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SECOND ORDER RECTIFIABILITY OF INTEGRAL VARIFOLDS
OF LOCALLY BOUNDED FIRST VARIATION

ULRICH MENNE

ABSTRACT. In this work it is shown that for every integral n varifold in an
open subset U of R**™ n,m € N, of locally bounded first variation there
exists a countable collection C' of n dimensional submanifolds of U of class C2
such that u(U ~JC) = 0 and for each member M of C

H, (z) = Hpy(z) for yu almost all z € M.
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INTRODUCTION

First, some definitions will be recalled. Suppose throughout the introduction
that n,m € N and U is an open subset of R"*™. Using [Sim&83, Theorem 11.8] as
a definition, p is an integral n varifold in U if and only if p is a Radon measure
on U and for p almost all € U there exists an approximate tangent plane T, u €
G(n + m,n) with multiplicity 0™ (u,z) € N of p at z, G(n + m,n) denoting the set
of n dimensional, unoriented planes in R”*™. The distributional first variation of
mass of pu equals

(6p)(n) = [div,ndu  whenever n € CL(U,R™™™)

where div, 7(z) is the trace of Dn(z) with respect to Tp. ||dp]| denotes the total
variation measure associated to du and p is said to be of locally bounded first
variation if and only if ||du| is a Radon measure, in this case the generalised mean
curvature vector ﬁu (x) € R™™™ can be defined by the requirement

F (1) o0 = — lim 0807

ol (B, (@)

whenever this limit exists for & € U; here e denotes the usual inner product on
R"*™. The mean curvature vector I:I'M(x) is perpendicular to T, u at p almost all

for v € R*T™
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x € U, as shown by Brakke in [Bra78|, 5.8]. From the above definition of an integral
n varifold p one obtains that p almost all of U is covered by a countable collection
of n dimensional submanifolds of U of class C*. This concept is extended to higher
orders of differentiability by adapting a definition of Anzellotti and Serapioni in
[AS94] as follows: A rectifiable n varifold u in U is called countably rectifiable of
class C** [C¥], k € N, 0 < a < 1, if and only if there exists a countable collection
of n dimensional submanifolds of U of class C*® [C¥] covering p almost all of U.
Throughout the introduction this will be abbreviated to C*< [C*] rectifiability. Note
that C*! rectifiability and C**! rectifiability agree by [Fed69, 3.1.15]. An integral
n varifold p in U of locally bounded first variation which is C? rectifiable is said to
satisfy if and only if

(L) IjI#(m) = Hy(z) for p almost all z € M

whenever M is an n dimensional submanifold of U of class C2.
Suppose for the rest of the introduction that p is an integral n varifold in U. The
following two questions will addressed in this work.

Question 1. Which assumptions on §u imply C1® rectifiability of p, 0 < o < 17

Question 2. Suppose 4 is of locally bounded first variation and pu is C? rectifiable.
Which conditions on du imply ?

Among the possible conditions of dpu there are the following integrability condi-
tions. g is said to satisfy (Hp)), 1 < p < oo, if and only if it is of locally bounded

—

first variation, H,, € LY (4, R™"™), and, in case p > 1, satisfies

loc
(Hp) (6u)(n) = — [H, e ndp  whenever 5 € CL(U, R"™).

In order to state the related results, the tilt-excess and the height-excess of
are defined by

tiltexu(a?, o, T) = Q_nfBg(x) ‘TEI’L - T1|2 dl’[’(g)a
heightex , (z, 0, T) = Q*”*QIBQ@) dist(& — z,T)% du(€)

whenever 2 € R"™, 0 < ¢ < oo, B,(z) C U, T € G(n+m,n); here S €
G(n+ m,n) is identified with the orthogonal projection of R"*™ onto S and | - |
denotes the norm induced by the usual inner product on Hom(R"*™ R"™+t™)  Of
basic importance is the following theorem due to Brakke.

Theorem 5.7 in [Bra78|. If p is satisfies (Hy), then
tiltex,, (v, 0, Txpt) = 0(0), heightex,(z, 0, Topt) = 02(0) as 010
for p almost all x € U.

If (H,) is replaced by (Hs), then o,(p) can be replaced by O,(0*~¢) for every
e > 0. Using the following lemma which is an adaption of [Sch04b, Appendix A],
one infers that (H;) implies C''/? rectifiability and (Hy) implies C** rectifiability
for every 0 < a < 1.

Lemma. If0 <« <1 and p satisfies heightex, (z, 0, Ti:pt) = 0. (0**) for u almost
all x € U, then p is CH% rectifiable.

In codimension 1 under the condition (H,), p > n, p > 2, the above questions
were completely answered by Schétzle extending earlier results in [SchO1]:
Theorems 4.1, 5.1, 6.1 in [Sch04al. If m = 1 and p satisfies (Hp) for some p
with p > n, p > 2, then

tiltex, (z, 0, Tup) = Om(QZ)v heightex#(z, 0, Topt) = Oz(Qz) as ] 0
for p almost all x € U, and u is C? rectifiable and satisfies .
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In fact, inspecting the proof, one notices that the decay rates imply under
weaker conditions on du. Moreover, Schitzle showed in arbitrary codimension the
following equivalence:

Theorems 3.1, 4.1 in [Sch04b]. Suppose u satisfies (Hz).
Then the following two conditions are equivalent:
(1) p is C? rectifiable.
(2) For p almost all x € U

tiltex,, (z, 0, Ty ) = 0.(0?), heightex,, (z, 0, Ti:pt) = 0.(0%) asol0.
In this case u satisfies .

