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ABSTRACT

It is argued that a formula for the energy loss due to gravitational radiation of bound systems
such as binaries has not yet been derived either exactly or by means of a consistent approximation
method within general relativity, a view which contradicts some widely accepted claims in the litera-
ture. The main approaches used to obtain such a formula are critically reviewed, and it is pointed out
that the derivations presented so far either contain inconsistencies or are incomplete.

Subject headings: gravitation — relativity — stars: binaries

The determination of radiation reaction forces is a
fundamental problem of any field theory of gravitation.
More specifically, the discovery of the binary pulsar
PSR 1913-16 and systems such as Ariel 1118 —61 has
led to new interest in the energy loss and the associated
damping of binary systems due to gravitational radia-
tion (Paczynski 1967; Faulkner 1971; Pringle and
Webbink 1975; Wagoner 1975; Chau and Lauterborn!
1976). The purpose of this Letfer is to point out that a
Sformula for the energy loss of such a system has still not
been derived consistently within general relativity, con-
trary assertions in the literature notwithstanding. We
hope that our comments will stimulate research to
settle this basic question conclusively. In our opinion
the statement in italics deserves to be emphasized since
there is some danger of misinterpretation of observa-
tional data if certain familiar and “plausible” equations
in the literature concerning these problems (the first
of which was obtained by Einstein 1918 on the basis
of the linearized theory) relating the loss of energy to
the square of the third derivative of the quadrupole
moment are considered as firmly established conse-
quences of general relativity.

The idea of energy loss due to radiation, and a
corresponding radiation reaction force in the equation
of motion of a particle, arose in the theory of the
electromagnetic field (Lorentz 1909), and it can be
expected that any field theory of gravitation would
similarly lead both to a loss of energy and to radiation
reaction forces. Indeed, all plausibility arguments (for
a particularly clear exposition see Kalckar and Ulfbeck
1974) attempt to exploit such an analogy. But we are

! This unpublished study includes an investigation of the (rather
drastic) influence on the main sequence time scale of binaries of
orbital angular momentum losses which might be due to gravita-
tional radiation.
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concerned here not with a field theory of gravitation in
the abstract, but with a particular one: Einstein’s
general theory of relativity. While in some réspects
Einstein’s theory indeed has the same structure and
properties as Maxwell’s electromagnetic theory, in
some other respects it is fundamentally different (for
a simple discussion see Havas 1973). Our skepticism
concerning the usual familiar equations is not due to
any disagreement concerning what is plausible, but
arises from the technical question whether these equa-
tions have been established as a consequence of Ein-
stein’s theory with acceptable rigor, or whether their
derivation has been based on assumptions some of
which are mathematically incompatible with this
theory.

Little is known rigorously about gravitational radia-
tion from localized matter distributions. On the assump-
tion of asymptotically flat spacetime in the vicinity of
null infinity it has been shown (Sachs 1962; Newman
and Unti 1962) that (except in certain special cases)
null rays coming from an 1solated matter distribution
shear as they approach null infinity as seen in an
asymptotically Minkowskian frame. The square of the
rate of change of shear determines the rate of radiation
of gravitational energy. What is missing is a connection
between the shear and the observed motion of stellar
systems, in particular their quadrupole moments, and
thus it is not possible to translate the rigorously known
result involving the shear into a numerically testable
statement.

In order to obtain such a testable statement, it has
been necessary to resort to approximation methods
which are based on an iteration or expansion of the
deviation of the physical metric tensor from the Minkow-
ski flat space metric. These attempts have not yet
arrived at a consistent solution. Here we shall outline
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. the general approach to the problem of motion and
, briefly criticize some of the more prominent calcula-
tions.
The problem is to determine approximately spacetime
models (M, g, T) which fulfill the following conditions:
I) They satisly Einstein’s equation

G=8rsT, (1)
and thus also its consequence
V-T=0. (2)

II) They correspond to a physically reasonable model
of the sources (bodies). This can be achieved either by
specifying the functional dependence of the stress-
energy-momentum tensor 7' on some matter variables
ma and the metric g,

T = T(ma,g) (3)

as illustrated by two examples in the Appendix, or by
requiring that in some world tube representing the
region outside, but close to the body in question, the
metric has asymptotically a specific form (e.g., Schwarz-
schild or Kerr) characteristic of a single body.?

