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Abstract

We investigate the relation between supersymmetry and geometry for two-dimensional sigma
models with target spaces of arbitrary signature, and Lorentzian or Euclidean world-sheets. In
particular, we consider twisted forms of the two-dimensional (p,q) supersymmetry agebra.
Superspace formulations of the (p,q) heterotic sigma models with twisted or untwisted supersym-
metry are given. For the twisted (2,1) and the pseudo-K3hler sigma models, we give extended
superspace formulations. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In Ref. [1], the analysis of Refs. [2—4] on the geometry of (1,0) and (1,1) supersym-
metric sigma models was generalised to the case in which the target space had arbitrary
signature, and the conditions for the theory to be invariant under extra supersymmetries
were investigated. Covariantly constant complex structures, i.e. (1,1) tensors J satisfy-
ing J2= —1, led to extra supersymmetries, each satisfying the usual superalgebra
Q? ~ P, while covariantly constant real structures, i.e. (1,1) tensors S satisfying S* = 1,
led to extra twisted supersymmetries [1], each satisfying the twisted superalgebra
Q?~ —P. The number of structures of either type depended on the target space
holonomy of a certain connection which had torsion if the sigma model had a
Wess—Zumino term. For example, if the holonomy is contained in USp(2m), there are
three complex structures 1,J,K satisfying the quaternion algebra with SU(2) commuta-
tion relations, while if the holonomy is contained in S(2m,R), there is one complex
structure J and two real structures ST satisfying the pseudo-quaternion algebra with
SU(1,1) commutation relations. The aim of this paper is to give the superspace
formulation of these models and to investigate their structure further.

Extended world-sheet supersymmetries have had two different uses in string theory.
In the study of heterotic or type Il strings, complex manifolds such as Calabi—Yau
spaces have played an important role. In these cases, the string theory only has gauged
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(1,1) or (1,0) world-sheet supersymmetry, but the (1,1) or (1,0) sigma model on a
suitable background can have extra rigid world-sheet supersymmetries;, on a Kahler
manifold, for example, N = 1 world-sheet supersymmmetry is extended to N = 2, and
N = 2 superconformal field theory has played a central role in the study of such
compactifications. There are also string theories in which an extended world-sheet
supersymmetry is gauged, such as those with N = 2 local world-sheet supersymmetry,
and in these a target space with either four Euclidean dimensions, or with two space and
two time dimensions naturally arises. Our results on general signature have applications
to both heterotic or type Il strings in general signature [5,6] and to (2, p) stringsin 2+ 2
dimensions [7-10].

In Refs. [5,6], new string theories were found in which the ten-dimensional space-time
had arbitrary signature, and in some cases the world-sheet was Lorentzian (signature
1+ 1), whilein others it was Euclidean (signature 2 + 0). All of these were linked to the
usua string theories with target space signature 9 + 1 and Lorentzian world-sheets by
chains of dualities [5,6]. The world-sheet formulation of these string theories is a sigma
model with target space of the appropriate signature. Target spaces that admit extra
supersymmetries play an important role in the study of solutions of these theories, just as
in the case of compactifying on Euclidean signature internal spaces.

Another context in which non-Lorentzian signature target spaces have played aroleis
in N=2 strings, or more generally in strings with (2,0), (2,1) or (2,2) world-sheet
supersymmetry. In these theories, the target spaces had signature 2 + 2 (or 4 + 0), and
the heterotic theories were reduced (via a null reduction) to ones with signature 1 + 1 or
2+ 1. The (2,1) string is of particular interest. It was shown by Kutasov and Martinec
11], and by the same authors with O’Loughlin [12], that different vacua of the (2,1)
superstring describe the D1-string or the D2-brane, and via dualities these are linked to
all usual types of ten-dimensional superstrings and to the eleven-dimensional supermem-
brane [11,12]. This led to the suggestion that the (2,1) heterotic string may provide many
of the degrees of freedom of M theory, athough this approach has so far only yielded
specialy symmetric points in the moduli space of vacua of M-theory [13,14]. Martinec
[15-17] has proposed an interpretation of the (2,1) string as describing the continuum
limit of the matrix model of M-theory [18] with all spatial dimensions compactified.

The (2,1) heterotic string [10] has a four-dimensional target space-time with signature
(2,2) that is required to have an isometry generated by a null Killing vector, which must
be gauged. In general there are obstructions to the gauging of a given isometry [19,20],
and the isometry is required to be one for which these are absent. For (2,2) signature,
this null reduction yields either a space with signature (2,1) (corresponding to a
membrane world-volume [11,12]) or a space with signature (1,1) (corresponding to a
string world-sheet [11,12]). The theory defined on a space-time with signature (2,2)
before null reduction is a theory of self-dual gravity with torsion coupled to self-dual
Y ang—Mills gauge fields [10]. The exact classical effective action for the gravitational,
antisymmetric tensor and gauge degrees of freedom was given in [14] and derived
independently in [1] using sigma-mode! techniques (see Refs. [13,17] for reviews). In
Ref. [21], this action was simplified using an auxiliary metric and shown to be Weyl
invariant at the classical level in four dimensions. A dual form of this action was found;
in four dimensions, the dual geometry is self-dual gravity without torsion coupled to a
scalar field.
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The heterotic sigma models which describe the target spaces of (2,1) strings have
been discussed in Refs. [2-4]. The geometry is Hermitean with torsion and the field
equations imply that the curvature with torsion is self-dual in four dimensions, or
satisfies generalised self-duality equations in higher dimensions. The conditions under
which these models have isometry symmetries were analysed in Ref. [19], while the
gauging of such isometries and the construction of manifestly (2,1) supersymmetric
gauged actions were discussed in Refs. [19,20,22,23].

