FTIBOMNRAS, 238- ~503E

Mon. Not. R. astr. Soc.(1989) 238, 503-521

A phase-space representation of Friedmann-Lemaitre
universes containing both dust and radiation and the
inevitability of a big bang

J. Ehlers and W. Rindler * Max-Planck-Institut fiir Physik und
Astrophysik, Institut fiir Astrophysik, Karl-Schwarzchild-Strasse 1, D-8046 Garching,
FRG

Accepted 1988 November 24. Received 1988 November 7; in original form
1988 July 12

Summary. We classify all non-static Friedmann-Lemaitre universes containing
dust and radiation (or, as limiting cases, vacuum), and exhibit their histories as
orbits in a three-dimensional (phase-) space &, which faithfully reflects the
topology of the set of states. As coordinates in ¥ we take the dimensionless
parameters Q, w and 4 representing, respectively, the energy density of the dust,
the radiation and the vacuum (corresponding to the cosmological constant).
Three open subspaces of ¥ contain, respectively, the orbits representing
oscillating, inflectional and bouncing universes; their boundaries and edges
contain the orbits of all the other universes. The classification proceeds from
initial values (Q,, w,) in terms of (a, 4,) diagrams (a = R/R,). An alternative set
of ‘invariant’ parameters is also introduced, characterizing whole models rather
than states of models. Finally we show that present-day redshift and density
data exclude all models not having a big bang, without using assumptions about
the origin of the microwave background radiation and without a priori assump-
tions about the value of the cosmological constant.

1 Introduction

In presentations of the homogeneous and isotropic general-relativistic cosmologies attention
has mostly been restricted to models containing either dust or radiation only. Such models are
kineratically specified by their Robertson-Walker (RW) metrics — and these, in turn, by a
curvature index k (= %1 or 0) and an expansion function (‘radius of the universe’) R(z);
additionally, one needs information about the model’s contents: a mass constant oR? in the
case of dust, or an entropy constant uR* in the case of radiation (u=energy density). The
metric and the model’s contents are related by Einstein’s field equations, here taken with a
cosmological constant A . To relate a model to observations one must also know which is to be
regarded as its present epoch #; this can be specified by the present value R, of the expansion
function or the present value H,, of the Hubble parameter.
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Though the traditional four parameters k, A, pR® or uR*, R, or H,, uniquely determine
such a model-plus-initial-data, the converse is not true: in the case k=0, R, and consequently
PR? or uR* can be rescaled. Therefore, these parameters do not properly coordinatize the
three-dimensional space . of states, i.e. models-plus-initial-data, in neighbourhoods of the
two-dimensional subspace corresponding to spatially flat (k= 0) models: consequently they do
not reflect the topology of that space. This drawback is particularly disturbing since all the
realistic models are apparently contained in this very region, the curvature sign being not
known from observations.

In this paper we consider the set of all homogeneous and isotropic relativistic world models
whose substratum consists of an interaction-free mixture of cold, non-relativistic matter
idealized as ‘dust’ and hot, relativistic matter idealized as ‘radiation’ (separately satisfying the
respective conservation equations pR3 = constant and uR*= constant), and which expand (i.e.
have positive Hubble parameter) at one instant - e.g. ‘now’. It will turn out that models passing
through both expanding and contracting states (the ‘oscillating’ and the ‘bouncing’ models)
possess exactly one expanding and one contracting phase, and that these are mirror images of
each other in cosmic time about the moment of arrest. No essential information is therefore
lost by considering only the expanding phase of every model, which convention in fact we shall
adopt in our discussion of &, in order to avoid sign ambiguities. With each expanding state of a
model we associate six numbers, Q, w, 4, H, x and g, as follows (G being the Newtonian
constant of gravitation):

_8aG

Q:
3H?

020 (1)

is the dimensionless dust mass density in units of the critical density;

_ 8nG
3H?

" u=0 (2)

is the corresponding quantity for radiation (we are using units such that c=1);

A 8aG A

Q= = :
3H*> 3H® 8xnG

(—o<i<w) (3)

is a dimensionless representation of the cosmological constant A - if A > 0, it can be regarded
as the density parameter associated with the ‘vacuum energy density’ A /87 G;

dR/dt
H:= dRjdr,, 0 (4)
R
is the Hubble parameter;
k
K= HR’ (5)

is the dimensionless curvature parameter; and

_ Rd’R/dr’ _d
(dR/dt)}  dt

(H™')-1 (6)
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is the dimensionless deceleration parameter. Only four of these parameters are independent
since the field equations are - in terms of the preceding definitions - equivalent to

k=Q+w+ti-1 (7)
and
g=iQ+w—41. (8)

(In fact, (8) is the difference of ‘the’ two field equations while (7) is the extension of the familiar
Friedmann equation to include radiation; it is sometimes called the Lemaitre equation. See, e.g.
Rindler (1977, equations 9.72-9.76), or Misner, Thorne & Wheeler (1973, section 27.7). The
coefficients 3, 1, — 1 in equation (8) reflect the fact that the relative acceleration between
fundamental cosmic particles is caused, according to general relativity, by the source variable
0+ 3p. For dust, having p = 0, this equals 0; for radiation, with p =3 p, it equals 2 0; and for the
vacuum, with p= — p, it equals — 2. Equation (7), on the other hand, comes from an energy
equation where only the ps enter. |

It might seem preferable to use as basic parameters Q, w, g and H instead of Q, w, 4 and
H since the present values 2, w,, g, and H, are, in principle, observable in contrast to 4,. But
since this complicates most formulae, we generally use the latter.

