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Abstract 

Dimensional reduction of various gravity and supergravity models leads to effectively two- 
dimensional field theories described by gravity coupled G/H coset space o--models. The transition 
matrices of the associated linear system provide a complete set of conserved charges. Their 
Poisson algebra is a semi-classical Yangian double modified by a twist which is a remnant of 
the underlying coset structure. The classical Geroch group is generated by the Lie-Poisson action 
of these charges. Canonical quantization of the structure leads to a twisted Yangian double with 
fixed central extension at a critical level. © 1998 Elsevier Science B.V. 
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1. Introduct ion  

The last decade has shown the important role of  infinite-dimensional quantum groups 

in physics,  providing a powerful description of  the quantum symmetries of  integrable 

models  and field theories. A prominent  example is the Yangian algebra Y(g) associated 

with a simple finite-dimensional Lie algebra g. Having turned up already in the early 

days of  the Quantum Inverse Scattering Method [ 1,2] this algebra was rigorously 

defined within the framework of  Hopf  algebras by Drinfeld [ 3] and later on appeared to 

underlie many two-dimensional  field theories (see Refs. [4,5] and references therein).  

The Yangian algebra Y(g) may be considered as a deformation of  the positive half  
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of a loop algebra with non-trivial Hopf algebra structure. For g = gI(N) it allows the 

representation by matrix entries T"b(w) of N × N matrices with exchange relations 

I 2 2 I 
R(t' - w) T (v) T (w) =T (w) T (L') R ( t : -  w), (1.1) 

with a rational R-matrix solving the Yang-Baxter equation. A deformation of the full 

loop algebra emerges from the Yangian double construction [6] which has been intro- 

duced in quantum field theory in [7,8]. Like the loop algebra this structure admits a 
central extension [9]. 

In this paper we reveal Yangian symmetries in a class of models of quantum grav- 

ity. Actually, it is the existence of this symmetry in the corresponding sectors of the 
classical theory which allows their complete quantization. These models descend from 

dimensional reduction of various gravity and supergravity theories. As effectively two- 
dimensional theories they are given by different G / H  coset space o--models coupled 

to 2d gravity and a dilaton. Among them (with G / H  = S L ( 2 , ~ ) / S 0 ( 2 ) )  is the two 

Killing vector field reduction of pure 4d Einstein gravity. Its field content is given by a 
symmetric 2 x 2-matrix g with unit determinant, which parametrizes the 4d line element 

ds2 = e21"(P't) ( -dt2 + dP 2) + Pg~,b(P, t)dx"dx I'. (1.2) 

The accompanying dilaton factor p is a typical feature of Kaluza-Klein-like dimensional 
reductions; here it has already been identified with a coordinate (the so-called Weyl's 
canonical coordinates). Upon further truncation to diagonal g this model reduces to the 
Einstein-Rosen waves whose quantization was studied in [ 10,1 1 ]. Other examples with 
higher-dimensional coset spaces G / H  come from Einstein-Maxwell systems [ 12,13] or 
maximally extended supergravity [ 14]. 

The equations of motion for all these models are given by the Ernst equation 

cgo(p g-Icgog) - ~91 (p g-lcglg) = 0, (1.3) 

with a G-valued matrix g subject to additional restrictions which encode the G / H  coset 
structure. For example, for SL(2, • ) /S0(2) ,  g is a symmetric matrix which coincides 

with the matrix from (1.2) or alternatively with a matrix carrying the dualized potentials 
of the Ernst picture [15]. Up to the prefactor of p the Ernst equation agrees with the 
dynamics of the non-linear o--model [ 16,17]. However, it is this factor which essentially 
changes the properties of the model and gives rise to several new features. 

In particular, it turns out that in our model the non-ultralocal contributions of the 
canonical Poisson brackets do not cause an obstacle for a well-defined Poisson structure 
between the generating functions of the integrals of motion. This allows a reformulation 
of the classical model in terms of a complete set of non-local conserved charges T+ (w) 
defined as holomorphic matrix functions in the upper and lower half of the complex 
plane, respectively. A consistent and essentially unique canonical quantization of the 
complete structure for g = ~I(N) leads to the following new algebra of Yangian type: 
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I 2 2 1 
R(v - w) T+ (v) T~ (w) =T+ (w) T+ ( v ) R ( v -  w), (1.4) 

R ( v - w - i h )  T_ (v) T+ (w)=T+ (w) T_ (v)R n v - w +  ih X ( v - w ) .  

In contrast to the known centrally extended Yangian double based on (1.1) the mixed 

exchange relations here contain an R-matrix R '7 which is obtained from R(v - w) E 
H(~)  ® H(g )  by "twisting" one of the two spaces with the algebra involution r/ which 
characterizes the underlying coset structure. The values of the central extension as well 

as the rescaling factor ~v(v) in (1.4) are uniquely fixed. We call this algebra a twisted 
centrally extended Yangian double at the critical level. 

A crucial role in our model is played by the matrix product 

At (w )  = T+(w)T" (w), (1.5) 

which in some sense behaves similar to the quantum current introduced in [9] for the 

normal Yangian double. This matrix coincides with the values of the original field g 

from (1.3) at p = 0. This is the symmetry axis if p is chosen as radial coordinate; for 
timelike p it describes the (cosmological) origin. Thus, the matrix A4(w) is localized 
in the 2d space-time though at a fixed instant of time it is defined in a highly non-local 

way. It provides a surprising link between the conserved charges and the physical fields. 
In particular, the algebra (1.4) is compatible with the symmetry of (1.5). 

The present paper generalizes and gives a detailed account of the results which were 
partially announced in [ 18,19]. It is organized as follows. In Section 2 we give the La- 

grangian formulation of the models, derive equations of motion and the canonical Pois- 

son structure. Section 3 is devoted to analyzing the transition matrices of the associated 

linear system. We obtain a complete set of conserved charges and their Poisson algebra 

after gauge fixing of the dilaton to a spacelike and timelike coordinate, respectively. 
Section 4 recovers the transitive action of the Geroch group which in this framework 
is generated by the Lie-Poisson action of the classical algebra of charges. The heart of 
the paper is Section 5 where we present the quantum algebra for O = N(N) .  Quantizing 
the classical Poisson algebra we uniquely obtain (1.4) and show its consistency with 
all additional structures. We discuss in more detail the simplest case g = st(2)  related 
to reduced Einstein gravity (1.2). In Section 6 we briefly summarize the solved and 
the remaining problems. Appendix A contains the detailed derivation of the key formula 

(A.I 1) for the Poisson bracket between transition matrices. Here we also discuss the 
essential difference to the principal chiral field model in flat space. Appendix B collects 

some useful formulas for the coordinate dependent spectral parameter. 

2. Canonical formalism 

Let X be a two-dimensional Lorentzian world-sheet, parametrized by coordinates x ~'. 
We introduce light-cone coordinates x ~= =_ x ° + x I. Let G be a semisimple Lie group 
and ~1 the corresponding Lie algebra with basis ta. Denote by H the maximal compact 
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subgroup of  G, characterized as the fixgroup of  an involution r/. Lifting r / to  the algebra 
gives rise to the decomposition 

X for X E [~ 
g--I~®t~ w i t h r / ( X ) =  - X f o r X E t ~  ' (2.1) 

which is orthogonal with respect to the Cartan-Killing form. 

The physical fields of  the model are mappings V(x u) from 2~ into the coset space 

G/H, i.e. they are G-valued and exhibit the gauge freedom of right H-multiplication. 

The currents Ju = J~t~ - ~-lOu~ allow decomposition according to (2.1): 

J ~ = Q u + P ~ ,  w i t h Q ~ E [ 9 ,  P ~ E e ,  (2.2) 

such that the gauge transformations take the form 

Q~ H h- lQuh+h- tO~h ,  Pu ~ h-lPu h, (2.3) 

with h = h(x  ~') E H. 
Let us establish the canonical setting. The dimensional reduction of  gravity and 

supergravity theories has already and often been described in the literature (see, e.g., 

Refs. [ 14,20,21 ] ). Hence, we here restrict ourselves to starting from the effectively two- 

dimensional reduced theory given by 2d dilaton gravity coupled to different non-linear 

G/I-I coset space o--models corresponding to different original theories. The remaining 

(reduced and gauge-fixed) Lagrangian is of  the form 

£ =  ½Ptr(Pt, P~ ) = ½Ptr ( P g -  p 2 ) .  (2.4) 

In addition to the coset currents P~ from (2.2) there appears a dilaton field p related 

to the compactified part of  the former higher-dimensional metric, which obeys the 2d 
Laplace equation 3 

[] p = 0. (2.5) 

At this stage of  reduction p is no longer a canonical field, but has already been gauge- 

fixed to a particular solution of  (2.5) on the world-sheet .S. Define its dual/5 by 4 

c9t~/5 =- - e ~ c ~  p. (2.6) 

In the sequel, we will often make use of  the Weyl gauge choice, i.e. identify p,/5 with 
the world-sheet coordinates x u. 

The Lagrangian (2.4) resembles the one of  the principal chiral field model (PCM) 
[ 16,17] with the compact group of  the PCM replaced by the non-compact coset manifold 

G / H  and arising of  the additional dilaton field p which is in fact responsible for all 

3 As a field equation this equation is not derived from (2.4) but from the remaining 2d gravitational part of 
the Lagrangian which we neglect here. 
4We use the convention eo~ = e tn = 1 for the antisymmetric e-symbol and r/~,, = diag(l,-1) for the 2d 

Minkowski metric. 
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the differences that will appear in contrast to the PCM already on the classical level. 

