
ELSEVIER Nuclear Physics B 559 (1999) 184-204 

www.elsevier.nl/locate/npe 

Three-graviton scattering in M-theory 
R o b e r t  He l l i ng  a,1, Jan P l e fka  a,2, M a r c o  Se rone  b,3, A n d r e w  Wald ron  c,4 

a Albert-Einstein-lnstitut, Max-Planck-lnstitut ~ r  Gravitationsphysik, Am Mfihlenberg 5, 
14476 Potsdam-Golm, Germany 

b Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 
1018 TV Amsterdam, The Netherlands 

e NIKHEE P.O. Box 41882, 1009 DB Amsterdam, The Netherlands 

Received 1 June 1999; accepted 30 July 1999 

Abstract 

The leading eikonal S-matrix for three-graviton scattering in d = 11 supergravity and Matrix 
theory are shown to precisely agree. The result unifies the source-probe plus recoil approach 
of Okawa and Yoneya and relaxes the restriction imposed by those authors that all D-particle 
impact parameters and velocities are mutually perpendicular. Furthermore, the unified S-matrix 
approach facilitates a clean-cut study of M-theoretic R4 curvature corrections to the low energy 
supergravity effective action. In particular, the leading 7~ 4 correction to the three-graviton S-matrix 
is computed and compared to the corresponding next to leading order two-loop U(3) amplitude 
in Matrix theory. We find a clear disagreement of the two resulting tensor structures. © 1999 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

According to current thinking, the various known string theories should be regarded 
as appropriate limits of a more fundamental eleven-dimensional theory, referred to as 
M-theory [ 1 ]. The cornerstone of our present understanding of M-theory is that its 
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low energy effective action ought be d = 11 supergravity [2]. It has been proposed, 

however, that the quantum degrees of freedom of light-cone M-theory are captured 
by a supersymmetric quantum mechanical U(N) Yang-Mills model, known as Matrix 
theory [3,4]. In practical terms this has meant that a large body of research has been 
devoted to comparing quantities computed via Matrix theory with those in d = 11 
supergravity. In particular, at the level of comparing phase shifts for eikonal scattering 
of gravitons [5-7] along with the complete tree level t-channel (2 ~ 2) graviton and 
antisymmetric tensor S-matrices [8,9], impressive agreement has been found. It has also 
been possible to successfully compare the conserved currents of the two models [ 10]. 

Nevertheless, it should be noted that computations to date have only managed to 
show the equivalence of one and two-loop computations in a relatively simple quantum 

mechanical model with what amounts to tree level supergravity. Therefore, the capability 
of the Matrix theory to uncover genuinely new physics seems somewhat limited. This 
is the main question we shall address in this paper, that is whether the model serves as 
a tool to study quantum corrections to the supergravity action. To this end it is clearly 
of central importance to determine the exact nature of the proposed correspondence. 

The first issue is to identify the correspondence between the states of the two theories. 
Indeed, one of the motivations for the original conjecture [3] was the realization that the 
one-dimensional super Yang-Mills model possesses asymptotic excitations that behave 
as supergravitons of eleven-dimensional supergravity. This correspondence was refined 
in [ 11 ] where explicit asymptotic wave functions of gravitons, antisymmetric tensors 
and gravitini were found in the quantum mechanical model. Following the lines of [ 11 ], 
it has been possible to find a formalism to compute eikonal scattering amplitudes for 
these excitations in Matrix theory [8,9]. In this article we apply this method (which 
we often refer to as the Matrix theory LSZ formalism) to multi-particle scattering. In 
particular, we consider three-graviton amplitudes (studied already extensively within an 
eikonal phase shift framework by Okawa and Yoneya [7,12] ). 

The motivations for this computation are twofold. Firstly, given the agreement found 
in [7] for this process, such a calculation provides both a detailed test of our approach 
and at the same time verifies their work. Actually our formalism will provide not only 
a check of the results of [7,12], but also an extension and unification of them. In 
particular, we have been able to drop the restriction made by [7] that all D-particle 
velocities and impact parameters are mutually perpendicular. Furthermore, in a direct 
comparison of scattering amplitudes, there is no need to distinguish between recoil and 
non-recoil terms, as long as one sums over all the Feynman diagrams in the theory, 
including, in particular, the one-particle reducible graphs. Our result constitutes the 
complete agreement of t-channel three-particle spin independent S-matrices in Matrix 
theory and tree level supergravity. 

The second motivation of our computation arises from the observation of [ 13] that 
the next to leading term in the two-loop effective action of Matrix theory, which is of 
order v8/r 18 (in relative velocities and distances between the supergravitons), has the 
correct scaling to match the first correction to graviton scattering induced by higher order 
"]"~4 curvature corrections [ 14] to d = 11 supergravity. Although this observation origi- 



186 R. Helling et al./Nuclear Physics B 559 (1999) 184-204 

nally concerned two-graviton scattering, we stress that two loops in the Matrix theory 
corresponds generically to three-particle interactions. Two-particle scattering arises then 

only as a sub-case in which the momenta of two of the three particles are identified. 
A genuine three-particle scattering computation involves a wide array of kinematical 

invariants and therefore allows a detailed comparison of the tensorial structures of am- 
plitudes in the two theories. Thanks to the absence of lower order R2 or R3 couplings, 

the correction to the eikonal three-graviton scattering in d = 11 supergravity induced by 
the M-theoretic ,~4 term is easily computed via Feynman diagrams and takes a rather 
simple form, as we will see in what follows. 

We should remark that this question has been studied before in the context of two- 
graviton scattering [ 15] where it was found that while the scaling dependence in v, r, 

the Planck mass M and the compactified radius R is indeed correct, there is however 
a mismatch of factors of N. In principle one may be content with this mismatch but 

a number of questions remain open. In particular one might think that the simple 

introduction of the factors of N in what really amounts to an N = 2 calculation in [ 15] 

is somewhat naive since it does not take into account bound state effects. This is reflected 
in the fact that we have no control over the Matrix theory LSZ procedure for two or 
three-particle scattering for arbitrary values of N, essentially because the ground-state 
Matrix theory wavefunction is still unknown 5. From the viewpoint of the finite N matrix 

conjecture of Susskind [4], however, we are no longer subject to such a restriction. Is 

it then possible to find a stronger and more conclusive test? We believe that a detailed 
comparison of tensorial structures of the three-graviton amplitudes of the two models 

provides such a test. In addition the above-mentioned precise and complete agreement 
found for 3 --* 3 graviton scattering at leading order to be presented, gives one great 
confidence in our methods. 