This paper is organised as follows. In Section 2 we discuss untwisted and twisted
(p,g) supersymmetry in two dimensions and introduce a superspace for the general
(p,q) superagebra. In Section 3 we construct the corresponding two-dimensional
non-linear sigma models on target spaces of general signature, and derive the geometric
conditions imposed by supersymmetry. In Section 4 we give a superspace formulation of
the models with twisted ( p,q) supersymmetry and discuss their isometry symmetries. In
Section 5 we review the geometry and the extended superspace formulation of the sigma
mode! with the usual (2,1) supersymmetry. An extended superspace formulation of the
sigma model with twisted (2,1) supersymmetry is given in Section 6. In Section 7 we
discuss the various possible N= 2 sigma models and in particular give superspace
formulations of the pseudo-Kahler sigma models with or without torsion. We summarise
the results in Section 8, and close with some remarks on a reformulation with ‘double
numbers'.

2. Superalgebras and super spaces

In two-dimensional Minkowski space, the global supersymmetry agebra of type
(p,q) was defined in Ref. [2]. There also exists atwisted form of this algebra[1] and the
general caseis

{QL.Ql}=29"P,, {Q'.QY}=29""P_, {Q..Q’}=0, (1)
where Q', 1=1,...,p, are the p positive-chirality supersymmetry charges, Q'
I"=1,...,q are the q negative-chirality charges and +,— are chiral spinor indices; our
superspace conventions are as in [24]. The supercharges Q_ are 1-component Majo-
rana—Weyl spinors which, in our conventions, are real, Q} = Q,. Consider the
right-handed superalgebra generated by the Q' . In the conventional (untwisted) superal-
gebra of [2], n'? = 8", while in the general case »'? in (1) can be an arbitrary
symmetric matrix. If invertible, it can be brought to the form

u 0 2
0 -1, (2)
with u+t=p. Then Q! for I =1,...,u are normal supersymmetries that square to
P, while Q\ for I=u+1,...,p are twisted supersymmetries that square to —P_,
and we refer to the superalgebra as being twisted. This can be generalised further to
alow non-invertible metrics
1, 0 0
nv=10 -1, O (3)
0 0 O

v
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with v zeroesaswell as u +1'sand t —1's (t+ u+ v = p); there would then be v
nilpotent supercharges Q! for =u+t+1,...,p (i.e. Q= 0). Note that for e.g. the
twisted (2,0) algebra, the supercharges Q= Q' + Q2 are each nilpotent, (Q*)? =

but they do not anti-commute with each other. It would be interesting to study the
cohomology associated with such nilpotent supercharges. The discussion of the left-
handed superalgebra generated by the Q' is similar, and there are corresponding
expressions for »'"Y" with p and q interchanged.

The above can be extended further to allow central charges Z'?" with

{Q}.Qr}=2", (4)
or vectorial charges X!?, XY with
{QL.Ql}=x¥,  {Ql.Qr}=x"7, (5)

but this will not be discussed further here.

Twisted superalgebras are possible in higher dimensions also; for instance the
ten-dimensional type Il * string theories related by timelike T-duality to the usual type Il
superstring theories have twisted 11A or |1B superagebras in ten dimensions [5].

It is straightforward to introduce a superspace for the general ( p,q) superalgebra (1).
There are two real bosonic coordinates ot =o'+ 02, 6" =0'— o2, p rea positive-
chirality Fermi coordinates 6," and q rea negative-chirality Fermi coordinates 6, . The
supersymmetry generators

QI — d _iTIlJ0+ d QI’=i_|nIJ0 d (6)
Toaey Yoot - Voot

satisfy the superalgebra (1); the corresponding supercovariant derivatives are

d .0 .0
in'%; D' = — +in"%; —, (7)

DI i)
e do* T o6, do*

and satisfy the anticommutators

{D\,Dl}=2in's,, {D!,DY}=2iy""9_, {D\,D"}=0. (8)

For Minkowski world-sheets, there are one-component Majorana—Wey! spinors, but

for Euclidean signature there are no Majorana—Weyl spinors, so the analysisis different.
A Dirac spinor

L
o= ( o ) (©)

has two complex components . One can impose a Majorana condition (i, )" = ¢_
or a pseudo-Magjorana condition (¢, )* = —_, or aWeyl condition ¢, =0 or y_=0;
there are thus various types of minimal spinor with two real components, but none with
one component.

There are then various types of superalgebras in two Euclidean dimensions. There is
a(p,q) algebrawith p right-handed Weyl supercharges with complex components Q'
and q left-handed Weyl supercharges with complex components Q' , and the superalge-
bra is again (1), but with all charges complex, and P, =P, +iP,. For N Mgjorana
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spinors Q), 1=1,...,N, the general algebra (without central charges or extra vector
charges) is
{QLQ}=M"P,(y#C)ap + NP, (y**C) 4, (10

where C is the two-dimensional charge conjugation matrix, the y* are two-dimensional
Dirac matrices, y3=iy%?! and M", N" are some symmetric matrices. The matrix
M"Y can be taken to be diagonal with eigenvalues +1,— 1 and 0, asin (3). This can be
obtained from the (N,N) algebra with N left-handed and N right-handed Weyl
supercharges by imposing the Majorana condition (Q')* = Q" , with M7 = 1(n"7 +
n'"Y) and N = 1(n'? — n"?). For pseudo-Majorana supercharges, the result is simi-
lar. The general (N,M,r,s) superalgebra with N Majorana supercharges, M pseudo-
Majorana supercharges, r right-handed Weyl supercharges and s left-handed Weyl
supercharges can be obtained from the ( p,q) superalgebrawith p=N+M+r, g=N
+ M + s, by imposing the Majorana condition (Q')* =Q" for I=1"=1,...,N and
the pseudo-Majorana condition (Q')* = —Q" for I=1"=N+1,...,M + N. Thus all
cases are contained in the Euclidean ( p,q) algebra, and much of the analysis of the
Minkowski ( p,q) models carries over to the Euclidean ( p,q) theories; in particular, the
Euclidean ( p,q) superspace has two complex bosonic coordinates o *= o' +ic?, p
complex positive-chirality Fermi coordinates 6," and q complex negative-chirality ones
6y, with supercharges and derivatives again given by (6) and (7).

3. (p,q) Sigma models with general target space signature

We now turn to the construction of non-linear two-dimensional sigma models with
twisted or untwisted ( p,q) supersymmetry on target spaces of arbitrary signature.