The two conditions are not equivalent if y is merely required to satisfy (H,) for
some p with 1 <p < 22+7nn In fact, in [MenO8bl 1.5] the existence of a C? rectifiable
integral n varifold satisfying (H,) not having quadratic decay of neither tilt-excess
nor height-excess was confirmed.

In case n = 1 an answer to the second question was obtained by Leonardi and
Masnou:

Theorem 2.1 in [LMOS]. If n = 1, pu satisfies (H1) and is C? rectifiable, then u
satisfies (L).

Moreover, in the same paper a partial extension of this result to the case n > 2
has been obtained by assuming additionally that for H™ almost all x with 6" (u, z) >
1 there exists an n dimensional submanifold M of class C2 of U and @ € N such
that x € M and 6™(u,y) = Q for H™ almost all y € M.

In the present work the condition (H;) is shown to be sufficient to obtain an
affirmative answer to both questions (with o = 1):

Theorem If pu satisfies (Hy ), then p is C? rectifiable and satisfies .
Using the previous theorem of Schétzle, one directly obtains:
Corollary. If u satisfies (Hs), then for u almost all x € U

tiltex, (x, 0, Tppt) = 0.(0%), heightex , (z, 0, Tupt) = 0.(0%) asol0.

Also, using the Sobolev Poincaré type inequality relating tilt and height quanti-

ties (cf. [Men08d, 2.9, 2.10]), one obtains:
Corollary. If u satisfies (Ha), g =0 ifn=1,1<g< o0 ifn=2,q= % if
n > 2, then for p almost all x € U
limf;)up 0~ 27/9| dist (- — x,Txu)HLq(HLBQ(@) < oo.
0

In case n > 2, the exponent ¢ cannot be replaced by any larger number as it is
shown by [Men0O8bl 1.5]. It is not known to the author if one can take ¢ = oo in
case n = 2.

The next parts of the introduction will describe in an informal style the main
ideas of proof whereas the more technical issues will be explained in the body of
the text. The basic strategy is to cover p by a countable set of suitably rotated
graphs of Lipschitzian functions satisfying a partial differential equation ensuring
C? rectifiability.

The starting point to do so is the work of Brakke. The above mentioned decay
rates of tilt-excess and height-excess, i.e.

tﬂtexu(xa 0, Tp1) = 0:(0), heightexu(z, 0, Tep) = 0:(0) asol0
for p almost all x € U, will be crucial, despite the fact that they only correspond
to C11/2 rectifibility via the above mentioned lemma. One reason for this is that
they allow p to be approximated near p almost all x € U for each 0 < 9 < 0o by a
Lipschitzian multivalued function f, in the ball B,(z) such that the scale invariant
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measure of the error sets, where the approximation fails, decays like 0, (o) as ¢ | 0;
one order higher than a generic set with n density 0 at x would do. This implies
that these sets do not affect the limit ¢ | 0 obtained as long as the derivative of
the test functions to be rescaled is bounded in L*°, a fact that has been used by
Brakke in his proof of the perpendicularity of mean curvature. Taking into account
that the Lipschitz constant of the approximating function can be prescribed to
be arbitrarily small (cp. [Sch04al (D.9)]), one is led, after some calculations, to
consider the following model case for the Laplace operator.

Suppose u : R™ — R™ is Lipschitzian, A is £™ measurable and to each a € A,
0 < o < oo there corresponds a harmonic function v, 4 : B,(a) — R™ such that

limsup 0 "/?||u = va o/l Lo (B, (a) 1) < 00
el0
with 1 <p < o0, p < n/(n—1) if n > 1; the approximating functions v, , being
constructable in a straightforward way using u|0B,(a) as boundary values. If v, ,
were affine functions, this would immediately yield second order differentiability in
LP by [CZ61, Theorem 5] implying C? rectifiability of u by [CZ61, Theorem 9] (see
also [Zie89, 3.6-8]); here a function v : B — R™, B C R", is called C? rectifiable
if and only if there exists a sequence of functions v; : R® — R™ of class C? such
that £" (B ~{z:v(x) = v;(x) for some i}) = 0. Despite the fact that harmonic
functions are themselves smooth and satisfy well known a priori estimates, there
can exist points a € A such that there do not exist affine functions P, , : R* — R™
with
lim sup 0 P lu = Paoll o (5, (a) ) < 00
0
if n > 1E| To circumvent this difficulty, one considers closed sets Ay, k € N, such
that

g*”/PHu — Ua’g||Lp(Bg(a)7]Rm) < ko* whenever 0 < p < 1/k

and constructs functions v : R® — R™ which agree with u on Ay and satisfy
Avg € L"(L" LV, R™) for some 1 < r < oo and some open neighbourhood Vj
of Ay, hence vi|V}, € Wif(Vk,Rm) and infers second order differentiability of vy,
in L" from [Red68], hence C? rectifiability of vgx|Vj and u|A. The functions vy
are constructed by use of the partition of unity with estimates in [Fed69, 3.1.13]
from the functions v, , only using classical local Calderén-Zygmund type a priori
estimates, [GT01l, 9.4-5].

In reducing the general case to a slight extension of the model case, the following
three aspects are important.

(1) The result in the model case is of L™ almost everywhere type.

(2) The approximating function is multivalued.