Nevertheless, we may introduce the canonical framework in an analogous way. Treat the 
current JI (x) as canonical coordinates; its time derivative is expressed via the condition 
of vanishing curvature: 

00J1 = 01 J0  -I- [ J I ,  J 0 ]  ~ ~71J0.  

Note that the operator ~71 is antisymmetric with respect to the scalar product (tr f dx~). 
The action thus reads 

' /  (P~,P~) d x ° d x ' = ~ / p t r ( P o V ; ' ( O o J , ) - P ~ ) d x ° d x  ' 2 p tr 

_ i f  - - ~  t r ( (OoJ , )V~ ' (pPo)  - oPt )  dx°dx I. 

Introduce the corresponding momenta ~rg = ¢rQ + ~e  with canonical Poisson structure 5 

{ j a ,  , b ~ab I t x ) ,  7rj(y) } = 6(x  - y) ,  (2.7) 

at equal times. From the action it follows that 

PPo = - -~ lT" / ' J  = -°~177"J - [ J I , " B ' J ] ,  

which according to (2 . l )  implies 

pPo =-O]TrP - [Qi,Trp] - [Pi,TrO], 

0 = - - 0 1 ~ a -  [Ql,rra] - [Pi,Trp]. (2.8) 

The first equation expresses a part of the coordinates' time derivatives in terms of the 
canonical momenta; the second equation defines a set of weakly vanishing (first-class) 
constraints 

q~ ~ --01"77" Q --  [QI ,qT"Q]  - [Pi,Trp] ,,~ 0 (2.9) 

related to the gauge transformations (2.3). They consistently close into the algebra 

{~b"(x), ~ba(y)} = fa~,q~C(x) ~(x  - y) ,  (2.10) 

with structure constants fa~  from 0. 
For further calculations, we switch to the index-free tensor notation. Denote for some 

matrix X 6 

I 2 
X = - - X ® I ,  X - - I ® X .  

Define accordingly the following matrix notation of Poisson brackets [22]: 

5 Here and in the following we denote for simplicity the spatial coordinate x I by x only and the timelike 
coordinate x ° by t. 

6 In components  this takes the form (X ® I) ab'cd ~ xabscd and (1 ® X) a°'ca = xcd~ a°. 
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for matrices A ab, B ca. Let s2~ = ta ® t" be the Casimir element of g, which due to 

orthogonality of (2.1) allows the decomposition s2g = ~O~ + Or. The canonical brackets 
(2.7) in this notation become 

(x),Tr O (y) = S 2 ~ ( x - y ) ,  I (x),Trp (y) = O e 6 ( x - y ) .  

Eq. (2.8) now yields the Poisson brackets for the physical fields: 

Po (x),12 (y) - p(x) 12 (x) g2e 6 ( x -  y), 

o (x ) ,Ql  (Y) =p~-~ De, P1 (x) 6 (x - - y ) ,  

{/~ " } 1 [  2 ] l 
o (x) , [ ' ,  (y) = p - ~  Oe, QI (x) 6 ( x - y )  + ~  OtOxS(X-y ) ,  

o (x ) ,Po  (v) p(x) g2~,49 (x) 8 ( x - y )  ~0 .  (2.11) 

The Poisson algebra of constraints 49(x) (2.10) takes the form 

{ ; ( x ) , ~ b ( y ) } =  [ g 2 ~ , ; ( x ) ] , ( x - y ) .  (2.12) 

Via adjoint action they infinitesimally generate the gauge transformations (2.3) which 
obviously leave the Lagrangian (2.4) invariant. 

Remark 1. The Poisson brackets (2.11) are the canonical Poisson brackets derived from 
the Lagrangian (2.4) which in turn descends from a consistent dimensional reduction 
of the higher-dimensional Lagrangian of the original theory. Thus, this Poisson structure 

comes from proper reduction of the symplectic structure of the original theory. 

An important feature to note about the Poisson brackets (2.11) is the appearance of 
a non-ultralocal term in the third equation. In the known fiat space integrable models 

the presence of such a term is a good indicator for some breakdown of the conventional 
techniques at later stage (see, e.g., Ref. [23] for exploring the fatal consequences of 
the non-ultralocal term in the PCM). However, for our model we will see that this term 
shows a surprisingly good behavior and in fact supports the entire further treatment. 

Finally, we can discuss the dynamics of the model. The equations of motion derived 
from (2.4) are 

D ~ (p P~) = Do(p P0) - Dl (p PI ) = 0, (2.13) 

with the covariant derivative D~,Pp =_ OuP, + [Qu, P~]. In terms of the G-valued field 
g -= Vr/(12) -1 E G this becomes the more familiar form of the Ernst equation [ 15] 

O~ ( p g-l c)ug) = Oo(p g-J Oog) - 81 (p g-l Olg) = 0. (2.14) 

The Hamiltonian of the model comes out to be 
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,/ H =  7 p t r ( P Z  + P~) dx.  (2.15) 

There are two points to mention about the Hamiltonian dynamics here. Note first that H 

does not govern the possible explicit time dependence of p. This is due to the fact that in 
the course of the reduction leading to (2.4) the system has become non-autonomous due 

to the particular gauge fixing of the dilaton p to a function with explicit time dependence. 

In particular, H generates the equations of motion only for the fields (PPo) and Pi. 
Secondly, H generates the dynamics of these fields only up to gauge transformations 
(2.3) as can be explicitly checked. This corresponds to the fact that as a Hamiltonian 

of a constrained system H is determined only up to a linear combination of the arising 
first-class constraints (2.9). 

3. Poisson algebra of transition matrices 

In this and the following sections we will exploit the integrability of the model to 

define and explore the transition matrices to be used as the fundamental objects in the 

sequel. The model (2.4) is integrable in the sense that it possesses a linear system 

[24,25], i.e. the equations of motion (2.13) appear as integrability conditions of the 
following linear system of differential equations: 

Ou~)(x, t, y )  = )d(x, t, y ) L u ( x ,  t, y ) ,  (3.1) 

with 

L~(x ,  t , y )  = Q~ + 1 + y 2 2y  v 
1 - ~,---~ G + ~ ~ P  , 

1 (W q-p /~)2__ /92) y ( x ,  t, w) = - - X/'(w + . 
P 

The PCM admits a similar linear system (A.3) with constant spectral parameter A 
[26,27]. The difference here, which is essential for the entire following treatment, is 
the coordinate dependence of y and its interplay with the underlying constant parameter 
w. Some useful and illustrative formulas are collected in Appendix B. 

The existence of the linear system allows the construction of the transition matrices 

T ( x , y , t , w )  = v - l ( x , t , y ( x , t , w ) )  V ( y , t , y ( y , t , w ) ) .  

They satisfy 

T ( x , x , t , w )  =I ,  

OxT(x, y, t, w) = - L 1  (x ,  t, 7 ( x ,  t) ) T ( x ,  y, t, w) ,  

OyT(x, y, t, w) = T ( x ,  y, t, w)L~ (y, t, y ( y ,  t) ), 

cgtT(x, y, t, w) = - L o ( x ,  t, y ( x ,  t) ) T ( x ,  y, t, w) + T ( x ,  y, t, w)Lo(y ,  t, y ( y ,  t) ). 

(3.2) 
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Like the spectral parameter y, the transition matrices also live on a twofold covering of 

the complex w-plane. Transition between the two sheets is performed by the involution 

r/. Until explicitly stated, we shall in the [bllowing always consider the sheet with 
y C D+ U D _  inside of the unit circle (cf. Appendix B).  

Note that T ( x ,  y, t, w) is uniquely determined by the first three equations of  (3.2);  
its time dependence is a consequence of the equations of motion (2.13).  If  the physical 

currents and thus L0 vanish sufficiently last at spatial infinity, (3.2) already shows that 
the transition matrices connecting the spatial boundaries become integrals of  motion. 
They shall in fact play the main role in the sequel. 

Starting from (2.11) we can calculate the Poisson brackets between two transition 
matrices with pairwise distinct endpoints. This calculation differs from the related one 

in the PCM in two essential points. First, the underlying coset structure implies the 

appearance of a twist in the resulting Poisson algebra (3.10),  (3.11).  Second, the 

calculation lbr the PCM is known to be obstructed by certain ambiguities which arise 
due to the non-ultralocal contributions of the original Poisson brackets (2.11).  They 

spoil a well-defined limit procedure to coinciding endpoints. In our model on the other 
hand, the coordinate dependence of the spectral parameter - caused by the coupling 

of the dilaton field p - provides an intrinsic regularization of these ambiguities at the 

spatial boundaries. As a result, the Poisson algebra (A. II ) for these transition matrices 
takes a tractable form that (up to the twist) is related to the well-known Yangian algebra 

[3].  We shall study this lbr fixed choices of  p and 15 in the subsequent sections; the 
detailed calculation is postponed to Appendix A. 

3.1. Spacelike dilaton 

Assuming the vector field 0~,p to be globally spacelike, we now identify p = x with 
the radial coordinate x E [0, cx~[. This is a usual choice of  coordinates for describing 
cylindrically symmetric gravitational waves [ 10,11]. The dual field /5 (2.6) then is 
identified with the time t. 