The results of our analysis show a definitive disagreement between the next to lead- 

ing Matrix theory and quantum corrected supergravity amplitudes. We find different 
tensorial structures in the amplitudes of the two models, thus ruling out the proposed 
correspondence of 08 two-loop Matrix theory and "~'~4 corrected supergravity. 

The outline of the paper is as follows. We present our supergravity computation 

of eikonal three-graviton scattering at leading order in subsection 2.1 and include the 
T~ 4 correction in subsection 2.2. In section three we turn to Matrix theory, where we 
compute the leading S-matrix contribution to three-particle scattering; in section four 

we expand this amplitude to obtain the next-to-leading v 8 term. In the conclusions, we 
present the possible viewpoints explaining the mismatch we have found. 

5 Progress towards understanding at least the asymptotics of the ground-state wavefunction may be found 
in [16,17]. 
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2. Three-graviton scattering in d = 11 supergravlty 
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2.1. Computation o f  the leading (tree-level) S-matrix 

By definition M-theory at low energies is eleven-dimensional supergravity [2], whose 

bosonic sector is given by the action 

g V/'Lg ( FMNea ) 2 

v5 
123t¢~1 eMI"''M'I FM' M:M3M4 FMsM6MTM8 CggMlogl,  , ( 1 ) 

where FMN~ = 4atMCNeQI, g = detgMN and M = 0 . . . . .  10. tq, is the eleven- 
dimensional gravitational coupling constant. Perturbative quantum gravity may be stud- 

ied by considering small fluctuations hMN around the fiat metric rlMN, i.e. gMN = 
~IMN 3 KII hMN. After employing the harmonic gauge aN hNM -- (1/2)cgMhNN = 0, one 
derives the graviton propagator 

i /2  (~TMV TINQ + ~7M9_ ~NP -- ~ rlMN ~IPQ) • (2) ( h M N ( k ) h ~ ( - k ) )  - k 2 + ie 

We want to study three-graviton scattering at tree level. At this order, as can be easily 
seen from the supergravity action ( 1 ), the only contribution comes from the pure gravity 
sector, that is the Einstein-Hilbert term. In particular, in our computations we shall need 
the three-graviton and four-graviton vertices arising from its expansion. These are rather 
lengthy expressions and may be found in [ 18]. 

We consider now the elastic scattering process 1 3 2 3 3  ~ 1 ' 3 2 ' 3 3  ~ of three gravitons 
into three gravitons and concentrate only on the terms in the amplitude proportional to 

(hi • htl) (h2. h i)  ( h 3 - h l ) ,  (3) 

hi being the external transverse graviton polarization tensors and (hi • h~ ) =_ h'~nh'~ n. 

The eleven dimensional momenta are conveniently parametrized in a light-cone frame 
M =  ( + , - , m )  as 

Pi = -½ v i - ~ ' ) 2  1 v i -  , p [=  -½ v i + ~ ,  1 v i +  (4) 
2 1  . . . . .  

where p~ = 0 = p[2 and i = 1,2, 3, using a vector notation for the SO(9) indices 

m = 1 . . . . .  9. Note that we are considering only processes with zero compactified q_ 
momentum transfer between in-going particles i and outgoing ones i'. Conservation of 
transverse momentum and energy implies 

ql  3 q2 + q3 = 0 ,  Vl " q l  + V 2  • q2 + v3 • q3 = 0 .  ( 5 )  

Moreover we will study the amplitude in an eikonal limit. To be precise this means 
we keep only terms with at least a double pole (1/(q~q~) and permutations). Terms in 
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Fig. 1. The Einstein-Hilbert graphs, (a) V-type, (b) Y-type and (c) "re-scattering" graphs. 

which this minimal pole structure is cancelled represent contact interactions and cannot 
be reliably computed in the eikonal Matrix theory framework we present here. At tree 
level there are then only the three types of diagrams of Fig. 1 up to permutations of the 
external legs. 

The straightforward but tedious evaluation of these graphs was performed with the 
help of the computer algebra system Form [ 19]. There are three diagrams of V-type 
(a) yielding 

Av = 2 q2 + q2 + qZ 3 2 2 2 ~2~2-2 0120231931 + O(V5 q-3) , (6) 
t/l t/2t/3 

where we suppress the terms of higher order in vi and lower order in qi. Similarly, there 
is only one Y-type graph (b) that can be written as follows: 

1 
= + q3) V12U231331 ' 

Ay q2,.,2q2 [(q2 + q2 2 2 2 2 _ ~o2] + (.0(05 q-3) (7) 
1~/2 3 

where 

T =  v12+ +v22ql v31) • (8) (v23 q2" v21 q3" v23 • 

Notice that the combination T --~ sgn(Tr) T under any permutation ~" of the labels 1, 2 
and 3. In particular it is then invariant for cyclic permutations of the three labels. Finally 
we have the contributions of the six re-scattering graphs (c): 

l { UI2023U31 Ar = q2 q2 q2 ( ~ + q2 + q] ) 2 2 2 
1 2 3  

_ 1 (qlUl2U31 2 [ (  q-~Ul2Ugl • +  +cyclic + o ( v S q  -3) (9) 
L \  q 2  • v , 2  

where cyclic indicates the two cyclic permutations of the labels 1, 2 and 3. Summing 
these three diagrams up one obtains the final result for the eikonal three-graviton am- 
plitude: 6 

~ [ (  ) (q 'v '2v3 ' )  " ] }  q~___Vl2V31 1 q22 :'~12 + cychc + O(v5 q-3) 
1 ~ 2  2 2  2 2 2  2 2 

• ~EH :- ~ + ~'~ + "~ 
1~2~3 ~ [k  q2 • v12 

(10) 

6 Throughout this paper, we discard the overall coefficients of complete amplitudes. 
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Fig. 2. The 7~ 4 graph with the 7E 4 vertex inserted in the middle. 
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As discussed in the Introduction, we deliberately omitted the N-dependence in the 

formulae above, because we have complete control of  our LSZ matrix theory procedure 

for Ni = 1 only. Anyway they can be easily reintroduced with the net result that (10) 

takes an overall factor of  NIN2N3,  where Ni is the p_  momentum of the graviton i and 

where we normalize each external leg with a factor of  1/v/-~/. 