It is convenient to first consider the (1,1) supersymmetric sigma model with
superspace action [24]

Sy :fdzo' de” do—[gij(d’) + bij(¢)] D,¢'D_¢J, (11)

where the ¢' are superfields which can be viewed as coordinates on some D-dimen-
sional manifold M with metric g;; and torsion 3-form H given by the curl of the
antisymmetric tensor by,

3

H ik = 23[|b]k] (12)
The action (11) is invariant under (1,1) supersymmetry, general coordinate transforma-
tions on the target manifold M and antisymmetric tensor gauge transformations

5, (13)

[' J]

This model will be conformally invariant at one loop if there is a function @ such
that

R — V,V,@— HV, @ =0, (14)
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where R{[") is the Ricci tensor for a connection with torsion. We define the connections
with torsion

1 = { ) = i (15)

where { jik} is the Christoffel connection, and the corresponding covariant derivatives
vV (£), The curvature and Ricci tensors with torsion are
Rm)k — aiFJ_I(Jr)k _ ajrilu)k + E$n+)k1~“(+)m _ Fjr(n+)kr”(+)m, R(”Jr) — RE;j)k_
(16)
Eq. (14) can be obtained by varying the action

S=dexe24’M(R—%H2+4(V<p)2 . (17)

We now seek the conditions on the target space geometry under which the (1,1)
superspace action (11) is invariant under extra supersymmetries, generalising the
analysis of Refs. [2—4,25] to arbitrary signature and giving a superspace derivation of
the results of Ref. [1]. If there are p— 1 right-handed and q— 1 left-handed extra
supersymmetry transformations, then they must be of the form

8¢'=&'T!,,,;D, ¢’ +e" T ,D_¢’ (18)
for some tensors (T,,,)}, (T, r)I with r=1,...,p—1and r'=1,...,9— 1. Invari-
ance of the action (11) requires that the tensors T('+)r T T . satlsfy

gkiT(k+)rj + gij(lﬁr)ri =0, gkiT(li)r’j + 0T (7)r’i =0, (19
and

Vk(Jr)T(iﬂrJ =n ( )F/l =0. (20)
If the supersymmetry transformations (18) are to satisfy a superalgebra, which may be
twisted or untwisted, then the matrices T, ., and T,,_, must satisfy anticommutation
relations of the form

{T(-t—)r’T(-t—)s} = =27, {T(—)r”T(—)g} = =274, (21)

for some metrics %', n"°. In addition, the generalised Nijenhuis concomitants
A(TLTS) and (T, TS) must vanish. For any (1,1) tensors T, and T, the generalised

Nijenhuis concomitant is defined by [26]
M(TI!TZ)iik = Tllj‘9 T — Tid, Tzij - Ty ‘9jT2|k - Ty 8szlj +(1-2) (22)

so that .#/(T,,T,) = #(T,,T,) and #(T,,T,)j is antisymmetric in the indices j,k. Then
2/(T,T) = (T) is the usual Nuenhmstensor of T,

ij(T) TT[le] TT[I 11" (23)
The condition .#(T) =0 implies that T is integrable, i.e. that a coordinate system can
be chosen in which it is constant. However, if there are several integrable such tensors, it
will usually not be possible to choose coordinates in which they are simultaneously
integrable.
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If the above conditions are satisfied, then the supersymmetry transformations (18)
together with the manifest (1,1) supersymmetries satisfy the algebra (1) with

1 0 . 1 0
nu:(o n’s)’ W|J=(0 nr,g)_ (24)

Diagonalising n'S, "%, we find that each tensor T squares to either +1, —1 or O;
those satisfying T2= —1 are complex structures while those satisfying T?=1 are
sometimes referred to as real structures (as in Refs. [27,28]) and sometimes as almost
product structures (as in Ref. [24]).

Consider first the case of the right-handed supersymmetrieswith thetensors T, = T . ...
Each is Hermitean, T;; = —T,;, and covariantly constant with respect to the connection
'™, and so the p— 1 tensors T, must be singlets under the holonomy group % of
'), We will restrict ourselves to the cases in which the holonomy is irreducible. For
signature (m,n), 2 is O(n,m), or a subgroup thereof, as the metric with signature
(m,n) is covariantly constant. There will be a covariantly constant complex structure J,
with J2= —1, if m,n are even, n=2n,,m= 2n,, so that the signature is (2n,,2n,),
and if .Z < U(n;,n,). If there are two covariantly constant complex structures, 1,J, then
K=1J is a third covariantly constant complex structure and the I,J,K satisfy the

quaternion algebra

12=02=K?=-1, N=-J=K, XK=-KJ=I, Ki=-IK=]
(25)

with 1,J,K satisfying SO(3) commutation relations. This requires that the holonomy
group is contained in USp(2m) for Euclidean spaces of even complex dimension
n = 2m (where USp(2m) is compact, with the convention that USp(2) = SU(2); we use
the definitions of groups and their non-compact forms given in Ref. [29]). For spaces of
signature (4n,4m), this requires that the holonomy is contained in USp(2n,2m) (this is
the subgroup of U(2n,2m) preserving a symplectic structure).

For a real structure S satisfying S? = 1, the hermiticity condition implies that the
metric, if it is to be non-degenerate, has to be of signature (m,m), and the holonomy
group has to be in GL(m,R). If there are two real structures, ST with {ST} =0, then
J= ST isacomplex structure and J,ST must satisfy the pseudo-quaternion algebra

J=-1, S=T2=1,
ST=-Ts=-J, TI=-JI=S,  JS=-S=T (26)

with J,ST satisfying S0(2,1) commutation relations, so that there is a pseudo-quater-
nionic structure [27,28]. Similarly, if there is a complex structure J and areal structure S
with {SJ} =0, then T=JS is another real structure and J,ST again satisfy the
pseudo-quaternion algebra (26). The existence of such a covariantly constant pseudo-
guaternionic structure requires that m is even, m= 2k, and the holonomy is in
F(2k,R). If p> 4, thetensors T satisfy an octonion or pseudo-octonion algebra and the
holonomy must be trivial. Similar results apply for the left-handed supersymmetries, the
number of which depends on the holonomy of the connection I" (™).
The currents

1
legy = ET(IJJL i (27)
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generate left- and right-handed Kat—Moody algebras. The right-handed currents j .,
generate an affine SO(2) or SO(3) if there are p=2 or p =4 untwisted supersymme-
tries, and an affine S0(1,1) if p =2 and one of the supersymmetries is twisted, and an
affine SO(2,1) if p=4 and two of the supersymmetries are twisted. In the latter case,
the S0(2,1) Kat—Moody agebra is part of a non-compact twisted form of the (small)
N = 4 superconformal algebra with global limit given by (1), where n'? is the O(2,2)
invariant metric [1].

