stars have been found, and as
pointed out by Lorimer in his recent Living Reviews in
Relativity (Lorimer 2001), 700 of these were found in the
last 4 years alone. Without doubt, the overwhelming ma-
jority of these pulsars are old and cold (with core temper-
atures below 109 K). According to equation of state cal-
culations, their interiors will contain superfluid neutrons,
superconducting protons, a plasma of highly degener-
ate and ultra-relativistic electrons, and perhaps other
more exotic particles (pions, hyperons, etc.) deep in their
cores. In recent years, there has been a continued ef-
fort to model superfluid dynamics in neutron stars in
both the Newtonian (Epstein 1988; Mendell & Lindblom
1991; Mendell 1991a, 1991b; Lindblom & Mendell
1994, 1995, 2000; Lee 1995; Prix 1999; Sedrakian &
Wasserman 2000; Andersson & Comer 2001b) and general
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relativistic regimes (Carter 1989; Carter & Langlois 1995a,
1995b, 1998; Langlois et al. 1998; Comer et al. 1999;
Andersson & Comer 2001a). This paper is aimed at im-
proving our understanding of local and global properties
of rotating Newtonian superfluid neutron stars.

The strongest evidence for superfluidity in the inner
crust and core of a neutron star (see, for example, Sauls
1989 and references therein) is provided by the well-known
glitch phenomenon (the occasional sudden spin-up of rel-
atively young pulsars). Our confidence in an explanation
based on the transfer of angular momentum between two
loosely coupled components is bolstered by the fact that
the neutrons and protons are described using the same
many-body theory of Fermi liquids and BCS mechanism
that has been so successful at describing superconductors
(Pines & Nozières 1966). This being the case, one would
expect superfluidity in neutron stars to share many of the
well-established properties of laboratory superfluids and
superconductors. For instance, it is known that in a mix-
ture of two interpenetrating fluids there is a coupling that
arises whereby the momentum of one of the liquids is not
simply proportional to that liquid’s velocity, rather, it is a
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linear combination of the velocities of both fluids. This is
the so-called entrainment effect and it implies that when
one liquid starts to flow then it will necessarily induce
a momentum in the other constituent. Entrainment be-
tween protons and neutrons is a key component of models
of neutron star superfluidity, and it is something that we
will focus on in this study.

We develop a formalism for describing slowly rotat-
ing Newtonian superfluid neutron stars which allows the
neutrons and protons to rotate at different rates. Our
analysis is based on a Newtonian model that is the non-
relativistic limit of a comprehensive model developed by
Carter, Langlois and their collaborators for the general
relativistic regime (Carter 1989; Carter & Langlois 1995a,
1995b, 1998; Langlois et al. 1998). Our model is simplified
in the sense that it describes a superfluid neutron star in
terms of only two fluids (we refer the reader to, for ex-
ample, Comer et al. 1999 for justification). One fluid is
composed of the superfluid neutrons, existing in the inner
crust and core, and the other fluid is a charge neutral con-
glomerate of the remaining constituents (i.e. crust nuclei,
core protons, and the crust and core electrons) that we
will loosely refer to as the “protons.”

A further simplification of our model regards the vor-
tices of the superfluid. Because the density of neutron vor-
tices is expected to be about 102−105 cm−2 for typical
pulsar rotation rates, it is reasonable to adopt a smooth
averaged description of vorticity on a macroscopic scale.
The resultant model then resembles a perfect fluid. There
is, however, one important difference that arises because
of the possible interaction between the vortex lattice and
the second fluid. This is a dissipative effect usually re-
ferred to as “mutual friction”. In general, this mechanism
tends to drive the two fluids towards co-rotation, but there
are two extreme cases where a stationary description of a
two–fluid star with different rotation rates would still be
possible. The first case is (obviously) when the interaction
is very small (the “free” vortex limit). Somewhat surpris-
ingly, similar results apply in the case when the interaction
is very strong (resembling the “pinned” vortex case in a
solid crust, cf. Langlois et al. 1998). Although we could,
in principle, allow for this second case in the present con-
text (as has been done in an earlier study by Prix 1999),
we will refrain from doing so and assume that vortex fric-
tion is negligible on the time-scales we are considering.
This is done because the emphasis of the present work is
on the detailed role of the entrainment effect. Including
vortex friction would unnecessarily complicate the discus-
sion and distract the attention away from the new piece
of physics we have incorporated.

We will generalize the Chandrasekhar-Milne slow-
rotation method (Chandrasekhar 1933; Milne 1923) to
our two-fluid model. That is, we make an expansion in
terms of the fluid rotation rates keeping only terms up
to second order. We include entrainment, and consider
the most general case where the neutrons do not coro-
tate with the protons. This relative rotation of neutrons
to protons is also present in the general relativistic slow

rotation scheme of Andersson & Comer (2001a) (who pro-
vide an extended discussion as to why such a general-
ization is necessary), and the Newtonian slow rotation
scheme of Prix (1999). However, although the formalism
developed by Andersson & Comer does allow for entrain-
ment, their numerical study did not include it, and Prix
excluded entrainment altogether. As we wish to explore
the effects of entrainment on rotational equilibria, and the
current best model for entrainment is for the Newtonian
regime (Borumand et al. 1996), it is natural for us to take
up where Prix (1999) left off, and consider Newtonian
models.

As an application of the slow-rotation formalism, we
will consider a particular form of the equation of state
(EOS) that is the most general quadratic form in the mass-
densities and in the relative velocity. This EOS contains a
mixed term in the neutron and proton mass densities that
can be related to so-called “symmetry energy” terms in re-
alistic equations of state (i.e. terms that vanish when there
are equal numbers of protons and neutrons). Remarkably,
we find an analytic solution to the slow-rotation equations
for this EOS. This solution has enough free parameters
that realistic values for the neutron star mass, say, can
be obtained. Using this solution we will show how rela-
tive rotation, entrainment, and the “symmetry energy”
term affect the neutron star’s local distribution of par-
ticles, as well as global quantities like the ellipticity, the
Kepler limit, and the moments of inertia.

Before concluding this introduction we should note one
of the main motivations behind the present work. Once
we have developed a framework for obtaining stationary
superfluid models, we want to study their dynamics as
manifested by the various modes of pulsation. This issue
is of particular interest as it is known that several different
modes of a rotating neutron star are generically unstable
due to the emission of gravitational radiation (Friedman
& Schutz 1978; Andersson & Kokkotas 2001). One can
even speculate that pulsation modes unique to superfluids
will be excited during a pulsar glitch and that the resultant
gravitational radiation may be detected by a future gener-
ation of advanced detectors (Andersson & Comer 2001c).
Our future aim is to investigate these various possibilities
by using the models developed here as background for a
linear perturbation calculation of the relevant pulsation
modes of a rotating superfluid neutron star.

2. Canonical two-fluid hydrodynamics

In this section we present the canonical Newtonian de-
scription of a non-dissipative interacting two-fluid system,
which can be derived either as the non-relativistic limit
(Andersson & Comer 2001b) of the canonical covariant
description developed by Carter & Langlois (1998), or di-
rectly from an analogous Newtonian variational principle
(Prix 2000, 2001). Since we are mainly interested in de-
scribing a superfluid neutron star core we label the two
fluids by indices “n” and “p”, representing the neutrons
and protons, respectively. The fundamental variables of



180 R. Prix et al.: Slowly rotating superfluid Newtonian neutron star model

our description are the respective particle number densi-
ties nn and np and the corresponding particle currents nn

and np. We will only consider situations where the particle
numbers are conserved individually, so that we have

∂tnn +∇inin = 0, and ∂tnp +∇inip = 0, (1)

where we sum over repeated spatial indices i, j = 1, 2, 3.
The respective velocities vn, vp and the mass densities ρn

and ρp follow from

nn = nnvn, np = npvp, (2)

and

ρn = mnnn, ρp = mpnp, ρ = ρn + ρp, (3)

where mn and mp are the respective (fixed) masses per
particle of the two fluids, and ρ is the total mass density.

