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Abstract

The interaction energy between two black holes at large separation

distance is calculated. The first term in the expansion corresponds to the

Newtonian interaction between the masses. The second term corresponds

to the spin-spin interaction. The calculation is based on the interaction

energy defined on the two black holes initial data. No test particle approx-

imation is used. The relation between this formula and cosmic censorship

is discussed.

1 Introduction

The purpose of this article is to prove, under appropriate assumptions, the fol-
lowing statement: the interaction energy, at large separation distance l, between
two black holes of masses M1, M2 and spins J1, J2 is given by

E =
−M1M2

l
+

−J1 · J2 + 3(J1 · n̂)(J2 · n̂)

l3
+ higher order terms, (1)

where n̂ is a unit vector which points inward along the line connecting the black
holes. Before giving a precise definition of the parameters involved in Eq. (1),
I want to discuss its physical meaning.

The first term in Eq. (1) has the Newtonian form. For two point particles
of masses M1 and M2 separated by an Euclidean distance l, the Newtonian
interaction energy between them is given by −M1M2/l. The fact that this
term appears also for a two black holes system in General Relativity can be
expected from the weak field limit of Einstein’s equations. The second term
in Eq. (1), which involves the spins, has analogous form to the dipole-dipole
electromagnetic interaction; there exists an analogy between magnetic dipole in
electromagnetism and spin in general relativity (see [35]). In the electromagnetic
case, l is the Euclidean distance between two charge distributions and J1, J2 the
corresponding dipole moments of them. However, the gravitational black hole
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spin-spin interaction has the opposite sign to the electromagnetic one. The first
evidence of this fact was given by Hawking [25]. I want to reproduce Hawking’s
argument here because it points out the connection between Eq. (1) and the
cosmic censorship conjecture (see also the discussion in [35]). In the argument,
we assume the following two consequences of weak cosmic censorship and the
theory of black holes (cf. [27] [37], see also [36]):

(i) Every apparent horizon must be entirely contained within the black hole
event horizon.

(ii) If matter satisfies the null energy condition (i.e. if Tabk
akb ≥ 0 for all null

ka), then the area of the event horizon of a black hole cannot decrease in
time.

We also assume:

(iii) All black holes eventually settle down to a final Kerr black hole.

Consider a system of two black holes such that, at a given time, the separa-
tion distance between them is large. Then, there must exist a Cauchy surface in
the asymptotically flat region of the space time such that the intersection of the
hypersurface with the event horizon has two disconnected component of areas
A1 and A2. Since the black holes are far apart, these areas can be approximated
by the Kerr formula

A1 = 8π

(

M2
1 +

√

M4
1 − J2

1

)

, A2 = 8π

(

M2
2 +

√

M4
2 − J2

2

)

. (2)

At late times, after the collision, the system will settle down to a Kerr black hole.
Hence, there must exist another Cauchy hypersurface such that its intersection
with the event horizon will have area

Af = 8π
(

M2
f +

√

M4
f − J2

f

)

, (3)

where Mf is mass of the final black hole and Jf is its final angular momentum.
By (ii) we have

Af ≥ A1 + A2. (4)

Since gravitational waves have positive mass, we also have

Mf ≤ M1 + M2. (5)

In general, gravitational waves will carry angular momentum. But in axially
symmetric space-times the total angular momentum is a conserved quantity,
since it can be defined by a Komar integral (cf. [28] and also [37]). Then, in
this case we have

Jf = J1 + J2. (6)
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Using Eqs. (2), (3), (4) and (6) it is possible to obtain an upper bound, which
depends on J1 and J2, to the total amount of radiation emitted by the system
M1 + M2 − Mf . It can be seen that if J1 and J2 have the same sign, this
upper bound is smaller than if they have opposite sign. This suggests that
there may be a spin-spin force between the black holes that is attractive if the
angular momentum have opposite directions and repulsive if they have the same
direction. Presumably, in the second case the system expends energy in doing
work against the spin repulsive force, and for this reason this energy is not
available to be radiated via gravitational radiation.