Consider the object 

9 1 ( x , t , y ( w ) )  = V ( x = O , t ) T ( O , x , t , w ) ,  (3.3) 

with y E D+ U D_ inside of  the unit circle. According to (3.2) and (B.5) ,  this is 
a solution of the linear system (3.1).  A closer look at the properties of  the spectral 
parameter (cf. Appendix B) shows that it is the unique solution which is holomorphic 
inside of  the unit circle in the y-plane. 7 

Let us assume that the physical currents Ju fall off sufficiently fast at spatial infinity 
x --, ~ .  In this limit "13~ then becomes t-independent. As a function of w it becomes 
discontinuous along the real w-axis (since the branch cut blows up and cuts the plane 
into two halves).  Upon further right multiplication with V -1 (x = c~, t) these constants 

7 This normalization lbr the solution of the linear system has e.g. been chosen in 120 I. 
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of motion become also invariant under the gauge transformations (2.3). We denote these 

charges by 

T+(w) -- T:~(Yv) - "9(x =O,t)T(O,~,t,w));-l(x= cx~,t) for y (w)  E D:E. 

(3.4) 

They will provide the new variables of the model. As functions of the constant spectral 
parameter w the T±(w) are holomorphic in the upper and lower half of the complex 

plane, respectively. We can still bring them into a more illustrative form. Starting from 

o o  / (  - -  T+(w)=)2(x=O,t)79exp dx Ql+l+y2Pi  _ y 2 P o  V - l ( x = o < ) , t ) ,  
1 - y 2  1 

0 
the t-independence may be exploited to calculate this expression for real w at the specific 
value t = - w  (assuming regularity of the currents): 

o o  

T± (w) = l ; (x  : 0, t = - w ) T ' e x p  f dx(Ql(X,-W)± i P 0 ( x , - w ) ) V - l ( x =  co, t). 

0 

(3.5) 

Thus, on the real w-axis T+ (w) naturally factorizes into the product of a real and a 

compact part. Let us further assume that g _-- );rl(V) - l  tends to the asymptotical value 
1 at spatial infinity (x = ~x~). It follows that the matrix product 

M ( w ) - l i m  (T+(w+ie)~7(T~l(w-ie))], f o r w E R ,  (3.6) 
e ----~0 \ . . j 

peels off the compact part of the factorization (3.5). Thus, it coincides with the values 
of the original field on the symmetry axis p = 0: 

A4(w)=l;(x=O,t=-w) 71(V-l(x=O,t=-w))=g(x=O,t=-w). (3.7) 

In particular, it is real, 

M(w) = M ( w ) ,  (3.8) 

and satisfies 

A4(w) = r I (A4(w))  - I  . (3.9) 

Vice versa, (3.6) can be interpreted as the essentially unique (Riemann-Hilbert) fac- 
torization of .A4 into a product of matrices holomorphic in the upper and the lower half 
of the complex w-plane, respectively. 8 

8 The matrix .A4(w) in fact coincides with the so-called monodromy matrix of ~'l, originally introduced in 
[ 201. It is related to the transformation behavior of Ql between the two sheets of y and may in particular be 
extracted from Ql already at finite x. 
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Eq. (3.7) provides a physical interpretation for the new constants of motion. Having 
been defined as spatially non-local charges for fixed t, they gain a definite localization 
in the 2d space-time at fixed x. Moreover, they contain the entire information about 

the solution: Together with the fact that (Ox]2)(x = 0) = 0 which follows from the 
equations of motion (2.13), the values on the symmetry axis x = 0 allow us to recover 
the field l; everywhere. In some sense the initial values on a spacelike surface have 

been transformed into initial values along a timelike surface. Thus, the T+(w)  build a 

complete set of constants of motion for this classical sector of solutions regular on the 

symmetry axis. 
Their Poisson algebra is derived in Appendix A.2: 

T+ (c) ,  T-+ (w) = ,T-t: (v) T± (w) , 
l) --  W 

, 2 ~2g T± (v)  T: F (w) - -  T± (v) T: F ( w ) - -  T+ (v ) ,  T: v (w)  v - w 

(3.lO) 

a~ , (3.11) 
U - - W  

The singularity at v = w is understood in the principal value sense. For consistency, it 
may be checked that (3.12) is indeed compatible with the symmetry (3.9) of .Ad. 

Summarizing, the variables M ( w )  provide a new formulation of the model based on 
the closed Poisson algebra (3.12) and a physical interpretation according to (3.7). The 
further study and quantization of this structure will start from the factorization (3.6) 

with the corresponding Poisson algebra (3.10), (3.11). 
Let us finally compute the Poisson brackets between the Hamiltonian of (2.15) with 

the new variables T+. Though they are integrals of motion they do not commute with 
H, since their definition makes explicit use of the time t =/5. The standard formula 

Y { }/  {' } 7" ( x , y , t ; ) , ~ (  = dx'  J" ( x , x ' , v )  L, ( x ' , y ( x ' , v ) ) , ~ (  7" ( x ' , y , v ) ,  (3.13) 

J 2 1 2 s2~ 
_ _ _ s 2 ~  3/1 (v )  M ( w ) +  M (v )  M ( w )  

U - - W  U - - W  

' J"2~ 2 2 ,(2~ I 
- M (v) M ( w ) -  M (w) M (v).  

U - - W  U - - W  
(3.12) 

with s2~ = s2O - s2e obtained from s2g by applying r/ in one of the two spaces. 

Eqs. (3.10) build two semi-classical copies of the Yangian algebra that is well known 
from other 2d field theories [4,8,5]. By semi-classical we conventionally mean that the 

Poisson brackets (3.10) coincide with the commutator of the h-graded Yangian algebra 

in first order in h. The mixed relations (3.11) appear "twisted" by the involution r/with 
respect to those coming from the normal Yangian double. Note that whereas (3.10) 

remains regular at coinciding arguments, (3.11) becomes obviously singular at t, = w. 
However, since T+ and T_ are defined in distinct domains, this singularity appears only 
in the limit on the real line and thus with a well-defined ie-prescription. 

The matrices Ad(w) form a closed Poisson algebra: 
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for arbitrary X, allows us to explicitly calculate the Poisson bracket 

{T~:(w), H} = OwT:t:(w). (3.14) 

This result also follows from a simple reasoning: due to the form (B.1) of the spectral 
parameter y and the definition (3.2), the explicit time dependence (the one not governed 

by H) of the T+ (w) equals their w-dependence. Since they are integrals of motion, their 

bracket with H then takes the form (3.14). 

3.2. Timelike dilaton 

In this section we study the case of a globally timelike vector field 0up, which allows 

us to identify p with the time t. Accordingly,/5 now builds the spatial coordinate x. The 
distinguished location p = 0 which has played the role of the symmetry axis x = 0 in 

the previous section becomes now the origin t = 0. With periodic spatial topology, this 
is the setting of the so-called cosmological Gowdy models [28]. 9 We will however just 
treat the asymptotic case x E] - - ~ ,  ~ [ .  The fundamental structures of the preceding 

section reappear in this context from a somewhat different side. We keep the technical 
issues rather briefly here since they have been discussed in detail above. 

Again the transition matrices T(x ,  y, t, w) provide a solution of the linear system: 

~2(x , t ,  y ( w )  ) =--- T ( - ~ , x , t , w ) ,  (3.15) 

for y (w)  E D+ tO D_ inside the unit circle. It gives rise to the integrals of motion 

T(w)  =~ l ) ( - c x ~ ) T ( - ~ , c x ~ , t , w ) V - I ( ~ ) .  (3.16) 

With (B.5) and (A.11) it follows that they satisfy the Poisson algebra 

z = /2g , T ( v )  T ( w )  . (3.17) (v) ,  T (w) v -  w 

In contrast to the previous section this function is continuous in the w-plane (since the 
branch cut does not blow up in the limit x ~ a~ but rather moves along the real line). 

Moreover, they do not contain the complete information about the model. This may be 
seen most easily for solutions of (2.13) which are regular at the origin t = 0. For these 
solutions (3.16) can be calculated in the limit t ~ 0 where it becomes trivial. Since it 
is t-independent we arrive at 

T(w)  = I. (3.18) 

Thus, additional integrals of motion are required. Define 

= lim 92(x, t, y ( w  + ie))  r l (Q;  1 (x, t , y ( w  - ie))'~, (3.19) :~4(w) 
E -..-r 0 \ / 

which is independent of x and t. This is the proper analog of (3.6). In fact, within the 
setting of the previous section definition (3.19) with ~'z replaced by 1)1 equals (3.6): the 

9 See Refs. 129,301 for a recent treatment of  the Gowdy model in Ashtekar variables. 
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latter one is obtained from the former one in the limit x ---, ~ while .M is independent 

of x. In the case of  timelike p on the other hand, (3.19) cannot be expressed in terms 

of (3.16) (as is obvious from (3 .18) ) .  This is due to the fact that the limits e --~ 0 and 

x -~ cx~ do not interchange in (3.19) ,  cf. Appendix B. 
For the solutions regular at the origin t = 0, .A.4(w) can again be calculated more 

explicitly. Since A.4(w) is independent of  x and t, we may evaluate it at the branch 

point x ~- t - w and subsequently perform the limit t ~ 0. It is important to keep 

x = t - w during the limit process, since otherwise M ( w )  does not behave smoothly. 

This yields 

.AA(w) = lira P e x p  d x L t ( x , y ) 7 9 e x p  d x r  I - L j ( x , y )  
t - - - * O , x = w - -  t 

- -  o o  

= l ; ( X =  - - w , t = O ) r l ( V - t ( X =  - - w , t = 0 ) ) .  (3.20) 

Thus, M ( w )  again coincides with the values of the physical field g at p = 0. 