The internal energy density or “equation of state”
E(nn, np,nn,np) of the two-fluid system must satisfy
Galilean invariance (and isotropy, as we want to describe
isotropic fluids), and therefore has to be of the form

E = E(nn, np,∆2), where ∆ ≡ vn − vp. (4)

This energy function defines the respective chemical po-
tentials µn, µp and the “entrainment function” α as the
conjugate variables to nn, np and ∆2, namely

dE = µn dnn + µp dnp + α d∆2, (5)

which can be regarded as the “first law of thermodynam-
ics” for this system. The canonical description of the two-
fluid system is based on a convective variational principle
(Prix 2000, 2001) analogous to the method used by Carter
(1985) in the general relativistic context. The dynam-
ics of the system is therefore described by a Lagrangian
density L(nn, np,nn,np), which has the usual form of
“L = kinetic energy − potential energy”. In the present
context this means that

L =
1
2
ρnv

2
n +

1
2
ρpv

2
p − (E + ρΦ) , (6)

where Φ is the gravitational potential, which is related to
the total mass density ρ by the Poisson equation

∇2Φ = 4πGρ. (7)

Variation of the Lagrangian density L defines the mo-
menta per (fluid) particle, pn and pp, and the “rest frame
chemical potentials,” −pn

0 and −pp
0, as the conjugate vari-

ables to the currents nn, np and particle densities nn,
np, i.e.

dL = pn · dnn + pp · dnp + pn
0dnn + pp

0dnp. (8)

Using the explicit expression (6) for the Lagrangian den-
sity together with the “first law” (5), we obtain the fol-
lowing expressions for pn

0 and pp
0,

−pn
0 = µn + vn · p n − 1

2
mnv 2

n +mnΦ,

−pp
0 = µp + vp · p p − 1

2
mpv 2

p +mpΦ, (9)

and the conjugate momenta p n and pp are related to the
particle currents as

pn = Knn nn +Knpnp

pp = Knp nn +Kppnp, (10)

where the symmetric “entrainment matrix” KXY has the
following components:

Knn =
1
n2

n

(mnnn − 2α) , Kpp =
1
n2

p

(mpnp − 2α) ,

Knp =
2α
nnnp

· (11)

The general form of the entrainment relation (10), which
states that the momenta are linear combinations of the
currents, is a consequence of the Galilean invariance of
the internal energy E . The most important difference from
the case of a single fluid is that the particle momentum
of each of the two fluids is in general not aligned with
its respective current. From (10) we see that this devia-
tion is caused by the off-diagonal matrix element Knp of
(11), which is proportional to the entrainment function
α and therefore expresses the dependence of the internal
energy density E on the relative velocity ∆, as seen in
(5). Intuitively this means that a particle current nn of
the neutrons impinges some momentum on the protons
and vice versa, due to the interaction between the two
fluids. In the absence of such an interaction, i.e. for α = 0,
the general entrainment relation (10) simply reduces to
the usual single-fluid form, and we have p n = mnvn and
pp = mpvp.

The equations of motion for the two fluids, obtained
from a Newtonian convective variational principle (see
Prix 2000, 2001; Andersson & Comer 2001b), thus have
the following form:

nn (∂t pn −∇pn
0) + njn

(
∇j pn −∇pn

j

)
= 0,

np (∂t pp −∇pp
0) + njp

(
∇j pp −∇pp

j

)
= 0. (12)

At this point, the two equations are “formally” uncou-
pled, but the interaction between the two fluids enters
through relations (9) and (10), which relate the kinemat-
ical quantities nn, np, nn and np to their respective con-
jugate dynamical quantities pn

0, pp
0, pn and pp. In fact,

the fluids will be coupled even in the case of two “non-
interacting” fluids, i.e. for an equation of state of the form
E = En(nn) + Ep(np). This is simply because the two fluids
live in the same gravitational potential, cf. Prix (1999).

3. Entrainment and effective masses

In the framework of condensed matter physics the descrip-
tion of interacting independent constituents, for example
electrons moving through a “background” of ions, is usu-
ally formulated in terms of an “effective” or “dynamical”
mass (Ziman 1965), rather than in the entrainment for-
malism presented in the previous section. One reason for
this might be that in the usual contexts one of the two
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constituents (the “background”) can usually be assumed
to be at rest with respect to the observer. It is then conve-
nient to formulate the dynamics of the second constituent
in a form that resembles the vacuum expressions, with the
free particle mass being replaced by an “effective mass”
that accounts for the interaction with the background.

The general definition of the effective mass is based on
the particle energy spectrum, E(p), say, of particles with
momentum p moving relative to the non-vacuum back-
ground. The velocity v of the particles as a function of
their momentum is then given by v = ∂E/∂p, and the
acceleration v̇ (where the dot represents the total time
derivative) is linked to the force ṗ via a relation of the
form

v̇i = m−1
ij ṗj , where m−1

ij ≡
∂2E

∂pi∂pj
, (13)

which defines the effective mass tensor mij . In the two-
fluid problem we are interested in, the background can
usually be assumed to be isotropic, and therefore the par-
ticle energy spectrum will be of the formE = E(p2), which
implies that

v =
(

2
∂E

∂p2

)
p. (14)

In this case the effective mass tensor of (13) can be ex-
pressed as

m−1
ij =

(
2
∂E

∂p2

)
δij +

(
4
∂2E

∂p2∂p2

)
pipj . (15)

In the limit of small momentum, where the energy will be
mainly quadratic in p, we can neglect the second term and
define an effective mass scalar m∗ in the usual way. This
leads to

1
m∗
≡ 2

∂E

∂p2
⇐⇒ E(p) ≈ p2

2m∗
+ const. (16)

We see from (14) that an equivalent form of this defini-
tion is

p = m∗ v, (17)

which clarifies the link between the effective mass and the
more general formalism of entrainment used in the present
work. The key observation to make is that the effective
mass description is formulated in the “rest-frame” of the
background. If we choose the background to be the “neu-
trons,” we could define the neutron rest-frame by nn = 0,
and therefore the entrainment relation (10) in this frame
reads

p p = (Kppnp) vp. (18)

By comparison with (17) we can relate the proton effective
mass mp∗ to the entrainment matrix by mp∗ = Kppnp.
Using the explicit expression (11) for Kpp in terms of the
entrainment function α, we find

2α = np(mp −mp∗) = ερp, (19)

where we introduced the dimensionless “entrainment co-
efficient” ε as1

ε ≡ mp −mp∗

mp
· (20)

Therefore the entrainment matrix KXY is determined
completely in terms of the effective mass of a single par-
ticle species, for example the protons in the present for-
mulation. Of course, we also see (from (19) by symme-
try) that the effective masses of the two species are not
independent, because they obviously have to satisfy the
consistency relation

mn −mn∗ =
np

nn
(mp −mp∗). (21)

However, as pointed out by Carter (2001, private commu-
nication), the above definition of the effective mass is not
quite unique because we have to specify what we mean
by the “rest-frame” of the neutrons. Indeed, we have de-
fined it by setting nn = 0. However, we see from (10) that
in this frame we generally have pn 6= 0. Therefore another
equally viable choice of the “neutron rest-frame” would be
given by setting pn = 0. This would then lead to nn 6= 0.
Based on this second choice, the entrainment relation (10)
becomes

pp =
(
Kpp − (Knp)2

Knn

)
npvp, (22)

leading to an alternative definition of the effective proton
mass mp#, which is not equivalent to that of Eq. (18). The
corresponding relation between α and mp# is

2α = np(mp −mp#)
{

1 +
np

nn

(mp −mp#)
mn

}−1

, (23)

while the consistency relation instead of (21) now reads

mn −mn# =
np

nn
(mp −mp#)

{
mn#/mn

mp#/mp

}
, (24)

corresponding to the choice of effective mass definition
taken in the original approach by Andreev & Bashkin
(1975). How does this ambiguity in the definition of the
effective mass affect our attempt to model entrainment in
superfluid neutron stars? Fortunately, it turns out that if
we determine the entrainment α either via (19) or (23),
then the difference between the two (equally valid) defini-
tions is numerically small in two interesting special cases:

(i) neutron star matter: mp −mp# ∼ mn and np � nn,
(ii) electrons in a metal: n− = n+ and m− −m#

− � m+,

1 We note that Lindblom & Mendell (2000) have used a
slightly different parameter to characterize the entrainment ef-
fect. Their parameter ε is related to our coefficient ε via

ε =
ερp

ρn − ερ
·
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where in the second case n− and n+ represent the number
densities of negative and positive charges respectively (i.e.
electrons and protons), andm− andm+ the corresponding
mass per particle. In these two cases Eq. (23) becomes ap-
proximately equal to the previous expression (19), and the
two possible definitions lead to very similar results. The
consistency relations (21) and (24), however, differ signif-
icantly in the case of neutron star matter (up to about a
factor of 2), but unfortunately none of the current results
in the literature on effective masses in neutron star mat-
ter seem to satisfy either of the two relations, making a
well-defined identification even more troublesome.

There exist in the nuclear physics literature a few cal-
culations of the proton effective mass at neutron star den-
sities. The results are very much equation of state de-
pendent, but one can extract some useful constraints on
the range of values. Chao et al. (1972) find, for the range
ρnuc ≤ ρ ≤ 2.5ρnuc (where ρnuc represents nuclear density,
i.e. ρnuc = 2.7 × 1014 g/cm3), that m∗p/mp ≈ 0.5−0.6;
Sjöberg (1976) finds, for ρnuc ≤ ρ, that m∗p/mp ≈ 0.3−0.6;
and more recently, Baldo et al. (1992) find, for the same
range as Chao et al., that m∗p/mp ≈ 0.7. Thus, we see
that the proton effective mass apparently can range over
the values 0.3 ≤ m∗p/mp ≤ 0.7. The calculations also show
that the effective proton mass varies slowly with the den-
sity. This means that one can, as a rough but reasonable
approximation, assume that the effective proton mass re-
mains constant throughout the core of a neutron star. This
is, in fact, the case for the analytic solution that will be
discussed later.