2.2. The t8 t8 R 4 contribution 

In this subsection we will compute the leading correction, in a small velocity and 

momentum transfer expansion, to the eikonal three-graviton scattering involving the 

higher derivative 7E 4 term. 

It has been conjectured in [ 14] that the eleven dimensional supergravity action should 

contain a ~4  term, whose form in uncompactified eleven dimensions is 

where 

~.2 f "7 2/3 d l l x v / - ~ t 8 t 8 ~ 4 '  
9 . z  Jell 

(11) 

t8 t8 7-~4 tMiM2...Ms .NIN2...N8 ~r~ ---- t8 IX'MIM2NIN2 T~M3M4N3N4 ~M5MrNsN6 ~'~MTMgNTNs" (12) 

The explicit form of  the eight tensor t8 is given, e.g., in Ref. [20] for the ten- 
dimensional case. The tensor t8 entering (11),  (12),  is obtained by trivially extending 

the range of  the indices to include the eleventh coordinate. From a supergravity point of  

view the (linearized) couplings in (11) arise as counter terms coming from a one-loop 

four-graviton scattering [21,22]. In this respect the coefficient in (11) would be UV 

divergent, but its finite value is fixed by requiring consistency with results obtained in IIA 
and liB string theory [ 21 ]. Explicit computations have excluded the presence of  one-loop 

counter terms of  the form 7~ 2 or R3 in d = 11 supergravity. 7 It is then not difficult to 

realize that the first leading contribution to the eikonal three-graviton scattering involving 

the couplings ( 11 ), is the unique graph shown in Fig. 2, that involves the linearized piece 

of  each of  the four Riemann tensors appearing in (12).  Any other possible contribution, 

7 Strictly speaking what has been computed in the literature is the background effective action with back- 
ground fields on-shell in which case the absence of 7~ 2 and 7"¢. 3 curvature corrections has been explicitly 
verified by Fradkin and Tseytlin [23]. However, it is an old result [24] that the S-matrix may be obtained 
from the on-shell background effective action by substitution of an iterative solution to the full field equations 
of the form gC~t ~ = ~MN + "-- where g~MN is an asymptotic field on mass shell depending physical polariza- 
tions (in particular, here we must take A~MN to be an asymptotic scattering solution in a fiat background). In 
practice, this amounts to adding all possible trees to the effective vertices given by (11 ). 
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involving for instance Y-type or re-scattering-type graphs will be either sub-dominant 
in a small velocity and momentum transfer expansion or outside the eikonal kinematical 
regime. We then need to compute only one tree level graph with the insertion of the 
7~ 4 term as shown in Fig. 2 (up to permutations of the external legs). This can be 
most easily done by noticing that the linearized tensorial structure appearing in (12) is 
precisely the same as that obtained by computing four-graviton tree level scattering in a 
theory of pure gravity in any space-time dimension [ 18 ]. 8 By using the results of [ 18 ] 
the computation of the graph in Fig. 2 is then greatly simplified. We find that the result 
for the part of the amplitude with the external polarizations contracted as in (3) and in 
the kinematical parameterization (4), can be written as follows (neglecting an overall 
coefficient): 

2 2 2  } ATz4 = 1 [UI2 U23 q2 + T (ql • VI2)] 2 + cyclic , 
t. 1 3 

(13) 

where T was defined in (8). A clarification is now needed. The result (11), from which 
we computed the graph in Fig. 2 using the kinematics (4), applies strictly to eleven 
uncompactified space-time dimensions. However, the correspondence with Matrix theory 
at finite N requires a compactification on an almost time-like circle [4]. This means that 
we should have first compactified the theory on a spacelike circle and then performed a 
computation analogous to that reported in [21 ], e.g. a one-loop four-graviton scattering 
with two of them, according to Fig. 2, carrying equal and non-vanishing Kaluza Klein 
momentum. This would give the counter term of the form (11) which has the correct 
compactified radius R and Planck constant K11 dependence to match the two-loop Matrix 
theory computation we consider in this article, but also terms with inappropriate R 
dependence, namely the analogs of the ~'(3)/R 3 found in [21] for the case of four- 
graviton scattering with all external legs carrying vanishing Kaluza-Klein momentum. 
To reach the discrete light cone kinematics of (4) one must take the limit R ~ 0, so that 
such additional terms should, in principle, not be neglected. However, our philosophy is 
to study only those terms having the right dependence in the radius R and Planck constant 
Kll to match two-loops in Matrix theory perturbation theory. In particular, (13) does not 
represent the complete eikonal, leading T~ 4 correction at the three-graviton scattering for 
d = 11 supergravity on a circle, but only the terms that have a chance to be reproduced 
by a perturbative two-loop Matrix theory computation involving supergravitons. The 
N-dependence of (13), that we omitted, is easily computed to be globally of order N 5, 
in disagreement with the N 3 dependence arising at two loops in Matrix theory. This 
reproduces indeed the disagreement found in [ 15]. 