(3) The right hand side of the equation has to be estimated in terms of a norm
corresponding to a “divergence of a Radon measure”, more precisely in a
scale invariant norm on the dual of C}(B,(a),R™), as will be explained in

214

Concerning , the Lipschitzian approximation of Brakke has to be extended to
construct a single multivalued function in a ball B, (xg) together with estimates
an every ball B,(z) contained in B, (x¢) such that z is an element of a “good”
set having full n density at xg. This greatly contributes to the complexity of the

1f n = 2, this may be seen by considering the behaviour of the continuous function v : C — R
such that u(re’?) = r2(logr) cos(2¢) for 0 < r < oo, ¢ € R at 0, noting Au(re’?) = 4 cos(2¢p) for
0<r<oo, peR.
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estimates involved. Having to consider all points = in a set of positive measure si-
multanuously, it also rules out the possibility to assume Du(z) = 0 for the points x
examined which is often useful in order to approximate the minimal surface opera-
tor by the Laplace operator. Concerning , one can again use Brakke’s tilt-excess
estimates to control the error occuring when passing to the average of the multi-
valued function. Concerning , first note that for u, as its Lipschitz constant is
small, the Euler Lagrange differential operator L corresponding to the nonpara-
metric area integrand F and the operator Lg corresponding to a perturbation G
of the Dirichlet integrand yield the same distribution. It is now easy to construct
functions v, , with Lg(va,,) = 0 and boundary values u|0B,(a). Also, once an es-
timate of |[u — vaoll L2 (B, (a),rm) is established, the arguments from the model case
carry over from A to Lg by rather straightforward perturbation arguments. The
difficulty lies in establishing the mentioned L? estimate for u — v, ,. Since in the
linear case, i.e. Aw =div f, w: R®™ — R™ and f: R™ — Hom(R",R™) functions
of class C*° with compact support, || Dw||z1(zn Hom(r»,rm)) cannot be controlled by
Ilfllz1 (£n Hom(®n Rm)), @ perturbation argument to pass from A to Lg seems to be
impossible. Instead of this the construction of u is examined to conclude that u
inherites decays of a tilt quantity, i.e.

. —n—1 2 n
1;?()1@ fBg(a)|Du(z) — Du(a)|*dL"z =0

for L™ almost all a in a relevant set A from the tilt-excess decay of the varifold u.
These estimates are used to explicitely estimate the difference to suitably chosen
linear differential operators close to A and thereby resolving the problem.

Concerning the ideas of proof, it should be finally remarked that the second
order differentiability in L? in fact obtained for u does not imply directly that
these differentials satisfy the equation in differentiated form. However, using once
more the tilt estimates, one obtains estimates for comparison functions w,,, with
Lg(wa,,) given by suitable constants and boundary values given by u|0B,(a) as
before to establish the desired relation via a blow up argument. This relation then
yields the condition for p.

The notation is taken from [Sim83| [GT01], [Fed69, [AIm00]. With the exception
of standard notation like N denoting the positive integers, R denoting the real
numbers, B,(r) and B o(7) denoting respectively the open and closed balls centered
at x with radius o, as well as Lebesgue and Sobolev spaces, which have already been
used without warning, all notation is introduced or recalled before first occurance.
Definitions will be denoted by ‘=’. To simplify verification, in case a statement
asserts the existence of a constant, small (¢) or large (I'), depending on certain
parameters this number will be referred to by using the number of the statement
as index and what is supposed to replace the parameters in the order of their
appearance given in brackets, for example grg(n, m, g, 2p).

The work is organised as follows. Section [l| provides a criterion for second order
differentiability in Lebesgue spaces. In Section [2| the approximation by multivalued
functions is constructed The results of these two sections are combined in Section
to prove the main theorem. In Appendix [A] Almgren’s notation for @ valued, i.e.
multivalued, functions is summarised for the convenience of the reader. Finally,
in Appendix [B] a result about Lebesgue points for distributions is included which
clarifies some arguments in the main body of the text.

Acknowledgements. The author offers his thanks to Professor Reiner Schatz-
le for introducing him to elliptic partial differential equations and the questions
of geometric measure theory this paper deals with. The author also would like
to thank Professor Tom Ilmanen for inviting him to the ETH Ziirich in 2006 and
several extensive discussions.
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1. A CRITERION FOR SECOND ORDER DIFFERENTIABILITY IN LEBESGUE SPACES

In the situation considered is introduced and modifications and simple
applications of standard results are given in the precise form needed to prove the
main lemma in [[.9] The criterion is then proved in [L.11}

1.1. In this section and partly also in Section [3]the concept of weakly differentiable
functions, in particular Sobolev spaces, as introduced e.g. in [GT01] and the concept
of distributions as introduced e.g. in [Fed69] will be used. In doing so, the following
conventions and abbreviations will be employed.

Suppose n,m € N. Since some of the results are pointwise, no identification of
functions agreeing almost everywhere will be used; instead the conventions will be
employed that for any ¢ times weakly differentiable function v : U — R™, U an
open subset of R”, i € Ny, the weak i-th derivative will be denoted by D'u,

% : : : ny—1 % n :
a € dmn D*u  if and only if lrlﬁ)l(wnr ) fBr(a)D udL™ exists

and in this case D'u(a) equals the limit in questionﬂ

Moreover, the following abbreviations will be convenient. For ¢ € N, and vector
spaces V and W denote by ©(V, W) for i € N the set of all symmetric multilinear
maps from the i fold product of V into W, @°(V, W) = W and let ©'V = ©(V,R)
for i € Ng. Suppose a € R™, 0 < r < oo, H is a finite dimensional Hilbert space,
and f: B,.(a) — H is L™ B,(a) measurable. Then

|f|p;a,7" = fller(cr e B, (a),my for 1 <p<oo.