The set of  .A4(w) together with their canonical Poisson structure (3.12) provides 

a proper set of  fundamental variables to parametrize the phase space of  solutions of 

(2.13) regular at the origin t = 0. Note that the canonical formulation obviously fails to 

cope with describing this truncated phase space: At t = 0 this framework breaks down 

with the vanishing Lagrangian (2.4) ,  whereas at finite t the condition of regularity at 

t = 0 poses highly non-trivial implicit  relations between the canonical coordinates and 

the momenta.  
After some calculation, the general form of  the Poisson brackets (A.11 ) further yields 

the same Poisson algebra (3.12) as in the previous section for the matrices .A4(w). 

Via the Riemann-Hi lber t  decomposit ion of  .A// discussed above one may then further 

implicitly obtain the matrices T± with Poisson structure (3.10),  (3.11).  Thus, together 

with (3.20) for solutions regular at p = 0 the final situation appears rather similar to the 

previous section. This further stresses the fundamental meaning of  the Poisson structure 

(3.12).  
Let us finally look at the results of  this section from another very intriguing point of 

view. In the setting with a spacelike dilaton addressed in the previous section we could 

have derived a Poisson structure not with respect to the time t but with respect to the 
radius x. 10 The calculations of  this section show that these two Poisson structures of the 

same model coincide for the values of  the original fields on the symmetry axis x = 0. 

Since these initial values provide a complete set of observables the symplectic structures 

are essentially equivalent. It is then tempting to speculate about further exploiting the 

fundamental structure (3.12) even in the case of  a timelike dimensional reduction, 

jo In a covariant theory this is a rather natural idea which has been discussed in particular to describe static 
settings 131 I. For the Schwarzschild black hole, e.g., one might throw doubt upon the distinct role of time in 
the canonical formalism since x and t change their character being space- and timelike inside of the horizon, 

respectively. 
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i.e. the reduction to stationary axisymmetric space-times, where the canonical time is 

no longer present. 

4. The Geroch group 

With the integrals of motion T±(w) identified in the previous section, one can now 

study the symmetries they generate via their adjoint action in the canonical Poisson 
structure. This yields an explicit realization [18] of the Geroch group [32] with the 

underlying Yangian algebra (3.10), (3.11). The transformations which close into an 

affine algebra (the loop algebra fi) do not preserve the symplectic structure. This is 

a particular example of the Lie-Poisson action of dressing groups generated by the 

transition matrices of integrable models [33-35]. For the integrable models studied so 

far within the framework of the quantum inverse scattering method the integrals of 
motion are generated by the eigenvalues of the transition matrices. Here in contrast the 

transition matrices T~(w) themselves are conserved charges. 

Let A(w) E ~ be an algebra-valued function which is regular along the real w-axis 
and vanishes at w ~-~ cx~. Choose a path g = g+ • g_ encircling the real w-axis, such that 
g+ E H+ and A(w) is holomorphic inside the enclosed area. Define 

S[A] - t r  ~-~i T+J(v) A(v)adr,(,,) + (v) A(v)adr_(~,) 
g_ 

where "ad" denotes the adjoint action via the canonical Poisson structure. Since (3.10), 
(3.11 ) yield 

I 

T:~ (v) ,  .A.-[ (w) = O~ .A// ( w ) -  (w)S2 . . . .  , 
U - - W  

we obtain the symmetry action 

S[ A]Ad(w) = A(w)J~(w) - A,4(w)71( A(w ) ). (4.2) 

This is the known infinitesimal action of the Geroch group on the matrix .M [20]. 

Even though the symmetry action on the fields is highly non-linear (cf. (4.4) and (4.5) 
below), on the axis p = 0 it linearizes to (4.2) and allows explicit "exponentiation" to 

finite transformations. This in particular shows transitivity of the Geroch group in the 
sector of solutions regular on the axis p = 0. 

The transformations (4.2) form the loop algebra ~, as follows also directly after some 
calculation from (4.1), (3.10) and (3.11): 

[S[A1],S[A2]] = S[[A1,A2]]. (4.3) 

The explicit action of S[A] on the physical fields ]2 follows from (3.13), 
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S[A] ) , ; (x)=/  dv ~ i  (p(12-----Yy 2) F ( x ) [ ~ - ' ( x , , ( v ) ) A ( v ) ~ ) ( x , y ( v ) ) ] e  ) 
t 

= -  J' ydy 
('P(x) [~-I(x ,y(v))A(v)~(x,y(v))]e) ,  (4.4) 

with the algebra projection [ • ] ~ corresponding to the decomposition (2.1) and where 
should be replaced by "1~1 or ~2 respectively, depending on the choice of the dilaton 

1 p. The corresponding transformation of the currents P± ~ ~(P0 5= PI ) reads 

SIA] P+(x) = ~ p( l  ~-y)2 ~ p2(1 4-T)2(I - 9/2) 
g 

(4.5) 

Equivalent forms of the infinitesimal symmetry transformations of the Geroch group have 
been stated in [36-38,21]. For example, it is easy to check that the single symmetry 
transformations as they are made explicit in [21 ] may be obtained from the closed form 
(4.5) by means of a Taylor expansion around w = cx~. 

We can go further and calculate the action of S[A] on the solution of the linear 
system "1~. Evaluating the key formula (A.11) according to the definitions (4.1) and 
(3.3) leads to 

S[A] 9(x,y(w))  = A(w)~d(x,y(w)) - ~d(x,y(w)) T(A,x,y(w)) ,  (4.6) 

with 

f f  dv 
7~(A'x'y(w))= 27ri(-v'- w ) [ ~ - l A F ]  ~ 

l--"~2(W) / dv y(v) [ Z~]e 
y - ~  27"ri(v--W) 1 - - ~ - ~ U )  L ~)-1 ' 

+ (4.7) 

The path g of the remaining integrals encircles the branch cut on the real w-axis (cf. 
Appendix B). 

The formula (4.6) shows an interesting pattern which has been used for the traditional 
realization of the Geroch group via the linear system [14,20,21]. The matrix A(w) 
depends on the constant spectral parameter w and parametrizes the symmetry algebra 1~. 
In contrast, T(A, x, y) depends on the variable spectral parameter y and satisfies 

T(x,~,) : ,  (T(x,~,-~)) =_ . ~  (T(x,~,)) ,  

i.e. it is invariant under the generalized involution r] ~ which defines the so-called 
algebra 0 °° as a subalgebra of fi with affine parameter y (see Ref. [39] for a precise 
discussion). Recall that the linear system (3.1) determines the solution ~ up to left 
multiplication with a w-dependent matrix. This freedom has been fixed by choosing the 
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solution (3.3) holomorphic inside of the unit circle in the 3/-plane. The left multiplication 

with an arbitrary A(w) in (4.6) violates this so-called "generalized triangular gauge" 

(unless A(w) is constant). It requires the compensating right multiplication with a 

unique T(A, x, 3/) from [9 ~ to restore the holomorphy inside of the unit circle. This has 
been the traditional non-linear realization of the Geroch group; formula (4.7) indeed 
provides a closed expression for the compensating 1~ ~ rotation. 

From (3.14) we finally directly obtain the action of S[A] on the Hamiltonian H: 

S[A[ H= tr ~ A(v) O~.T+T~(v) + ~ A(v) 0~,T_T21(v) , (4.8) 

in accordance with the formula derived in [21]. 

Definition (4.1) illustrates that the action of the Geroch group is not symplectic but 
Lie-Poisson, i.e. it does not preserve the Poisson structure on the phase space but on 
the direct product of the phase space with the symmetry group. Its role in the quantum 

theory remains to be elaborated, see Ref. [35] for a general discussion. In our model 
we could alternatively consider the pure symplectic action of the generators T+ (w) via 
Poisson bracket since they are integrals of motion themselves. However, though they 
certainly act symplectic this action allows neither explicit exponentiation nor a closed 
form of the commutator algebra in contrast to (4.2) and (4.3). 

5. Quantization: A twisted Yangian double 

So far, we have achieved a complete reformulation of the classical model (2.4) in 

terms of the transition matrices as new fundamental variables providing a complete set of 
integrals of motion. This formulation reveals integrability and the classical symmetries 

in a beautiful way. We can now proceed with canonical quantization of the Poisson 
algebra derived in the previous sections. 

5.1. g = s [ (N)  

For the sequel we specify the algebra 1~ to be 5[(N), i.e. r/(X) = - X  t and [9 = ~o(N).  

Let us recall the classical algebra of integrals of motion (3.10), (3.11). For g = ~I(N) 
it is Ost~N) = HN - -~I with the N 2 × N 2 permutation operator I1N: 

(17N )ab,cd = ~ad f~bc. 