The parameters Q, w, A and H play different roles. H fixes the single overall scale: If ds is
measured in some standard atomic unit, e.g. s, and ds is measured in units of the Hubble time
H, ' at some instant ¢, of a particular RW model, one has

ds’=dt’ - R*(t) doy=Hy {dT* — a*(T) do}}= H, * ds’, (9)
where T and a(T) are defined by the first two of the following equations:

T:=Hyt,

R(r) 1
(T)_—— s
R, 1+z
& R (10)
dT HyR,

The dimensionless expansion function a(7') is related to the redshift z=AA/A, and its
derivative to the Hubble parameter, as shown. In (9) dof< denotes the metric of a three-space of
constant Gaussian curvature K(=k or x,). The dimensionless metric ds® is determined by
(Qy, wg, Ay) via equation (7) and equation (12) below. [Only the topology of a model’s three-
space is not determined by these parameters. The variety of possible space forms (Wolf 1972)
depends on the sign of x. However, in each case there is only one simply connected space
form, this being R? if <0 and S*if x> 0.

For many purposes it is useful to disregard the scale and to work with the dimensionless RW
metrics ds2. Then it must be kept in mind that a dimensionless metric of a model refers to a
choice of ‘present’ time; metrics belonging to different ‘present’ times differ by constant
conformal factors. We shall henceforth use the term (cosmological) model for ‘dimensionless
model’ and accordingly shall mean from now on by a (cosmological) state that information
contained in an initial data set which is dimensionless (scale-free). States in this sense are in
one-to-one correspondence with number triplets (Q, w, 4). The set & of states is thus a three-
dimensional manifold-with-boundary-and-edge,

F={(RQ, 0,4)|Q=0, =0

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989MNRAS.238..503E

FTIBOMNRAS, 238- ~503E

506 J. Ehlers and W. Rindler

The boundaries w =0 and Q = 0 represent the dust states and the radiation states, respectively,
and the edge w = Q =0 represents the states of empty models.

A model consists of a one-parameter sequence of states. The expanding states of almost all
models are mutually distinct. However, for exactly four models the state does not change in
time: For the parabolic Einstein-de Sitter dust model (with Q =1, @ = 4 =0), the corresponding
radiation model (with w =1, Q =1 =0), for Milne’s empty model (with @ = w =1 =0) and, of
course, for the steady state (de Sitter) model (with Q=w=0, A=1). (These models are
characterized by the property that in each of them any two hypersurfaces of constant cosmic
time can be mapped onto each other by a homothetic map of the underlying spacetime;
therefore their states — in the new sense - are constant. They are also characterized as the only
ones having constant deceleration parameters 3, 1, 0, — 1, respectively. The first three of these
models are further characterized as the only ones whose a(T) is given by a power law, or
whose dimensionless ages T, = H, ¢, are constant during their evolution.)

The (expanding) states of a model form a curve in % which degenerates, for the four models
just described, to a point. The space .# of models thus arises from & as a two-dimensional
quotient (or orbit) space. The corresponding spaces which include scale information are
obtained simply as R X.% and R X.#, respectively, an appropriate additional coordinate being
H in the first case and AH? =3A in the second case.

The arrangement of the body of this paper is as follows: In Section 2 we classify models for
fixed initial values (Q,, w,) in terms of (a, 4,)-diagrams. Section 3 deals with the space of all
cosmological states and its phase flow. Section 4 introduces an alternative set of ‘invariant’
model parameters. Finally in Section 5 (which is independent of Sections 3 and 4) we show
that present-day redshift and density data exclude all but big-bang models, without using
assumptions about the origin of the microwave background radiation and without a priori
assumptions about the value of A .

2 Classification of models with given initial data (Q,, @,, 1,) using (a, 4,) diagrams

Let us choose an initial state characterized by (Q,, w,, 4,), e.g. the present state. From the
definitions (1)-(5) and the conservation laws oR?* = constant, uR* = constant it follows that

QH’R’=Q H;R;,

wH*R*= w,H,R;,

AH? =, H},

kH’R*=x,HR;. (11)

Using (11), we easily reobtain from (7) the original Lemaitre differential equation in terms of
the dimensionless expansion factor a(7') of (10) (denoting differentiation with respect to T by
adot): :

@P=wy(a ?-1)+Qyla~ ! —1)+A,(a?-1)+ 1. (12)

At the initial instant Ty, @, = dy = 1. In order to survey the set of all solutions of equation (12)
which have arbitrary parameter values, we pick a pair (Q,, w,) with Q;2=0, w,=0 and
represent the range of each possible solution a(7') corresponding to these data and an initial
value 4,, as a horizontal line segment in an (a, 4,)-plane. For this purpose it is necessary to
mark the boundary of the ‘permitted region’ a>0, d*>=0 in each diagram. The boundary
corresponding to the first condition is of course the 1,-axis a =0, and we must stay to the right
of that. The boundary corresponding to the second condition is found from (12) to have
equation
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(a—1)[aQy+(a+1)w,]— a’ az(Qo +w,—1)—aQ,— w,
Ao=Ayla):= = . 13
0 0<a) a2(a_1)(a+1) aZ(aZ_l) ( )

Fig. 1 shows qualitatively this boundary curve and the regions which it excludes. Each model
corresponds to a maximally extended line segment 4, = constant which includes the (present)