IIT) They satisfy a condition for absence of incoming
radiation. The precise form of the boundary condition
-(IIT) is not known and can perhaps be formulated only
once a satisfactory solution of the whole problem has
been obtained. Some such condition, however, is
certainly needed to make the problem mathematically
well defined and to express the physical assumption
that the system has indeed been isolated except during
some unknown prehistory. It is not known whether
nonstationary spacetimes exist which possess a past
null infinity 9~ (in the sense of Penrose 1964), and
which of them, if any, are free of incident radiation; in
model theories Leipold (1976) has shown that it depends
on the early motion of the sources (for { —» — )
whether retarded fields do or do not contain incident
radiation. In view of these facts and the presently
accepted view that the existence of J is an essential
part of the definition of an isolated system, it appears
to be premature to claim that gravitational radiation
from isolated material systems is theoretically well
- understood, even in principle.

Equation (2) determines the law of motion of the
bodies in terms of the (unspecified) metric g. To obtain
the metric g and the equations of motion, i.e., the laws
of motion with the g expressed in terms of the matter
variables, one imposes a coordinate condition?

Clg) =0 (4)

such that equation (1) can be replaced by a relaxed field
equation

G(g) = T(map) (5)

2 The basic ideas of this method to describe bodies were already
clearly formulated by Weyl (1923) and have recently been
elaborated and extended by means of matched asymptotic ex-
pansions (D’Eath, 1975¢, b).

3 See, however, the remarks in the paragraph following eq. (7a).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System

EHLERS, ROSENBLUM, GOLDBERG, AND HAVAS

Vol. 208

which no longer implies equation (2), so that equation
(5) can be solved for arbitrary values of the m4’s. The
restrictions on the motion follow by subjecting the
solutions of equation (5) to the coordinate condition
(4). Since the pair (4), (5) of equation is equivalent to
equation (1), any solution of equations (4), (5) will
satisfy equation (2) also.* Moreover, equation (4) is
chosen such that equation (5) is a simpler differential
equation than equation (1) and can be solved, hopefully,
by successive approximations.

The computational strategy is (¢) to solve equation
(5) iteratively, by computing a sequence g%, ...,
where each approximate potential is a functional

Nglma] (6)

of the matter variables obeying the boundary condition
(IL1), and then (b) to impose on Vg[ma] the condition

?

C(Vglma]) = 0. (7a)

1t is essential that equation (7a) be imposed after the
iteration has been performed to the desired order;
requiring (7a) at each step would lead to mutually
contradictory equations of motion on the matter vari-
ables.

A different iteration method not requiring any
coordinate condition has been formulated by Havas
and Goldberg (1962). In their procedure the (N — 1)th
approximate equation of motion is the integrability
condition for the Vth order approximate field equation.
Instead of replacing equation (1) by a relaxed equation
(5), these authors propose to solve successively linear-
ized, but untruncated, approximations of equation (1).
After each iteration step the solution Nglm,] is then
relaxed by keeping the form of these functionals, but
discarding the restrictions imposed on the m4’s by the
lower-order equations of motion. The role of equation
(7a) is then played by the equivalent equation

NI Tmg N lglmy]) = O . (7b)

However, so far no method of solving their Nth-order
field equation without coordinate conditions has been
found, so that for explicit calculations their method
reduces to that described above.

According to either iteration scheme, to Nth order
the evolution of an isolated system is described by an
“Nth order metric” ¥g satisfying the (N — 1)th order
equation of motion (7a) or (7b). If these equations of
motion can be cast into a Newtonian or special-relativis-
tic form, radiation reaction forces can be identified by
means of their time-reflection asymmetry. The radia-
tion loss can be described either through a suitably
defined function of the metric near future null infinity
g%, interpreted as the flux of gravitational radiation

4 Mathematically, this situation resembles that prevailing in
special-relativistic electrodynamics. Maxwell’s equations, whether
expressed in terms of fields or of potentials, imply the equation of
continuity; however, before solving the equations for the poten-
tials they are simplified through introduction of a gauge condition.
Then these equations no longer imply the equation of continuity,
and the solutions must be restricted by means of the gauge
condition.
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energy, or through the time rate of change of a suitably
defined function of the source variables m,4, interpreted
as the total energy of a bound system. The radiation
condition (ITT} will ensure that the motion of the
system is time-asymmetric, just as in mechanical and
electromagnetic cases. _

Thus it is an approximate metric together with matter
variables satisfying (7a) or (7b) which governs the
time development of a system. An approximate solution
(6) of equation (5) which does not also satisfy the
(N — Dth equation of motion is #of an approximate
solution of Einstein’s equation (1). Unfortunately, this
fact was not properly taken into account in the two
best known derivations of a formula for gravitational
radiation loss of a system, Einstein’s 1918 original
derivation on the basis of the linear approximation’
and the substantially identical one given by Landau
and Lifshitz (1951), who overlooked the restrictions
on the motion implied by the field equations. (Similar
derivations, also overlooking these restrictions, are
given in many recent articles as well as textbooks such
as Weinberg 1972 or Ohanian 1975.) It is also the same
point at which some popular plausibility arguments go
wrong; e.g., Kalckar and Ulfbeck (1974) argue the
existence of a radiation reaction force in a two-body
system by considering the work done by an external
agent in overcoming such a force under various condi-
tions including keeping one body fixed. However,
Einstein’s equations do not allow such a freedom; they
allow only one particular motion under given initial
conditions. Violating the equations of motion is analo-
gous to considering solutions of Maxwell’s equations
which violate the equation of continuity.