4. Stationary two-fluid neutron star models

Stationary two-fluid configurations are characterised by
∂tp

n = 0 and ∂tp
p = 0, and therefore the equations of

motion (12) take the form

∇i
[
µn +mnΦ− 1

2
mnv2

n

]
+
(
pn
j∇ivjn + vjn∇jpn

i

)
= 0,

∇i
[
µp +mpΦ− 1

2
mpv2

n

]
+
(
pp
j∇ivjp + vjp∇jpp

i

)
= 0, (25)

where we have inserted the explicit expressions (9) for pn
0

and pp
0. We consider stationary configurations where both

fluids are rotating uniformly with rotation rates Ωn and Ωp

about a common axis (otherwise the system would not be
stationary),

vin = Ωnϕ
i, and vip = Ωpϕ

i, (26)

where ϕi is the assumed axial symmetry vector with norm
(ϕiϕi)1/2 = $, and $ is the distance from the rotation
axis. In spherical coordinates (r, θ, ϕ) we, of course, have
$ = r sin θ. As both fluids are flowing in the same direc-
tion ϕi, we can write

vip =
Ωp

Ωn
vin, (27)

which allows us to express the momenta p n and pp of (10)
simply as

pn =Mnvn, with Mn ≡ Knnnn +Knpnp
Ωp

Ωn
,

pp =Mpvn, with Mp ≡ Kpnnn +Kppnp
Ωp

Ωn
· (28)

Because of the axial symmetry, scalars like Mn and Mp

cannot depend on the angle ϕ, and therefore we have

vjn∇jMn = 0, and vjn∇jMp = 0. (29)

Furthermore, since we are assuming uniform rotations,
cf. (26), we can deduce the identity

vjn∇jvni = −1
2
∇iv2

n = −∇i
(
$2

2
Ω2

n

)
. (30)

This means that the second parenthesis in the equations
of motion (25) vanishes. Using (28), (29) and (30), we find

pn
j∇ivjn + vjn∇jpn

i = Mn

(
1
2
∇iv2

n + vjn∇jvni

)
= 0,

pp
j∇ivjp + vjp∇jpp

i =
Ωp

Ωn
Mp

(
1
2
∇iv2

n + vjn∇jvni

)
= 0.

This reduces Eqs. (25) to two first integrals of motion2,
namely

µn +mnΦ− $2

2
mnΩ2

n =Cn,

µp +mpΦ− $2

2
mpΩ2

p =Cp, (31)

where the constants Cn and Cp are in general determined
by the rotation rates Ωn and Ωp. These first integrals,
together with Poisson’s Eq. (7), an equation of state
E(nn, np, ∆2) and appropriate boundary conditions com-
pletely specify the solution. Note that these first integrals
are also the Newtonian limits of the general relativistic
results obtained by Andersson & Comer (2001a).

It is interesting to note that the stationary two–fluid
model with different rotation rates Ωn 6= Ωp does not al-
low for chemical equilibrium between the two fluids (as
has already been shown in the relativistic framework by
Andersson & Comer 2001a). If we assume the neutrons to
be superfluid, and the entropy being carried by the “pro-
ton” fluid, then the condition of chemical equilibrium can
be found (Langlois et al. 1998; Carter et al. 2000; Prix
2001) to be[
µp +mpΦ− 1

2
mpv2

p

]
−
[
µn +mnΦ− 1

2
mnv2

n

]
=
(
mnvjn −

2α
nn

∆j

)
∆j , (32)

where ∆j is the relative velocity defined in (4). The con-
ditions of stationarity and uniform rotations Ωn, Ωp have

2 An elegant and more generally applicable method of ob-
taining these first integrals is presented in Appendix A.



R. Prix et al.: Slowly rotating superfluid Newtonian neutron star model 183

been seen to result in the two first integrals (31), so that
the requirement of chemical equilibrium (32) now reads

Cp − Cn = $2(Ωn − Ωp)
(
mnΩn −

2α
nn

(Ωn − Ωp)
)
, (33)

which makes it obvious that the only stationary config-
urations compatible with chemical equilibirum are co–
rotating, i.e. Ωn = Ωp. If we allowed for “chemical (β) re-
actions” n ⇀↽ p (characterising the “transfusive” type of
models considered in Langlois et al. 1998), then these re-
actions would inevitably dissipate away the energy asso-
ciated with the relative velocity ∆i until the star reaches
a chemical equilibrium state where both fluids are co–
rotating. In order to have different rotation rates in a sta-
tionary state, one therefore has to exclude β–reactions
altogether, or at least assume that their characteristic
timescale is much longer than the timescale at which we
want to consider the configuration to be approximately
stationary, for example the dynamical timescale (of or-
der ms). In practice this assumption seems physically well
justified by the slowness of these reactions (Haensel 1992),
which operate on timescales of months to years for mature
neutron stars.

It will be convenient in the following to write our
equations in dimensionless form by expressing all quan-
tities in their “natural units.” We choose these to be
the radius R of the (non-rotating) star for lengthscales,
its central density ρ0 for densities, and 1/

√
4πGρ0 for

timescales. For simplicity of notation we will continue to
use the same symbols for the dimensionless quantities, so
Poisson’s Eq. (7) now reads

∇2Φ(r, θ) = ρ(r, θ), (34)

whereas the form of the first integrals (31) is unchanged.
We note that the “natural rotation rate”

√
4πGρ0 is

slightly greater than the maximal rotation rate, the Kepler
limit, ΩK at which mass shedding will occur.

For realistic equations of state the mass shedding
limit is well approximated by the empirical expression
ΩK ≈

√
4πGρ̄/3, where ρ̄ is the mean density. Therefore

the dimensionless rotation rates Ωn and Ωp are generally
smaller than 1, and for typical rotation rates Ω of most
observed pulsars we will have

Ω� 1. (35)

Note that the difference between the “natural rotation
rate” and the mass shedding limit is further amplified
by the fact that ρ0 ∼ 5−10 ρ̄ for a typical neutron star
equation of state. That being said, we must still proceed
somewhat cautiously near the Kepler limit. A compar-
ison between slow-rotation results and numerical calcu-
lations for rapidly rotating stars show that, while the
slow-rotation approximation can accurately describe the
fastest observed pulsars it deteriorates significantly near
the Kepler limit. This is illustrated in Fig. 1, where we
compare the slow-rotation results for the equatorial and
polar radii of ordinary, one-fluid stars (governed by an

equation of state of the form E ∝ ρ2) to accurate numerical
results. The latter were obtained using the LORENE code,
based on pseudo–spectral techniques, which was developed
by the Meudon Numerical Relativity group (Bonazzola
et al. 1993; Gourgoulhon et al. 1999) and which can be
used to build rapidly rotating, Newtonian and general
relativistic neutron stars. We see that the slow-rotation
approximation works quite well up to and including the
fastest known pulsar, but starts to fail (by some 15% to
20%) as the Kepler limit is approached. These arguments
motivate the range of applicability of the “slow-rotation
expansion”, which we will use in the following sections.

5. The slow-rotation approximation

5.1. Slow-rotation expansion of the two-fluid model

In order to approximate the solution to (31) and (34),
we apply a method initially due to Chandrasekhar (1933)
and Milne (1923). This method is based on the assumption
that the rotation is slow enough that the configuration is
only slightly oblate, in such a way that one can express it
in terms of a Taylor expansion around the non-rotating
spherical solution. In the following we consider such a
“slowly-rotating” two-fluid star. In the previous section
we have seen that this corresponds to Ωn and Ωp being
small compared to the natural rotation rate

√
4πGρ0. In

the dimensionless form of the equations, the small param-
eters of the expansion are simply the rotation rates, as
Ωn � 1 and Ωp � 1. We can therefore write the solution
as a Taylor expansion in Ωn and Ωp. In doing this we will
neglect all terms beyond second order.

Under these assumptions any scalar physical quan-
tity Q of the rotating star can be written

Q(r, θ; Ωn,Ωp) = Q|Ωn=Ωp=0

+
∂Q

∂Ωn

∣∣∣∣
0

Ωn +
∂Q

∂Ωp

∣∣∣∣
0

Ωp

+
1
2
∂2Q

∂Ω2
n

∣∣∣∣
0

Ω2
n +

∂2Q

∂Ωn∂Ωp

∣∣∣∣
0

ΩnΩp

+
1
2
∂2Q

∂Ω2
p

∣∣∣∣
0

Ω2
p +O(Ω3). (36)

Furthermore, because we are actually expanding in the
“vector” (Ωn,Ωp), it will be convenient to introduce the
notation Ω for the “constituent vector” with components
ΩX , where X = n,p is the constituent index. Thus we
have

Ω = (Ωn, Ωp) , i.e. (Ω)X = ΩX . (37)

Terms of odd-order in Ω in the expansion (36) will vanish
identically because the configuration has to be invariant
under a simultaneous inversion of both rotation rates, i.e.
for Ωn → −Ωn and Ωp → −Ωp.

We know that the static solutionQ|Ω=0 is purely spher-
ical and denote it Q(0)(r), i.e.

Q(r, θ; Ω = 0) = Q(0)(r). (38)
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Fig. 1. Comparison of one-fluid slow-rotation configurations with numerical results obtained using the LORENE code. Requ

and Rpole are the star’s equatorial and polar radius repectively. The stellar model is a N = 1 polytrope with mass M = 1.4 M�
and (static) radius R = 10 km. The slow-rotation approximation leads to a significant underestimate of the rotational flattening
near the Kepler limit.