Hawking’s argument only suggests that the spin interaction energy between
black holes has in fact this sign dependence with respect to the spins. It is not a
proof, first because there is no proof for the weak cosmic censorship conjecture
(i)-(ii) and for the assumption (iii). Second, because even if we assume (i)–
(iii) the argument only shows that an upper bound of the total amount of
radiated energy has this sign dependence in terms of J1 and J2, but the real
amount of gravitational radiation can, in principle, have other dependence. In
fact, the total amount of gravitational radiation produced by such systems, as
numerical studies show, is much smaller than this bound. This upper bound
is 50% of the total mass when the spins are antiparallel, the black holes are
extreme (J2 = M), and have equal masses; when the spins are zero or when the
black holes are extreme with parallel spins, the upper bound is 29% of the total
mass. On the other hand, in the numerical calculations the maximum amount
of radiation emitted by this type of system is about 3% of the total mass, see
[2] [3] for a recent calculation and also [29] for an up to date review on the
subject. However, the numerical studies show that the system indeed radiates
less when the spins are parallel than when they are antiparallel. Moreover, Wald
[35] proves that the interaction energy between a test particle with spin J2 and
a stationary background of spin J1 has precisely this sign dependence. Wald
shows that the spin-spin interaction energy has the form

−J1 · J2 + 3(J1 · n̂)(J1 · n̂)

l3
, (7)

where l and n̂ are defined as follows. The stationary field is expanded at large
distance with respect to Cartesian asymptotic coordinates xi, here l is the Eu-
clidean radius with respect to xi and n̂i = xi/l. Eq. (7) has been also proved
by D’Eath using post-Newtonian expansions [18]. It is important to note that
Eq. (7) gives an indirect evidence in support of (i)-(iii).

In this article I want to prove Eq. (7) without using either the particle or
post-newtonian approximation. The proof is based on an interaction energy
defined on the two black hole initial data. This interaction energy is genuinely
non linear; it does not involve any approximation.

The plan of the paper is as follows. In section 2 the main results are given.
In section 3 theorem 2.2 is proved; in section 4 we prove corollary 2.3. Finally,
in section 5 an alternative definition of the interaction energy is discussed.
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2 Main Result

The strategy I will follow was given by Brill and Lindquist [10]. It is based on
the analysis of initial data set with many asymptotic ends. An initial data set
for the Einstein vacuum equations is given by a triple (S̃, h̃ab, K̃ab) where S̃ is a
connected 3-dimensional manifold, h̃ab a (positive definite) Riemannian metric,
and K̃ab a symmetric tensor field on S̃. They satisfy the vacuum constraint
equations

D̃bK̃ab − D̃aK̃ = 0, (8)

R̃ + K̃2 − K̃abK̃
ab = 0, (9)

on S̃, where D̃a is the covariant derivative with respect to h̃ab, R̃ is the trace
of the corresponding Ricci tensor, K̃ = h̃abK̃ab, and a, b, c... denote abstract
indices. Tensor indices of quantities with tilde will be moved with the metric
h̃ab and its inverse h̃ab. The data will be called asymptotically flat with N + 1
asymptotic ends, if for some compact set Ω we have that S̃\Ω =

∑N
k=0 S̃k, where

S̃k are open sets such that each S̃k can be mapped by a coordinate system xj

diffeomorphically onto the complement of a closed ball in R
3 such that we have

in these coordinates

h̃ij = (1 +
2Mk

r
)δij + O(r−2), (10)

K̃ij = O(r−2), (11)

as r = (
∑3

j=1(x
j)2)1/2 → ∞ in each set S̃k; where i, j · · · , which take values

1, 2, 3, denote coordinates indices with respect to the given coordinate system
xj , and δij denotes the flat metric. We will call the coordinate system xi an

asymptotic coordinate system at the end k. Each asymptotic region S̃k has a
different asymptotic coordinate system. The constant Mk denotes the ADM
mass[1] of the data at the end k. These conditions guarantee that the mass, the
linear momentum, and the angular momentum of the initial data set are well
defined at every end.