In some subsequent derivations, the field equations
were solved under the assumption of Newtonian motion
(Peters and Mathews 1963; Infeld and Michalska-
Trautman 1964), or equations of motion were obtained
by inserting approximate solutions of the field equations
into the law of motion (2) expanded independently
(Peres 1960; Carmeli 1964), which is mathematically
inconsistent and may lead to errors of the same order
of magnitude as the effects being considered.

The various attempts to carry out the program
discussed above differ considerably in details. All
methods assume the existence of a global, approxi-
mately inertial coordinate system (x*) in which

8ap = Map + ltop (8a)

with
ap = diag (1,—1,—1,~1), [hyg| < 1; (8b)
this is called the “weak field assumption.”” The major
alternative is that between fast and slow approxima-
tion methods. In the former ones (4) is chosen such®

5 The shortcomings of the derivation are discussed in Havas and
Goldberg (1962) and Bonnor (1963).

& The choice leading to eq. (9) (the “de Donder condition”) is
analogous to the choice of the Lorentz gauge in electrodynamics,
while the choice leading to instantaneous potentials is analogous
to the Coulomb gauge.
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that (5) has the form of a quasilinear wave equation
Clog = T(ma,g) + Alg), ©

which is solved by successive retarded integration to
account for (IIT). In slow motion methods, spacetime is
divided into two overlapping zones, a near zone N
containing the sources and a far zone F stretching to
infinity. In N, retardation can be treated as a srall
correction, and accordingly an approximate solution of
(5) is obtained by solving iteratively elliptic equations
which can be integrated in terms of instantaneous
potentials. The near zone integrations give the poten-
tials ¥¢ up to arbitrary harmonic functions only; these
functions have to be determined by “matching” the
near zone or ‘“inner” expansion of the field to an
independently determined far zone or “outer” expansion
valid in F only which accounts for the radiation condi-
tion (III).

A (perhaps minor) difference between various meth-
ods is the use of extended bodies or point particles.

The crucial problem for fast motion methods is to
solve equation (9) in sufficient approximation. To
achieve that it has been customary to introduce an
auxiliary flat metric » (supposed to coincide with the
“true’” metric near past null infinity) as in equation
(8a) and to replace (9) by

Lk = TOmn+ k) + Aln + &) + M), (10)

where M accounts for the “error” caused by the sub-
stitution [_], —[], on the left-hand side. This has the
computational advantage that one can use the flat-
space retarded Green’s function to solve equation (10)
iteratively, starting with # = 0 on the right-hand side.
Clearly, such a reduction (or the corresponding one in
the slow motion, near zone equations which leads to
the flat space Laplace operator A) implies the use of
the wrong propagators at all steps, and it appears to be
unknown whether this leads to serious errors, in the
sense that either the iteration does not lead to an
approximate solution at all or that it leads to an
approximate solution which does not satisfy the bound-
ary condition (III) on ¢, although some information
about this question has been obtained by Bird and
Dixon (1975) for a simplified model. An’ alternative
method would be to solve (9) in such a way that in the
Nth step one uses the Green’s function associated with
the (N — 1)th approximation (Thorne and Kovacs
1975).

Unfortunately, the fast moiion approach has not been
tterated to a high enough order to give conclusive results
(for references see Havas 1973). Work on this problem
isin progress, however. A variant of the fast approxima-
tion (Synge 1970) appears to be free of some of the
difficulties mentioned here, but it too has not been
carried out far enough to provide an expression for the
fate of energy loss due to radiation.