In the special case in which the torsion vanishes, then I'")=T"() =T and the
number of left-handed supersymmetries is the same as the number of right-handed
supersymmetries, p = g. For (2,2) untwisted supersymmetry the geometry is Kahler, for
(4,4) untwisted supersymmetry the geometry is hyper-Kahler, while for (2,2) twisted
supersymmetry we shall call the geometry pseudo-Kahler, and for (4,4) twisted super-
symmetry we shall call the geometry pseudo-hyper-Kahler. The pseudo-Kahler geometry
shares many of the features of Kéhler geometry; in particular, the metric can in both
cases be given in terms of a scalar potential, as we shall see in Section 6.

4. Extended superspace and isometries

A superspace formulation of the models with twisted (p,q) supersymmetry can be
given in (p,q) superspace using a formalism which generalises that proposed by Howe
and Papadopoulos in Refs. [30,31]. Let

(o, 00.00.6 6 ) (28)
with u=0,...,u, a=u+1,...,p—1and »'=0,....,0, P=v+1,...,q—1(A<u
<p-—1,1<v<g—1 bethe superspace coordinates. The non-vanishing anticommuta-
tors of the flat superspace derivatives D,, and D,,_ are

{Dy,-%-’ V+}=2i8,w1/a+’ {D;L'—’DV'—}ZZiau'V’a—’ (29)
{D/'iJr, ;+}:_2i8ﬁ;5+, {Dﬁ/,,D;r,}=—2i5ﬁ,;,37.

D,. and D,,_ anticommute with the supercharges Q,, and Q,_, while D; , and D, _
anticommute with Q;, and Q; _. The generalised (p,q) non-linear sigma model is
described by a superfield ¢' which is a map from the (p,q) superspace to M. The
chirality constraints [30,31]

Dr+‘Pi=T(i+)er0+§Dj, r=1,...,p—1,

D, ¢'=T ;Do o, rr=1,....q-1, (30)
imply that the (p,q) supersymmetry transformation of either type generated by (Q,,,
Qu-) and (Q;,, Qg _) reduce to the transformations (18) on expanding into (1,1)
superfields.

The twisted or untwisted ( p,q)-supersymmetric sigma model action in the corre-
sponding ( p,q) superspace is then [30,31]

S= —i[fdza'df)ar dé, gijD0+(piD0_qoj

+[d20 dtdeg doy Hi 4, Do, ¢'Dy_ |, (31)
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where the ( p,q) superfields satisfy the constraints (30). If Egs. (19) and (20) hold, then
using the constraints (30) it can be shown that the action (31) is independent of the extra
supercoordinates (6,, 6,,), and as a result is invariant (up to surface terms) under the
non-manifest supersymmetries generated by (Q,,, Q,._) and (Q:,, Qy_).

Now consider ( p,q) infinitesimal superspace transformations of the form

Se' =2 El( o) (32)

with constant parameters A% These will constitute proper symmetries of the sigma
mode! action (31) if the metric and torsion are Lie invariant,

(£9)i;=0, (ZH)iK=0, (33)
and if in addition
%T(-%—)r =‘=7aT(—)r' = 0’ (34)

i.e. the real or complex structures are also Lie invariant. Then the &, are Killing vectors
which are holomorphic with respect to each complex structure, or ‘holomorphic’ in a
generalised sense with respect to each real structure. This implies locally on M that

g;Hijkzza[juk]a' (35)

where u is alocally defined one-form u;, which is determined in every coordinate patch
of M up to an exact Lie-algebra valued one-form. It follows that there are generalised
Killing potentials X(+)ra, X yra Setisfying

gijgaj"_uia (+)r| ]X(+)ra ( )r’| X( )yr'a (36)

forevery r=1,...,p—landr’'=1,...,q- 1L

5. (2,1) Sigma models

In this section we review the (2,1) sigma model with untwisted supersymmetry; the
model with twisted (2,1) supersymmetry will be discussed in Section 6. The geometric
conditions for the (1,1) model to have untwisted (2,1) world-sheet supersymmetry were
first obtained in Ref. [2], and follow from the genera discussion given above. The
manifold must be complex (with dimension D =2n) with metric g;; ; of signature
(2m;,2m,) with m; +m, = n and a complex structure J; which is covariantly constant
with respect to the connection with torsion I"(*) defmed in (15) and with respect to
which the metric is Herm|tean so that J; glka is antisymmetric. Introducing
complex coordinates z“ =(zP)* in wh|ch the complex structure is constant and
diagonal,

. _(5f o)
Ji =i = (37)
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any N-form can be decomposed into a set of (r,s) forms with r factors of dz and s
factors of dz, where r + s= N. The conditions above then imply that the (0,3) and (3,0)
parts of the three-form H vanish and H is given in terms of the fundamental two-form

1 , . -
J=5Jijd¢'/\d¢‘= —ig,pdz* A Z° (38)

by

H=i(d—3)J. (39)
The exterior derivative decomposes in the complex coordinate system as d = d+ d, so
the closure of the three-form H implies

100J = 0. (40)
It follows that locally a (1,0) form k= k_ dz* exists such that

J=i(9k+ dK). (41)

The metric and torsion potential are then given (in a suitable gauge) by

a !