With these definitions, the second-order expansion (36) of
Q can be written in a more compact form as

Q(r, θ; Ω) = Q(0)(r) + δQ(r, θ) +O(Ω4) (39)

with

δQ = ΩXQXY ΩY , (40)

where we automatically sum over repeated constituent
indices (this convention is assumed from now on), and
QXY (r, θ) is the symmetric expansion coefficient matrix

QXY (r, θ) ≡ ∂2Q

∂ΩX∂ΩY

∣∣∣∣
Ω=0

. (41)

It has been stated several times in the literature
(Monaghan & Roxburgh 1965; Hartle 1967; Smith 1975,
1976; Tassoul 1978) that the slow-rotation expansion of
the density ρ(r, θ) breaks down when approaching the sur-
face of the non-rotating star, i.e. for r→ 1, because there
ρ(0)(1) = 0. However, it is evident from (39) that the va-
lidity of this expansion is completely independent of the
values of Q(0)(r). The only condition for its validity is that
the neglected terms O(Ω4) are effectively small compared
to the O(Ω2) terms included in the analysis.

We now expand all physical quantities of (31) and (34)
up to second-order in Ω:

Φ(r, θ) = Φ(0) + δΦ, δΦ = ΩX ΦXY ΩY , (42)
ρ(r, θ) = ρ(0) + δρ, δρ = ΩX ρXY ΩY , (43)

nA(r, θ) = n
(0)
A + δnA, δnA = ΩX nXYA ΩY , (44)

µA(r, θ) = µA(0) + δµA, δµA = ΩX µA,XY ΩY , (45)
CA = CA(0) + δCA, δCA = ΩX CA,XY ΩY . (46)

The total mass density ρ is, of course, linked to the indi-
vidual particle densities by (3), i.e. ρ = mA nA. Therefore
we have the relations

ρ(0) = mA n
(0)
A , and ρXY = mA nXYA . (47)

Inserting the various expansions into (31) and (34), the
zeroth-order equations, which determine the non-rotating
configuration, are found to be

µA(0) +mAΦ(0) = CA(0), (48)

∇2Φ(0)(r) =mAn
(0)
A (r), (49)

while the second-order coefficients of (42)–(46) satisfy

µA,XY +mAΦXY − $2

2
δA,XY =CA,XY , (50)

∇2ΦXY =mAnXYA . (51)

In Eq. (50) we have introduced the constant matrices
δA,XY , which are defined as

δn,XY ≡
(
mn 0

0 0

)
, δp, XY ≡

(
0 0
0 mp

)
, (52)

These allow us to write the second-order terms mnΩ2
n and

mpΩ2
p in (31) as

mnΩ2
n = ΩX δn, XY ΩY (53)

and

mpΩ2
p = ΩX δp, XY ΩY . (54)
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5.2. Reduction to a single equation

We can find an algebraic relation between the chemi-
cal potential coefficients µA,XY and the density coeffi-
cients nXYA , which will allow us to considerably simplify
the problem. This relation is found by expanding the
chemical potential µA(nn, np,∆2) defined in (5) in its ar-
guments up to second-order in Ω. Using (44) we find

µA(nn, np, ∆2) =µA(n(0)
n , n(0)

p , 0)

+ΩX

(
∂µA

∂nZ

∣∣∣∣
0

nXYZ

+
∂µA

∂∆2

∣∣∣∣
0

$2∆XY

)
ΩY +O(Ω4), (55)

where we have defined the constant matrix ∆XY as

∆XY ≡
(

1 − 1
−1 1

)
. (56)

This definition allows us to write the relative velocity
squared, namely ∆2 = $2 (Ωn − Ωp)2, in the form

∆2 = $2 ΩX ∆XY ΩY . (57)

The partial derivatives in (55) are evaluated for the non-
rotating configuration, and thus they are assumed to be
known functions, depending only on the static solution for
a given equation of state E(nn, np, ∆2). Thus we define
the “density structure function” SXY (r) as

SXY (r) ≡
(
∂µX

∂nY

∣∣∣∣
0

)−1

=
(

∂2E
∂nX∂nY

∣∣∣∣
0

)−1

, (58)

which is symmetric (and we assume invertible with in-
verse

(
S−1

)XY ), and the “entrainment structure func-
tion” βX(r) as

βX(r) ≡ ∂µX

∂∆2

∣∣∣∣
0

=
∂2E

∂nX∂∆2

∣∣∣∣
0

=
∂α

∂nX

∣∣∣∣
0

, (59)

where we used the definition (5) of the chemical poten-
tials µX and the entrainment function α. Comparing (55)
to the expansion (45) we can identify

µA(0) = µA(n(0)
n , n(0)

p , 0), (60)

µA,XY =
(
S−1

)AB
nXYB +$2βA∆XY , (61)

and we have thus arrived at an algebraic relation between
the µA,XY and the nXYB .

Inserting this relation into the first integral (50), we ob-
tain an explicit expression for the density coefficients nXYA
in terms of the gravitational potential coefficients ΦXY .
Specifically, we have

nXYA =SAB
[
CB,XY +

$2

2
(
δB,XY − 2βB∆XY

)
−mBΦXY

]
. (62)

Introducing the “derived” background functions

EXYA (r) ≡ 1
3
SAB(r)

(
δB,XY − 2βB(r)∆XY

)
,

kA(r) ≡ SAB(r)mB , (63)

Eq. (62) can be written

nXYA = SAB(r)CB,XY +
3$2

2
EXYA (r) − kA(r) ΦXY , (64)

which is a reformulation of the first integrals of mo-
tion (50) in terms of the second–order coefficients.

The total mass density coefficient ρXY can now be
written

ρXY =mAnXYA

=mASAB(r)CB,XY +
3$2

2
EXY (r)− k(r)ΦXY , (65)

where we have introduced the further abbreviations

EXY (r)≡mAEXYA (r)

=
1
3
mASAB(r)

(
δB,XY − 2βB(r) ∆XY

)
(66)

k(r) ≡ mAkA(r) = mASAB(r)mB ,

which are “known” functions of the non-rotating star’s
configuration, determined in terms of the “structure
functions” SXY (r) and βX(r), together with the con-
stants δA,XY and ∆XY and the constants of integration
CA,XY . These constants are determined by the boundary
conditions. Inserting (65) into Poisson’s Eq. (50) reduces
the problem to a single partial differential equation for the
coefficients ΦXY (r, θ), namely

∇2ΦXY +k(r)ΦXY =
3$2

2
EXY (r)+mASAB(r)CB,XY .(67)

Given the non-rotating background, a solution to
this equation fully specifies a slowly-rotating, two-fluid
configuration.

We note that a necessary condition for this method to
work, i.e. for (67) to be well-defined, is that the struc-
ture function SXY (r) is regular everywhere inside the
star. However, it is well-known that in the case of a
single fluid the standard polytropic equations of state,
i.e. E = κn1+1/N , leads either to a vanishing (for N > 1)
or an infinite density gradient (for N < 1) at the surface.
This behaviour could make (58) singular at the surface.
In order to clarify this point, we can express the defini-
tion (58) equivalently as

n
(0)
X

′
(r) = SXY µY (0)′(r), (68)

where a prime denotes the radial derivative d/dr. It is
seen from (48) that the chemical potentials µX(0)(r) and
their derivatives are regular everywhere, even at the sur-
face. Therefore we can conclude that the structure func-
tion SXY behaves like the density gradients n(0)

X

′
at the

surface. The slow rotation expansion used in the present
work is therefore well-defined for stars with finite or zero
density gradients at the surface, but is not applicable to
stars with an infinite density gradient at the surface, sim-
ilar to the N < 1 case for the polytropes, as the structure
function SXY then diverges at the surface.
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Inserting (48) into (68), we obtain expressions for the
derived structure functions kA(r) (63) and k(r), which
indicate their physical meaning. Using (63) we have

n
(0)
A

′
= −kA Φ(0)′ =⇒ kA = − dn(0)

A

dΦ(0)
, (69)

and from the definition (66) it follows that

ρ(0)′ = −kΦ(0)′ =⇒ k = − dρ(0)

dΦ(0)
· (70)

From these relations we see that the “structure” func-
tions kA(r) reflect the change of the individual number
densities with respect to the gravitational potential, while
the function k(r) reflects the corresponding change in the
total mass density. These relations proved very useful in
deriving the results discussed in Sect. 7.

5.3. Separation of variables

So far, the slow-rotation approximation has allowed us
to reduce the initial problem (31) and (34) to a single
Eq. (67) for a single unknown function ΦXY (r, θ). We now
separate the variables r and θ by expanding ΦXY in the
orthogonal basis of Legendre polynomials Pl(θ). These are
the eigenfunctions of the angular part of the Laplace op-
erator, ∇2

θ, satisfying

∇2Pl(θ) = − l(l+ 1)
r2

Pl(θ). (71)

Therefore, writing

ΦXY (r, θ) =
∞∑
l=0

ΦXYl (r)Pl(θ) (72)

leads to

∇2ΦXY =
∞∑
l=0

Pl(θ)DlΦXYl (r), (73)

where the differential operator Dl is defined as

Dl ≡
d2

dr2
+

2
r

d
dr
− l(l+ 1)

r2
, (74)

which represents the radial part of the Laplacian with
an additional “angular momentum” part proportional to
l(l + 1).