Mof A/
N Bglcosht) 0 B

E
\ x=b S(e.xpt) )\2\.,\9 2
2 Mg(sinht) RO :
o~
N —q g — M3 0o
1 a, H(P)
Mz (sint) o

forbidden

region forbidden

(ii) 0<Qo+wos 1

_

(iii)  Qp+wg>1

Figure 1. The (a, 4,) diagrams for the cases (i) Q,=w,=0, (i) 0<Q,+ w,<1, (iii) Q,+ w,>1. Each
horizontal line segment, maximally extended from a=1, represents an FL model: B=bouncing model,
I=inflectional model, O = oscillating model; Bs= B in de Sitter space [a representative R(¢) is indicated in par-
enthesis in (i)}, S = de Sitter model, M =Milne model, M =Milne-type model in de Sitter space, Mg = Milne-type
model in anti-de Sitter space, E, and E,=models expanding to and from a stationary state, respectively,
H=hyperbolic model (reducing to P=parabolic model when Q,+ w,=1). Note the {stippled) division lines
x=0 separating positive- from negative-curvature states, and g=0 separating accelerating (g <0) from
decelerating states; the ¢ = 0 locus coincides with the 4, and a axes in (i).
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value a=1. If that segment is bounded on the left by the locus a =0, the model has a big bang
(except for the de Sitter model), and if it touches the locus A,= 4,(a) (d =0) on the right or on
the left, the model has a turn-around from expansion to contraction or vice versa, respectively;
if the segment approaches A, = 4,(a) at an extremal, say at a = a,, the model approaches a static
state, a(T) — a,, in the infinite future or in the infinite past.

This representation is somewhat different from the more usual one which relies on an (R,
A )-diagram for fixed mass parameter oR? (for dust models) - and which dates back at least to
Robertson (1933, see also Stabell & Refsdal 1966, or Rindler 1977) - though in essence it is of
course equivalent to it. (We note, in particular, that models with the same A (and Q,, w,) but
different R-ranges, e.g. the two expanding models approaching the Einstein static universe in
the past or in the future, now correspond to segments at different A, levels, according to their
different H,’s.) Two advantages of the present representation are that it is dimensionless and
that the boundary of the (4, 4,) domain occupied by solution-segments is now uniquely
determined by (Q,, w,), whereas in the traditional scheme it depends also on the value of the
curvature index k, another unknown.

The salient features of the boundary curve 4,(a) in the region of interest, a> 0, are: a ‘well’
without zeros between a=0 and a=1 (whose left branch becomes vertical in the limit
Q,=w,=0), and a ‘cliff’ rising from A,= — at a=1 to 4,=0 at a= o with or without a
single prior hump according as

Q,twy>1 or Q)+w,=1. (14)

In the special case Q= w, =0 the curve (13) is evidently as shown in Fig. 1(i). For the rest of
the discussion we assume Q, + w,> 0. From (13)(i), when a0, A,(a)~ w,/a® if w,#0 and
Aola)~Q/a otherwise; when a~1, Ay(a)~1/2(1—a), and when a— o, A,(a)—0. This
establishes the asymptotic behaviour of 1(a) near a=0, 1 and . Consider next the zeros of
Ao(a). If 0<a<1 then 4,> 0, hence the well has no zeros. If a>1 and Q,+ w,<1, 1,<0 and
the cliff has no zeros either; if Q, + w,> 1, the numerator in (13)(ii) is — 1 at a=1 and tends to
infinity as a— o, hence the ‘cliff* has exactly one zero. To discuss the extremals of 1,(a) we
first show that ‘positive’ horizontals 1, = constant > 0 intersect its graph twice (counting with
proper multiplicity) or not at all. The intersection points are given by the roots a; of the quartic
(or cubic, after division by a, if w,=0)

a*ly—a*(Ay+Qu+ wy—1)+aQy+ w,=0.

We read off that Za,;=0, so not all roots are positive, and Ila,= w,/A,>0 (Q,/1,<0 if
w, =0), so there are two positive roots or none, as asserted. This shows (i) that the minimum of
the ‘well’ lies above the maximum of the “cliff, and (ii) that neither of these branches can have
more than one extremal for 4,> 0. That there are no extremals for 1,<0 follows most easily
from the fact that all extremals lie on the curve

_aQy+ 2w,
2¢°

which is positive for a> 0. [To justify (15) as the equation for this locus, denote the rhs of
equation (12) by f(a, A,); then f=0 on A, =A,(a) and di,/da= —(0f/da)/(df] dA,). Setting I/
da =0 results in equation (15).] This completes our discussion of the general features of the
‘permitted region’ a> 0, d?2 0 in the (a4, 4,) diagram.

The curve (15), shown as a stippled line in the (g, 4,) diagrams, also plays another role: it
corresponds to the locus d=0, since df/da=dlhs(12)/da=2dd/d=2d. As such it divides
decelerating epochs (4 <0) from accelerating epochs (4> 0), the former lying below it, the
latter above. (In the case Q= w, =0, df/da =2al,, and so the locus of d =0 coincides with the

Ao (15)
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axes of a and 4,.) Another useful division line in the (g, 4,,) diagram for a given choice (R, w,)
is the horizontal

corresponding to x,=0 [cf. equation (7)]; it separates models with positive curvature (lying
above this line) from those with negative curvature (below it). This line lies below the ‘well” and
above the ‘cliff” when Q, + w,=<1 [i.e. when the cliff has no hump - c¢f. (14)], and it intersects
the cliff below 1, =0 otherwise. For, any intersection points of the curves (13) and (16) must
satisfy

4 = — —_
a*dy=—aldy— w,,

i.e. 4,<0 in the region of interest a> 0; but when the rhs of (16) is negative, the cliff has a
hump [cf (14)] and our assertion is established.