Accordingly we define its twisted ana log / /~  by 11 

2 \"b'c~ 26~6cd.  

f i The transposi t ion 11~ here amounts  to t ransposing just  one of  the two spaces in which fIN lives. 
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The Poisson algebra (3.10), (3.1 1) then takes the form 

7'+ ( v ) , T ±  (w) : ,T± (v) T± (w) , 
l; -- W 

T± (v),  T-~_ (w) - T¢ (v) T~ ( w ) -  T± (v) T~: ( w ) - - ,  
U--W U--W 

(5.1) 

(5.2) 

The T~(w) are related by complex conjugation (3.4) and further restricted by the 

condition T i ( w )  E G: 

detT±(w) = 1, (5.3) 

and the additional property (3.9) 

M ( w )  = T+(w)T '  (w)  = T_ ( w ) T ~ ( w )  = M ' ( w ) .  (5.4) 

Quantization of the model in terms of these variables now amounts to replacing (5.1), 
(5.2) by corresponding commutator relations of an h-graded algebra, such that these 

relations are compatible with the quantum analogs of (5.3) and (5.4). It admits the 
following essentially unique solution: 12 

The quantization of  the presented model for ~ = ~I( N) is given by the *-algebra 

generated by the matrix entries of  N × N matrices T+(w) subject to the exchange 

relations 

I 2 2 1 
R ( v -  w) 7"+ (c') 7"+ ( w ) = T ±  (w) T:k ( v ) R ( v -  w), (5.5) 

R ( v - w - i h )  T _ ( v ) T + ( w ) = T + ( w ) 7 ~ _ ( v ) R  ~ v - w +  ih X ( v - w ) , ( 5 . 6 )  

with 

R(v)  ~ vl - ih[IN, RU(v) - vl - ihlI~N, X(v )  :-- 

F ( ~ )  r((N+2)ih-v'~\ ~ /I 

(5.7) 

The condition of  unit determinant (5.3) is replaced by the quantum determinant 

qdetTi(w) ~ Z s g n ( ° - ) T ~ t ) ( w -  ( N -  1)ih) 
(rEiN 

N(r(N) W ×T~'*(2)(w - iN - 2)ih)...T~ ( ) 

= 1, (5.8) 

and the quantum form of  the symmetry (5.4) is given by 

12 For simplicity we use the same notation for the classical fields and the quantum operators. This should not 
lead to any confusion. 
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A A ( w )  = T+(w)Tt_(w)  = ( T + ( w ) T L ( w ) ) ' ,  (5.9) 

where transposition here simply refers to the N × N matrix entries. The ,-operation is 

defined by 

T+(w)* =-- T_(Yv),  (5.10) 

and builds a conjugate-linear anti-multiplicative automorphism o f  the algebra (5.5)- 

(5.9). 

Denote by Y± the algebra generated by the T± (w), respectively, with exchange re- 
lations (5.5). These are two copies of the well-known Yangian algebra [3] which 
provide the unique quantization of the Poisson algebras given by (5.1). Compatibility 
with associativity is equivalent to the Yang-Baxter equation for R: 

Rl2(U - v)R13(u - w)R23(v - w) = R23(u - w)Ri3 (u  - -  w ) R I 2 ( U  - U). (5.1 l) 

The corresponding compatibility of the mixed relations (5.6) with associativity is equiv- 
alent to a modified (twisted) Yang-Baxter equation for Ro: 

R'~2(u - v)e'~3(u - w)e23(v  - w) = e23(v - w)R~3(u - w)e'~2(u - v).  (5.12) 

Validity of this equation follows from the relation 

R n c +  ih = -  R ( - u )  , (5.13) 

and (5.11) by applying transposition in the first space. Moreover, (5.12) remains valid 
under a shift of the argument in Rn(v) as well as under rescaling it with a factor X. 
Hence, whereas the exchange relations for Y± are uniquely given by (5.5) [3], the most 
general ansatz for the mixed exchange relations (5.6) is 

1 2 2 1 
R(v  - w + Qih)  7"_ (v)  T+ (w)  = 7"+ (w)  T_ (v)R~7(v - w + c2ih) X(V - w) .  

(5.14) 

The resulting algebra must respect the symmetry (5.9) of .A4(w). More precisely we 
demand that 

(Y÷ ~ Y_) 7: = I (Y+ ® r_ ) ,  (5.15) 

where 77 C/g(Y+ ~3 Y-) is spanned by the antisymmetric matrix entries of A4. Relation 
(5.15) ensures that the symmetry of .A4 may be consistently imposed without implying 
further relations. Eq. (5.1 5) is not influenced by the choice of X but uniquely determines 
the values of the cj in (5.14) to be 

2 
Cl = - - l ,  C2 = - - .  

N 

At these values the exchange relations between T± and .A4 may be written in the closed 
form 
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2 2 ( 2ih~N J 1 R ( v - w - i h )  72 _ ( v ) . M  (w)= .Ad(w)R ~ u - w +  T_ (v) X ( v  W ) ,  

I 2 
R ( v -  w) 7~ (v) .Ad (w) 

=fct ( w ) R  n v - w +  I +  ih 7"+ (v) x ( v - w ) ,  (5.16) 

and indeed imply (5.15). 

The factor X ( v )  in (5.6) is finally fixed from the requirement that the quantum 
determinants from (5.8) commute with everything such that the relations (5.8) are 
consistent with the algebra multiplication. It is known [40,41] that the qdetT:~ span the 
center of Y+ respectively, thus X ( v )  must ensure that they also commute with IT. An 
essential identity for this calculation is [42] 

I 2 N 
q d e t T + ( w ) A N = A N  1"+ (w)  T+ ( w -  ih) . . .  T± (w - ( N -  l) ih)  

N 2 1 
=7"+ ( w -  ( N -  1 ) ih ) . . .  T+ ( w -  ih) T+ (W)AN, 

where AN denotes the antisymmetrizer in the N auxiliary spaces. Modifying the calcu- 
lation for the Yangian [42] by using our mixed relations (5.6) finally leads to 

o 0 
ANR~ol . . .  R~oNAN T_ (v)  qdetT+(w)AN = qdetT+(W)aN T_ (v)AuRto~t.. . RoNA , 

with 

I Ro i =- Roj(v - w + ( j  - 2)ih),  

, , (  Roj=--R'~i v - w +  j + ~ -  1 ih 

Now 13 

X ( v - w + ( j -  1)ih). 

N 
2ih U I I W 

H ( v -  w + ( j -  2)ih) AN, ANRm "'" RoNAN - -~-- w--- i-h 
j = I 

which together with (5.13) implies 

N 
,, , w - u - Nih 

ANR°I " "  RoNAN = w--v---- (NU i-)ih ~ X ( v  - w + ( j  - 1)ih) AN. 
j=l 

Combining these equations yields the functional equation for X(V) which is solved by 
(5.7). Uniqueness of this solution follows from its normalization at ih/v---,  0_: 

i h ( 2 )  ih 
y (v ) - -~  1 - - -  1 + , for - -  --~ 0_, 

U U 

which is required in order to obtain the correct classical limit (5.2) from (5.6). 

13 We thank A. Molev for pointing this out. 
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It remains to check that the ,-operation defined by (5.10) is indeed a conjugate-linear 
anti-multiplicative automorphism of the structure (5 .5)-  (5.9). Compatibility of (5.5) 
and (5.6) with (5.10) obviously follows from R(fi) = - R ( - u ) ,  Rn(~)  = - R n ( - u ) ,  

X ( ~ )  = X(U) and the fact that R and R n are symmetric under permutation of the two 
spaces. Invariance of the restriction of unit quantum determinant (5.8) under • follows 
f r o m  

Dr(l) qdet(T+(w))* = ~ sgn(o')T~]r(U)(~).. .T:~ ( ~ +  ( N - l ) i h )  
o-EGN 

= qdet(T~: (~  + (N - 1)ih) ), 

where for the second identity we have employed one of the many properties of the 
quantum determinant [42]. Finally, compatibility of the symmetry relation (5.9) with 
* follows directly from invariance of this relation under ,:  

( r + ( w ) r ! ( w ) ) *  = (T+(w)T '_ (w) ) '  = < ( w ) r ! ( w )  for w E R. 
[] 

The algebra (5.5)-(5.9)  is a new structure which in fact brings together some con- 
cepts which arose within the last years in the theory of quantum groups. The exchange 
relations (5.5) define the Yangian Y(g[(N)) [2,3].14 The definition of the quantum 
determinant (5.8) is known from the Yangian Y(~t(N)) [40-42]. 

The shift of the arguments of the quantum R-matrices in (5.14) reminds the central 
extension of the normal Yangian double, which has been introduced for quantum affine 
algebras in [9] and explicitly for the Yangian double in [44,45]. In contrast to the usual 
case, a common shift of c~ and c2 is no automorphism of (5.5)-(5.10).  Rather, the 
absolute value of both parameters is fixed from the requirement of compatibility with 
(5.9). From the abstract point of view the central extension takes the critical value at 
which (5.15) holds, i.e. any representation of the algebra (5.5), (5.6) factorizes over 
27. The normal (untwisted) Yangian double has a critical value of the central extension 
at which it possesses an infinite dimensional center [9]. As we shall discuss in the next 
section, for N = 2 the algebra (5.5)-(5.8)  is in fact isomorphic (but not .-isomorphic) 
to the normal centrally extended Yangian double at the critical level. 

The essential new ingredient of (5.5), (5.6) is the twist 15 r/ in the mixed relations 
which already appeared in the classical Poisson algebra. It is basically this peculiarity 
which requires a new representation theory to be developed. 

14 In tact, the underlying algebra in our case is a degeneration ~4n(51(N)) of the scaling limit of the 
elliptic affine algebra ,Ap,q(s[(N)).  In terms of the generating functions T i ( w )  the exchange relations of 
this algebra coincide with the Yangian double; however with different analyticity properties. Whereas for 
the Yangian double the T±(w) are assumed to allow Laurent series in 0 and oo, respectively, they behave 
analytically in the upper and lower half of the complex plane for ,,4 a ( s t ( N )  ), respectively [43 ]. This is the 
case in our model. It suggests to choose Fourier coefficients of T+ (w) on the real line as convenient objects 
for further study of the algebra. 
15 We are aware that the notation of "twist" has been introduced in several contexts for quantum groups in 

general and even for the Yangians in particular. In Ref. [46], e.g., the "twisted Yangian" denotes the Yangian 
for the algebra so  (N).  However, we hope that our notation here will not cause undue confusion. 