Using (73) together with the identity

3$2

2
= r2 [1− P2(θ)] , (75)

we arrive at a series of ordinary differential equations for
the coefficients ΦXYl (r) in (72). We have

D0ΦXY0 + kΦXY0 = r2 EXY +mASABCB,XY , (76)
D2ΦXY2 + kΦXY2 = −r2 EXY , (77)
DlΦXYl + kΦXYl = 0, for l ≥ 4 (78)

where only terms of even l will be non-vanishing be-
cause of the expected equatorial symmetry of the solution.

Furthermore, we will see in the following section that the
boundary conditions are homogeneous, and therefore the
homogeneous Eqs. (78) have only trivial solutions, i.e.

l ≥ 4: ΦXYl (r) = 0. (79)

The only non–vanishing contributions to ΦXY (r, θ) there-
fore consist of the two functions ΦXY0 (r) and ΦXY2 (r), and
the problem has been reduced to that of solving the two
differential matrix Eqs. (76) and (77). This is, of course,
in complete analogy with the standard result of the single
fluid slow-rotation approximation.

Once the solutions ΦXYl to the differential Eqs. (76)
and (77) have been obtained for a given equation of state
(subject to the boundary conditions to be discussed in the
next section), the individual density coefficients nXYA are
determined from (64).

6. Boundary conditions and integration constants

6.1. Boundary conditions

As Eqs. (76)–(78) are linear, second-order differential
equations, two boundary conditions are necessary for each
equation. In the case of the l = 0 Eq. (76) we need two
further conditions in order to fix the two constants of in-
tegration Cn, XY and Cp,XY . First, we require that the so-
lution must be regular at the centre of the star. At r = 0
the differential operator Dl is singular, which leads to the
first boundary conditions

l = 0: ΦXY0

′
(0) = 0,

l ≥ 2: ΦXYl (0) = 0, and ΦXYl
′
(0) = 0, (80)

where the primes represent the radial derivative d/dr.
Secondly, we require continuity of the gravitational po-
tential and its derivative across the star’s surface. That
is, we have to match the interior solution Φ(r, θ) to the
exterior gravitational potential ψ(r, θ) at the surface of
the rotating star R(θ):

Φ|R(θ) = ψ|R(θ) , and Φ′|R(θ) = ψ′|R(θ) . (81)

Here, the radial derivative deviates from the normal
derivative with respect to the actual surface R(θ) only
by terms O(Ω4), which have been neglected.

We write the slow-rotation expansion of the exterior
potential ψ in the usual way as

ψ(r, θ) = ψ(0)(r) + δψ(r, θ) +O(Ω4), (82)

with

δψ = ΩX ψXY ΩY , (83)

and expand the second-order coefficient in Legendre
polynomials:

ψXY (r, θ) =
∞∑
l=0

ψXYl (r)Pl(θ). (84)
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Because ψ is the solution to the Laplace equation∇2ψ = 0
(normalised by limr→∞ ψ = 0), we know the radial eigen-
functions for all l, namely

ψXYl (r) =
κXYl
rl+1

, (85)

where the κXYl are constant coefficients. The continuity
condition (81) for the static solution implies

Φ(0)(1) = ψ(0)(1) and Φ(0)′(1) = ψ(0)′(1), (86)

and because the static potential Φ(0) at the surface also
satisfies the Laplace equation, i.e. ∇2Φ(0)

∣∣
r=1

= 0, the
second derivatives must also be identical:

Φ(0)′′(1) = ψ(0)′′(1). (87)

Up to second-order in Ω the surface of the rotating star is

R(θ) = 1 + δR(θ) +O(Ω4), (88)

where we have used R(0) = 1. This allows us to write
the second-order expansion of the internal and external
potentials at the matching surface R(θ) as

Φ|R(θ) = Φ(0)(1) + Φ(0)′(1) δR + δΦ(1, θ), (89)

ψ|R(θ) =ψ(0)(1) + ψ(0)′(1) δR+ δψ(1, θ), (90)

and of the radial derivatives:

Φ′|R(θ) = Φ(0)′(1) + Φ(0)′′(1) δR+ δΦ′(1, θ), (91)

ψ′|R(θ) =ψ(0)′(1) + ψ(0)′′(1) δR+ δψ′(1, θ). (92)

Therefore the matching conditions (81) together with (86)
and (87) simply reduce to

δΦ(1, θ) = δΨ(1, θ), and δΦ′(1, θ) = δΨ′(1, θ), (93)

which shows that the resulting boundary condition is –
since there are no terms involving δR – independent of
the actual second-order surface of matching. It is thus not
necessary to determine the perturbed surface of the star
explicitly (by the condition ρ|R(θ) = 0). Using (84), (85)
and (72) for the second-order terms δψ and δΦ in (93)
directly results in the second boundary condition

ΦXYl
′
(1) + (l + 1) ΦXYl (1) = 0, for l ≥ 0. (94)

6.2. Fixing the integration constants

As stated earlier, the l = 0 equation requires two addi-
tional conditions in order to fix the constants of integra-
tion Cn,XY and Cp,XY . These conditions are crucial as
they determine which type of rotating star sequence (as
a function of the rotation rates Ωn and Ωp) the solution
will describe. Among the many possible sequences, two
seem particularly useful and will be described here. The
first is the fixed central density sequence (FCD), which
is probably the most straightforward and therefore most
commonly considered choice.

The FCD sequence is characterized by the simple con-
dition (for A = n, p)

nA|r=0 = n
(0)
A

∣∣∣
r=0

=⇒ nXYA, 0(0) = 0. (95)

This condition obviously implies that the respective total
masses will change as functions of the rotation rates. This
sequence therefore does not describe the same physical
star at different rotation rates, but it has the advantage
of leading to a very simple condition. From (62) we find
that we should require

CA,XY = mAΦXY0 (0). (96)

The FCD sequence is, however, not particularly relevant
from a physical point of view. For example, if we consider
an isolated neutron star that is spinning down due to a
magnetic torque we would expect the central density to in-
crease as the star becomes less oblate. The physically most
interesting sequence of rotating stars thus corresponds to
requiring fixed masses (FM). In other words, one has to
impose the condition of constant respective total masses
(or equivalently, total particle numbers) for each of the
two fluids if the sequence is to describe the same physi-
cal star at different rotation rates3. This means that (for
A = n, p)∫
nA(r, θ) dV =

∫
n

(0)
A (r) dV. (97)

To second-order in the rotation rates, this condition re-
duces to∫ 1

0

r2nXYA, 0(r) dr = 0. (98)

Inserting the explicit expression (64) for the nXYA, 0 compo-
nent yields the integral condition (for A,B = n, p)∫ 1

0

r2
[
SABCB,XY + r2EXYA − kAΦXY0 (r)

]
dr = 0, (99)

which allows us to determine the constants CA,XY for the
fixed mass sequence. However, in practice one only needs
to evaluate this integral for one of the two fluids, because
the second fixed mass condition can be replaced by the
equivalent but simpler requirement of fixed total mass, i.e.
the integral over ρ = mX nX , which analogously to (98)
leads to∫ 1

0

r2mAnXYA, 0 dr = 0. (100)

The l = 0 component of Poisson’s Eq. (51), i.e.

1
r2

(
r2ΦXY0

′
(r)
)′

= mAnXYA, 0, (101)

3 One might think that another possibility consists of holding
only the total baryon number constant, and fixing the remain-
ing constant by the requirement of chemical equilibrium. This,
however, has been shown in (33) to be impossible in the case
of different rotation rates.



188 R. Prix et al.: Slowly rotating superfluid Newtonian neutron star model

allows us to reduce this condition to

ΦXY0

′
(1) = 0, ⇐⇒ ΦXY0 (1) = 0, (102)

where the second (equivalent) expression has been ob-
tained from the second boundary condition (94).

7. Ellipticities, moments of inertia, and Kepler
rotation rate

Before proceeding to discuss results for a specific model
equation of state it is useful to digress on what kind of in-
formation we want to extract from the calculation. There
are obviously many alternative ways of describing rotating
configurations. We will focus our attention on the elliptic-
ities, the moments of inertia and the Kepler rotation rate.
The first and second are interesting because they highlight
how rotation affects the shape and mass–distribution of
the star, while the last describes the limit of rotation at
which mass-shedding at the equator sets in.

We can explicitly express the respective fluid sur-
faces RA(θ) to second-order in the rotation rates. Starting
from the obvious definition

nA(r, θ)|r=RA(θ) = 0, (103)

and writing the second-order surfaces as

RA(θ) = R
(0)
A + δRA(θ) +O(Ω4), (104)

we can express the second-order correction terms as

δRA(θ) = −δnA(r, θ)

n
(0)
A

′
(r)

∣∣∣∣∣
R

(0)
A

, (105)

where primes again denote radial derivatives. We define
the ellipticity of a surface in terms of the radii of the equa-
tor Requ and the pole Rpole as

e ≡ Requ − Rpole

Requ
· (106)

To second-order, this means that

eA =
3

2R(0)
A

∣∣∣∣∣δnA,2n
(0)
A

′

∣∣∣∣∣
R

(0)
A

. (107)

Here and in the following we will assume that the two
surfaces coincide in the static case, i.e. R(0)

n = R
(0)
p = 1,

in order to simplify the discussion.
The respective moments of inertia IA to second-order

can be written as

IA = I
(0)
A + δIA +O(Ω4), (108)

where the second order correction term can be seen to be

δIA = m

∫
V

(0)
A

$2δnA(r, θ) dV, (109)

which reduces to the explicit integral

δIA =
8πm

3

∫ 1

0

(
δnA,0(r) − 1

5
δnA,2(r)

)
r4dr. (110)

The Kepler rotation rate ΩK is reached when one of the
two fluids spins at the rate of a test particle in Keplerian
orbit around the equator of the star, i.e. at θ = π/2 and
r = RA(π/2), where we assume that A represents the
“outer” fluid at the equator. This means that(
∂rΦ(r, π/2)− rΩ2

K

)
r=RA(π/2)

= 0. (111)

Due to the rotation–induced change in the shape of the
star, the Kepler rate also has a O(Ω2) correction, and so
we write

Ω2
K,A = Ω2

(0) + δΩ2
K,A +O(Ω4), (112)

where Ω(0) is the Kepler rate around a spherical star, i.e.