8 It should be noted that in this fashion one only obtains the on-shell vertex function. The key observation 
is that in the eikonal and spin-less limit (where one discards terms cancelling the double pole as well 
as contractions of momenta with polarizations) the two a priori off-shell legs entering the 7~ 4 vertex are 
effectively put on-shell. 
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3. Scattering gravitons in Matrix theory 

We now turn to the two-loop Matrix theory calculation, which has been carefully 
computed to leading order by Okawa and Yoneya [7]. We have reconsidered their 
computation and find results in accordance with theirs. Importantly, however, we rectify 
a hole in the original supergravity-Matrix theory agreement presented in [7]. In more 
detail, the technical assumption made by Okawa and Yoneya that all inner products of 
impact parameters bij and relative velocities vii vanish, {b .v} = 0, can be shown to pose 
no restriction for one- and two-particle dynamics. But for three particles it constitutes a 
genuine restriction. We will show that this restriction may be dropped rather easily in 
our framework of comparing S-matrices. 

3.1. The setup 

Let us summarize the Okawa-Yoneya result in our notation. The Euclidean Matrix 
theory action reads (setting the Yang-Mills coupling and compactified radius to unity) 

S =  [ d t t r  [½(DtXm) 2-~[X1 m, xn]Z + ½ ( d / r D t ~ k _ ~ r y m [ X r n , ~ ] )  ] ,  
d 

(14) 

where DtX  m = Ot X m --  i [ A, X m ] and Dt~ =a t¢  - i [A, ~b] ; A, X m and ~b,~ are hermitian 

N × N matrices, (m = 1 . . . . .  9 and a = 1 . . . . .  16). Moreover we employ a real 
symmetric representation for the Dirac matrices Ym in which the charge conjugation 
matrix C equals unity. The background field effective action is computed as an expansion 
of the bosonic matrices X~j around diagonal backgrounds 

Xi~=a i j (bT '+vT ' t )  +Fi~,  i , j =  1 . . . . .  N, (15) 

with constant velocities vi = v m, impact parameters b i --  ~ and fluctuations ~ ' .  As we 
will focus on the leading spin-independent terms in scattering amplitudes, we do not 
consider fermionic background fields. Manifestly, this background solves the classical 
equations of motion. Thanks to the decoupling of the free U(1) centre of mass sector 
of the model, all one and higher loop results may be expressed in terms of the relative 

quantities Vij ~- V i - -  Vj and r i j ( t )  = bi j  + v i j t .  

One proceeds by fixing a background field gauge and adding appropriate ghost cou- 
plings and kinetic terms. The propagators for all fluctuations may be expressed in terms 
of the inverse of a kinetic operator - 0  7 + ri j( t )  2 which, in proper time representation, 
reads 

(x) 

[ - a  2 + rij(t)2] - l  o 8( t l  - t2) = f t _ , r i j ( t + ) ) ,  

0 

(16) 

where t_ = (tl - t2) /2 and t+ = (tl + t2) /2  along with 
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Fig. 3. The planar two-loop Matrix theory graphs: dumbbell, setting sun and figure eight. 

A(°"t-'rij(t+))=V/2~rsinh(2trvij)uiJ exp[ _ l)ijt_22 coth(trvij) - trrij(t+) 2 

(vij 'rij(t+)~2L(tanh(trvij)-o'vij)],  ( 1 7 )  
uij ./ uij 

using vii = Ivijl. The two-loop calculation is then rather standard, yet tedious. One 
computes the three and four-point vertices from the expansion of the action (14) about 
the background. There are three possible topologies, the dumbbell, setting sun and figure 
eight denoted Fo-o, Fy and Fv, respectively 9 as depicted in Fig. 3 in 't Hooft double 
line notation. We remark that, as can clearly be seen from the Matrix theory LSZ 
formalism formulated in [8,9,25], one must compute all Matrix theory graphs, one- 
particle irreducible, connected-reducible and disconnected 10. The latter we disregard 
since it is easy to see that they can only correspond to disconnected graphs on the 
supergravity side. However, as we shall see, graphs of the connected-reducible type 
(such as the dumbbell graph) reproduce re-scattering processes in supergravity [ 12]. 

The Okawa-Yoneya result may be stated (somewhat implicitly) as the effective action 

F21oop = Fo-o + Fv + Fy (18) 

where 

Fo_o = _ 1  ~i f d t ld t2(O2Yi~( t l ) )A( t l - t2) (c92Yim(t2)) '  (19) 

with 
o o  

(02Yi~"(t))=-32 ~ .  f do-[r~(t)sinh 4 ( ~ )  
.1 0 

+ -u cosh sinh 3 A(o-, 0, ro(t) ) (20) 
Uij "-~ ' 

oo and d(tl -- t2) = fo dcrA(o', t_,O) is the propagator for a free massless scalar field in 
one dimension. Further 

9 TO be precise, note that any terms from the setting sun diagram that may be written as a total derivative 
d/doi of a polynomial times three propagators are included in Fv rather than Fr ,  see [7] for details. 
t°This is easily seen as follows. In quantum mechanics the S-matrix reads S$i = f dxldx 

• *f(x ~) (x' I exp(-iHT)lx)~i(x) for incoming and outgoing wavefunctions ~i and ~ .  The transition el- 
ement from Ix) to (x t] may be represented as a path integral for which clearly one must compute all 
diagrams. 
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O 0  

f dt f d0-,d0-2sinh3( )sinh3( 2TJk ) 
ijk 0 

× cos .  sinh ( ~ )  sinh ( ~ ) ]  
L uijuj k 

× A(0-1,0, rij(t) )/1(0-2, O, rj~ ( t ) ) ,  (21) 

along with 

OO 

F r = - Z f d t + d t - f d 0 - 1 d 0 - 2 d o 3  
i j k ~  0 

× Pv (0-1,0-2, 0-3, rij (t+), rjk(t+), rki(t+), vii, vjk, vki, t_ ) 

×/1(o"1, t_, rij(t+)) A(0-2, t_, rjk(t+)) /1(0-3, t_, r/~i(t+)). (22) 

The Okawa-Yoneya computation of the function Pr is an impressive technical achieve- 
ment and the result is a quadratic polynomial in the variables rij(t+) and t_ (the result 
itself is given by Eq. (3.47) of [7] along with three pages of the appendices of that 
work). Its correctness (at least to leading order in vij) is well tested by comparison 
with supergravity. 