In order to allow a graphical determination of the expansion function a(T") corresponding to
a given set of parameters (Q,, w,, 4,), the (g, 4,) diagram should be enriched by the contour
lines d?=constant obtainable from equation (12), so that for each value of a along the
horizontal segment 4, = constant characterizing the model, d can be read off. But for a mere
discussion of model-types that is not necessary. [Numerically computed graphs of a(7') for
various dust models are displayed in Felten & Isaacman 1986.] We have already indicated
[after (13), before (16)] how a(T ) behaves when the segment approaches the boundaries a =0
or 4,= A,(a), and also when the segment crosses the locus @ =0. If, then, in an (g, 4,) diagram,

a,(Qg, wy), M (g, wy) and  ay(Qg, ), 42(Rg, ) (17)

denote the maximum of the ‘cliff’ (which we define to be zero when there is no hump), and the
minimum of the ‘well’, respectively, we observe: segments having A,<A, represent
‘oscillating’ (‘O’) universes (decelerating all the way from a big bang to a big crunch); those with
A, <Ay, <4, represent ‘inflectional’ (‘/°) universes (decelerating after a big bang until some
critical time, after which the expansion accelerates); segments with 1,> 1, represent ‘bouncing’
(‘B’) universes (contracting from infinite extension to a finite minimum and then expanding
again to infinite extension); when the ‘cliff’ has a proper maximum 4, > 0, the segment 1,=4,,
0<a<a, represents a big-bang universe ‘E,” whose a(T) monotonically increases to a, as
T— o; when A, =0 the segment A,=1, =0, 0 <a < o represents a decelerating but neverthe-
less indefinitely expanding (hyperbolic, ‘H’, or parabolic, ‘P’) big-bang universe; and the
segment A,=4,, a, <a <, represents a universe ‘E,” which expands indefinitely, approach-
ing a static state a=a, as T— — .

We observe that the classification of models - i.e. the number and qualitative properties of
the respective types and the regions they occupy in the (g, 4,) diagram - is the same for all pairs
(Qy, wy)#(0,0); in particular, it is the same for dust models, radiation models and ‘mixed’
models, with the following exception: the division line 4,= 4, itself represents £, models if
Q,+ w,> 1, ‘parabolic’ models if Q,+ w,=1, and ‘hyperbolic’ ones if 0<Q,+ w,<1 (see
Figs 1 and 2). (For parabolic models d—0 as T— «, for hyperbolic models d - constant > 0.)
We finally note that the types B, I and O are ‘generic’ in the sense that they fill two-dimensional
regions of the (a, 4,)-plane whereas the others are ‘special’, representing boundaries separating
models of generic types.

3 The space.¥ of cosmological states and its phase flow

In order to construct the curve of states representing — according to our convention - the
expanding phase of the model having at the instant 7 the state (Q,, w,, 4,), we begin by
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Figure 2. States of the non-static FL models in (Q, , 4) coordinates. Each model corresponds to a phase curve,
arrows along phase curves indicate increasing a(T'). (i) The full three-dimensional phase space with its two main
dividing (and also invariant) surfaces: A= A,, separating B- from /-models, and 4 =1, (including the triangle
P.P M) separating I- from O-models. The other special invariant surfaces are @=0, @ =0, 1=0 and x=0:
models having one state in one of them have all their states in it. Intersections of invariant surfaces are invariant
lines, their intersections, invariant points: both represent single models. (ii}-(v) Qualitative illustrations of flow
line patterns in the four invariant planes. The subscripts on indicate the sign of , those on O the signs of «, A
respectively; the subscripts on P stand for dust (d), radiation (r) or both (d +r). For definitions of Cy, Ci, CH and
RH see text, or Figs 3 and 4.

substituting (10)(iii) into the lhs of the Lemaitre equation (12), thus obtaining an expression for
H? at all a-values:

i
H2=a_2[a4,‘{0—a2(§20+w0+/10—1)+aQO+w0]. (18)
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The relations (11)(i-iii) then yield the following parametric equation for the curve of states,
with a as parameter:

(aQOa Wy, 44/10)

97 7A'= .
( @ ) [614/10_052(90'4'600"'/10_1)+agn+w0]

(19)

Any other point on this curve can theoretically serve as the ‘present’ point and be re-labelled (Qy,
g, Ao). This leads to scale changes in a and T but it does not affect R(z), zand k [cf. (19)] nor,
thus, £, w, 2 and H. The tangent vector to the curve (19) at the (arbitrary) point (£2,, w,, 4,) is

@) 0 [do| 0 (42} o
dal,.,90Q \da|,.,00 \dal,_, 01"

Performing the indicated differentiations in (19), and then dropping the suffix zero, we find the
vector field

d 0 d
-1+Q+2w—2 —+(—2+Q+2w—-20N0o—+2+Q+2w—2)1— 20
( ©=22)Q -+ © =20 )0t w=22)i— (20)

as the generator of the phase flow in &. It vanishes at exactly four points, the fixed points of the
flow:

M=(0,0,0),
P,=(1,0,0),
P.=(0,1,0),
$=(0,0,1). (21)

They represent the exceptional models mentioned already in the Introduction: The Milne
model M, the parabolic dust (Einstein—de Sitter) and radiation models, P, and P., and the de
Sitter model S. The expanding phases of all other models are represented in & as (one-
dimensional) oriented curves, the orientation corresponding to the arrow of time. This proves
that on all non-exceptional models, a triplet (Q, w, 1) determines uniquely an instant of time.