Note, concerning the case f = D for some u : B,.(a) — R™, i € N, the Hilbert
space norm is given by i! |¢|> = Dsesmiy [o(es), - - esm))|? for ¢ € OF(R™,R™)
where ey, ..., e, denotes an orthonormal base of R” and S(n,) is the set of all
maps from {1,...,i} into {1,...,n}, see [Fed69, 1.10.5]. Suppose U is an open
subset of R", ¢ € R, 0 < r < 00, B,.(a) CU, and T € D'(U,R™). Then

|T|_, =sup{7'(#):0 € D(U,R™),spt C B,.(a),|D0| <1}

. /.
»pia,T pia,r

where p’ denotes the conjugate exponent to p. If |T|_; par < 00, then, in case
p > 1, T induces an element of

(Wo* (B, (a),R™))"

by unique continuous extension of T|W01’p'(Br(a),Rm). In case p = 1, a similar
assertions holds with W™ (B, (a),R™) replaced by its subspace of functions wu :
B, (a) — R™ whose extension to R” by 0 is of class C!.

1.2. Suppose n,m € N, the bilinear form T € ©? Hom(R",R™) is defined by
Y(o,7) =cer for o,7 € Hom(R",R™),

e denoting the inner product on Hom(R™,R™), F : Hom(R",R™) — R is of class
C?,0<¢e < 00, and

|D?F(c) — Y|| <& whenever ¢ € Hom(R",R™);

here ||¥]| denotes for a bilinear form ¥ on Hom(R"™,R™) the smallest nonnegative
number M such that ¥(o,7) < M|o||7| for 0,7 € Hom(R™,R™). Lip D*F will also
be computed with respect to || - || on ©®* Hom(R",R™) and | - | on Hom(R™, R™).

2dmn f denotes the domain of the function f and wy, = L™(BT(0)).
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To each such F' there corresponds the Euler Lagrange differential operator L
which associates to every u € WH(U, R™) for some open subset U of R™ a distri-
bution L (u) in D'(U,R™) defined by

Lp(u)(8) = = [, (D8(x), DF(Du(x))) dL"x  for § € D(U,R™);
here (v, 9) := ¢(v) for a linear map ¢ : V' — R and v € V. There also occurs the
linear function Cr(o) : ©@*(R™,R™) — R™ which for o € Hom(R",R™) is given by

n

(¢,Cr(o :Zizﬂ:i XUJ,kal D2F(0)>(¢(ei,ek)ovj)vl

i=1 j=1k=1I=1
for ¢ € ©?(R",R™) where ey, ...,e, and Xi,..., X, are dual orthonormal bases
of R" and ®!'R", Xv maps w € R” onto X (w)v € R™ for X € &'R", v € R™,
and vy, ...,v,, form an orthonormal base of R™. Hence one obtains by partial
integration for u € W21(U,R™), § € D(U,R™)

0) = [,0(z) e (D*u(z), Cr(Du(z))) dL" .
Similarly, one defines S : ®?(R",R™) — R™ corresponding to the Dirichlet inte-
grand (and therefore to T) and obtains (¢, S) = > 1| > 1 _; d(e;, ex) witheq, . ..
and ¢ as in the definition of Cr(c). One may check that with x = 2/2nm

[Cr(o)| < K|D*F(0)]l, |Cr(0) =S| < ke,
Cr(0) = Cr(7)| < K| D*F(0) = D*F(7)|

for 0,7 € Hom(R™, R™) where |-| denotes the norm associated to the inner product
on Hom(®?(R™, R™),R™).

76n7

1.3. Theorem. Suppose n,m € N, and 1 < g < oo, 1 <p < c0.
Then there exists a positive, finite number € with the following property.
If Y isasin[l.3 a € R", 0 <r < oo,

A: B,(a) — ©*Hom(R™,R™) is L™ L B, (a) measurable,
|A(x) — Y| <e whenever x € B,(a),
and u € Wl’q(B ( ) R™), T € D'(B,(a),R™) satisfy
fB (@ z), Du(z)), A(x)) dL"x =T(0) for 6 € D(B,.(a),R™),
then

|D’LL| S I‘(T—n_l—‘rn/plul1;a,r + |T|71,p;a,r)

p;a,r/2
where T' is a positive, finite number depending only on n, m, and p.

1.4. Theorem. Suppose n,m € N, and 1 < p < co.
Then there exists a positive, finite number € with the following property.
IfSisasin[l.d acR", 0<r < oo,

B : B,(a) — Hom(®*(R™,R™),R™) is L™ L B,.(a) measurable,
|B(z) — S| <e whenever z € B,.(a),
and u € W2P(B,(a),R™), f € LP(L™ L B,(a),R™) satisfy
(D*u(z), B(z)) = f(z) for L™ almost all x € B,(a),
then

|D2u| < F(T—2—n+n/P|u|1;a,T 4 |f|

pia,r/2 p;aﬂ")

where T' is a positive, finite number depending only on n, m, and p.

Proof of[I.3 and[14} Using some standard modifications, the techniques described
in [GT01) 9.4-5] apply. O
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1.5. Remark. Using the elementary solution constructed in [Fed69, 5.2.13], one
verifies with essentially the same proof that and [[4] remain valid if YT is only
required to be strongly elliptic as defined in [Fed69, 5.2.11] provided the constants
e, I' are allowed to depend additionally on an ellipticity bound of T and a bound
for ||T]||. In fact, this remark holds for all results of the present section.

1.6. Lemma. Suppose n,m € N, and 1 < ¢ < 00, 1 <p < c0.

Then there exists a positive, finite number € with the following property.

If F is related to € as in[1.4, a € R*, 0 < r < 00, u € WH4(B,(a),R™), and
feLP(L™. B,(a),R™) satisfy

Lp(u)(0) = fBT(a)G(J:) o f(z)dL"x whenever § € D(B,(a),R™),

then u is twice weakly differentiable and for every affine function P : R™ — R™
there holds

| Dyl <T(r 2t Plu— Py, + | f]

pia,r/2 p;a,r)

where T' is a positive, finite number depending only on n, m, and p.