A remark on the N dependence of the two-loop effective action F21oop is in order. 
The planar two-loop graphs of Fig. 3 carry three independent U(N) indices (i,j,  k) 
thus giving rise to three body interactions. For backgrounds consisting of three blocks 
proportional to unit matrices of size Ni (i = 1,2, 3, with ~-]i Ni = N) the sums ~ijk 

reduce to N1N2N3 ~-]~ik=l and F21oop scales homogeneously like N 3 to all orders in 
v/j, precisely like the corresponding supergravity term (10). This procedure, however, 
has from our viewpoint no real justification and we will therefore take Ni = 1 in the 
following. 

Up to now we have simply restated the results of [7]. In what follows we compare 
these results with the tree level supergravity S-matrix and in doing so show how to relax 
the restriction {b. v} = 0. Thereafter, the same techniques will be employed to compare 
the next to leading order in vii Matrix theory prediction with one-loop supergravity. 

3.2. Fy contribution to the Matrix theory S-matrix 

Let us begin with the most difficult contribution Fr  of (22). One might suspect that 
since the result depends on three proper time parameters o-l, 0-2 and 0-3 the result ought 
correspond to the triple pole structure of the Y-type diagrams in supergravity and indeed 
this naive suspicion will be borne out in the following. According to the Matrix theory 
LSZ formalism [8,9,25] the leading spin independent 1 + 2 + 3 --, I t + 2' + 3 t Matrix 
theory S-matrix is given by 

f d9bld9bzd9b3 exp(iql • bl + iq2 . b2 + iq3 • b3) F21oop • (23) $3---~3 
d 
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Note that we have dropped contributions corresponding to disconnected processes (so 
that F21oop no longer appears in the exponent). The transverse kinematics described 
by (23) are initial and final momenta 

Pi = V i  - -  qi/2, 

pti=V i +qi/2, i= 1,2,3,  (24) 

in accord with the supergravity kinematics (4). Note that at this stage vi is not a velocity 
anymore, but rather the average momentum of the ith particle vi = (pi + p~)/2, for 
details see [8,9,25]. Since/'21oo p only depends on relative quantifies, the integral over 
the average impact parameter (bl + b2 + b3)/3 yields the usual momentum conserving 
t~(9) (ql -t-q2 d-q3) which we drop from now on. Concentrating on the r r  contribution 
we then have 

oo 

0 

xPr(tri,  rij(t+), ¥ij, t_)  A(o-1, t_, r l2( t+))  

x A (o-2, t_,  r23 ( t+))  A(tr3, t - ,  r31 ( t+)) .  (25) 

The leading contribution to three body scattering should depend on the sixth power 

of velocities vl2, v23 and v31 as can be seen from the supergravity amplitude (10). 
However, if one examines the polynomial Pr, its leading behaviour is quadratic in 
velocities and the "propagators" 4 are to leading order velocity independent. In order to 

see explicitly how the cancellations of the terms quadratic and quartic in velocities occur, 
two observations are needed. Firstly, examining the t_ dependence of the exponent in 
(25) arising from the three propagators ,t defined in (17) 

-t~(v~2coth(oqv12) + u23 coth(tr2023) + v51 coth(o'3t)31)) -- - t  2 P, (26) 

one sees that under the Gaussian t_ integral, all terms linear in t_ can be discarded 
by symmetric integration and terms proportional to t 2 - may be replaced by 1 / (2P) .  
Secondly, observe that the operator d/dt+ acting on the three propagators d in (25) 
yields the factor 

2 [Vl2" rl2(t+) tanh(oqv12) + v23-r2a(t+) tanh (tr2v23) 
/ /-)12 U23 

_~ v31 " r31 (t+) tanh(o-3v31)[ ------ Q. (27) 
U31 / 

Now recall that Pr is a polynomial quadratic in rl2(t+),  r23(t+) and r31 (t+).  However, 
intuitively one may expect that terms of order two and four in velocity should not depend 
on the impact parameters bi since, in the case of one- and two-particle kinematics, shifts 
of the zero of t+ can always be made in such a fashion as to arrange that ri j(t+) ~ vijt+. 
This in fact is the case since at orders two and four in velocity, the rij dependence of 
Pr can be expressed as Qx (terms order one in velocity). Writing Q as d/dt+ acting 
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on the A's and subsequently integrating by parts removes all dependence on r12, r23 

and r31. Coupled with the first observation, one in fact finds miraculously that all terms 

proportional to squares and the fourth power of velocity cancel [7]. We stress that no 
restriction involving inner products of velocities and impact parameters must be imposed 

for this cancellation to take place. 
It is now advantageous to interchange the dt+ and d9b integrals and thereafter shift 

the integration variable b13 ---@ r l3(t+) along with b23 ---+ r23(t+) so that the t+ integral 
may be performed yielding an energy conserving delta function 

S 3--+3 = - (2~')~(ql  • v13 + q2" v23) 
o o  

x i d 9 r 1 3 d 9 r 2 3 e x p ( i q l . r 1 3 + i q 2 . r 2 3 ) i d t - i d 3 0 -  

o 

Xffy(0-i, rij, vij) A(0-1, t_ ,  r12) A(0-2, t - ,  r23) A(0-3, t - ,  r3! ), (28) 

where the tilde over Py indicates that we have performed the manipulations indicated in 
the two observations above. 

So far we have managed to rewrite the Fy contribution to the Matrix theory S-matrix as 

(suppressing from now on the energy conserving delta function (27r)8(ql "v13+q2"v23)) 

i i 1 S 3-'.3 = - dgr13d9r23 exp( iq l  • r13 + iq2" r23) d30- 

0 

× (Py + prmr m + rmprmnr n) A(0-1,0, r12) A(0-2, 0, r23) A(o'3, 0, r31 ). (29) 

Note that we have performed the integral over t_ as explained above. Furthermore, P~,, 

Pr m and ffy,,n are functions of the tri, rij and vii only (ij = (12 ,23 ,31))  and their 

leading behaviour goes with the sixth power of velocity. Also their coupling to rij has 
been schematized. 