676 D. Korotkin, H. Samtleben/Nuclear Physics B 527 [PM] (1998) 657-689 

Remark 2. The algebra (5.5)-(5.9)  is isomorphic under rescaling of h with positive real 
numbers. Namely, this is absorbed by a rescaling of the spectral parameter w. Negative 
or complex rescaling in contrast would violate the assumed holomorphy behavior of the 
classical limit of the Ta: (w). Depending on the sign of h, there is hence a Z2-freedom in 
constructing (5.5)-(5.9) .  This corresponds to the symmetry (+  ~ - )  of the classical 
Poisson algebra (5.1)-(5.4) ,  which is obviously broken after quantization. This freedom 
might eventually be fixed by the requirement of the existence of unitary representations. 

Remark 3. The symmetry property (5.9) together with the definition of the ,-map 
guarantees that the object .A4(w) is symmetric and invariant under , .  In a unitary 
representation it will thus form a self-adjoint operator. As such it is the natural quantum 
object that according to (3.7) underlies the original classical field on the symmetry axis. 
It satisfies the closed exchange relations 

- ( w ) R  ~ v - w +  1+  ih . M ( v ) R ( w - v ) x ( w _ v  ) ,  (5.17) 

which may be viewed as the quantization of (3.12). 

5.2, g = ~I(2) 

To illustrate these formulas we will now discuss the particular case g = ~I(2). This 
is the model which describes the two Killing vector field reduction of pure 4d Einstein 
gravity and correspondingly already deserves strong interest from the point of view 
of quantum gravity. The corresponding quantum model has been introduced in [19]. 
Remarkably in this case there is an algebra isomorphism between our twisted and the 
normal Yangian double, however this is no *-algebra isomorphism. 

The exchange relations here read 

I 2 2 I 
R ( v -  w) T~_ (v) T~ (w) =T± (w) T+ (v )R(v  - w), 

I 2 2 I 
R ( v -  w -  ih) 7"- (v) T+ (w) =T+ (w) T_ ( v ) R ' l ( v -  w + ih) x ( v -  w),  

with R and R e from 
H '1 are given by 

/i °°° 
0 1 0 

H=~ 1 0 0 ' 

0 0 1 

Moreover, X may be evaluated from (5.7), 

v(v - 2ih) •(u) = 
(v - ih) (v + i/z) " 

(5.18) 

(5.19) 

(5.7), where the permutation operator H a n d  its twisted analog 

/7'7 = I - / / 7  _= 

O 0 0 -1  / 
0 1 0 0 
0 0 1 0 ' 

- I  0 0 0 
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The quantum determinant is given by 

qdetT+ (w)  - T~: 1 ( w -  ih)T}2(w) - T ~ : 2 ( w -  ih)T2,1 (w) = l; (5.20) 

the matrix product 

M ( w )  ==- T+(w)Tl_(w) = . /~(w) '  (5.21) 

is symmetric under transposition and satisfies (5.17). 
The particular case N = 2 is distinguished from the higher N already on the classical 

level by the fact that the involution r/ is  an inner automorphism generated by conjugation 
with 

( 0  , )  
0-2 = - i  0 " 

This allows us to "retwist" the mixed relations (5.19) by the following transformation: 

T+(w) =- T+(w)0-2, T_(w)  =_T_(w). (5.22) 

These retwisted generators satisfy the exchange relations of the normal Yangian double: 

1 2 2 i 

R(v - w) T+ (v) T:~ (w)  =T~ (w) T± (v )R(v  - w),  (5.23) 
1 2 2 1 

R ( v - w - i h )  T_ (u) T+ (w)=:r+ (w)  :r_ ( v ) R ( v - w + i h )  x ( v - w )  (5.24) 

at the critical level k = -2 .  At this level the center of the Yangian double becomes 
infinite-dimensional and is generated by the trace of the quantum current [9] 

(5.25) L(w)  

Evaluating this in terms of our matrix .M(w) from (5.21) yields 

tr L(w) = A,'/12 (w) - M zl (w). (5.26) 

The central extension of our structure was precisely determined by the requirement 
(5.15). Since for N = 2 the subspace 27 is one-dimensional, (5.15) and an explicit 
calculation shows that it even lies in the center of the algebra (5.18)-(5.19).  Here 
we see complete agreement with the normal Yangian double at the critical level. We 
have thus equivalence of the twisted structure (5.18), (5.19) with the untwisted (5.23), 
(5.24), however supplied with a somewhat peculiar *-structure, 

~+(w)* = T-  (~')0-2. 

For higher N this equivalence does not hold. Neither is there an algebra isomorphism 
between (5.5), (5.6) and the normal Yangian double, nor does a center emerge at our 
critical level, rather criticality is expressed by (5.15). 
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Remark 4. For explicit calculations it is sometimes useful to express the exchange 

relations (5.18), (5.19) in matrix components T~_b(w). The mixed relations (5.19) 
e.g. may equivalently be written as 

l j _ ( )  +( )= 1 - i v _ w )  

+ ~  (T~d(w)Tff,(v) + ~bd T~m(w)Ta_m(v)) 

( g - w ) 2  _ - T ' '  w v "°' v 

Interpreting the matrix entries of the T± as creation and annihilation operators, respec- 

tively, the r.h.s, of (5.27) can be viewed as sort of normal ordering. 

6. Outlook 

We have given a complete reformulation of the classical models in terms of the 
transition matrices of the associated linear system. In contrast to the situation in gen- 
eral integrable models, here the transition matrices themselves are integrals of motion. 

Moreover they contain a complete set of conserved charges related to the values of the 
physical fields on the axis p = 0. The Poisson algebra of these matrices has been shown 

to form a semi-classical version of the Yangian double modified by appearance of a twist 
by the coset involution r/. The transitive action of the Geroch group becomes manifest 
and rather transparent in this picture as the Lie-Poisson action generated by the tran- 
sition matrices. This classical picture has been established for an arbitrary semisimple 

Lie algebra ~ underlying the G/H coset o--model. 
Quantization for ~1 = M(N) led to a twisted Yangian double with central extension 

where the exact value of the central extension is uniquely determined from consistency, 

more precisely from compatibility of the structure with the symmetry of the matrix A.4. 
For ~ = 5[(2) the structure is in fact isomorphic (but not *-isomorphic) to the centrally 
extended Yangian double at the critical level with infinite-dimensional center. 

Continuation of the program is straightforward to outline. The representation theory 
of the algebra (5 .5)-(5 .9)  must be studied. So far only the finite-dimensional repre- 
sentations of the normal Yangian are completely understood and classified [47]. These 
results might serve as basic tools to support the first steps in exploring the relevant 
infinite-dimensional representations of our algebra. The hope is certainly that the re- 
quirement of unitarity with respect to the *-structure (5.10) will strongly restrict the 
choice of representations. In [19] we have suggested a particular Fock space type rep- 
resentation where inspired by the linear truncation of the model the two Yangian halves 
of (5.5) act as creation and annihilation operators, respectively. However, unitarity of 
this representation is not obvious, so eventually one might have to face states of negative 
norm; this remains to be investigated. 
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Once the set of possible representations has been identified and hopefully been brought 

to a minimum the next goal is the construction of coherent states in this framework. 

These states should exhibit minimal quantum fluctuations around given classical solu- 
tions. With them at hand one would finally be in a position to study in detail how 
quantization affects the known classical solutions of gravity. In particular, this might 
shed some light on the discussion about the existence and properties of suited coherent 
states in the truncation of the model to collinearly polarized gravitational waves [48,49]. 
The quantum analog of the Geroch group is supposed to play the key role of a spectrum 
generating group, i.e. in accordance with the classical picture it should act transitively 
among the coherent states. It may be possible to shortcut the explicit construction of 
representation and coherent states by properly understanding the quantization [ 35] of 
this Lie-Poisson action that we have described in the classical picture. 

Further open problems remain. At this stage we do not know the explicit link of 
the canonical approach adopted here to the isomonodromic quantization proposed in 
[50,51] for the same model. Although related quantum group structures appear, the 
isomonodromic framework is formulated in terms of different observables, which makes 
the comparison even on the classical level rather non-trivial. 

Since the classical picture is already formulated for an arbitrary semisimple Lie- 
algebra ~ there remains the obvious task to elaborate the quantization for higher- 
dimensional coset spaces. As mentioned several times before, this corresponds to the 
models which descend from dimensional reduction of matter-coupled gravities and su- 
pergravities. The study of their quantization so far suffers simply from the fact that the 
theory of Yangians associated to the exceptional groups, e.g., is still strongly under- 
developed - not to mention their representation theory. To describe the corresponding 
reduction of maximally extended N = 8 supergravity [14] one would have to con- 
struct the related possibly centrally extended Yangian double of E8~+8) with a twist 
characterizing the maximal compact subgroup SO(16).  