Proof. The assertion may be obtained from using difference quotients. O

1.7. Lemma. Supposen,m € N, and 1 < g < p < 0.

Then there exists a positive, finite number € with the following property.

If F is related to £ as in LipD?F < o0, a € R*, 0 < r < o0, and
u; € WH4(B, (a),R™) with i € {1,2} satisfy Lr(u;) = 0, then u; are twice weakly
differentiable and for every affine function P : R™ — R™ there holds

r_"/p+1|D2(u2 —u)| < F(T_n_1|u2 . U1|1;a,r

pia,r/2 =
+ (r_n_llul - P|1;a,r) Lip(DQF)(r_n_l|u2 - ulll;a,r))
where T' is a positive, finite number depending only on n, m, and p.

Proof. Using an elementary covering argument, it is enough to prove the assertion

with |D?(ug — 1)l 0., /2 TEPlaced by | D?(ug — U1)|p:q.r/a- For this purpose let

K= 21/2nm,
e = inf{qrg(n, m, ¢, 2p), aa(n, m, p)/k, aza(n, m, ¢, 2p) },
I = F(n’ m, 2]7), Iy = FIZEI(”’ m,p),
I3 = Iig(n, m, 2p), T =Ty sup{2**"~"/? kT T3},

Suppose F, a, r, and u; satisfy the hypotheses with ¢ and that P : R” — R™ is an
affine function. In order to show that they satisfy the modified conclusions with T,
it will be assumed a = 0 and r = 1. Abbreviate A = Lip(D?F).

By the functions u; are twice weakly differentiable with

|D2ui|2p;0’1/2 <Tilu; = P, forie{l,2}
and one obtains from for £™ almost all z € B (0)
(D*u;(z), Cp(Duy(z))) =0 for i€ {1,2},
<D2(U2 — ul)(m),C’F(DuQ(m))> = <D2u1(m),C’F(Du1(m)) — CF(Dug(a:))> .
Therefore by [[.4] [[.2] and Holder’s inequality
| D?(uz = 1)l 14 < T2 (2247 Pluy — gy oy

+ ”A|D2u1|2p;0,1/2|D(u2 - u1)|2p;0,1/2)'
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To estimate [D(uz — u1)ly,, 1 /2, OnE computes
_fo(o) ((DO(x), D(ug —u1)(x)), A(x)) dL™x =0 for § € D(BT(0),R™),
where A(z) = folDzF(tDuQ(x) + (1 — t)Duy (x)) dL'e,
and obtains from [L3]
| D(us — U1)|2p;0,1/2 < Tsfuz — “1|1;0,1- .

1.8. Lemma. Suppose H is a Hilbert space with dimH = N < oo, k,l € Ny, [ > k,
F:H—Risofclassl,a€e H, 0 < < oo, and
s = sup{| D*F(z) — D*F(a)||:z € B,(a)}.
Then there exists G : H — R of class | such that
D'G(z) = D'F(z) forze Bé/Q(a), 1=0,...,k,
|D*G(z) — D¥F(a)|| < Ts forxz € H,
G|H ~ By(a) is the restriction of a polynomial function of degree at most k
where T is a positive, finite number depending only on N and k.
Proof. Choosing ¢ € E(R,R) with 0 < ¢ <1,
{t:—oco <t <1/2} CInt{t:o(t) =1}, {t:1<t<oo} CInt{t:e(t) =0}
one defines P: H - R, G: H— R by
P(x) = Y, (& —a)'/il, D'F(a)),
G(z) = P(x) + ¢(|z — al/6)(F(z) — P(z))
for x € H and readily estimates | D*G(x) — D¥F(a)|| be means of Taylor’s formula
(cf. [Fed69, 3.1.11])F] O

1.9. Lemma. Supposen,m e N, 1 <p<r <oo, and 1< q < co.

Then there exist a positive, finite number e, a positive, finite number I'1 depend-
ing only on n and p, and a positive, finite number 'y depending only on n, m, p,
and r with the following property.

If F is related to € as in Lip D?F < o0, j € {0,1}, A is a closed subset of
R™ w:R™"N{x:dist(z, A) < 1} — R™ is j times weakly differentiable, 0 <y < oo,
and if for each a € A, 0 < ¢ <1 there are vq,, € Wl’q(Bg(a),Rm) and an affine
function P, , : R™ — R™ such that

LF(Umg) =0,
10 " PHD (U = va )|, < V0% 0PI = Pagly,, < 0

then there exists a twice weakly differentiable function v : R™ N {z:dist(z, A) <
2} — R™ with
S0 MPHID (u =), , < T170%

< To(y(1+ Lip(D*F)7)? + 0" ?|t — Pa2ol1.0.0,)

Ta,0 —

Q—n/r|D2,U|

whenever a € A, 0 < p < 3—16.