If k,=d,K for some K then the torsion vanishes and the manifold is Kahler with
Kahler potential K and the (2,1) supersymmetric model in fact has (2,2) supersymmetry,
but if dk+ 0, then M is a Hermitean manifold with torsion [2]. The metric and torsion
are invariant under [19]

sk, =id, x+6,, (43)

where x isreal and 6, is holomorphic, dz6, =0, but b, 5 as defined in (42) transforms
as

ob,z=—2i9,95x, (44)

which is an antisymmetric gauge transformation (13) with parameter A, = 2i4, x.

Much of the above structure can be found using superspace methods. We start by
seeking the most general (2,1) supersymmetric sigma model that can be written in a
(2,1) superspace parametrised by o *, 8%, 8%, 8-, where 6" =60, +i6, is a complex
Weyl spinor and the corresponding supercovariant derivatives are

a - gy (9 . a PR
D+=69—++|0+8+, D+= 85"' +|0+6+, D_=‘90—7+|9 Ja_, (45)
so that
{p,.D,}=2i4,, {D,,D }={D, D }=0. (46)

We introduce complex (2,1) scalar superfields ¢*, %= ()" satisfying the chiral
constraint

Ol
h
6

I~
Il

o

|w)
h
Sl

~]]
Il
o

(47)
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The lowest components ¢ *|y-o = z* of the superfields are bosonic complex coordinates
of the target space. The general sigma-model action is [32]

S=ifd20d0+5+d0‘(kaD_qo“—I_<ED_<,_D“) (48)

for some local vector potentias k, (¢®,8%), k(0% &%), which are required to be
complex conjugate if the action (48) is to be redl, k., = (k,)*. Expanding in compo-
nents, the bosonic part of the action is a bosonic sigma model with metric g,z and
torsion potential b,z givenintermsof k by (42), so that we find the geometry described
above. In particular, if k,= 4, K for some scaar K, then the torsion vanishes and the
metric is given by

gaE= 80(63K (49)
so it is Kahler.

The additional geometric conditions under which the model has isometry symmetries
have been analysed in Ref. [19]. There it was shown that the geometry determines the
potentials y and 0 that appear in Eq. (43). The construction of gauged (2,1) superspace
actions was discussed in Refs. [19,20,22].

It will be useful to define the vector

W' =Hj, 313 (50)
together with the U(1) part of the curvature

Clr = R (51
and the U(1) part of the connection (15),

L = I =i = 007, (52)

Note that C;; is a representative of the first Chern class, and that it can be written as
C{")=24,I}{" in acomplex coordinate system. If the metric has Euclidean signature,
the holonomy of any metric connection (including I"(*’) is contained in O(2n), while
if it has signature (2m;,2m,) with m, + m, = n, it will be contained in O(2m,,2m,).
As the complex structure is covariantly constant, the holonomy #(I"(*)) of the
connection with torsion I"*) is contained in U(m,,m,), but it will be contained in
SU(m;,m,) if in addition C{;"> = 0; a necessary condition for this is the vanishing of the
first Chern class.
It was shown in Refs. [4,25,33] that geometries for which

r=o (53)

in some suitable choice of coordinate system will satisfy the conditions for one-loop
conformal invariance (14) provided the dilaton is chosen as

1
&= —Elogldetgagl, (54)

which implies
9D =v;. (55)
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Moreover, the one-loop dilaton field equation is also satisfied for compact manifolds, or
for non-compact ones in which V@ fals off sufficiently fast [1]. This implies that
Z#(I' ™M) is contained in SU(m;,m,). These geometries generalise the Kahler Ricci-flat
or Calabi—Yau geometries, and reduce to these in the special case in which H = 0.
However, they are not the most general solutions of the conditions (14) [1].

The condition that the connection I"*) has SU(m;,m,) holonomy can be cast as a
generalised self-duality condition on the curvature. Defining the four-form

d)ijklz —3J[iij|], (56)
the condition that #(I"*)) € SU(m;,m,) is equivalent to [21]
1
R = 5 GO ™R (57)

For D=4, ¢''"' = — X and this is the usual anti-self-duality condition.
Eq. (53) can be viewed as a field equation for the potential k_, and can be obtained
by varying the action [1,13,14]

S= [d°xldetg,gl . (58)

where g,z is given in terms of k, by (42). This action can be rewritten as

which is non-covariant but is invariant under volume-preserving diffeomorphisms. This
can be rewritten in the classically equivalent alternative form [21]

S =T,[d®xly"*[y'lg, - (D - 4)c], (60)

where v;; is an auxiliary metric, y = dety;; and ¢,T, are (real) constants. In the specia
case of four dimensions, the constant term in the action (60) vanishes and there is a
generalised Weyl symmetry under

Yij = @(X)Vij- (61)

The dualisation of the action (58) was discussed in Ref. [21]. This is achieved by
adding a Lagrange multiplier term imposing the constraint g,z = aaR[—; + dgk,. The
vector potentials k,,k, are then Lagrange multipliers for a certain constraint, and
solving this leads to a dual form of the action [21]. In four dimensions, the dual
geometry is self-dual gravity without torsion coupled to a scalar field, whilein D > 4
dimensions the dual geometry is Hermitean and determined by a D — 4 form potential
K which generalises the Kahler potential of the four-dimensional case. The coupling to
the Yang—Mills fields is through a term K A tr(F A F) and leads to a Uhlenbeck—Y au
field equation J'/F,; = 0 [21].

6. Twisted (2,1) sigma models

Consider now the case of space-time signature (d,d), which was called Kleinian in
Ref. [28]. We start by considering the (2,1) superspace formulation to obtain the
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geometry in a special coordinate system (the analogue of the complex coordinates of
Section 5), then show how the same results can be obtained in a coordinate independent
manner using the results of Section 3. Using the (2,1) superspace introduced in Section
2, we define

0.=60 +6%, 6,=06 -2 (62)

and the supercharges

d 5 d ~ ad 0 d 63
Q.= w0, Yo Q+_K_ e (63)
satisfying the algebra
{Q+!Q~+} =24, Qi = Q~-2¢- =0, (64)
together with the superderivatives
D O i D ’ v 65
= + 1 = ~ + H
T a0t o do* a0t b do* (65)
which satisfy the anticommutators
{p..D,}={D,Db,}=0 {D,,B,}=20.. (66)

Thus the structure associated with 6,6, in the twisted (2,1) case is similar to that
associated with 6,6, in the untwisted (2,1) case, with the important difference that in
the usual case 6,6, are complex and related by (6,)° = 6., while in the twisted case
0,,6, areindependent rea coordinates.