We proceed by interchanging the Fourier integrals over r13 and r23 with those over 
proper time 0-i parameters. If we content ourselves with leading order in velocities, the 
r dependence in the exponent of (29) reads 

m m ( O ' 1 + O ' 3 - - O ' 1 )  
exp (iql • rl3 + iq2" r23 -- rAOABrB) , (.9 = , (30) 

~0"1 o1 '~ 0"2 

where the index A = ( 13, 23). The matrix O has determinant p = 0"10-2 + 0"20"3 + 0"30"1 
and the Gaussian integral over r13 and r23 may now be performed. Remarkably, we find 
that all terms not proportional to inner products of momentum transfers qi and velocities 
v/j cancel amongst themselves and to leading order in velocities we are left with 

o o  s;-3::'/ ) d3o - e x p -  (q2o-2+q92o-3+~0"1) T 2, (31) 

0 

where T is the same as defined in (8).  Finally doing the d30- integral yields our result 
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T 2 
Sy3-+3 = 32 ¢r 9 - -  (32) 

q~ q22 q2"3 

Although we leave the orchestration of the two-loop leading velocity Matrix theory 
result to the end of this section, we remark that (32) already has precisely the correct 
form to match with tree level supergravity graphs of the Y-type (7) in the triple pole 
sector. 

3.3. Fv contribution to the Matrix theory S-matrix 

Compared with the Fr contribution, the computation of the S-matrix elements arising 
from the Fv terms are very straightforward. The leading contribution from Fv as given 
in (21) is seen by inspection to be order six in velocity. Hence, interchanging dt and 
d9b integrals as above and thereafter performing the Fourier transforms and proper time 
o'i integrations we find (suppressing delta functions over energy and momentum) 

3---.3 _64¢r9 v122 v~l v12" v31 
V ---- q~ q2 + cyclic. 

3 

(33) 

We emphasize that the result (32) mixes with terms arising from dumbbell graphs Fo-o 
which we will consider next. Thus a comparison to supergravity is not possible until we 
consider the sum of all Matrix theory Feynman diagrams, which has been the source of 

some confusion in the literature [26,27]. 

3.4. Fo-o contribution to the Matrix theory S-matrix 

The final Matrix theory contribution to the leading order 3 ~ 3 S-matrix is given 
by the dumbbell diagrams. In [ 12] it has been shown that these graphs can be given 
the interpretation of recoil corrections to a source probe approximation. In Feynman 
diagram language there is, of course, no artificial distinction into recoil and non-recoil 
terms (physically since one finds that Fv and Fo-o contributions mix, this is certainly 
the case). 

To extract the S-matrix contribution from Fo--o as given in (19) and (20) we begin 
by writing the free massless propagator for a scalar field in one dimension as 

do) e -it°(t~-t2) 

d ( t l - - t 2 ) =  2¢r to 2 + i e  (34) 

The explicit time derivatives appearing in the truncated tadpoles (20) may, integrating 
by parts, be converted to o)'s. Then, in the same fashion explained above, interchanging 
d9b and time integrals and shifting b --~ r ( t ) ,  then performing the resulting Fourier 
transforms and proper time integrals we find 
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3--+3 ~7 l / S~ =.,, ~ dtldt2 d 0 ) e x p ( - - i q j ' v j i h - - i 0 ) ( t l - - t 2 ) - - i q k ' V k i t 2 )  
i ~ j ~ k  

1 v2v~i [ q j v  2 - 4 0 ) v i j ] .  [ q k v ~ i - 4 0 ) v ~ i  ] . (35) 
X 0) 2 -{- i--------~ q2 q2 

Note that we have kept only the leading velocity dependence and discarded terms in the 
sum over U ( N )  indices i, j and k in which the inner loop running around each end of 
the dumbbell takes the same value since one may convince oneself that these terms can 
only correspond to disconnected processes. 11 Now, the integral over t_ = ( t l  - t 2 ) / 2  

yields 8(2 to + q j . v j i -  qk" vii)  and the t+ = (tl + t2)/2 integral yields the usual energy 
conserving delta function which we suppress as usual. The integral over 0) is then trivial 
and gives the final result 

2 2 ,4 ,4 ,.,2 ] U22U21VI2 "V31 U12U31 ~12~31 t/l Sc]_.~ 3 = 4"rr 9 16 ~ + 8T - -  + + cyclic . 
t "t2 3 q2q2q2 'V12 q2q2(q2" V12) 2 

(36) 

Observe in particular that here the first term and its permutations exactly cancels the 
contribution from S 3~3 in (33). Clearly then, one sees that from a physical viewpoint 
the split into recoil and non-recoil terms is an artifact of one's approximation scheme. 
In a Feynman graph approach, where one simply computes all terms contributing at a 
given order in velocity there is no need to make such a distinction so long as one also 
computes all Feynman diagrams on the Matrix theory side. 

Finally, we see that the s u m  S3-~3-~S3+3--[-S~_o 3 as given in Eqs. (32), (33) and (36) 

reproduces the tree level supergravity result (10). No restriction upon impact parameters 
or velocities has been made in this comparison and this result represents the completion 
of the leading order spin-independent three-graviton scattering problem whose tortuous 
history may be followed in the sequence of articles [26,29,30,7]. 

4. Next to leading order: can Matrix theory see ,~4 corrections? 

Armed with the above clear-cut scheme for the computation of Matrix theory S-matrix 
elements and given the precise agreement of the tree level supergravity amplitude with 
the leading Matrix theory result, we now turn to the question of whether Matrix theory 
is sensitive to the one-loop corrections to the M-theory effective action discussed in 
Section 2.2. A simple-dimensional analysis indicates that the next to leading order 
contributions to the two-loop Matrix theory effective action, i.e. the terms of order 
v S / ( r  TM R 7 M24), have the correct dependence on v, r, the eleven-dimensional Planck 
mass M and compactification radius R to match the ~4 correction of (11 ) [ 13 ]. 

As mentioned in the introduction, this question has been already studied for two- 
graviton scattering in [15], where a mismatch of factors N between supergravity and 

J l Such terms have been analyzed in a recent preprint [28]. 
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Matrix theory was found. However, our philosophy here is quite different, since we 
perform an analysis of tensorial structures in both theories which will allow us to give 
more definite and stronger conclusions. 