There are six noteworthy surfaces in & which are invariant under the phase flow: The three
coordinate planes Q=0, w=0, A=0, respectively, the zero-curvature plane
k=Q+w+1—1=0,as well as the surfaces given by 1 =1,(Q, 0), 1= 1,(Q, w), respectively,
defined as in (17). For, each of the six conditions o=0, u=0, A=0, k=0, A=A, A=4,
characterizes a model permanently. The last two surfaces can alternatively be represented by
choosing @ and w as parameters and exhibiting Q and A as functions of them, using equations
(13)and (15). This yields

4 2\2

o=9" w(i -a’) ’
a(l-a)(a+1)

_ a—w(l-a)
i_2512(1—6,)2<a+%)’ (22)

The ‘A -surface’ consists of those points which obey equation (22) with 1 <a<  and the
triangular region of the plane 4 =0 for which 0<Q+ w<1 (see our discussion in Section 2).
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(One easily verifies that the surface is smooth even at the join Q+w=1, A=0.) The ‘A,-
surface’ is obtained from (22) for 0 <a<1. Since Q and A depend linearly on w for fixed q,
both surfaces are ruled by those straight lines which connect the points

3

a
w=0,
YR S (23)

2(1—a)l(a+1%)

of the plane w =0 with the points

Q =0,
4
e
(1-a’)"’
1
A= 24
(1-a%’ (24)

of the plane Q =0, for the respective a-ranges given above. These surfaces are indicated in
Fig. 2.

The intersections of the invariant surfaces, also shown in Fig. 2, represent models of the
types indicated; the arrows correspond to increasing time and thus (since we only consider the
expanding phases of each model) to increasing volume.

To study the general flow pattern in %, consider first those models for which a > «. In (19),
if 4,#0, []~ a*A, whence (2, w, 1)~(0, 0, 1)=S. So the orbits of all indefinitely expanding
models with A # 0 end at S. In fact, S is a ‘sink’ of the flow, since near S 1,70 and all states
belong to models of the type here discussed. If ,=0 but Q)+ w,# 1, []~ a*(1 — Q,— w,) and
(R, o, 1)—(0, 0, 0)=M, which is thus the end point of all H models. Similarly, if
A=Q,+tw,—1=0 but Q,#0 (ie. for P,,,), (Q, o, A)—~P; and, of course,
Ao=Qy+w,—1=2,=0implies (Q, w, 1)=P..

Consider next those models for which a0 in the past. In (19), if w, # 0 (i.e. for all big-bang
models with radiation), []- w,, whence (Q, w, 1)—(0, 1, 0)= P.. So all corresponding orbits
‘come from’ P,. In fact, P, is a ‘source’ of the flow, since near it w, # 0 and all states belong to
models of the type here discussed. Similarly, if w,=0 but Q,# 0 (pure dust big-bang models),
(Q, w, A)=Py; if wy=Q,=0 but 1,#1, (Q, w, 1)~ M; and of course w,=Q,=0, 1,=1
implies (Q, w, 1)=S. We observe that M and P, are ‘neutral’ points of the flow, since orbits
both end and start there.

Finally consider those models (O, B, E,, E,) for which @~ 0, a > constant # 0 in the future
or in the past. Since, by (18), [|=a*H, >H? and H—~0 with ¢~ 0, []~0 and so (R, w, 1)~ (o,
0, o) unless one or more of the parameters vanishes identically. Thus E, and E, models go
to, respectively come from, infinity, while the orbits of O and B models - if for once we
consider their entire history - start at P,, P; or S, go to infinity, and then double back on
themselves. .

Fig. 2 illustrates these facts. Note, especially from Figs 2(iv) and (v), that ‘most’ big-bang
models with dust and radiation never come close to Py, which is often held to approximate to
the present state of the universe. This is the basis of the ‘fine-tuning objection’ raised against
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standard cosmology. Essentially the same objection can be raised, however, against inflationary
cosmologies (see Ellis 1988; Madsen & Ellis 1988; and our remarks at the end of this section).
However, whether any particular history is considered as ‘improbable’ depends on a - meta-
physical, since in principle untestable - choice of probability measure on &.

Fig. 2 also shows the six invariant open domains which correspond, rather obviously in light
of what has gone before, to certain generic types of models: The region O_ _ below the triangle
P,, P,, M and the plane x = 0 (corresponding, as the suffixes indicate, to O models with x <0,
A <0); the region O, _ (x>0, 1<0) above x=0 and below A =0; the region O, , between
A=0 and A = A; the interior I_ (x <0) of the tetrahedron P, M, P, S; the region I, (x> 0)
between the 4,- and A,-surfaces and above the triangle P,, P;, S; and the region B above the

A,-surface.

As shown by equations (7) and (8), the level surfaces of the curvature parameter x and the
deceleration parameter q are planes in %, not shown in Fig. 2 but indicated in Figs 3 and 4. It is
perhaps worth observing that in this diagram the level surfaces of all five parameters Q, w, 4, x
and q are plane and linearly spaced relative to each other. Only the level surfaces for the ages
T, of the states of the big-bang models (in units of the Hubble time H, ') are curved. They can

be computed from the formula

ada

e 1@_ 1
‘ o d 0 [wo(l—az)+90a(1_a)_loaz“—az)'*'az]l/z,

A 00
6 1%
-5 0.90
0.80
0.75
0.70
B 0.65
4 0.60
£,
0.55
Bs)
N N
2 - 0.50
/\Q"Q 4,
S P 3
”~
ek 2
CH 2
MzY
-2
O..
=2
I e T

(i)

{ii)

{iid)

Figure 3. More detailed views of the w =0 coordinate plane of Fig. 2. (i) Level curves of x and g at one-unit
intervals. E, (here, where w = 0)=Eddington-Lemaitre model, Cy= cycloidal model, CH = cycloidal hyperbolic
model (‘cycloid’ with circular functions replaced by hyperbolic functions). (ii) Some age contour lines from
T=0.5to T=1.5 and T= = (coincident with E,). (iii) What happens to two representative age contours of (ii),
T=0.5 and T= 1.0, as we move in the w direction to the planes w=0.01, 0.1, 1. (The contours at w = 0.001, not
shown here, are already indistinguishable, on this scale, from those at w =0, except within about 0.3 units from
the 4 axis, where a small visible difference develops.)
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Figure 4. A more detailed view of the Q =0 coordinate plane of Fig. 2, with level curves of ¥ and g at one-unit
intervals. Ci=circular (Tolman-) radiation model (> +R* =1); RH = rectangular hyperbolic radiation model
(12 = R?=1}); P, = parabolic radiation model (R =¢'/2).

which follows from equation (12). 7; increases monotonically with 4, and decreases if w, or Q,,
increase (see Fig. 3).