Slow motion methods, on the other hand, have been
carried formally to a sufficient order to provide such
an expression.” However, a complete matching of the

" The first consistent caleulation [though not fully taking ac-
count of condition (III)] was carried out by Goldberg (1955), who
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N and F fields according to the method of singular,
matched asymptotic expansions as advocated and
applied by Burke (1969, 1971) and Burke and Thorne
(1970) has not yet been carried out, as far as we know.
The gaps in the treatments which have been published
so far (concerning the results of “matching the post- and
post-post-Newtonian near zone solutions outward and
then back in,” etc.) which have been pointed out by
these authors do not appear to have been filled yet. The
calculations of Chandrasekhar and Esposito (1970)
appear to us to be similarly inconclusive. Although it
is emphasized in § II of their paper that the determina-

* tion of the lowest-order time-odd terms is preliminary

.only, an independent proof that these are indeed the

lowest order time-odd terms according to the full
approximation scheme is not given. Moreover, the 23
post-Newtonian equations of motion as well as the
metric contain a divergent integral (their eq. [79])
which arises from an integration in N without matching
to the appropriate F-zone terms.® Although the final
formula for radiation loss contains only finite terms,
the operations leading to it are not justified, since they
are applied to a meaningless, divergent expression.

All of the slow motion methods lead to an expression
for the average rate of energy loss due to gravitational
radiation of the form

_dE

dE _ _G_ BQap d*QP
dt T ¢ dB

g’

(11)

concluded, however, that the slow motion method was not
appropriate for the investigation of gravitational radiation.

8 Anderson and Decanio (1975) are led to an equivalent diver-
gent expression (their eq. [105]) through expansion of retarded
potentials in instantaneous ones for the radiation as well as the
near zone, in contradiction to their initial assumption that all
integrals exist. For the same reason, Epstein and Wagoner (1975)
obtain divergent integrals (their egs. [19], [20], [21], [46b], [47],
[48]), contrary to a claim in their paper.
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where Q.g is the quadrupole moment of the system, and
4 is a numerical constant.

The absence of a term depending on the dipole
moment and the particular form (11) of the radiation
loss can validly be argued from very general considera-
tions, but not the value of 4. Exact results for the F
zone only imply 4 > 0 (Sachs 1962). The most com-
monly quoted value® (Einstein 1918) is 4 = 1/45; as
far as we know, no value greater than this has been
claimed. However, all derivations are subject to one or
more of the objections discussed earlier, which may
invalidate the derivations altogether, or lead to changes
of A of the same order of magnitude as the results
claimed. Therefore, at present nothing can be said
about the value of A (except that it is nonnegative,
provided Sachs’s assumptions on asymptotic behavior
can be justified).

None of the methods attempted so far contains
error estimates in a precise mathematical sense; at
best, errors have been guessed on the basis of formal
“order of magnitude” assignments. Therefore, the
predictions concerning period changes of the binary
pulsar are not reliable.

In view of this situation it may be advisable to keep
an open mind with respect to the question of gravita-
tional radiation damping, and to try other methods
or to complete known ones to settle the question,
instead of accepting as final results which, however
plausible, have been obtained by objectionable methods
or by incomplete applications of valid ones.!?

¢ In comparing the various values of A given in the literature,
it should be noted that they depend on the particular definitions
of the quadrupole moment adopted by the various authors; the
value given here and the form of (11) are those which follow from
the convention used by Landau and Lifshitz (1951).

10 Very detailed surveys, from various points of view, of the
technical aspects of the problem of radiation loss from isolated
gravitating systems will be contained in the Proceedings of the
67th International School of Physics “Enrico Fermi” (held at
Varenna, summer 1976) on Isolated Gravitating Systems in General
Relativity, ed. J. Ehlers (Amsterdam: North-Holland, in press).

APPENDIX
EXAMPLES ILLUSTRATING EQUATION (3)

We choose a coordinate system (x%) = (x%8) (@ = 0, 1, 2, 3; ¢ = 1, 2, 3; «® = {) such that the hypersurfaces { =
const. are spacelike. The matter variables m4 are defined independently of a metric, as required by equation (3).

a) Isentropic perfect fluid. The material is specified by an “equation of state” p = p(p). The matter variables ms(4 =
1, 2, 3, 4) are the energy density p and the “‘coordinate velocity” »* = dx*/dt of the fluid. Then (with o* = 1)

e _ (0. P

g0

— p(o)g . (32)

) Monopole point particle. [This may be considered as a distributional limit of case (¢).] The particle is specified by

a mass constant 7(> 0). The matter variables ms (A = 1, 2, 3) are the position coordinates z(¢) of the particle. Then
+o 2P

% (—ggLar)

where 20 = t, 5¢ = dz®/dt, and § is the metric-independent Dirac distribution on spacetime, a biscalar density; g

now denotes the determinant of g,,. The form (35) follows from equation (2) and the assumption that 7¢® can be
represented as an integral over § (Tulczyjew 1957; Havas and Goldberg 1962).

TeB(x7) = m xr — zv(¥)]dt, (3b)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System
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