The twisted (2,1) supersymmetric sigma model can be formulated in a twisted (2,1)
extended superspace as follows. First we introduce chiral scalar superfields U® and V&
satisfying

D,U*=0, D,V&=o. (67)

Note that as I5+,D+ are independent real derivatives, we take U%V# as independent
rea superfields. Here «=1,...,nand a=1,...,A for some n,fA. The genera twisted
superspace action is

;D_V7) (68)

S= — [dirdo*di*do(k,D_U" —Kk;
for some independent real vector potentials ka(U“,V&),R&(U“,V&). The corresponding
Lagrangian in (1,1) superspace can be obtained by integrating over 63. Up to a total
derivative term, we find the action

S= /dzadgfde‘[ga3~+ b,5] Dy4uD_v”, (69)
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where u,7 are the lowest components of the superfields U and V. The metric and torsion
potential are given by

Oaj = O K5 + 35K, , (70)

bs = a.ks — 3k, (72)
with g, = b,z = 0. The target space line element is

ds? = 2g,5(u,0) dudi ? (72)

so that 9/0u® and 9/95# are null vectors. If n# fi, the metric constructed in this way
is degenerate in general; we will not consider this case further and restrict ourselves to
the case n = f.

The condition for the torsion to vanish is

(23

Ke=—d,k,  kj=R (73)

for some locally defined potentials «,k. If this is satisfied, then the metric is given in
terms of a scalar potential K = k — k,
%
9as au%uﬁK' (74)
giving a real-structure analogue of Kahler geometry, pseudo-Kéhler geometry.

The same geometry can be obtained using the results of Section 3 as follows. The
(1,1) sigma models with target space signature (n,n) and a covariantly constant real
structure S will have twisted (2,1) supersymmetry with global limit given by the
supersymmetry algebra (1), where 1,J=1,2 and n'J = diag(1,— 1). The holonomy is
Z(I ")) c GL(n,R). The integrable real structure S squares to + 1,

SS=+9. (75)

Twisted (2,1) supersymmetry reguires 3‘ to be covariantly constant with respect to the
connection with torsion I"(*),

7S =0 (76)

and to be antisymmetric
S i TS (77)

As %‘ is integrable (i.e. its Nijenhuis tensor (23) vanishes), there is a coordinate
system in which it is constant and diagonal. Choosing such adapted real coordinates u®,
v® (=12, a=1,2), the rea structure takes the form

_ 8 0
S = 0 - 55 ) (78)
The fundamental two-form is then

1 . ) ~
S= Eded)l/\dd)]: —g,5du* A dv®, (79)
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and the line element takes the form (72), so that d/du® and d/30# are null vectors.
Any N-form can be decomposed into a set of (r,s) forms with r factors of du and s
factors of dv with r + s= N. The exterior derivative decomposes as d = g, + d, where
au: H(r,s) N H(r+1,s) and al!: H(r,s) — H(r,s+ 1)_

Consider first the case in which there is no torsion, H = 0. Then the conditions (76)
and (77) imply that the geometry is given in terms of some locally defined scalar
potential K, and the metric takes the form (74) in adapted coordinates; the sigma model
with this geometry will be considered further in the next section.

If H+ 0, then the conditions (76) and (77) imply that the torsion three-form is given
in terms of the fundamental two-form (79) by

H=(d4,—d,)S (80)
The condition dH = 0 then implies

3,0,S=0 (81)
so that locally there is a (1,0) form k= k_du® and a (0,1) form k= Eg dv? such that

S=g,k+ a k. (82)

The potentials k,k are independent real 1-forms. The metric and torsion potential are
given, in a suitable gauge, by Eq. (71), so that

H=4,,(k+Kk). (83)

If the condition (73) holds for some locally defined potentials «, &, then the torsion
vanishes and

S=9,0,(Rk— «), (84)

so that (74) is satisfied with potentiadl K = & — k. We thus recover the results obtained
from extended superspace; the extended superspace approach gives the general solution
to the geometric constraints immediately, without having to integrate differential equa
tions.

If H=0, then the curvature two-form is a (1,1) form and the only non-vanishing
components of the curvature are R, 5. It follows that the Ricci tensor R,; is
proportional to C,; and is given by

R.; = d,9;logldet g, 51 (85)

with R, = 0. Thus the Einstein equation R;; = 0 is equivalent to demanding S.(d,R)
holonomy and gives, with a suitable choice of coordinates,

detg, ;=1 (86)
which is a Monge—Ampeére equation for K,
% .
det K|=1. 87
au*aph (87)

If H =+ 0, then the metric and torsion are preserved by the gauge transformations

Sk,=d x+6,,  Sky=—a x+ 6, (88)
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where 36, = g, 5& = 0. In anaogy with Egs. (50), (51), (52), it is useful to define the
vector

W, = H,;, S (89)
together with the GL(1,R) part of the curvature

& = SR (%0)
and the GL(1) part of the connection (15),

R L (91)

For Kleinian signature (n,n), the holonomy of the connection I"*) is contained in
GL(n,R). It will be contained in SL(n,R) if in addition C{"> = 0.
If H =0, the condition (53) of the complex case is replaced by

fio=o (92)

and this implies that the one-loop field Eq. (14) is satisfied, provided the dilaton is
chosen as in (54). Furthermore, the condition (92) implies C{"’=0 and so the
holonomy isin S.(n,R).

The field equation (92) can be obtained from the action (59), but where now the
metric is given by (70) in terms of the potentials k, k corresponding to the real structure
S and it is these that are varied to give the field equation (92).