Ω2
(0) ≡ Φ(0)′(1) =

4
3
πGρ̄. (113)

Using the second-order expansions for RA(θ) and Φ this
becomes

δΩ2
K,A = −3Φ(0)′(1) δRA(π/2)+δΦ′(1, π/2)+O(Ω4),(114)

and further using (105) and (69), we can reformulate
this as

δΩ2
K,A = − 3

kA(1)
δnA(1, π/2) + δΦ′(1, π/2)· (115)

The Kepler rotation rate ΩK determines the maximal ro-
tation rate of the respective fluids before mass-shedding
will occur at the equator, i.e. if A denotes the “outer” fluid
at the equator, then

ΩA ≤ ΩK,A. (116)

Thus (115) is a quadratic expression that determines the
respective maximal rotation rates of the two fluids. Given
the results shown in Fig. 1 we would expect the above
equations to determine the Kepler limit to within 10–20%.

8. An analytic solution

We have now completed the description of our slow-
rotation formalism for two-fluid systems. Given any suit-
able equation of state (which must provide all the rele-
vant parameters, e.g. pertaining to entrainment) Eqs. (76)
and (77) can be solved to produce a rotating configura-
tion. For a typical equation of state (EOS) the calcula-
tion will obviously require numerics. However, although
we have written a code that solves this problem given a
general EOS, we will not discuss such numerical results
here. There are two reasons why we do not consider a
tabulated realistic EOS in this paper. Firstly, it is well
known that the use of realistic EOS in the Newtonian
context is somewhat dubious. The main reason is that the
masses and radii of stellar models determined for a spec-
ified central density differ greatly in Newtonian theory
and General Relativity. Secondly, we need the tabulated
EOS data to include also the parameters needed for our
entrainment model. Unfortunately, the required parame-
ters, like the effective proton mass, are often not included
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among the published data, which complicates the use of
most of the current EOS. Instead we focus our attention
on a somewhat surprising fact: it is possible to find an
analytic solution to our equations, including the general
case where the two fluids are rotating at different rates,
for a particular class of EOS. This model EOS corresponds
to constant structure functions SXY and βX (and there-
fore also constant coefficients k, EXY ...). As we will argue
below, the resultant model is reasonably realistic and we
expect it to prove useful in future studies of the dynamics
of superfluid neutron stars. Before deriving the analytic
solution, we shall analyze this particular class of EOS and
assess its physical relevance.

8.1. The “analytic” equation of state

Within the present slow-rotation approximation any equa-
tion of state can (quite generally) be expressed as

E(nn, np, ∆2) = E(0)(nn, np) + α(0)(nn, np) ∆2

+O(Ω4), (117)

since the relative velocity ∆ is O(Ω). We recall that
the derived “structure functions” EXY , k etc. of (63)
and (66) are determined in terms of the two basic struc-
ture functions, the “density structure” SXY (r), cf. (58),
and the “entrainment structure” βX(r), cf. (59). In the
slow-rotation expansion (117), they become

SXY =
(

∂2E(0)

∂nX∂nY

)−1

0

, and βX =
(
∂α(0)

∂nX

)
0

· (118)

The condition of constant structure functions determines
the following class of equations of state4:

E =
1
2
nX A

XY nY + ∆2BXnX , (119)

with constant coefficients AXY (symmetric) and BX .
Therefore (118) leads to the identifications

SXY =
(
A−1

)
XY

, and βX = BX . (120)

This class of EOS is the natural generalization to the
two-fluid case of the “analytic polytrope” for single flu-
ids (E ∝ ρ2) for which the rotational corrections can
be found analytically (Chandrasekhar & Lebovitz 1962).
This model EOS also contains the simple case of the
sum of two such polytropes without entrainment, i.e.
E ∼ Annn2

n +Appn2
p, for which the corresponding analyti-

cal slow-rotation solution has already been found by Prix
(1999).

The major novelty of (119) concerns the inclusion of
entrainment, and it is obviously important to evaluate
how well this model approximates “realistic entrainment”.
From the relation (19) between entrainment and effective

4 It is possible to add linear terms to E (0) and a constant
to α(0), but this does neither change the resulting structure
functions nor the static solution, and such terms have therefore
been omitted.

masses we see that the equation of state (119) is simply
characterized by a constant effective mass mp∗. We noted
earlier that nuclear physics calculations of the effective
proton mass imply that this is not an unreasonable ap-
proximation, even in the extreme context of neutron stars.
This suggests that, not only does (119) have the attrac-
tive feature of leading to an analytical solution for slowly
rotating configurations, it also appears to provide a rea-
sonable approximation which should correctly reflect the
main qualitative features of neutron star matter (in par-
ticular the entrainment).

Another novel feature of (119) is the off-diagonal
term Anp, which leads to the term Snp. It will turn out
that the combination

σ ≡ Snp

Spp
=
∂µn/∂np

∂µn/∂nn
(121)

plays an especially important role in determining the
structure of our neutron star model. For a reasonable EOS,
the matrix SXY has to be positive definite, which implies
the constraint

S2
np < SnnSpp. (122)

This then determines the range of acceptable values
for σ. For realistic situations the proton fraction will be
xp < 0.5, in which case one finds Spp < Snn. Therefore we
can be sure that in this case (122) is satisfied if σ ∈ [−1, 1].
We have checked the reasonableness of this range by de-
termining σ for a more realistic EOS due to Prakash et al.
(1988). For the range of densities and proton fractions
to be considered here, we find that σ typically decreases
monotonically from values slightly larger than one at nor-
mal nuclear matter density ρnuc, to values around −0.4 at
about 10ρnuc, with the zero occurring at around 2ρnuc.
Thus, it seems that restricting a constant σ to the range
σ ∈ [−1, 1] is reasonable. Finally, we note that σ is inti-
mately related to the so-called “symmetry energy” term
in the Prakash et al. (1988) EOS, which is designed to
vanish whenever there are equal numbers of neutrons and
protons.

8.2. The static solution

We begin by discussing the static configuration, which is
the solution to (48) and (49). The chemical potentials (5)
for the “analytic” equation of state (119) are given by

µX(0) = AXY n
(0)
Y , (123)

which vanish at the surface of the star, and therefore
the static constants of integration CX(0) are determined
from (48) at the surface r = 1, i.e.

CX(0) = mX Φ(0)(1)· (124)

Equation (48) can now be expressed in the form

n
(0)
X (r) = kX

[
Φ(0)(1)− Φ(0)(r)

]
, (125)
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and therefore the ratio of the respective densities in the
static configuration with this equation of state is seen to
be a constant, i.e.

n
(0)
p (r)

n
(0)
n (r)

=
kp

kn
· (126)

This implies that the two fluids share a common outer
surface at r = 1. Inserting the densities (125) into the
second static Eq. (49) results in the Lane-Emden equation
for the total mass density ρ(0):

∇2ρ(0)(r) + k ρ(0)(r) = 0, (127)

which has the well known solution

ρ(0)(r) = ρ0
sin(r

√
k)

r
√
k

, where ρ0 = 1. (128)

The requirement that the density vanishes at the surface
r = R (where here R = 1) determines the constant k,
which is related via (66) to the symmetric structure matrix
SXY , namely

k = SXYmXmY = π2. (129)

Integrating the density (128), we obtain the following re-
lation between the total mass M , radius R and the central
density ρ0 for this EOS,

M =
4
π
ρ0R

3. (130)

8.3. Analytic solution for the slow–rotation coefficients

Given the “analytic equation of state” (119), the structure
functions are constant, and so are the coefficients in the
differential Eqs. (76) and (77). Therefore one can write
their general regular solutions as

ΦXY0 (r) =AXY0

J1/2(r
√
k)√

r
+
EXY

k

(
r2 − 6

k

)
+
mASABCB,XY

k
,

ΦXY2 (r) =AXY2

J5/2(r
√
k)√

r
− EXY

k
r2, (131)

where J1/2(x) and J5/2(x) are the standard Bessel func-
tions. From now on we will set k = π2 in accordance with
the constraint (129). The constants AXY0 , AXY2 , and the
CA,XY are determined by the boundary conditions dis-
cussed in Sect. 6.