For N ≥ 1, this class of data contains, in general, apparent horizons. The
existence of apparent horizons leads us to interpret these data as representing
initial data for black-holes. Their evolution will presumably contain an event
horizon, according to the standard theory of black holes [27]. The validity of
this picture depends, of course, on the cosmic censorship conjecture. The only
statement about the evolution of the data that we can make is the geodesic
incompleteness of the space time. In general, in order to prove the geodesic
incompleteness of a space time, one needs to know that the data contain a
trapped surface in order to apply the singularities theorems [27]. However, in
this particular case, since the topology of the data is not trivial, the geodesic
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~S0;M0; Ja0
~S1;M1; Ja1~S2;M2; Ja2

Figure 1: Initial data with three asymptotic ends (N = 2). For each asymptotic
region S̃k, we have the corresponding mass Mk and total angular momentum
Ja

k .

incompleteness of the space time follows directly from a theorem proved by
Gannon [22].

For simplicity we will fix N = 2, see Fig. 1. In this case the data can be
interpreted as initial data with two black holes. This interpretation is suggested
by the following fact: when an appropriate distance parameter is large compared
with the masses Mk, then it can be seen numerically that only two disconnected
apparent horizons appear. For time symmetric data, these numeric calculations
have been done in [10]; the non-time symmetric case has been studied by Cook
(see [14] and references therein). It is not clear that the number of apparent hori-
zons is the number of black holes contained in the data, since even when there
are two disconnected apparent horizons, the intersection of the event horizon
with the initial data can be connected. However, at large separation distance,
this seems to be a reasonable assumption, which is confirmed by the numerical
evolutions [29].

Brill and Lindquist define the following interaction energy at the end k

Ek = Mk −

N
∑

k′=0
k′ 6=k

Mk′ . (12)

The energy Ek is a geometric quantity; its definition does not involves any ap-
proximation. The question now is how to calculate Ek in terms of physically
relevant parameters. The first problem is how to define an appropriate separa-
tion distance between the black holes. When there are two apparent horizons,
there is a well defined separation distance lh̃ defined as the minimum geodesic
distance between any two points in the two different horizons, see Fig. 2.

However, the distance lh̃ is hard to compute. The location of the apparent
horizons can be calculated only numerically. Since we are only interested in
the energy at large separations, instead of lh̃ we will use another parameter l,
and we will argue that lh̃ ≈ l in this limit. The definition of the parameter
l is related to the way in which one can construct solutions of the constraint
equations with many asymptotic ends. The conformal method (cf. [11], [12]
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lh̃

l

Apparent

horizons

i1 i2R1 R2

A1

A2

Figure 2: An initial data set with three asymptotic end points and only two
disconnected apparent horizons of area A1, A2, and radii R1, R2. The points
i1 and i2 represent the two other infinities 1 and 2. The geodesic distance lh̃ is

computed with the physical metric h̃ab. The parameter l is computed with the
conformal metric. The geodesic distance between i1 and i2 with respect to the
physical metric is infinite.

and the references therein) is a general method for constructing solutions of
the constraint equations. We assume that hab is a positive definite metric with
covariant derivative Da, and Kab is a trace-free (with respect to hab), symmetric
tensor, satisfying

DaKab = 0 on S̃. (13)

Let ϕ be a solution of

Lhϕ = −
1

8
KabK

abϕ−7 on S̃, (14)

where Lh = DaDa −R/8 and R is the scalar curvature of the metric hab. Then
the physical fields (h̃, K̃) defined by h̃ab = ϕ4hab and K̃ab = ϕ−10Kab will
satisfy the vacuum constraint equations on S̃. We have assumed that Kab is
trace-free; hence K̃ab will be also trace-free with respect to h̃ab. That is, the
initial data set will be maximal.