Another highly interesting generalization would be the extension of this framework 
to a dimensional reduction which includes a timelike Killing vector field. At present it 
seems rather subtle to rigorously establish a canonical framework in a sector of stationary 
solutions where the canonical time dependence has been dropped by hand. On the other 
hand, it is certainly this sector which contains the most interesting physical solutions, in 
particular the black holes. Justifying the relevance of the fundamental structures obtained 
in this paper within that context would open the doors to a profound understanding of 
quantum black holes. 
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Appendix A. Non-ultralocal term and Poisson structure of transition matrices 
with and without dilaton-gravity coupled 

Here we will show how the presence of  the gravitational and the dilaton field kills all 

ambiguities in the calculation of  the Poisson structure between transition matrices. To 

make the difference to the two-dimensional sigma models in flat space more manifest, 

we shall first recall the standard difficulties arising in these models. 

A. 1. Principal chiral f ield model (PCM) 

For simplicity we shall consider the principal chiral field model defined by the La- 

grangian 

g = t r JuJ  t*, (A . I )  

with currents Ja = G-JOuG for G E G and equation of  motion 

O~J,, =0 .  (A.2) 

The original Poisson structure is similar to (2.1 1), 

o (x) ,  5'0 (y) = s~,  Jo (x) a(x- y,), 

0 ( x ) , ) l  (Y) = f2g, Jj (x) g C x - y ) - S 2 ~ O x ~ C x - y ) ,  

i ( x ) ,  Jl (Y) =0.  

For the L-operator of  the linear system [26,27] 

2/l 
LI(X,,~.) ~ 1 - , ' ~  ( A J I ( x ) -  J o ( x ) ) ,  

this implies the following commutation relations: 

• L~(v,&) = - ( l _ a ~ ) ( a ~ _ & )  

( l  - a 2 ) ( a ]  - a : )  

4~.1 A2 
-- (1 - - 3 . ~ ) ( 1  - - , t .2)  /2g 3 , .~ (x  -- y ) .  

(A.3) 

In turn, the transition matrices 16 

16 For clearness we drop the argument t throughout this appendix. 
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3' 

T(x, y,A) =--  exp f az L(z,a), (A.4) 

x 

inherit the following Poisson structure [22]" 

t 3' Y 

(x,y,  A 1 ) , T ( x ' , y ,  2) dz dz r T ( x , z , v )  T ( x ' , z ' , w )  

X X t 

× L1 (z, A1),LI (z ' ,A2)  T ( z , y , v )  T ( z ' , y ' , w )  , (A.5) 

which leads to [23] 

(x,y,  A1),T (x ' ,  y ' ,  A2) 

1 , 2 / / 7" (y ,V, 4AIA2 - O ( x , y ' , y )  T ( x , v , A I ) T ( x , y , A 2 ) 1 2  o ' A1) 
(AI --  A2)(1 - Aft) " " 

I I 2 ) 
+O(x,x~, y) T (x, xt, A1)S2~ T (x', y, Al) T (x', f , A2) 

4AI ~.2 ( 1 2 2 
q - ( A ~ - , ~ e ) ( I - A ~ )  - O ( x ' , y , y ' ) T ( x , y ,  A l ) T ( x ' , y ,  A2)OoT(y,y ' ,A2)  

1 2 
+O(x',x, y')( ~ (x',x, A2)ao 7" (x, y,A,) T (x, y',A2)), (A.6) 

where we have made use of the abbreviation: 

1 for x < y < z 
O(x ,y , z )  = 0 otherwise (x ¢ y ¢ z)  

The standard source of  difficulties is an ambiguity in the limit to coinciding end- 

points, which spoils a well-defined calculation of the Poisson algebra of  the matrices 

T(A) ~ T ( - o c ,  oo, A). For example, taking the limit x, x '  --~ - o o ,  y, y '  --~ oo assum- 

ing that x < x'  and y > y '  we get 

2 4AIA2 ~ 1  7" ( A I )  T (A2) • (A.7) 
( A 1 ) , T ( 1 2 )  - ] - - - -~  Am--A2' 

Taking the same limit assuming that x '  < x, y < y '  we find a different result: 

(A1), T (A2) - ~--_-~ A1 ---A2' T (Al) T (A2) • (A.8) 

Moreover, both these brackets are obviously not skew-symmetric. Performing the limit 
with coinciding endpoints is strongly sensitive to the choice of O(x,x,y) .  None of  

these choices in turn is compatible with Jacobi identities. Several procedures have 
been suggested to nevertheless give sense to the classical Poisson algebra of  the PCM 

[17,52,53]. In the next subsection we shall show that unexpectedly the ambiguity 

problem turns out to be automatically cured for the dilaton-gravity-coupled model. 
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A.2. Algebra of transition matrices in dimensionally reduced gravity 

The calculation of the Poisson algebra of transition matrices is done in a similar way 
as for the principal chiral model. However, the explicit coordinate dependence of the 
spectral parameter - related to the presence of gravity and the dilaton field - surprisingly 
cures the ambiguities we met above. Let T(x, y, v) and T(x', f ,  w) be the transition 
matrices with spectral parameters v and w, respectively, and pairwise distinct endpoints 
x, y and x', y'. Due to the underlying coset structure of the model, it is a priori not even 
obvious that the Poisson algebra of the connection Lj of the linear system (3.1) is of 
a closed lbrm. However, this comes out to be true on the constraint surface (2.9): 

{, } L~ (z ,y~) ,Lj  (z ' ,y2)  

= _  2TIT2 ac2h, L1 (gq)+ LI (Y2) a ( Z -  Z') 
P(Yl - Y2) ( 1 - T I ' Y 2 )  

2y2(-I-z 72) [05, }., (Y])I 6 ( z - z ' )  
p ( l  --  r 2)  ( e l  - -  ~2"-) ( [  - -  ")/1")/2) 

2"y2( ' -Y~) [/2t, L,  ( ' 2 ) ]  ( ~ ( Z - - Z  t )  
p(l  -- y 2) (y, ~-}~(--1 - T l r 2 )  

2125 ( y l ( l + y 2 )  + y2( l+y2))Oz6(Z_Z, )  
(l  - r ~ ) ( ]  -r22) p ( z )  p(z ' )  ' ' 

with "y~ =- y(z ,v) ,  y2 - y(z' ,w).  Inserting this into (A.5) and using (3.2) and (B.6) 
leads to 

)' ),z 

w 
x x t 

Y 3" j ' f  2y2(1 - Y~) 
- dz dZ 'p (1 -y22) (ye -y ] ) ( l - y i y2 )  

X X / 
y y'  

+/dzJdz' 2y2(I - Y2) 
p (  1 - -  y l  2)  (3Zl - -  T 2 )  ( I - -  ')/1")/2) 

x x t 

1 
a(z - z') ( 4  + 4 ' ) -~o  

a(z - z') azE5 

a(  z - z ' )  az, ~ 5  

dz d z , 2 ( p - ~ ( z ) r , ( ]  + r  2) +p- ' ( z ' )~ ,2(Z  +72))  
( l  - ~ ) ( 1  - ~ )  

X X I 

aza( Z - z') -%, 

(A.9) 

with 

I 2 1 2 
•0 =--T (x,z,v) T (x~,zZ, w) 12~ T (z,y,v) T (z ' ,y ' ,w),  



D. Korotkin, 14. Samtleben/Nuclear Physics B 527 [PM] (1998) 657-689 683 

1 2 1 2 
-~e =-T (x , z , v )  T ( x ' , z ' ,w )  £2e T (z ,y ,v)  T ( z ' , y ' ,w) .  

Partial integration of the first three terms reduces the expression to boundary terms. 
There arise additional terms from derivatives of the spectral parameter (cf. Eq. (B.2)) .  
For example, the second term in (A.9) gives a contribution of 

87272 ((71 - 7 2 )  2 + (1 - 7172) 2 ) 

2) 4 7 1 ( 1  4 7 2 ) 7 2 ( 4 7 1 ( 7 1  - - 7 2 ) ( 1 - - 7 1 7 2 )  4 2 ( 1  --712)(1 - 2 7 1 7 2 4 7 2  )p_201 p 

(71 -- 72)2( 1 -- 'Y172)2(1 -- 712 ) ( 1 -- 72 ) 

the third term yields the same with opposite sign and Yl and 72 interchanged. This 
combines into a term proportional to p-ZOlp which is precisely cancelled by the con- 
tribution from the last term in (A.9) (note the different arguments of the dilaton p). 
Altogether there remain the following boundary terms: 

(x, y ,c) ,  T (x', y ' ,w)  v -  w 

× O(x ,x ' , y )  T ( x , x ' , v ) f 2 0 T ( x ' , y , v ) T t  , y , w )  

I 2 
4 0 ( x t , x ,  y t ) (  ~" (xt, x,w)f2~ T (x, y,v) T (x, y , w ) )  

- O ( x ' , y , y ' )  T ( x , y , v )  T ( x ' , y , w ) f 2  b T ( y , y ' , w )  

- - - - - -  ( 1 2 . x t  t . x~7(x t ,  u ) ( l  -- 72 (x t ,  w ) )  
40(x'x"Y)c_w 7 " ( x , x ' , v ) f l ~ T ( x ' , y , v )  T t  , y , W ) ) y ( x , , w ) ( l _ y Z ( x , , c ) )  

2 ( ÷ - 
c - w y ( x , v ) ( l  - 7 2 ( x , w ) )  

O(x,y ' ,y )  { + , , , . . . .  ~, l (x, y ,v) ~" (x , y , w)l~e 7" (y', y,v) "~ 7(y ' ' v ) (1  - 7 2 ( Y " W ) )  
v - w } 7(Y', w) ( 1 - 72(y ', v) ) 