The setup of the computation is now clear. We simply expand all terms in the two-loop 
effective action F21oop of (18) to order/38 and apply the same manipulations discussed 
in the last section to obtain the Matrix theory amplitudes. 

4.1. Next to leading order results and disagreement 

The order v 8 result of the spin independent 1 + 2 ÷ 3 ~ 1 p + 2' + 3' amplitude is 
again comprised of the three terms 

$3---~31t~8 t~3---~3, ÷ $3---~31t,8 ÷ o3---.31 
= Oo._ o 1~:8 o r IL,8 . ( 3 7 )  

Dropping the overall energy and momentum conserving delta function we find 

7 " / ' 9 4 4  ( 1 2 /  ) 03--*31 ~ _ 
°°-° 1~8 -6- kq2 "vl2 \ \  0" 1 / ~222 

-4vlz'v3'v~zV21((~)v22"i'(-~2)V~l ) 

2 v2 q3 . v , 2 ) ( (  1 ) ( 1 _ ~ ) )  2 2 (v12q2. V31 ÷ -4q2 • v12v~2v31 ~11 ÷ 

+16v12 v3|(q2 v|2) 2 2 2 ( ( ~ 1 )  ( ~ - ~ ) )  ] • • v12v31 + + cyclic (38) 

along with 

S3---*3[t,s q7"9 u4 .4 ( 1 ) 77 -9 2 2 [ ( 1 2 )  ( 1 2 )  
= - v 3 1 / 3 1 2 o 3 ,  T 31U12 ~ T V12 U22 ÷ /321 

-4 (q2  • v12)2 ((1-]-1 / "÷ (1-~2/)  ] ÷ cyclic, (39) 

where we have defined 

(f(O'l ,  0"2)) = / d20"f(o'l ,  tr2)e -°'1~-~r2~ (40) 
0 

that is the proper time integrals remain to be performed 12. We first note that none of the 
terms in (38) and (39) displays a genuine two pole structure (1) = 1/(q2q~) as found 

12 As a matter of fact all integrals in (38) and (39) are divergent, but exist in a distributional sense. See for 
example [31]; one must interpret the logarithm in (41) as log(q2/A z) for some momentum scale A which 
can only be determined by some physical principle. 
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in the supergravity amplitude (13), such terms, however, will arise from the $3-'3[v8 
contribution to be studied. 

An immediate disagreement arises from the first term of (38) with a "re-scattering 
pole" 1 / ( q 2 '  v12), whereas on the supergravity side re-scattering diagrams of the type 
(c) of Fig. 1 are absent since there are no R2 and 7"43 curvature corrections to the 

effective M-theory action, as argued in Section 2.2. Note also that $3-+31v8 does not 

give rise to re-scattering poles, as we shall see shortly. Performing the corresponding 0- 
integrals for this term in a distributional sense 

oo 
f d0--~-~e-°q2 = l q2(logq2 + ' y - 1 ) ,  (41, 

0 

where y is the Euler constant, the re-scattering contributions of 83--'31v8 take the form 

4 4 (q~3 ~ ~22q2.v31) vl2v3~ q3 • v12 + + log terms. (42) 
q2 " v12 q2 

Hence it is clear that Matrix theory produces terms with no counterpart on the super- 

gravity side. However, taking a conservative viewpoint one could argue that only the 

"truly eikonal" terms with a double pole 1/(q2q 2) structure should be compared on 

both sides. A similar phenomenon occurred in the computation of polarization depen- 

dent two-graviton scattering amplitudes [8], where the spin dependent contributions to 
the Matrix theory amplitude gave rises to terms cancelling the 1/q 2 pole and had to be 

dropped. 
Taking this viewpoint we would have to conclude that all terms in (38) and (39) are 

spurious and we need to go on to the rather involved computation of Fy at order v 8. 

The outcome of this computation is the amplitude (recall that p = 0-10"2 + 0"20"3 + 

O'30" 1 ) 
oo 

$3-~31,,8 fd30-_)sexp(_q20.2 2 = - q20-3 - q20-1 ) (T2p2//2 + T~II, + / /o ) ,  (43) 

0 
where T was introduced in (8) and Hn (n = 0, 1,2) are polynomials order 7 - n in the 
0-'s and order n in q • v's. In particular 

8~ 9 
/ /2--  3 ((v12-ql)2(O'l +o.2)(o.10-2)2-2v12.qlv23 'q20"10"230"3) +cycl ic  

(44) 

and 

16rr 9 
H1 = " - ~ v 1 2  "ql 

x ((0-2v42 + 0-2v43)0-,0-210-10- 2 -- 2(0", + 0"2)0"3] + 3v4, (0-10-20-3) = 

2 2 (O.70-2 + 0"320"3 + 30-10"2 + + + + 0-1 +2U12U230.20-1 2 2  0.20.20.3 0.30. 3 0-10-20"3 0.32) 
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2 2 2 2 2 2 2 20.20.20.3 2 2 20.20.10.2) --V23U310.2(30.10.3 --  0.20.3 -- q- 0.10.2 -1- 

2 2 2 2 2 2 2 2 20.10.20.3 _~_ 30.20.2))  --UI2U310.1 (20.20.10.3 q'- 0.10-2 --  0.10.3 -- + cyclic (45) 

along with 

87r 9 
[ 8  3 2 2 _ 0.10.30.2 _ 0.10.20.2 _ 40.~0.30.2 + 0.30.1 -~- 0.10.2) H o = _  T U120.1(__20.30. 2 2 2 2 2 

6 2 2 2 3 2 2 50.20.30.2 2 2 __ 30.10. 2 2 3 0.~0.30.2 --4V12V230.1 (30.30.2 -4- 0.10.30.2 ~- -- 0.10.30.2 -- 

2 3 20.~0.22) 4 2 2 - -  - -  2V12023V310.1 (0.10.3 -- 20.30.2 +0.30., + 0.,0.2)(30.~0.~ 30.20. 2 
4 4 5 2 4 -[-0.~0.3 -- 50.20.30.2 -1- 0.~0.2 -b 30.20. 2) -}-/)12023(20.10.30.2 --  0.10.30.2 

2 2 3 2 5 3 2 2 120.30.4 +110.120.30.24 -I- 100.10.30. 2 q- 0.10.2 q- 100.10.30.2 -]- 

5 2 5 2 ] +110.40.30.  2 - 0 . 4 0 . 2 0 .  2 -[- 120.40. 3 + 20.~0.30.2 + 0.10.3 + 0.10.2 + 0.20.5) 
3 

+permutations. (46) 

Note that the permutations in the above formula act on the "objects" (vj,ql,0.2),  
(v2,q2,0.3) and (v3, q3,0.1) (because of the coupling of the proper times 0.i and 
momenta qi in the exponent of (43)). 