The models contained in the coordinate planes w =0, =0 of & deserve special attention.
The former contains all the familiar non-static dust models (see Fig. 3). The intersections of
this plane with the A,- and A,-surfaces are given parametrically by equations (23) for the
respective parameter ranges 1 <a < « and 0 <a <1. Elimination of a between those equations
yields the cubic

(Q+A-13=2Q2], (26)

which can, if desired, be solved explicitly for A by Cardan’s method [cf. Felten & Isaacman
1986, whose equation (19) is our (26)]. The asymptotic behaviour for Q — < of both branches
of this cubic curve, in the quadrant Q =0, =0, is evidently given by 1 ~3Q. The (straight)
level lines of x and g, having respective slopes —1 and 3 [cf. equations (7) and (8)] are also
indicated in Fig. 3, as are some age curves.

By specializing our previous discussion of Fig. 2 to the plane w = 0, we recognize the latter’s
main features at once: to begin with, we have the region I of inflectional states between the lines
A=2, and 1=, (augmented by the Q axis between 0 and 1), the oscillating states O below
that, and the bouncing states B above. The three invariant points (models) M, P, and S of Fig. 2
naturally reappear in Fig. 3. The line A=41,, as intersection of two invariant surfaces,
represents a single model: the pure-dust E, (Eddington-Lemaitre) model. Likewise the line
A=21,, issuing from P,: it represents the pure-dust £, model. Again, the two segments
0<Q<1 and Q>1 of the Q axis are invariant and represent, respectively, the ‘cycloidal’
hyperbolic (k= —1) and the cycloidal (k= + 1) zero-A model (marked CH and Cy, respec-
tively). CH, P, and Cy are often referred to as ‘the’ three standard models. (For derivations of
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closed forms of the expansion functions and further discussion of these and the other special
models of Fig. 3 see, e.g. Rindler 1977, pp. 231-234.) The 4 axis corresponds to the empty
models and exhibits the richest variety, namely three invariant segments separated by the two
invariant points M and S. These segments and points are marked in the diagram by representa-
tive forms of their expansion functions R(f), these being, from the top down: cosh #, exp ¢,
sinh ¢, ¢, sin ¢. The first three of these models all share (all or part of) the de Sitter spacetime
background, while ¢ (i.e. M) occupies part of Minkowski spacetime and sin # part of anti-de
Sitter spacetime. Both sinh ¢ and sin ¢ can be regarded as analogues of the Milne model (an
expanding ball of test-dust bounded by a spherical light-front) in their respective spacetimes,
and are accordingly denoted by M, M;.

The pattern of states in the w =0 plane as shown in Fig. 3 is qualitatively typical for that in
any plane containing the A axis (though only the two coordinate planes are invariant, i.e. are
planes of models.) Let us rotate through 90° to the Q = 0 plane of pure-radiation models (Fig.
4). We then obtain from equations (24), as the analogue of (26), the simple explicit equations

/11,2=w+1$2\/5. (27)

As before, 4, (as the lower boundary of inflectional states) is to be taken as zero in the interval
0<w=1 and (27) gives A4, for = 1. The level lines of x and g now have slopes —1 and 1,
respectively [cf. equations (7) and (8)], and, as in the case w =0, the 4,- and A,-lines ultimately
have the same slope as the level lines of g. The invariant segments 0 < w <1 and w> 1 of the
w axis corresponds to models whose expansion factor R(z) is part of a rectangular hyperbola
(RH), respectively of a circle ( Ci) (‘Tolman universe’), while at P,, R(¢) =¢'/2.

The above discussion should serve to illustrate the ‘topologically faithful’ nature of the
representation of Friedmann-Lemaitre states and models in &%, in the sense that ‘related’ states
and models are proximate, and that generic models go over smoothly into their various limiting
cases.

Realistic models presumably begin their ‘standard phase’, ie. the one with
A= A,=constant, somewhere close to P. (see Section 5 below), cross the plane Q = @ which
separates radiation dominated (w> Q) from matter dominated (w<Q) states, and reach a
present state somewhere near the region of the (Q, A1) plane defined by the inequalities
—16<1,-Q,<-04, —1.5<1,+Q,<7.1 (Loh 1986) and 0.05<Q, (Peebles 1986).
Measurements of the Hubble constant and the temperature of the microwave background
radiation show that, at least for if, the radiation density parameter is now very small,
3x107°s w; 33 x 10~ * But these limits on w, could be drastically unrealistic if the ‘missing’
cosmic mass contained an as yet unidentified kind of radiation.

Inflationary models assume a change of A associated with a phase transition from a false to a
true vacuum state (see, e.g. the reviews by Guth and Linde in Hawking & Israel 1987). The
histories of such models can be represented in ¥ by two orbits with A = constant, an early and
a late one, connected by a curve representing the phase transition. Let the latter be idealized, for
simplicity, as a discontinuous change of state (2, w, 1). Then the general-relativistic junction
conditions require x =Q + w +1— 1 to be continuous even at this transition (Ellis 1987). The
early piece of the phase orbit including the inflation era (4>0) must have
A=A ;=constant > 0; it can either be part of an inflectional model, starting close to P, (see Fig.
2) and moving up towards S, or be part of a bouncing model coming down towards §. Having
arrived near Sit jumps down to a state near P,, keeping its x value, and then follows part of an
orbit A = A (often assumed to be zero) of the type described in the last paragraph. The phase
diagrams of Fig. 2, especially (iv), show that if A= 0, any pair Q,, w, of ‘present’ values can be
reconciled with either kind of pre-transition orbit. This confirms a conclusion recently reached
by Ellis (1988). It may also be remarked that the phase-plane diagrams displayed in Madsen &
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Ellis (1988), showing for various inflationary and non-inflationary models the graphs of the
function a—> Q ;' = Q + w + A [cf (18)], complement the diagrams given in the present paper.