3Tnt A denotes the interior of A.
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Proof. Assume r > ¢ and define

e = min{1, qrg(n, m, g, 2r), qra(n, m, g, 2r), ara(n, m, ¢, ) }-

Suppose F, j, A, u, and +y satisfy the hypotheses with ¢ and abbreviate A =
Lip(D2F).
By [I.6] and Holder’s inequality

g=o|Di”a79|2r;a,l/2 < 00, Zg=O|Diu|p;a,1/2 <00

whenever a € A. Therefore taking limits (for example by use of an interpolation

inequality similar to [Mor66l Lemma 6.2.2] and weak compactness properties of

Sobolev spaces [Mor66, Theorem 3.2.4(e)]) the conclusion can be deduced from the

following assertion: There exist a positive, finite number I'y depending only on n

and p, and a positive, finite number I'y depending only on n, m, p and r such that
1

for every 0 < 6 < 13 there exists a function v : R" — R™ whose restriction to

{z e R™:dist(z, A) < &} is twice weakly differentiable satisfying
o0 MPHD (u =), , < T170°,
ria 9/2 <Iy (7(1 + A7)2 + (9/2)_n_2|u - PaaQIl;a,g)

whenever a € A, § < o < 13
Assume A # (Z) let ® = {R" ~ A} U{Bys(a):a € A}, note | J® = R", define

h(z) = 5 sup{min{1,dist(z,R" ~U)}:U € ®} for z € R",

(0/2)"/"|D?v|

and apply [Fed69 3.1.13] to obtain a countable subset S of R™ and functions ¢ :
R™ — {t:0 <t < 1} of class C* corresponding to s € S such that with S, =

{s € S:Bmh(m)(az) ﬂBth(s)(s) # @} for x € R™ and a sequence V; of positive,
finite numbers depending only on n there holds
#S, < (129)", sptys C Bmh(s)(s) forse S,
1/3 < h(z)/h(s) <3 for s € S,, |D'ps(x)] < Vi(h(x))™" forse S, ieN,

Yo=Y ey =1, > Dioy)=> Digy)=0 forieN

SES s€ES, SES SES,

whenever x € R", y € Bth(aﬁ)(‘T)' Note for x € R, y € Bth(x)(x), se€S,ieN

D5 (y)| < Vi(h(y))™" < (20)'Vi(10h(z)) ™"
because h(z) — h(y) < 55|z — y| < 2h(x). Choose £ : S — A such that
|€(s) — s| = dist(s, A) whenever s € S.
Note 20h(z) < max{dist(x, A),d} for x € R™ and observe
Baoon(a) () € Biogns) (€(s)),  120h(s) <1
whenever z € R”, dist(z, A) < 18,
|z — s] < 10h(x) + 10h(s) < 40h(z) < 2max{dist(z, A),d} < 1/9,
|s — &(s)| = dist(s, A) < |z — s| + dist(z, 4) < 1/6,
|z —&(s)| < |z — 5]+ |s — &(s)| < 40h(s) + 20h(s) = 60h(s),
| — &(s)] + 20h(x) < 120h(s) < 360h(z) < 1.

s € S;, because

Define R = [J{S, :z € R" and dist(z, 4) < &
Vs = Vg(s),120n(s) and  Ps = Peg)120n(s) for s€ R
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and, denoting by v’ the extension of vs to R™ by 0, v : R™ — R™ by
v(z) = Z os(z)vl(r) whenever z € R".
SER

Suppose for the rest of the proof x € R™ with dist(z, A) < =% and observe

L
18

v(y) = Z vs(y)vs(y) whenever y € Bwh(x)(x).
SESI

The asserted weak differentiability is a consequence of
One estimates

| D" (u— V)l s 20n(z) < |D*(u — V) i, 120n(s)
< (120h(s))"/PF21 < (18)"/PF2y(20h(x)) /P
for i € {0,4}, s € S, hence by Holder’s inequality
(20h(x)) ™" [t = vslyp 20m(a)
< wy PSS (20h(2)) TP D (w0 = v son ey < 2617(20A(x))°

for s € S, where ¢; = wp /P(18)"/P+2. Also

(200(2)) "1t = Pulyy songey < wh/7(200(2))/*|u — P|

< e17(20h(x)),

(1) (20(2)) " |vs = Psl.0 s0n(x) < 3€17(20h(2))
for x € S,. Using

v(y) —uly) = Y 0s(¥)(vs(y) — uly)) whenever y € By, (@)
SESy

and the Leibnitz formula, one obtains from
g:o(loh(w))_n/p+i|pi(u - U)|p;m,10h(z) < ¢yy(10h(x))?

p;&(s),120h(s)

where ¢y = wy/P 7' 8¢:27/P(1 4 207)(129)".
In case x € B,(a) for some a € A, 6 < ¢ < L

18"
20h(z) < max{dist(z, A),d} < p, B20h(a:) (x) C Bzg(a)
and Vitali’s covering theorem yields a countable subset T of B Q(a) such that
{BQh(t)(t) :t € T} is disjointed, B, (a) C U{Bmh(t)(t) teT}
and one estimates for ¢ € {0, j}
|D7'(U - U) i;a,g
< Yrer! D' (w =)l 10nr)
< (e Y ,er (10K(8)) =7
— (5n/p+27i62,y)pw;1*(2*i)p/nzteTﬁn (BQh(t) (t))1+(2*i)p/n
< (5n/P+2fiCQ,y)pw;17(27i)p/n£n (B2Q(a))1+(2fi)p/n
— ((10)n/p+2—i027)Pgn+(2—i)p.
Therefore one obtains for a € 4, § < o < 1%, i € {0,j}
(III) an/PJriIDi(u _ U)Ip;a,g < (10)H/P+262792

and one may take I'; = 2(10)"/p+202 in the first estimate of the assertion.