Amongst these terms it is now instructive to focus on a specific class of terms in the 
supergravity amplitude (13). We choose to study terms with the structure 

(q • V)4-~ -. (47) 

On the Matrix theory side these terms are easily isolated from $3--'31v8 of (43), in 
particular 

(X3 

r'/a30. exp(-d0..- ' = q20.3 - q20.1). (48) 

0 

Of course it is rather difficult to perform this integral exactly. Being interested only in 
the poles 2 2 1 / ( q l q 2 )  and permutations thereof we proceed as follows. First perform the 
integral over (say) 0.3 exactly and thereafter expand the integrand in powers of 1/0.1 

and 1/0.2. Using 

O 0  

. 9 ,  
o 

we obtain the final result contributing to the structure (47) (up to overall factors, 
dropping the logarithms) 

3--+3 4 ( q2lqq2 1 ) S~ Joopl,a(q.v) = T2(ql " v12) 2 + ~ + cyclic (50) 
\ 2 3 qlq2 
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which is astonishingly close, but nevertheless not equal to the corresponding terms in 

the supergravity amplitude of (13) 

.,4.-R4 It,4(q.v)4 : T 2 ( q l  • ¥ 1 2 ) 2 ~ 1  2 -[- cyclic. (51) 
t/3t/1 

This constitutes the above-mentioned definite disagreement of the two results and con- 
cludes our study of the ~4 contributions to the three-graviton amplitudes. 

5. Conclusions 

In this work we have presented detailed comparisons between three-graviton scattering 
amplitudes in Matrix theory and d = 11 supergravity along with its leading M-theoretic 

curvature corrections. On the one hand we have been able to complete and unify the 
results of [7,12] showing that the leading order/36 eikonal spin independent S-matrices 
of tree level supergravity and two-loop Matrix theory exactly agree. On the other hand, 
the moment one studies the next to leading order/38 Matrix theory amplitude, the result 
fails to match the corresponding (conjectured) term in R4-corrected supergravity. Why 
does such a mismatch occur? 

In trying to answer this most pressing of questions, let us begin by noting that our 
results pertain most strongly to the Susskind finite N formulation of the Matrix theory 
conjecture [4]. Susskind's conjecture has be proven to be literally true in [32], i.e. 
M-theory on a light-like circle with N units of compactified momentum is described by 
U ( N )  Matrix theory. The real issue is what it implies for comparison with d = 11 super- 
gravity. M-theory on a lightlike circle is Lorentz equivalent to M-theory on a vanishing 
spacelike circle [32]. On the contrary, supergravity is a good effective description of 
M-theory at low energy and at the same time when the radius of compactification is 
large (so that all possible wrapped membranes are decoupled). In terms of the string 
coupling constant gs, for instance, this shows that perturbative Matrix theory and super- 
gravity computations are really trust-able in two different regions (respectively at small 
and large values of gs).  t3 It is then evident that no agreement should be expected a 
priori, except for those amplitudes which are somehow protected from receiving any 
correction as one moves from one regime to the other. In view of the agreement found 
for tree level two- and three-particle scattering amplitudes, this appears to be the case 
for the terms of order/34 and/36 in the Matrix theory effective action as has been shown 
in [34] for the U(2) and U(3) models. From this viewpoint the finite N Matrix the- 
ory conjecture, extended to the supergravity regime, would require the existence of an 
infinite number of non-renormalization theorems. However, our two-loop order v 8 result 
indicates that there exists no non-renormalization theorem for these terms in the super 
Yang-Mills quantum mechanics. 

13 Roughly speaking this is due to the fact that Matrix theory is a good description of physics at substringy 
distances, whereas supergravity is a good description at long wavelengths. 
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The underlying type IIA string theory itself can be employed to understand the rela- 
tionship between perturbative Matrix theory and low energy M-theory. In particular the 

extensive agreement of  one-loop spin dependent terms for 2 ---* 2 scattering can be easily 
understood by considering the scale independence of the string theory cylinder/annulus 
amplitude between two DO particles [33,8,9]. Indeed arguments supported also by the 
string theory picture suggest that, if visible perturbatively, the effects due to the 7-44 term 
may correspond to a five-loop non-planar contribution in Matrix theory 14 [ 35 ]. On the 

other hand there is no perturbative "string derivation" of  a correspondence between the 
next-to-leading v s two-loop term and the 7"44 amplitude given in (13) .  

Aside from the possibility of  discovering new non-renormalization theorems and 

although there were no real expectations for an agreement between two-loop Matrix 
theory and ~r~4 supergravity corrections, neither was there a definitive argument or 

computation to rule it out. We believe that our work gives a final (negative) answer to 
this question. 

Finally, an obvious question to ask is whether one should find further agreements 
with tree level supergravity. Interestingly enough, in light of  the simple Feynman di- 

agrammatic understanding of semi-classical recoil effects given in this work, further 

comparison between Matrix theory and tree-level supergravity amplitudes can be con- 

templated for four-graviton scattering (i.e. three-loop level in the quantum mechanical 

model) .  In [27] it has been argued that at this order disagreement is possible, but there 

is no definite answer yet. As we have seen within our formalism of comparing directly 

S-matrices, it is quite easy to single out particular tensorial sub-structures. In this way 
the analysis could be greatly simplified and yet remain conclusive. 
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