4 An alternative representation of the phase flow in the interior of ¥ based on invariants

Consider now the three alternative dimensionless parameters K, L, x forSof’, the interior of &,
defined for

Q>0,
w>0 (28)

as follows:

(29)

(These definitions cannot be extended to the boundaries Q=0 or w=0 of &.) K and L are
constant along any model orbit, and indeed they are constructed from the ths of equations (11)
for just this purpose. Also from (11), x is proportional to a for each model and thus serves as
parameter along each orbit, increasing with a. K and L could be expected to serve as
convenient coordinates for//;, the interior of the space.# of models (orbits). But we shall see
that they do not do this uniquely: they coordinate either the big-bang models or the non-big-
bang models.
To invert equations (29), we first note that they imply

4
b

Kx

SRR
i

Lx?, (30)

e |=

and when these expressions are substituted into (7) we find

1
— =Kx*—Lx*+x+1=:Px). (31)
(4]

In terms of P(x) as here defined, equations (29)(iii), (31) and (30)(i) then yield, respectively,

X
Q=@,
b L

Px)’
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A= . (32)

While both K and L evidently range from minus to plus infinity, x is restricted via (28) and (32)
to values satisfying

x>0 and P(x)>0. (33)

Given (K, L)ER?, the set of x values obeying the inequalities (33) consists of either one or
two open intervals: the first is 0 <x <x,(K, L), where x,(K, L) denotes the smallest positive
zero of P(x)or «. A second range x,(K, L)< x < % (x, < x,) may or may not exist.

To justify these assertions, note first:

P0)=P(0)=1,
P'(0)=-2L,
Plx)=0<—>x=+JL/6K (K#0)

Thus at x=0, P(x) is positive with positive slope and, if L>0, it is concave down. On the
(fourth) closed quadrant K= 0, L<0 of the K, L plane, P(x)>1 for all x>0, so P(x) has no
positive zeros and x, = «. On the open half-plane K <0, P(x)~ —|K|x* for large x, so there
must be one or three positive zeros (possibly with coincidences); but there cannot be three,
since P"(x) has at most one positive zero, so there is exactly one, x; <. On the open line
segment K=0, L>0, P(x)~ — Lx?, so again there is exactly one positive zero x, < . Lastly,
consider the open (first) quadrant K> 0, L> 0. P"(x) now has one positive zero, hence P(x) has
two positive zeros (possibly coincident) or none. For the critical case of coincident zeros, we
need

P(x)=P(x)=0. (34)
Let us combine these equations to form the quadratic equation
xP(x)—4P(x)=2Lx*-3x—4=0, (35)

whose positive root is

=3+,iz32L=3x0(L). (36)

This x,, satisfies (34) if and only if P'(x,)=0, i.e. if

_8L(1+9+32L) .
K= (3+m)3 —'Kc(L>- (37)

Hence K =K _(L) is the condition for P(x) to have the critical shape of dipping down from 1 at
x=0 to a double zero at x =x, and then rising to . If, keeping L fixed, we increase K, it is
clear from (32) that for every value of x, P(x) increases, so we get a curve lying entirely above
the critical one, having no positive zeros. Likewise K < K_(L) gives rise to a curve below the
critical one, having two distinct zeros x, and x,, outside of which P(x)> 0.

The classification of models given in Section 3 can now be restated - at least for models ing
- in terms of (K, L, x), where all orbits appear straightened out, being now line segments in the
x direction (see Fig. 5 and Table 1). This representation exhibits more explicitly the orbit
structure of .&, and the relation between ¥ and the two-dimensional manifold .# of models.
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Figure 5. States of non-static dust-and-radiation (Q>0, w>0) FL models in (K, L, x) coordinates. Each
model corresponds to a line segment in the x direction above the K, L plane shown in (i), x being proportional to
a(T). To the left of the surface %’ shown in (ii) there is a ‘roof * over the K, L plane, x = x, [shown in cross-section
in (iii) and (iv)], which bounds segments corresponding to O models above. Between % and the K =0 coordinate
plane there is a second roof, x =x,, shown in (iii), which bounds segments corresponding to B models below.
The segments to the right of ¢ have no roof and correspond to / models. As L decreases to zero and negative
values, the point (K, x,) in (iii) moves left towards K =0 and up towards x = <, ‘taking’ the x,-surface with it,
which results in its typical shape for L<0 shown in {iv).

Orbits rising from the K, L plane to infinity generally represent inflectional models [whose
a(T) ranges from zero to infinity]; similarly, those rising to a finite height x, generally represent
oscillating models, while those ‘starting’ at a height x, generally represent bouncing models.
Since the signs of K and L coincide with those of A and k, respectively, Fig. 5 also provides the
subclassification according to these signs. The origin and the negative L axis represent special
models: the origin K=L=0 (A=0, x=0), the parabolic dust-plus-radiation model Py, ., and
the negative L axis (1 =0, x <0), the hyperbolic models H. The invariant surfaces 1 =1,(Q, )
separating O- from I-, respectively B-models, now reappear as the lower (j=1) and upper
(j=2) parts of the cylindrical surface @ whose generators are orbits and whose cross section in
the K, L plane is the curve K = K_(L) (stippled in Fig. 5) augmented by the negative L axis; @ is
cut by the line x =x,(L) into a lower part &, generated by the H-, P, .- and E,-models, and an
upper part #, generated by the E,-models. [Note that the line x =x,(L) exists only above the
stippled curve, and that x,(L)— % as L—0 while x,(L)—0 as L— «.) The curve separating &,
from %, is also the common edge of the two surfaces x =x,(K, L) which lie above the region
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Table 1. Classification of models in.# by use of the coordinates (K, L, x). This table
should be used in conjunction with Fig. 5.