11
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According to the functions v, are twice weakly differentiable and satisfy for
s€e S,
(20h(x))_n/(2r)+2|D2U5|2r;r,10h(m) < T'3(20h(z)) " "|vs — PSll;m,QOh(m)
where I's = Iirg(n, m, 2r). Combining this with yields
(Iv) (10h(x)) ™/ O+ D204y, 4 1oy < 2 C73e17(10h(2))

for s € S,.
Using one obtains for s,t € S,

((20h($))_n_1 |US — Ut | 1;2,20h(z)

(20h(2)) ™ CIF D2 (g = v0)l 3z 10n(a) < Ta
))((QOh(f))ﬂths - Ut|1;r,20h(x)))

+A((20h(2) 7" vs = Pal 14 20n(e
where I'y = Iirg(n, m, 2r). Since
(20h(2)) ™" |vs = Vel1,4 20n(e) < 4€17(20h(x))?
by , one estimates using
(10h(2)) "™ CID? (05 = 1)l gpup 1on(w) < c87(1+ A7)

where ¢35 = T'4(4eq + 3¢; max{4cy,1}). Using an interpolation inequality (which
may be proved similarly to [Mor66, Lemma 6.2.2]), one infers with a positive, finite
number I'; depending only n, m, and r

3270 (10()) ™ D (0 = 01) |10 10na)
< T5((10h(2)) ™ 21D (05 = 00)lgriy 1onge) + (100(2)) ™" s = el 10n(a))
< Ts(es(1 + Ay) + 2" e1)y(10h(x))?.
Together this implies for s,t € S,
Yoo (107(2)) ™ CrIF D (ug = 01) |y yon(ay < Cav(1+ Ay)(10h(x))?
where ¢4 = I's(cs + 2" 4¢;). Noting (v — vs)(y) = Yores, Pr(y)(ve — vs)(y) for

$€S8;, Y€ Bth(z)(x)v one infers using the Leibnitz formula
V) (10A(2)) " I DN (W~ 05) |y 10n(a) < €57(1+ A7) (10h(2))?

for s € Sy, i € {0,1,2} where ¢5 = 2(1 + 20V + 400V3)c4(129)™.
Using one defines

f(y) = (D*v(y), Cr(Do(y)))

whenever y € Bmh(z)(z) for some z € R™ with dist(z, 4) < % and computes for
sE€ S,

Fy) = (D*vs(y), Cr(Du(y)) — Cr(Dus(y))) + (D*(v = vs)(y), Cr(Do(y)))
for L™ almost all y € Bth(:r) (x). Holder’s inequality implies

£l 10n(a) < FAID@ = 0)lgps 10m(2) P05 2010 108 ()
+ R(M + 1w,/ 7 (10A(2)" CID? (0 = 05) |y, 10m(0):
hence by and
(10h(x))_n/r|f|r;m,10h(m) < egy(14 Ay)?
where ¢ = ﬁw}/(%)(maux{cf)w;1/(2’”)7 1327/ 3¢; + (M + 1)cs). Similarly but sim-

pler as in the deduction of (III}), one obtains for § < g < %, a€A

1 Flrsap < c6(10)™"y(1 + Ay)20™"
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and thus, using [1.6| with T'g = Tirg(n, m,r) and (III)),
07" |D%0] 0 o < Do 2(|u = ]y, + 14 = Paglia ) + 0" 1f]ia)
S Cr ('7(1 + A’Y)Q + Q_n_zlu - Paa9|1;a,g)

where ¢; = Fg(wifl/p(lo)”/p”cQ + ¢6(10)™/7 4 1). Therefore one may take I'y =
27/7 ¢ in the second estimate of the assertion and the proof is completed. O

1.10. Remark. In fact, by [CZ61, Theorem 10 (ii)] (see also [Zie89, Lemma 3.7.2]),
or by [Men08bl, 3.1]

lim o ?Y>1_o0 ™D (= )]0, =

0

for £™ almost all a € A. Now, Resetnyak’s result in [ReS68| applied to v yields that
for £™ almost all a € A there exists a polynomial function @, : R™ — R of degree
at most 2 such that

lim sup 9‘225209‘"/p+i|Di(u — Qa)lpia,e = 0-
ol0 o

1.11. Theorem. Suppose n,m € N, 1 <p < oo, and 1 < g < ©.

Then there exists a positive, finite number € with the following property.

If F is related to € as in Lip D?F < oo, U is an open subset of R", j € {0, 1},
u: U — R™ is weakly differentiable,

h(a,r) =
‘v € WH(B,(a),R™) and Ly(v) = 0}

pia,r*

inf { 27"/ ¥| D (u - v)
whenever B,(a) C U for some a € R, 0 < r < oo, and if A denotes the set of all
a € U such that

limsupr~2h(a,r) < oo,
rl0

then A is a Borel set and for L™ almost all a € A there exists a polynomial function
Qq : R™ — R™ with degree at most 2 such that

lim 2333 gr ™" D! (4 = Qa)l g = 0.

Proof. In view of one may assume g > p. Let € = gqrg(n, m,p,p, q). Suppose F,
U, j, and u satisfy the hypotheses with €. Define the open set V' by

V= {xGU:Zg:0|Diu| < oo for someO<T<dist(ﬂc,]R"~U)}

p;x,T

and note A C V. Denote by D the set of all v € W4(B}(0),R™) such that
Lr(v) =0 and define

W ={(a,r) e VxR:0<r <dist(a,R"~V)}
and the continuous map 7' : W — WhHY(B?(0), R™) by
T(a,7)(z) = r ‘u(a +rx) whenever (a,7) € W, z € B}(0).
Since D # () and
h(a,r) = rinf {Zg:0|Di(T(a,7°) —V)|01:V € D} for (a,r) € W,

h is continuous. Therefore A is a Borel set. Similarly, denoting by D’ the set of all
affine functions mapping R™ into R™ one defines a continuous map h' : W — R by

W (a,r) = rinf{|T(a,r) —w|,:w e D'} for (a,r) € W.