To ensure asymptotic flatness of the data at the each end k, we will require
the following boundary conditions. Let i1 and i2 be two, arbitrary points in R

3,
with coordinates xj

1 and xj
2 in some Cartesian coordinate system xi. Define the

manifold S̃ by S̃ = R
3 \ {i1, i2}. Assume that hab is regular on R

3. At infinity
we will impose the following fall off behavior

hij = δij + O(r−2), (15)

Kab = O(r−2), (16)

ϕ = 1 + O(r−1). (17)
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At the points i1 and i2 we require

Kab = O(r−4
1 ), Kab = O(r−4

2 ), (18)

where

r1 =

(

3
∑

i=1

(xi − xi
1)

2

)1/2

, r2 =

(

3
∑

i=1

(xi − xi
2)

2

)1/2

, (19)

and

lim
r1→0

r1ϕ =
m1

2
, lim

r2→0
r2ϕ =

m2

2
, (20)

where m1 and m2 are positive constants. Note that both ϕ and Kab are singular
at i1, i2.

One can prove that the data so constructed will be asymptotically flat at the
three ends. We have made an artificial distinction between the end 0, given by
r → ∞, and the ends 1 and 2. It is possible to discuss the same construction in
a more geometrical way, such that all ends are treated equally; see [5], [20], [21],
[15]. However, since our final goal is to calculate the interaction energy at one
end, it is convenient to make this distinction. The coordinate system xi and
the corresponding flat metric in the expansion Eq. (15), gives the Euclidean
distance l between i1 and i2

l =

(

3
∑

i=1

(xi
2 − xi

1)
2

)1/2

, (21)

which will be our separation distance parameter, see Fig. 2.
In general, Eq. (14) is non-linear. However if we assume that the data is

time symmetric, i.e. Kab = 0, then it becomes a linear equation for ϕ. If we
assume that the conformal metric is flat, we obtain a Laplace equation for ϕ.
The solution of this equation that satisfies the boundary conditions Eqs. (20)
and (17) is given by

ϕ0 = 1 +
m1

2r1
+

m2

2r2
. (22)

This solution was found by Brill and Lindquist in [10]. In this case it is possible
to calculate explicitly the interaction energy (12) in terms of the masses and
the separation distance. The result is the following.

Theorem 2.1 (Brill-Lindquist) Let hab the flat metric and K̃ab = 0. Then
the interaction energy defined by Eq. (12) is always negative. Moreover, when
l is large compared with Mk the following expansion holds

E0 = −
M1M2

l
+ higher order terms. (23)
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Giulini [24] has computed the higher order terms for these data and other con-
formally flat time symmetric data with different topologies. In those examples
the Newtonian term is invariant but the higher order terms depend on the par-
ticular initial data.

In order to discuss spin-spin interaction, we need initial data with non trivial
angular momentum, that is we have to allow for non trivial extrinsic curvature
in the data. At each end we have the angular momentum Jk given by

Ja
k =

1

8π
lim

r→∞

∫

Sr

rKbc nbǫcad nd dSr, (24)

where Sr is a two sphere defined in the asymptotic region S̃k and na is its
outward unit normal vector. In Eq. (24) we can use either Kab or K̃ab because
the conformal factor satisfies (17). In general the angular momentum at each
end is not determined by the intrinsic angular momentum of each black hole. It
includes also the angular momentum of the gravitational field surrounding the
black holes. Then, in general, there is no relations between J0, J1 and J2, these
three quantities can be freely prescribed. But in the presence of symmetries
these quantities can not be given freely any more. Moreover, in the presence
of conformal symmetries of the metric there exists a well defined quasilocal
definition of angular momentum. Assume that ξa is a conformal Killing vector;
that is, a solution of the equation (Lhξ)ab = 0, where