0< K <K(L), L>o0, z > za(K, L) : B
0< K < K.(L), L>o, r <z (K,L): 0]
K <0, L>0: 0
K <o, L<o: 0
K > K (L), L>0: I
K >0, L<o0: I
K = K (L), z <wzo(L): E,
K = K (L), z > zo(L): E,
K =0, L<0: H
K =0, L=0: Piyr

marked O+ B in Fig. 5. The x,-surface approaches finite values above the positive L axis
(which, however, become unbounded as L—0) while the x,-surface approaches infinity all
along the positive L axis. The x,- and x,-surfaces, their edge, and the region between them, do
not belong to the phase space.

The invariants K and L go a long way to coordinatize the open model space /2, i.e. those
models which contain both dust and radiation (Q > 0, w > 0). They do form a global coordinate
system on the open submanifold of big-bang models and also on the submanifold-with-
boundary of non-big-bang models; but not on.# itself: some O- and B-models as well as E -
and E,-models have the same values of Kand L.

(It may be noted that.#, viewed as a quotient space constructed from &, is not a Hausdorff-,
but only a 7-space: two points representing £, and E, models with the same K, L values do
not have disjoint neighbourhoods, only neighbourhoods not containing the other point.)

Finally we observe that it is possible to carry out an analogous classification of models in
terms of invariants in the planes w =0 and Q = 0, respectively. We shall not carry this out here,
but content ourselves with indicating that the essential tools for that are the invariants

(Q+A1-1) x3

M="gm  ~au (38)
forw=0,Q2>0,41#0, and
o+i-17 %

forQ=0, w>0,4A#0.

5 Observational restrictions; in particular, the inevitability of a big bang*

The classification of the dust-plus-radiation models of Section 2 (see especially Fig. 1) shows
that the expansion function a(7') of all non-empty models without a big bang have a positive

* A brief note concerning the content of this section, without complete proof, has been published by Borner &
Ehlers (1988).
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lower bound a, <1 which is determined by d—0 as a— a,. Lemaitre’s equation (12) thus
implies

1+ oplas’=1)+Qlas' - 1)

A
0 l—ai

(40)

Also for those models, as a ~ a,, d tends to a non-negative limit which vanishes only for the E,-
models. Therefore [see equation (15) and the subsequent paragraph],

2wyt axQ,
A2 ———F—— 41
0 2ay (41)
Combining (40) and (41) we obtain
wo(1 — axl + Qqax(t—3 ax + ax) < ay, (42)

with equality holding for the E,- models only. As a simple consideration shows, not only the
first but also the second term on the lhs of (42) is non-negative, so that we can obtain in-
equalities for Q, and w, separately. If instead of a, we use the corresponding maximal redshift
Zx= a; ' — 1 observable today [ cf. (10)(ii)], these inequalities are

2
Qs 2 43
0= 2t 3) (43)
1
<5—7. 44
@o Zi<2*+2)2 ( )

The equality signs in (43) and (44) hold precisely for E,-dust-models and E-radiation-
models, respectively. (The equation for the E,-dust-model was obtained by Crilly 1968.)

According to all recent determinations of which we are aware (e.g. Metzger & Schmid-
Burgk 1983; Peebles 1986), Q =2 0.05; also six quasar redshifts z larger than 4 have been
observed (Warren et al. 1987). Together , these values (for Q,, even ,> 0.02 would suffice)
violate the inequality (43), which shows that the (generalized Eddington-Lemaitre) models E,
as well as the bouncing models can be excluded as models of the (late phase of the) real
universe. Consequently, under our assumptions, a big bang, i.e. an early ‘state’ or phase with
densities and temperatures so large that classical theory does not apply, is unavoidable,
whether or not there was an inflationary era prior to that. In contrast to previous arguments
(see, e.g. Hawking & Ellis 1968), the present one makes no reference to the cosmic
background radiation nor does it require any prior assumptions about A ; it hinges instead on
the assumption that quasar redshifts are cosmological, and on the empirical datum that
Q,>0.02.

Since Band E, models have been eliminated, realistic models must obey

A<A,[Q, wl, (45)
and consequently, by (7) and (8),

g>:Q+w—1,[Q, v, (46)
k<Q+w—1+1,[Q, w]. (47)

More stringent restrictions are provided by the level surfaces of 7, but it is not our purpose
here to enter into such an analysis.
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An argument very similar to the one eliminating B and E, models can be applied to restrict
- though not eliminate - inflectional models with inflection in the past. For such a model, let
a, <1 denote the expansion function a(T') at the moment of inflection. Then, since in this case
ds = 0, whereas d, = 0, we obtain analogues of (40) and (41), but with ‘A<’ and ‘A="instead of
‘A="and ‘A=, respectively. Consequently the three inequalities (42)-(44) apply as before,
except that z, now denotes the maximal redshift of the accelerating phase. If we assume
Q,2=0.05 we find z,=<2.66. This shows that if the actual universe is inflectional, its inflection
must have occurred after its expansion function reached (3.66)"!=0.27 of its present value.
With ©,=1 that ratio increases to 0.58. At any rate, inflection would have occurred, if at all,
well after galaxy formation.
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