8.3.1. The l = 2 solution

The solution for the l = 2 component is independent of the
chosen stellar sequence and is determined by the boundary
condition (94) alone. This yields

ΦXY2 (r) = −E
XY

π2

(
r2 − 5√

2

J5/2(rπ)√
r

)
· (132)

Inserting this into the l = 2 component of (65) gives the
corresponding total mass density coefficient

ρXY2 (r) = −EXY 5√
2

J5/2(rπ)√
r

, (133)

while the respective particle density coefficients are found
from (64)

nXYA, 2 =
kAE

XY

π2

(
r2 − 5√

2

J5/2(rπ)√
r

)
−EXYA r2. (134)

8.3.2. l = 0: FCD sequence

The Fixed Central Density solution for the l = 0 compo-
nent is determined by (94) together with (96). In this case
one finds that

ΦXY0 (r) =
EXY

π2

(
3
√

2
π2

J1/2(rπ)√
r

+ r2 +
6
π2
− 3

)
· (135)

From the l = 0 component of (65) we have

ρXY0 (r) = −E
XY

π2

(
3
√

2
J1/2(rπ)√

r
− 6
)
, (136)

and from (64) it follows that

nXYA, 0 =−kAE
XY

π2

(
3
√

2
π2

J1/2(rπ)√
r

+ r2 − 6
π2

)
+EXYA r2. (137)

8.3.3. l = 0: FM sequence

The Fixed Mass solution for the l = 0 component is de-
termined by (94) together with (98). One finds

ΦXY0 (r) =
EXY

π2

(√
2
J1/2(rπ)√

r
+ r2 − 1

)
, (138)

and from the l = 0 component of (65) it follows that

ρXY0 (r) = −E
XY

π2

(
π2
√

2
J1/2(rπ)√

r
− 6
)
, (139)

while (64) leads to

nXYA, 0 =−kAE
XY

π2

(√
2
J1/2(rπ)√

r
+ r2 − 6

π2
− 3

5

)
+EXYA

(
r2 − 3

5

)
· (140)

8.4. Physical parameters of the two-fluid star

The analytic solution (132)–(140) has been expressed en-
tirely in terms of the matrices EXYA and EXY , and we will
now discuss the explicit form of these coefficients in terms
of the physical parameters describing the configuration of
the two-fluid star.

The symmetric matrix SXY has three degrees of free-
dom. One of these is already determined by the static
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radius constraint (129) and another is associated with
the σ parameter discussed earlier. A further constraint
comes from the proton fraction xp, which we define as

xp ≡
n

(0)
p

n
(0)
n + n

(0)
p

∈ [0, 1], (141)

and which is constant throughout the static star due
to (126). In order to simplify expressions, we take the pro-
ton and neutron masses to be approximately equal, i.e.

mn ≈ mp ≈ m. (142)

Using (129) and (126), the kX are expressible as

kn =
π2

m
(1− xp), and kp =

π2

m
xp. (143)

The “density structure” SXY can be expressed explicitly
in terms of these parameters as

SXY =
π2

m2(1 + σ)

(
{(1− xp) + σ(1− 2xp)} xpσ

xpσ xp

)
.(144)

From this expression we see that, even though σ → −1
seemed to be allowed from the “thermodynamical” point
of view, it leads to a singular behaviour in the slow-
rotation expansion. Of course, given the fact that the
Prakash et al. (1988) equation of state indicated that
σ > −0.4 for all reasonable neutron star densities, cf.
Sect. 8.1, we do not expect this singularity to have any
physical significance.

As we have seen earlier, cf. (19), the entrainment α can
be completely described by the effective proton mass mp∗,
which for our EOS (119) is a constant, and so we can
choose without loss of generality

βn = 0, and 2βp = mε, (145)

where we used dimensionless entrainment coefficient ε de-
fined earlier in (20).

With the “structure functions” SXY and βX expressed
completely in terms of the proton fraction xp, the “sym-
metry energy” dependence σ and the entrainment coeffi-
cient ε, the explicit expressions for EXYA are

EXYn =
π2

3m(1 + σ)

×
(
{1− xp + σ(1− 2xp − xpε)} xpσε

xpσε xpσ(1− ε)

)
, (146)

and

EXYp =
π2xp

3m(1 + σ)

(
(σ − ε) ε
ε (1− ε)

)
, (147)

while the coefficient EXY of (66) is found to be

EXY =
π2

3

(
1− xp(1 + ε) xpε

xpε xp(1− ε)

)
· (148)

It is interesting to note that in the case of co–rotation the
corresponding terms in the analytic solution become

ΩXEXYA ΩY =
kA
3

Ω2, (149)

and

ΩXEXY ΩY =
π2

3
Ω2, (150)

and are therefore seen to be independent of not only the
entrainment ε, but also of σ.

8.5. Explicit results for ellipticity, moments of inertia,
and Kepler rotation

Using the analytic solution of Sect. 8.3 with the physical
parameters of Sect. 8.4, we obtain the following explicit
expression for the ellipticities (107)

eA =
3
2

(
1− 15

π2

)
ΩXEXY ΩY −

3π2

2kA
ΩXEXYA ΩY , (151)

where we have set R(0)
A = 1.

For the moments of inertia, integrating (110) for the
analytic solution leads to the explicit result

δIA

I
(0)
A

= aΩXEXY ΩY +
3 b
kA

ΩXEXYA ΩY , (152)

with coefficients

a =
9

π2 − 6

(
3− π2

5
− π4

175

)
, (153)

b =
3π6

175(π2 − 6)
· (154)

At the formal level, this result is equivalent to that found
in earlier work without entrainment (Prix 1999). However,
the two results differ at a deeper level since the actual ma-
trix elements of EXY and EXYA contain information about
entrainment and the “symmetry energy” contribution σ.

For the analytical solution we can express the correc-
tion to the Kepler rotation rate (114) as

δΩ2
K,A =

6
π2

(
1
5
− 3
π2

)
ΩXEXY ΩY −

27
10kA

ΩXEXYA ΩY ,

(155)

where A denotes the “outer” fluid at the equator.
If we take the simple case of the two fluids co-rotating

at the maximal rotation rate, i.e. Ωn = Ωp = ΩK, this sim-
ply leads to

ΩK =
Ω(0)√
6
π2 + 3

2

≈ 0.69 Ω(0) ≈ 0.80
√
πGρ̄, (156)

independent of the parameters of this EOS. This is
about 20%–25% too high compared to the numerical re-
sult ΩK ≈ 0.64

√
πGρ̄. This discrepancy originates in the

underestimate of the equatorial radius when approach-
ing ΩK, which is illustrated in Fig. 1. The “failure” of
the slow–rotation expansion to accurately determine the
Kepler rotation limit has already been pointed out by, for
example, Salgado et al. (1994).
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Fig. 2. Plots of the radial profiles of the proton density corrections, normalized by the static number density, in the equatorial
plane (θ = π/2) and along the polar axis (θ = 0) for σ = 0 (left graph), σ = 0.5 (right graph), ε = 0, 0.4, 0.7, and Ωn = 0.1 and
Ωp = 0.25 Ωn.

9. Exploring the roles of relative rotation,
entrainment and “symmetry energy”

In this section we will use the analytic solution to the
superfluid slow-rotation problem to explore the effects of
relative rotation, entrainment, and “symmetry energy” on
the distribution of matter, the Kepler limit, ellipticity,
and moments of inertia for a fixed mass star. The re-
sults we present are for a particular stellar model with
mass 1.4 M� and radius 10 km. The proton fraction is
taken to be xp = 0.1 and we choose the neutron rota-
tion rate to be (except in Figs. 4 and 7) Ωn = 0.1. This
value corresponds to (in our units) the rotation rate of
the fastest known pulsar (1.6 ms). The three parameters
that will be varied are σ, ε, and the relative rotation rate
Ωp/Ωn. For the first two parameters we will consider only
the values σ = −0.5, 0, 0.5 and ε = 0, 0.4, 0.7, while the
relative rotation rate will be assumed to lie in the range
−2 ≤ Ωp/Ωn ≤ 2 (which allows the protons to be counter-
rotating with respect to the neutrons). The values chosen
for σ are in accordance with the discussion in Sect. 8.1.
We also recall that the best current estimates for entrain-
ment imply a range of 0.4 ≤ ε ≤ 0.7. This means that
our chosen models correspond to the expected upper and
lower limits, as well as the no-entrainment limit (which
provides a useful reference).

9.1. Effects on the “local” structure

First we focus on the “local” structure by examining how
the particles get redistributed throughout the star because
of rotation. Figure 2 shows the rotationally induced cor-
rections to the proton particle number densities in the
equatorial plane and along the polar axis, for σ = 0 and
σ = 0.5. In Fig. 3 we show the corresponding corrections
to the neutron number densities. For the neutrons we show
plots for σ = 0 only because other values lead to similar
results. An inset is provided to show that the effect of

entrainment is small but not completely negligible. Recall
that we are considering the fixed mass solution, so the
density at the centre of the star will decrease as the star
is spun up. This also explains why the density correction
is negative along the polar axis. Furthermore, the density
corrections in the equatorial plane are positive near the
stellar surface since rotation causes the matter to bulge.

From Fig. 2 we notice that the effect of changing σ and
ε is more pronounced for the protons. That this should
be the case is easy to understand since the proton frac-
tion is small and only 10% of the mass of the star is in
the protons. The relative effect of a changing ε is more
apparent in the proton plots, then, because the absolute
magnitude of the proton number density corrections are
always 10% of those of the neutrons. From (140), (146)
and (147) we see that the main difference between the
two cases is that while changes in ε and σ affect EXYp at
leading order (∼xp), they only lead to higher order correc-
tions to EXYn (since there are also terms of O(1) in (146)).
We can also see from the right-hand panel of Fig. 2 that
changing σ from 0 to 0.5 results in substantial modifi-
cations. This shows clearly that the “symmetry energy”
can play an important role in determining the rotational
configuration of a two-fluid star.