(Lhξ)ab = Daξb + Dbξa −
2

3
hab Dcξ

c. (25)

If the initial data is maximal, i.e., K = 0, then the vector Kabξb is divergence
free. Hence, for each conformal symmetry ξa we have the associated integral

Iξ =

∫

S

KabξbnadS, (26)

where S is a close 2-surface and na its outward unit normal vector. This integral
is a conformal invariant. It can be calculated also in terms of tilde quantities.
The integral (26) will be non zero only if the vector Kabξb is singular at some
points; in our case it will be singular at two points: the location of the holes.
Then the integral in Eq. (26) will have three different values depending on
whether the surface S encloses one hole, two holes or no hole. In the later case,
Iξ = 0. If we chose ξa to be a rotation, Iξ will gives the corresponding component
of the quasilocal angular momentum. If the data is conformally flat we have 10
conformal Killing vectors. In particular, we have the three rotations and hence
the complete definition of quasilocal angular momentum. These quantities will
be defined only on this slice and will generally not be preserved in the evolution.
They will be only preserved if the space time admits a Killing vector. In this
case they will coincide with the corresponding Komar integral. The space time
will admit a Killing vector field if ξa is a Killing vector for the whole initial
data; that is, £ξh̃ab = £ξK̃

ab = 0, where £ξ is the Lie derivative with respect
to ξa. A conformally flat, maximal, slice can be interpreted as a instant of time
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in which the gravitational field carries no angular momentum and no linear
momentum itself, and hence these quantities are carried only by the “sources”,
which in this case are the black holes. Data containing matter with compact
support can be also constructed.

There exist in the literature other definitions of quasilocal angular momen-
tum ([33] [30] [19][34]), which are applicable for an arbitrary closed 2-surfaces in
the spacetime. It is not clear if any of these definitions will agree with Eq. (26)
in the particular case of 2-surface lying on a conformally flat 3-hypersurface.

From the discussion above, we conclude that in the case of conformally flat,
maximal data we have,

Ja
0 + Ja

1 + Ja
2 = 0. (27)

For an observer placed in the asymptotic end 0 the system will look like two
black hole with spins −Ja

1 and −Ja
2 , and the total angular momentum will be

Ja
0 = −Ja

1 − Ja
2 . For a more general discussion of conformal symmetries on

initial data see [6] and [17]; in particular in those articles a generalization of Eq.
(27) which includes linear momentum is proved.

Bowen and York obtain a simple model for a conformally flat data set which
represents two black holes with spins [8]. Brandt and Brügmann [9] study these
data with the N + 1 asymptotic ends boundary conditions given by Eqs. (18),
(16), (20) and (17). For these data, the conformal second fundamental form is
given by

Kab = Kab
1 + Kab

2 , (28)

where

Kab
1 =

6

r3
1

n
(a
1 ǫb)cdJ1 cn1 d, Kab

2 =
6

r3
2

n
(a
2 ǫb)cdJ2 cn2 d, (29)

and

ni
1 =

xi − xi
1

r1
, ni

2 =
xi − xi

2

r2
, (30)

where Jc
1 , Jc

2 are constants and ǫbcd is the flat volume element. One can check
that the constants Jc

1 and Jc
2 give the the angular momentum at the ends 1 and

2 respectively. The tensors (29) are divergence free and trace free with respect
to the flat metric in R

3 \ {i1, i2}.
The first result of this article is the following theorem.

Theorem 2.2 Let hab be the flat metric and Kab be given by Eqn. (28). Then,
the interaction energy (12) is given by

E0 =
−M1M2

l
+

−J1 · J2 + 3(J1 · n̂)(J1 · n̂)

l3
+ higher order terms. (31)
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The expansion of the dimensionless quantity E0/l is made in terms of the di-
mensionless parameters M1/l, M2/l, J1/l2 and J2/l2. By higher order terms
we mean terms of cubic order in those parameters. We prove Theorem 2.2 in
section 3.