The real 1-form potentials k, k can be dualised in the same way as in the complex
case to obtain a new form of the dua action as well as the dual of the real geometry
presented above. The first step is to add to (58) a Lagrange multiplier term of the form

%/KQE( (O 00(%;— 3[;ka). (93)

Eliminating A*# from the resulting action, one recovers the action (58) subject to the
constraint g,; = 9,k + g;k,. Integrating over the vectors k,, k; instead yields the
constraints

9,Af=0, gAf=0 (94)
which in four dimensions are solved locally in terms of a scalar K by

Aob = [oB (95)
where L% is the *field strength’ of K given by

[*f = e«rP2 g ;K (96)

and €7 is the antisymmetric tensor density (with €122 = 1). .
The solution (96) implies that the pseudo-Kahler metric G, ;= d, K satisfies the
constraint

detG, ;= —1 (97)
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for signature (2,2), or detG,;= +1 for signature (4,0). Writing G,;=n,5+ 9, % &
where 7,5 is aflat background metric, the analysis of Ref. [21] then leads to the dual
D =4 action

1 . . .
f 05+ —- G A 03 + ] VG G*A, (g5 0 (98)

for some scalar (2. Thus the dual geometry in four dimensionsis areal form of self-dual
gravity without torsion determined by the potential K coupled to the harmonic scalar (2.
The generalisation to dimensions D > 4 is straightforward, and the results are analogous
to those obtained in Ref. [21] for the complex case.

7. (2,2) Supersymmetric sigma models

If the (2,2) supersymmetry closes off-shell, the sigma model can be formulated in
terms of off-shell (2,2) superfields. For the usual untwisted (2,2) supersymmetry, we
introduce the complex superspace coordinates z* (¢ =1,...,d;), 6,, 0_ together with
the supersymmetry generators and supercovariant derivatives

d d
Q.= P i0t9,, Q.= prai 07 0_ (99)
and
I o
D+=36_++|0 a,, D_=80T+|9 a_. (100)
One can either introduce chiral superfields U¢, U? (a,B=1,...,d,) satisfying
D,Uu“=0, D,Uf=0, (101)

or twisted chiral superfields V', VI (i,j = 1,...,d,) satisfying the constraints

D,vi=0, D.V=0, DVi=0  D,Vi=0. (102)
The action for the Kahler sigma model is

S= [d%r d9K(U.D), (103)
where K is the Kahler potential, so that the metric is given by Eq. (49). The action and
metric are invariant under the Kahler gauge transformations

SK=f(U) +f(U). (104)

The action [24]
S= [dr d9K(UTVV) (105)

defines a supersymmetric non-linear sigma model with torsion on a target space of
complex dimension d; + d, with coordinates x* = (u,U,v,0), where u, T, v and v are
the lowest components of the superfields U, U, V and V. The action (105) is invariant
under generalised Kahler gauge transformations

SK=1(UV) +f,(UV)+f(UV)+f,(UV). (106)
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The bosonic part of the component sigma model action is
1 2 v af v
S= E/d (G 8 XH9°X” + b, €% 3, X4 g5 X", (107)
where the metric g, and the torsion potential b,, are given by

9.5=Kep:  Gi7=—Kij,  by=K,,  bp=Kz. (108)

All other components of g,, and b,, not related to these by complex conjugation or
symmetry vanish, and K, =, denotes the partial derivative g, ... 9, K. The geometry
is that of a Hermitean locally product space with two commuting complex structures
J(£)#_In the special case in which either d, = 0 or d, = 0, the torsion vanishes and the
target space is Kahler.

For twisted (2,2) supersymmetry with the superalgebra (1), we introduce the real
superspace coordinates z*, 6., 0,, 6_, 6_ together with the supersymmetry generators
and supercovariant derivatives

- -
Q=gr ~ 0% Q=g 00,
Q.= f —6%9 0. = f -6 (109)
90" o T B
and
d v .
D+=66—++0+8+, D_=30_7+0 a_,
5. 4o 5 -2 oo (110)
Tt i T -

One can either introduce superfields U<, U# satisfying the constraints

D,Uf=0, D U*=0, D,u*=0, D Uf=o, (111)
or superfields V', VI satisfying the twisted constraints

D.,Vi=0, D Vi=0, D,vi=0, D.V'=0. (112)

The pseudo-K3hler sigma model action is then
S= [d?xd% dH K (U,0). (113)
The action, metric and torsion are left invariant under the pseudo-Kahler transformations

SK=f(U) +f(U). (114)
The action

S= [d% d% dBK(U,UV.V) (115)
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defines a supersymmetric non-linear sigma model with torsion on a target Space of
dimension 2(d, + d,) with coordinates x* = (u,l,v,0), where u, [, v and 7 are the
lowest components of the superfields U, U, V and V. The action (115) is invariant under
generalised pseudo-Kahler gauge transformations

SK=f,(UV) +f,(UV) +f(UV) +f,(UV). (116)

The bosonic part of the component sigma model action is again given by (107),
where the metric g,,, and the torsion potentia b,, are given by

gaé:Kaﬁv gij~: _KijNI bar: KajN’ bIEZI<IB~ (117)

All other components of g,, and b,, not related to these by ‘red’ conjugation or
symmetry vanish. The geometry is that of a rea localy product space with two
commuting real structures S\*)*; see Ref. [24] for details. In the special case in which
either d, = 0 or d, = 0, the torsion vanishes and the target space is pseudo-Kahler.

The metrics and torsion potentials (49), (108) and (117) will define consistent string
backgrounds if the corresponding sigma model is conformally invariant. For the Kahler
model, this will be the case if the metric is Ricci-flat or equivalently if the curvature is
self-dual (or anti-self-dud), i.e.

1
* R,u.l/p(r = 2 }Z\Ij R/\Tp(f = R,uvprr . (118)
There are also generalisations of these self-dual solutions to the condition for one-loop
conformal invariance with non-trivial dilaton, some of which were discussed in Ref.
[23].
The sigma model with action (105) was shown in [4] to be one-loop conformally
invariant provided the U(1) parts of the two curvature tensors R\) vanish,

C(#) =0, (119)

so that both connections I'*) have SU(d, + d,) holonomy and the first Chern class
vanishes; see [34] for a discussion of higher loops. For the twisted case with action
(105), the condition for one-loop conformal invariance is that both connections I"(*)
have U(d,,d,) holonomy.