Figure 4 provides a different perspective on the
rotationally-induced redistribution of the particles. Here
we show isodensity surfaces in the (r, θ)-plane, for ε = 0,
σ = 0 (in the left panel) and ε = 0.7, σ = −0.5 (in the
right panel). Note that we have considered slightly larger
values of the rotation rates (just below the Kepler limit) in
order to exaggerate certain effects. For a given density, we
compare the isodensity curves for a non-rotating star to
the neutron and proton isodensity curves for the rotating
model. In both panels we see that the neutron and pro-
ton curves actually intersect each other near the surface
of the star. That is, along the equator the neutrons ac-
tually extend further than the protons, while the protons
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Fig. 3. Plots of the radial profiles of the neutron density corrections, normalized by the static number density, in the equatorial
plane (θ = π/2) and along the polar axis (θ = 0) for σ = 0, ε = 0, 0.4, 0.7, and Ωn = 0.1 and Ωp = 0.25 Ωn. In this, and the
following figures, the dotted lines correspond to ε = 0.7, dashed have ε = 0.4, whereas the solid lines are for ε = 0.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ = 0ε = 0

static star
neutrons
protons

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ = − 0.5ε = 0.7

Fig. 4. Neutron (thick line), proton (thin line) and static configuration (dashed line) isodensity curves in the meridional plane,
for σ = 0,−0.5, ε = 0, 0.7, and Ωn = 0.15 and Ωp = 0.25 Ωn.

extend further along the rotation axis. This means that,
in this case the rotational configuration of the protons is,
in fact, prolate. We note that this effect has been exagger-
ated in the panels, because of the higher rotation rates,
but it happens also for lower rotation rates (as used in the

earlier figures). Near the center of each panel, we see that
the neutron and proton surfaces no longer intersect. This
is no doubt due to the fact that the centrifugal forces are
smaller closer to the center of the star.
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Fig. 6. Neutron (n) and proton (p) moments of inertia for σ = −0.5, 0, 0.5, ε = 0, 0.4, 0.7, and Ωn = 0.1.

9.2. Effects on the “global” structure

Now we focus our attention on the roles of σ, ε, and the
relative rotation rate Ωp/Ωn in determining macroscopic
properties of the star; in particular, the proton and neu-
tron ellipticities, their respective moments of inertia, and
the Kepler limit. As before, we will keep the mass of the
star fixed.

Figure 5 illustrates the neutron and proton elliptici-
ties as functions of the relative rotation rate, and Fig. 6
gives their moments of inertia (normalized by their static
values). There is an obvious quadratic behavior in each
plot due simply to the slow-rotation expansion. As well,
the intersection of all curves at Ωp/Ωn = 1 occurs be-
cause the protons then co-rotate with the neutrons and
the system is behaving as a single fluid. Notice that en-
trainment has the largest influence when the neutrons and
protons counter-rotate. This is easily understood as a con-
sequence of the basic fact that the entrainment parameter
represents the way that the equation of state (as repre-
sented by the energy functional) depends on |vn − vp|2.
The protons are in general much more affected by changes

in the various parameters than the neutrons, again due to
the fact that the neutrons carry the bulk of the mass of
the star. Perhaps most interesting is the effect of both the
entrainment parameter ε and “symmetry energy” param-
eter σ in determining the minima of the curves. For both
the protons and the neutrons, we see that an increase in
ε for a fixed value of σ leads to a deeper value for the
minimum. Decreasing the value of σ causes the minima to
become even deeper. In particular, we see from the left-
most panel in Fig. 5 that the minima have become deep
enough that the protons can be prolate (i.e. have negative
ellipticity) even though they rotate in the same direction
as the neutrons. Finally, we note that as σ is decreased, the
neutron ellipticities go from having minima in the right-
most and center panels, to having maxima in the left-most
panel. That is, if the absolute value of the relative rotation
could be made large enough the neutron fluid could also
become prolate.

It is interesting to compare the curves for the elliptic-
ities in Fig. 5 and the corresponding moments of inertia
in Fig. 6, for example for σ = 0, ε = 0.4 (middle panel,
dashed line) for the protons. For Ωp = 0 we observe that
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Fig. 7. Plots of the neutron (n) and proton (p) Kepler limits as functions of the relative rotation Ωn/Ωp, for σ = −0.5, 0, 0.5
and ε = 0, 0.4, 0.7.

the proton fluid is nearly spherical (ep ≈ 0), and still its
moment of inertia is higher than of the static (spherical)
configuration δIp > 0, and this is simply because the mass
distribution has been shifted further away from the ro-
tation axis even though the surface itself is (nearly) un-
changed in this case. This can also be clearly seen in the
density correction in Fig. 2, for example for σ = 0, ε = 0.7
and Ωp/Ωn = 0.25 (left panel, dotted line), which nearly
vanishes at the surface r = 1, and is to be compared to
the corresponding global quantities in Figs. 5 and 6.

Finally, results for the Kepler, or mass-shedding, limit
are shown in Fig. 7. To understand these results one must
appreciate that there is a subtle difference from the single-
fluid case: In our case the two fluids can rotate indepen-
dently at different rates. Thus, one of the fluids typically
extends beyond the other, in particular at the equator.
Since the Kepler limit is defined by the outermost fluid
at the equator, we can use Eq. (112) in the following
way: when the neutrons are outermost, set A = n and
Ωn = ΩK,n and solve the resulting quadratic for ΩK,n
as a function of the ratio Ωn/Ωp, and vice versa in the
case when the protons extend beyond the neutrons. In
Fig. 7 we show the resultant solutions over the entire
range of the relative rotation rate. The Kepler rate is easy
to determine, however, because it is given by the neu-
tron curves when Ωn/Ωp ≥ 1, and the proton curves when
Ωn/Ωp ≤ 1. Of course, the various curves always intersect
when Ωn/Ωp = 1, the case that corresponds to corotation
of the two fluids. For the case of σ = ε = 0, we find re-
sults in good qualitative agreement with the relativistic
study of Andersson & Comer (2001a). In particular, we
see that the Kepler limit changes little when Ωn ≥ Ωp. As
explained by Andersson & Comer (2001a), this is due to
the fact that the neutrons make up 90% of the mass of the
star, and the star is behaving like a single-fluid star with a
small proton component. When Ωp ≥ Ωn the Kepler limit
increases as Ωn is decreased. Again, this is natural because
the neutrons still dominate the mass of the star, and the
Kepler rate is simply approaching the non-rotating star
limit.

10. Conclusions

We have developed a formalism for modeling slowly-
rotating Newtonian superfluid neutron stars incorporat-
ing entrainment. We have used a two-fluid description,
where one fluid is the superfluid neutrons and the other
is a charge-neutral conglomerate of the remaining con-
stituents. A detailed discussion of the relation between
entrainment and nuclear physics calculations (i.e. equa-
tions of state) was given. Using an equation of state that
is quadratic in both the mass-densities and relative veloc-
ities of the fluids, we found that an analytic solution to
the slow-rotation equations could be obtained. This solu-
tion is the natural extension to the two-fluid case of the
E ∝ ρ2 polytrope in the single fluid case (which has proven
to be very useful for understanding the properties of or-
dinary fluid neutron stars). We used the analytic solution
to explore effects due to relative rotation, entrainment,
and “symmetry energy” on both the “local” and “global”
properties of a fixed-mass star. An unexpected result
was that the “symmetry energy” parameter had as much
impact on the rotational equilibria as the entrainment
parameter.

Our ultimate goal is to study the modes of oscillation
of both Newtonian and general relativistic slowly rotating
superfluid neutron stars. We believe that the formalism
and analytic solution presented here will be valuable in
reaching this goal. In particular, the inclusion of entrain-
ment is absolutely necessary in determining how the domi-
nant dissipative mechanism (the so-called mutual friction)
of rotating superfluid neutron stars affects the gravita-
tional radiation emitted from unstable modes.
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Appendix A: An alternative derivation of the first
integrals of motion

A more elegant way of finding the first integrals of motions
(31) consists of using the identity

vj∇j pi = Lvpi − pj∇ivj , (A.1)

in terms of the Lie derivative Lv, which allows one to
rewrite Euler’s Eqs. (12) in the form

∂tp
n
i+Lvnp

n
i −∇i

(
pn

0 + vjnp
n
j

)
= 0, (A.2)

∂tp
p
i+Lvpp

p
i −∇i

(
pp

0 + vjpp
p
j

)
= 0. (A.3)

Stationarity (∂tpXi = 0), uniform rotation (viX = ΩXϕi)
and axial symmetry (LϕpXi = 0) then directly results in
the integrals

∇i
(
pn

0 + vjnp
n
j

)
= 0, (A.4)

∇i
(
pp

0 + vjpp
p
j

)
= 0 (A.5)

and inserting (9) this explicitly becomes

µn +mnΦ− 1
2
mnv 2

n =Cn, (A.6)

µp +mpΦ− 1
2
mpv 2

p =Cp. (A.7)
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