Using similar arguments, Gibbons[23][26] has obtained the qualitative sign
dependence of the spin-spin interaction for a certain class of axially symmetric,
conformally flat, data. Note that in theorem 2.2, the data are non axially sym-
metric in general, since the spins can point in arbitrary directions. Bonnor [7]
has studied the spin-spin interaction using an exact, axially symmetric solution
of the Einstein-Maxwell equations, his result also qualitatively agrees with the
spin-spin term in Eq. (31).

The Bowen-York data are, of course, very special. The natural question is
how to generalize theorem 2.2 for more general data. For general asymptotically
flat data with three asymptotic ends we can not even expect to recover the
Newtonian interaction term. Take for example a time symmetric initial data
with only two ends. Choosing the conformal metric appropriately, one can
easily construct data such that the difference M1−M0 is arbitrary. That means
that we are putting more radiation in one end than in the other. If we add a
third end with small mass, the new interaction energy will be dominated by the
difference M1 − M0 and hence will be not related with any Newtonian force.
Hence, theorem 2.1 is not true for general asymptotically flat metrics with many
asymptotic ends.

The interaction energy defined by (12) can have the meaning of a two black
holes interaction energy only if is it possible to distinguish in the data two objects
that are similar to the Kerr black hole when the separation distance is large. I
will call this class of data two Kerr-like black hole initial data. The existence
of these data has been proved in [16] [15]. The following two properties of the
Kerr initial data, in the standard Boyer-Lindquist coordinates, are important:
i) The data are conformally flat up to order O(J2) ii) The leading order term of
the second fundamental form is given by the Bowen-York one (29). Then one
can expect that Eq. (31) is unchanged in the principal terms for this class of
data.

More precisely, a two Kerr-like black hole initial data can be constructed
as follows (see [16] and [15] for details). Take a slice of the Kerr metric, with
parameters MK1

and J1, in the standard Boyer-Lindquist coordinates. Choosing
the appropriate conformal factor, the conformal metric can be written in the
following form

hK1

ab = δab + hR1

ab , (32)

where hR1

ab = O(J2
1 ). In the same way the conformal second fundamental form

can be written as

Kab
K1

= Kab
1 + Kab

R1
, (33)

where Kab
R1

= O(J2
1 ) and Kab

1 is given by (29). Take another Kerr metric, with
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parameters MK2
and J2, and define the following conformal metric

hKK
ab = δab + hR1

ab + hR2

ab , (34)

and the following conformal second fundamental form

Kab
KK = K̄ab

K1
+ K̄ab

K2
+ (LhKK

w)ab, (35)

where the bar means the trace free part of the tensor with respect to the metric
(34) and wa is chosen such that Kab

KK is divergence free and trace free with
respect to the metric (34). In [16] [15] it has been proved that such vector wa

exists and is unique. Using (34) and (35), solve Eq. (14) with the boundary
conditions (20) and (17) where

m1 =
√

M2
K1

− J2
1 /M2

K1
, m2 =

√

M2
K2

− J2
2/M2

K2
. (36)

The existence of a unique solution has been proved in [16] [15].
If we chose Ja

1 and Ja
2 to point in the same direction, the data will be axially

symmetric. In this particular case, we can use the integral (26) to calculate the
quasilocal angular momentum of each of the black holes. The result will be Ja

1

and Ja
2 . However, in general, this class of data will admit no conformal Killing

vector. In this general situation, it is very hard to compute the quasilocal spins
of each of the black holes. However, when the separation distance is large, Ja

1

and Ja
2 will give approximately the angular momentum of each of the black

holes because this class of data have a far limit to the Kerr initial data. In other
words, Ja

1 and Ja
2 give the spins of one black hole when the parameters of the

other are set to zero.
For this class of data we have the following result.