( 1 2 2 ) T ( y , w ) ( 1 - y 2 ( y , v ) ) ,  
0(x';_y,y')v_w T ( x, y, v ) T ( x', y, w ) J2e T ( y, y' , w ) ~ ,  -~-( i -- ~-~( y, ~ )  

where the functions O(x, y, z) are the same as in (A.6). 
The objects of interest now are the modified transition matrices 

V(x )T (x ,  y, v)V -1 (y ) .  (A. 10) 

As has been discussed in Section 3, they give rise to constants of motion when x and y 
approach the spatial boundary. Moreover, these quantities are by definition invariant un- 
der the gauge transformations (2.3). Their Poisson bracket gets additional contributions 
from 
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etc. 
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y,u), "122 (x') } = p(x--~i---y~i20(x'x" y)y(x',c) ~. (x, x', v) ~2 (x') g2, 7" (x', y,v), 

} 20(X',X,y') y(X,W) ~ I 2 
(X',V',W) = _ ( x ' , x , w ) ) 2 ( x ) a e T ( x , y ' , w )  

• p ( x )  ( 1 - ~ , 2 ( x ,  w) ) 

I 2 
x V (y) 1; (y') 

_ ,; _l w {O(x,x', y ) ( T  (x,x',v)s2t, , , ) 
T (x', y, u) 7 ~ (x', y', w) 

+O(x' ,x,y ')  T (x',x,w)S'2f~ T (x,y,v) ¢ (x,y' ,w) 

-O(x, y', y ) (  T (x, y',v) T (x', y',w)S2~ T (y', y,v)) 

-O(x', y, y ' ) (  7" (x, y,v) 7" (x', y,w)O~ ~" (y, y', w ) ) }  

O(x,x ' , v ) (  T(x ' ,y ,v )  T (x ' , y ' ,w) )  + - - - =  7" (x,x',u)O~ 
l ) -- W 

I - 2y(x', v)y(x ' ,  w) + y2(x', c) 
x 

1 - y 2 ( x ' ,  v )  

O(x' ,x ,v ' ) (  ~ ) 
- - - :  y,,,) i y' ,w) 
l: -- W 

1 - 2y(x, w)y(x,  v) + y2(x, w) 
x 

1 - y e ( x ,  w)  

O( x ' y "Y ) ( 7" ( x , y , v '~"  ' ' w)O, ' ' ) . . . .  ' ( x  , y , T ( y  , y , v )  
U - -  W 

1 - 2y( f ,  u)y ( f ,  w) + y2( f ,  u) 
X 

1 - y 2 ( y ' ,  v )  

t - ,Y ,Y)  7"(x,y,u) ] ' (x ' ,y ,w) Dt¢ V' . . . . .  ( y ,  ,w) 
U - -  W 

1 - 2y(y, w)y(y,  v) + y2(y, w) 
x (A. 11) 1 - y2(y, w) 

In fact, neglecting the coset structure (i.e. formally putting s20 = g2t = s2 o) and 
replacing the coordinate dependent spectral parameters y by constant ones ,~ (making 
use of (B.6)), Eq. (A.I I) explicitly reduces to (A.6). At first sight, we thus face the 
same fatal problem shown in (A.7), (A.8) when trying to treat coinciding endpoints. 

In the limit to spatial boundaries however, the coordinate dependence of the spectral 
parameter changes the situation drastically. Let us show this for a spacelike dilaton 

The final result then takes a form which superficially resembles the PCM: 

V -1 (X)), 2-1 (X") (X) T (x, V U) )~ 1-1 (y),  V (X') T t 'x ' ,y ' ,w) )2--' (y') 
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identified with the spatial (radial) coordinate (p  = x C [0, oo[,  cf. Section 3.1). Recall 

that here we have variables 7"+ (w) where the index + denotes the sign of  the imaginary 

part of  w. According to (3.4) we evaluate (A.11) in the limit x , x '  --+ O, y , y '  --+ o0.  

The first four terms become 

i 2 1 , 7"(v) T (w) , 
/.' W 

for arbitrary indices + at the T's. 

The next two terms show the ambiguous behavior at coinciding endpoints. Just like 

in ( A .7 ) ,  (A .8)  their coefficients tend to 

1 1 - 2 y ( x ' , v ) T ( x ' , w )  + y 2 ( x ' , v )  
t ; -  w 1 - y 2 ( x ' , v )  (A.12) 

and 

1 1 - 2 y ( x ,  w ) y ( x ,  v) + y2(x ,  w) 
t~ - w 1 - y2(x,  w) ' (A.13) 

respectively, giving different results for different ways of taking the limit x' --, x. 

But now the difference with the PCM becomes manifest: Since the spectral parameters 

depend on the spatial coordinates, in the limit x , x  t ---+ 0 both expressions (A.12) and 

(A. 13 ) c o m  monly tend to ( v - w) - 1 (cf. (B.5)) .  Their sum thus is independent of  how 
i this limit is taken, keeping e.g. x < x ~ or x > x ~ or also x = x ~ with O ( x , x , y )  ==_ ~. 

In a similar way the ambiguity from the last two terms vanishes. In the limit y, yt __~ oc 
the combinations 

1 1 - 2 T ( y , v ) y ( y ' , w  ) + T2(yt, v) 
t, - w 1 - y 2 ( y , ,  v )  (A.  14) 

and 

1 1 - 2 y ( y , w ) y ( y , v ) + y 2 ( y , w )  

U -- W 1 -- T Z ( y ,  W) ( A . 1 5 )  

approach the same value. This common value is sensitive to the choice of indices zk at 

the T's. If  y ( v )  and y ( w )  lie in the same of the two regions D+ and D_ they tend to 
(u - w) - j ,  whereas they tend to (w - v) -1 otherwise (cf. (B.5)) .  

Thus, finally we arrive at the following Poisson structure: 

(u) ,  T:k (w = ,T± (v) (w , (A.16) 
U - - W  

T~: (v) ,  T~ (w) - T:k (v) T:~ ( w ) -  T+ (v) T T ( w ) - - ,  (A.17) 
l ) - - W  U - - W  

with s2~ _= s'2f~ - / 2 ~  obtained from s'2~ by applying 7/ in one of  the two spaces. 

R e m a r k  5. The presence of  the dilaton field in the original equations of  motion (2.13) 
has given rise to the coordinate dependence of the spectral parameters. We have shown 
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how the resulting algebra of transition matrices differs essentially from the related one 
in the PCM since it does not suffer from any ambiguities. This fact may be summarized 
as follows: the coordinate dependence of the spectral parameter is inherited by the 
ambiguities which hence die out at spatial infinity. 

Remark 6. This result does not provide a proper regularization of the PCM; switching 

off dilaton-gravity does not allow a well-defined limit from the equations of motion 

(2.13) to (A.2). We have seen that the regularity of the algebra of transition matrices 
heavily relied on the behavior of the dilaton field p at the spatial boundaries (cf. (A. 12), 

(A.13) and (B.5)) .  With constant dilaton field all the ambiguities of the PCM come 
back. In fact, in the context of dimensionally reduced gravity there are no non-trivial 

solutions of this model with constant dilaton field due to additional constraints from the 
gravitational energy-momentum tensor (see, e.g., Ref. [21]).  

Appendix B. The spectral parameters 

The variable spectral parameter y is a function of the constant spectral parameter w 
according to 

y ( x , t , w ) = y  = p  w + / 5 -  V/(W+/5) 2 - p 2  . (B.1) 

It satisfies the differential equations 

~ / - -  1 0 / z ' ) /  = - -  

as well as 

3'- ] 0wY - 2y 
p( 1 - -  , ~ 2 )  

The inverse formula reads 

1 + 3/2 2 7 
1 ~--~ P-IO~P + - - 1  - y2 eu vp-tO~p' (B.2) 

(B.3) 

w = ~TP Y + - /5 .  (B.4) 

The parameter y lives on the Riemann surface defined by v/(w +/5 + p) (w +/5 - p) ,  
which is a twofold covering of the complex w-plane with xJ*-dependent branch cut. 

1 Transition between the two sheets corresponds to y ---, 7" The branch cut connects the 
points w = -/5 :k: p on the real w-axis, which correspond to y (w  = -/5 ± p) = +1. 
The real w with Iw +/51 < Jp] are mapped onto the unit circle IT[ = 1. Real w with 
I w +/51 > IPl are mapped onto the real y-axis. Dividing the w-plane into two regions 
H± and the y-plane into four regions D+, /3+ according to Fig. B.1, D± and D± lie 
over H i ,  respectively. 
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. . - -1  1 

- f i -  p - f i  + p 

H_ D_ 

Fig. B. 1. The spectral parameter planes. 

In particular,  it is impor tant  that for fixed w ~ R and cont inuously  varying p and /5  

the paramete r  3 / m o v e s  within  a fixed o f  these regions.  The  l imits o f  these trajectories 

are g iven by 

{ { i  { 0  
7 ( P  --~ 0)  --+ 0 T ( P  --~ cxz) --~ , y(/5 ~ +cx~) ~ (B .5)  

O 0  ' - - i  O 0  

Anothe r  useful  fo rmula  for two spectral  parameters  y ( x ,  t, v) and y ( x ,  t, w )  at coin-  

c id ing  coord ina tes  x, t is 

p ( y ( v )  - y ( w ) )  ( y ( v ) y ( w )  - 1) 
v - w = - ( B . 6 )  

2 , / ( v ) y ( w )  
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