Similarly, for the pseudo-K3ahler sigma model with action (115), one-loop conformal
invariance will hold provided the GL(1,R) parts of the two curvature tensors (defined as
in Eqg. (90)) vanish,

) =o. (120)

If this condition holds, then both connections I"*’ will have SL.(d, + d,,R) holonomy.

In Refs. [36,37] it was argued that all sigma models with the usual (2,2) supersymme-
try can be formulated in superspace using chiral, twisted chiral and semi-chiral [38]
superfields. Semi-chiral superfields have twice as many components as chiral or twisted
chira ones, haf of which are auxiliary. Here we note that a real analogue of the
semi-chirality condition can be imposed, viz.

D+Woz=0’ 6+VT/[§=O, D7)2J=0, 6,>‘ZJ=0 (121)
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This leads to a straightforward generalisation of many of the results of [36,37] to twisted
(2,2) supersymmetric theories.

8. Summary and discussion

To summarise, the usual supersymmetry algebra of type (p,q) can be generdised to
include the possibility of twisted heterotic supersymmetry, as in (1) and (2), and a
superspace for this can be defined. The geometry of the heterotic sigma models which
realise this algebra is a generalisation of Kahler geometry with torsion, or a further
generalisation involving real structures sguaring to + 1.

A superspace formulation of the supersymmetric non-linear sigma models with
untwisted or twisted (p,q) supersymmetry was given in Section 3 in a formalism in
which (1,1) supersymmetry is manifest. For such sigma models, more general isometries
of the form (32) can be considered, where the vectors &, are Killing vectors which are
holomorphic with respect to each complex structure, or ‘holomorphic’ in a generalised
sense with respect to each real structure. The gauging of such isometries can be obtained
from a straightforward extension of the results of Refs. [30,31,35].

The results concerning the amount and type of supersymmetry that can be realised
can be summarised in terms of the holonomy group of the connection with torsion. The
various possihilities, which depend on the signature of the target space, are listed in
Table 1.

For example, in the case of target spaces of Kleinian signature (d,d) with a single
real structure, the holonomy group is contained in GL(d,R) and the model has twisted
(2,1) supersymmetry. The geometry generalises that of the usual (2,1) sigma model: in
particular, the metric and torsion potential are given by (70), (71) where k and k are
independent real forms. This model can be formulated in superspace as shown in
Section 6. Sigma models with untwisted or twisted N = 2 supersymmetry can also be
formulated in superspace, and this leads to new pseudo-Kahler (without torsion) and
twisted pseudo-Kahler (with torsion) sigma models whose geometry is determined by a
scalar potential analogous to the twisted Kahler potential of Ref. [24]. If the torsion
vanishes, then the twisted (2,1) supersymmetric model reduces to the pseudo-Kahler
model. These real models are listed in Table 2.

It is remarkable how much of the geometry based on a complex structure J carries
over to the case of a real structure S Instead of using complex numbers, it is useful to

Tablel
The relation of right-handed supersymmetry to the holonomy of the connection with torsion I"(*). We give
the type of target space geometry for the case in which the torsion vanishes

Target signature Holonomy of I"(") Geometry when torsion-free Supersymmetry
(d;,dy) 0o(d,,d,) no restriction (G0
(2n;,2n,) U(n;,n,) Kahler @D
(4m;,4my) Usp2m;,2m,) hyper-Kahler 41

(2n,2n) GL(n,R) pseudo-Kahler twisted (2,1)

(4m,4m) S2mR) pseudo-hyper-Kahler twisted (4,1)




M. Abou Zeid, C.M. Hull / Nuclear Physics B 561 (1999) 293-315 313

Table2

Geometry, superfields and supersymmetry of some sigma models with real target spaces
Target geometry Superfields Supersymmetry
real with torsion Ua ,\7(2,1) twisted (2,1)
pseudo-Kahler U(z,z),l](z,z) twisted (2,2)
twisted-pseudo-K ahler Uz.z)Vio.2) twisted (2,2)

introduce double numbers in this context [28]. These are based on a rea unit e which
satisfies
e?=+1 (122)

instead of the usual imaginary unit i satisfying i2= —1. It is useful to define a rea
conjugation taking e > —e, so that (x + ey)* = x — ey for real numbers x,y.

For example, consider the formulation of the twisted (2,1) sigma model of Section 6
using double numbers. The real structure S takes the form

_ 8 0
i — ; 123
S=¢l, _ o (123)
in an adapted coordinate system. The fundamenta two-form is then
1 . _ ~
S= EdezzS'Aqu': —egal;du“/\duﬁ. (124)
If H= 0, the torsion is given in terms of the fundamental two form by
H=e(g,—9,)S (125)
The closure of H then implies
ed,0,S=0 (126)

and the geometry is given, in a suitable gauge, by Egs. (70)—(83). The metric and
torsion are preserved by the gauge transformations
Sk,=ed x+6,, Ok;=—edx+ 05, (127)

where 4;6, = 9 5& = 0. The superspace action is
S= —e[d%do*di*do(k,D_U*—k; D_V7), (128)

where the superfields U<, V4 are chiral with respect to the superderivatives
d ~ 0 ~ d d
D+=66—++e9+ Pyt D+=60ﬁ+e0+ Pyt (129)
If the twisted (2,1) superspace action (128) is required to be real self-conjugate with
respect to the conjugation e > e* = —e, i. e. if

S=5*, (130)
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then we find that the potentials k and k are real conjugates,

k=k". (131)
This is the generalisation to the double numbers of the reality condition
S=¢S* (132)

on the action (48), which implies that k= (k)*; in turn, this implies hermiticity of the
metric and antihermiticity of the torsion potential given in (42). For the general models
we have discussed, the condition (132) does not hold, the potentials k and k are
independent and the action is not real self-conjugate.

Setting e = 1, the formulations of previous sections are recovered, but introducing e
is a useful book-keeping device. In particular, it leads to the introduction of the rea
conjugation operation, and makes the structure similar to that of the complex case.
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