Corollary 2.3 For the two Kerr-like data defined above, the formula (31) for
the interaction energy holds.

We prove this Corollary in section 4.

3 Interaction Energy for the spinning Bowen-

York initial data

In this section we will prove theorem 2.2. For Bowen-York data, with the
boundary condition (20) and (17), Eq. (14) for the conformal factor can be
written in the following form[9]

∆u = −
KabKab

8ϕ7
, ϕ = ϕ0 + u, (37)

with the boundary condition

lim
r→∞

u = 0, (38)
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where ϕ0 is defined in Eq. (22), with m1 and m2 arbitrary positives constants,
and Kab = Kab

1 + Kab
2 is given by (29).

The coordinates xi are asymptotic coordinates for the end 0. The total mass
at 0 is given by

M0 = m1 + m2 + 2u∞, (39)

where u∞ is the term which goes like 1/r in the solution u of Eq. (37) and is
given by

u∞ =
1

4π

∫

R3

KabKab

8ϕ7
dx3. (40)

We want to calculate the masses M1 and M2 for the other ends. The asymptotic
coordinates for the other ends are

x̂i
i1 =

m2
1

4

(xi − xi
1)

r2
1

, x̂i
i2 =

m2
2

4

(xi − xi
2)

r2
2

. (41)

Take for example the end point i1, in x̂i
i1

coordinates we have

h̃îĵ =

(

1 +
m1

2r̂1
+

m1m2

4lr̂1
+

u(i1)

2r̂1

)

δîĵ + O(1/r̂2
1), (42)

where we have used

r2 = l + O(1/r̂1), (43)

and r̂1 is the Euclidean radius with respect to x̂i
i1

. Then the mass at this end
is given by

M1 = m1

(

1 +
m2

2l
+ u(i1)

)

, (44)

where u(i1) denote the value of the function u at the point i1. In analogous way
we obtain the mass at the end 2

M2 = m2

(

1 +
m1

2l
+ u(i2)

)

. (45)

Then the interaction energy at the end i0 is given by

E0 = M0 − M1 − M2 = −
m1m2

l
+ 2u∞ − m1u(i1) − m2u(i2). (46)

Using Eq. (37) and the Green’s function for the Laplacian, we obtain the
following integral representation of the terms involving u in Eq. (46)

2u∞ − m1u(i1) − m2u(i2) =
1

16π

∫

R3

KabKab

ϕ7

(

1 −
m1

2r1
−

m2

2r2

)

dx3. (47)

12



The formula (47) involves the unknown function u. Using the fact that u is
O(J2), we make an expansion of this integral in terms of the parameters J1/l2,
J2/l2, m1/l and m2/l. We obtain that the first non trivial term is given by

2u∞ − m1u(i1) − m2u(i2) ≈ Es, (48)

where

Es =
1

8π

∫

R3

Kab
1 K2 ab dx. (49)

The interaction energy, up to this order, is given by

E = −
M1M2

l
+ Es, (50)

where we have used Eqs. (44) and (45) to replace mk by Mk, since up to this
order they are equal.

All that remains is to compute the integral Es. This integral can, in princi-
ple, be calculated explictly from the expressions (29). However such a calcula-
tion is very complicated. Instead of this we will calculate (49) in the following
way. The tensors (29) can be written like

(Lδv1)
ab

= Kab
1 , (Lδv2)

ab = Kab
2 (51)

where Lδ is the conformal Killing operator defined in Eq. (25) for the flat
metric, and

vi
1 = −ǫijkJ1 jn1 kr−2

1 , (52)

vi
2 = −ǫijkJ2 jn2 kr−2

2 , (53)

Let Bǫ1 and Bǫ2 be small balls centered at i1 and i2 respectively, of radii ǫ1 and
ǫ2. We have that

Es =
1

8π
lim

ǫ1,ǫ2→0

∫

R3−Bǫ1
−Bǫ2

Kab
1 K2 ab dx. (54)

Using the Gauss theorem in R
3 − Bǫ1 − Bǫ2 we obtain

∫

R3−Bǫ1
−Bǫ2

Kab
1 K2 ab dx = −2

∫

∂Bǫ1

Kab
2 v1 bn1 a dSǫ1 − 2

∫

∂Bǫ2

Kab
2 v1 bn2 a dSǫ2 ,

(55)

where na
1 and na

2 are the outward normals to the two surfaces Bǫ1 and Bǫ2 . In
the limit ǫ1 → 0 the first integral vanishes. We use here that Kab

2 is regular
in Bǫ1 . The second integral, in the limit ǫ2 → 0 can be easily calculated. We
obtain

Es =
−J1 · J2 + 3(J1 · n̂)(J1 · n̂)

l3
. (56)
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4 Interaction energy for the two Kerr-like black

holes initial data

The two Kerr-like black hole initial data set are solutions of the following equa-
tion

LhKK ϕKK = −
KKK abK

ab
KK

8ϕ7
KK

on S̃, (57)

with the boundary conditions (20) and (17), where hKK
ab and Kab

KK are given by
(34), (35) and m1, m2 are given by (36) in term of the Kerr parameters.

The conformal factor for the Kerr initial data, with parameters MK1
, J1 can

be written in the following form

ϕK1
= 1 +

m1

2r1
+ ϕR1

, (58)

where ϕR1
= O(J2

1 ). We can decompose the two Kerr solution in the following
form

ϕKK = ϕ0 + ϕR1
+ ϕR2

+ u. (59)

Using that (58) is a solution for one Kerr initial data, we obtain that the first
term in the expansion in J1 and J2 of the function u satisfies the following linear
equation

∆u ≈ −
Kab

1 K2 ab

8ϕ7
0

. (60)

Hence, the spin-spin interaction term has the same form as the Bowen-York
one. In an analogous way to the previous section, we obtain that the interaction
energy is given by

E0 ≈ −
M1M2

l
+ Es, (61)

where Es is given by Eq. (49).

5 Discussion

We have shown, using the interaction energy defined by Eq. (12), that the
spin spin interaction between black holes of arbitrary masses and spins has an
expansion of the form (31). This formula has been previously derived using
a test particle approximation [35] and post-newtonian expansions [18]. The
main improvement of the present calculation, beside its simplicity, is that no
approximation is used in the definition of the interaction energy. Moreover, the
very definition of the interaction energy involves black holes, in contrast with
previous calculations where the black holes appear indirectly.

14



The interaction energy defined by Eq. (12) uses the fact that we are choosing
a particular topology for the initial data, but other topologies are possible.
Examples of different kind of topologies where we can not use Eq. (12) are the
Misner topology of two isometric sheets [32], the Misner wormhole [31] or even
initial data with trivial topologies which contain an apparent horizon [4]. If the
initial data have k disconnected apparent horizons of area Ak, we can define the
individual masses as follows

MHk
=

√

Ak

16π
. (62)

Then, the interaction energy is given by the formula

EH = M −
N
∑

k′=0
k′ 6=k

MH′

k
. (63)

What is the relation between Ek defined by Eq. (12) and EH defined by (63)?
Note that EH is much harder to compute then Ek. I want to argue that Ek

will presumably give the same result as Ek for the leading orders terms in the
expansion given by theorem 2.2. Assume that the data is such that when the
separation distance parameter is large, then the areas can by approximated by
the Schwarzschild formula Ak ≈ 16πM2

k plus terms of order J2. Then the radius
of the horizons will be Rk ≈ 2Mk. The distance lh̃ will differ from l in terms
order O(M, J2). Then we can replace l by lh̃ in theorem lh̃ and MHk

by Mk in
Eq. (12), up to this order.

It is interesting to note that the interaction energy EH has been used in a
different context, namely to determine the last stable circular orbit in a black
hole collision [13].
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