14 ULRICH MENNE

By [ReS68]
limsup o~ 'h'(a,0) < co for L™ almost all a € U.
0l0
Define

Cr ={x € V:dist(z,R"~V) > 1/k},
Ap ={a € Cy:h(a,r) < kr* and h'(a,r) < kr for 0 <r < 1/k}
for £ € N and observe that the sets Ay are closed and
LA~ {Ar:k e N}) =0.

Finally, the conclusion is obtained by applying (for each k € N) in conjunction
with to rescaled versions of u, Ay and a suitable number ~. [l

1.12. Remark. Instead of using [Res68], one can also use the functions v occuring in
the definition of h(a, r) in a way reminiscent of the familiar harmonic approximation
procedure to deduce
limsup o~ 'A'(a, 0) < oo whenever a € A.
0l0
Therefore u could have been required to be merely j times weakly differentiable.

1.13. Remark. This theorem generalises even in the case of the Laplace operator
similar criterions (see [CZ61, Theorem 5], [Zie89l 3.8.1]) where the functions in the
definition of h(a,r) are required to be affine. Also note that in case n > 1

limsup o~ ?h(a, ) < 0o
el0

does not imply the existence of a function v € W4(B,.(a), R™) for some 0 < r < 0o
with Lp(v) = 0 such that

J
s -2 i—n/p .
limsup o g r |u—v|p;a’g<oo7
el0 i=0
in fact this is a consequence of the example given in the Introduction, because
harmonic functions are of class C2.

2. APPROXIMATION OF INTEGRAL VARIFOLDS OF LOCALLY BOUNDED FIRST
VARIATION BY Q VALUED FUNCTIONS

In this section Brakke’s Lipschitz approximation [Bra78| 5.4] is reexamined along
the lines of [Men08c, 1.14] to construct the covering of the varifold by suitably
rotated graphs of Lipschitzian functions satisfying certain additional properties in
[2.12] Before doing so, some facts about universally measurable sets and a multilayer
monotonicity are recalled in [2.IH2.6]

2.1. Definition. A subset of a topological space is called universally measurable if
and only if it is measurable with respect to every Borel measure on that space.

A function between topological spaces is universally measurable if and only if
every preimage of an open set is universally measurable.

2.2. Remark. The corresponding definition for measures defined on Borel families
(o algebras) can found for example in [CVT7, II1.21].

2.3. Remark. If f : X — Y is a Borel function and A is a universally measurable
subset of Y, then f~!(A) is universally measurable as may be verified with the help
of [Fed69, 2.1.2].

2.4. Remark. The universally measurable sets form a Borel family (o algebra).



SECOND ORDER RECTIFIABILITY OF INTEGRAL VARIFOLDS 15

2.5. Lemma. Suppose X is a complete, separable metric space, Y is a Hausdorff
topological space, f : X — Y is continuous, B is a Borel subset of X, and g : B —
{t:0 <t < oo} is a Borel function.

Then h:Y — {t:0 <t < oo} defined by

h(y) = Z g whenever y €Y
)

is universally measurable.

Proof. [Fed69, 2.10.10, 2.3.1 (6)] may be adapted by use of [Fed69, 2.2.13, 2.3.3] to
obtain the conclusion. O

2.6. Lemma (Multilayer monotonicity with variable offset, cf. [Men08c, 1.6]).
Suppose n,m,Q €N, 0< M < o0, § >0, and 0 < s < 1.

Then there exists a positive, finite number e with the following property.

IFX cR"™ T e Gn+m,n), 0 <d < oo, 0 <r <oo, 0<t< oo,
f:X — Rvrm,

T(y— ) <sly—zf, [T(f(y) = f2)] <slf(y) = fl2)l],
fx)—zeBy™O)NT, d<Mt, d+t<r

for x,y € X, p is an integral n varifold in | J{B,(z):x € X} with locally bounded
first variation,

Sex(2) > Q= 146, (B, (2)) < Mwr™ forz € X Nspty,
and whenever 0 < o <r, x € X Nsptp

161 (B,(2)) < e p(By(x)' ™", [5 (| Ten — TIdu(€) < £ u(B,(x)),
then

p(U{B(f(@)) n{y: IT(y — 2)| > sly —z[} 2 € X}) > (Q — 8)wnt™.

2.7. Lemma. Suppose X, Y are normed, finite dimensional vector spaces, f : X —
Y is ofclass_Cl, a€ X, 0<r<oo,@€N,z € B.a) fori =1,...,Q, and
X = Lip(Df|B, (a)).

Then

Proof. Let P : X — Y by defined by P(x) = f(a) + (x —a,Df(a)) for x € X.
Then for « € B, (a)

f(z) = P(x)| = |{(z — a, [y Df(a+t(z — ) — Df(a)dL't)| < (A/2)r%
Since % 2?:1 P(z;) = P(Q7! 2?:1 x;), this implies the conclusion. O

2.8. Definition. Whenever k,I € N, k > [ the set of orthogonal projections 7 :
R* — R! will be denoted by O*(k,1).

2.9. Whenever n,m € N, and T € G(n+ m,n) there exist 7 € O*(n+m,n),
o € O*(n+m,m) such that T =im7* and moo* = 0E| hence

T=n*omr, TY=0"00, lgusim =7"0om+0*00.

4imf denotes the image of a map f.
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Whenever a € R"™™ 0 < r < oo, 0 < h < oo the closed cuboid C(T,a,r,h) is
defined by

C(T,a,r,h) = {x e R""™:|T(z —a)| <r and |T*(z — a)| < h}
={z eR"™:|r(z —a)| <rand |o(z —a)| < h}.
This definition extends Allard’s definition in [AIl72) 8.10] where h = cc.

2.10. Lemma (Approximation by @ valued functions). Suppose n,m,Q € N, 0 <
L<oo,1<M<oo, and0<; <1 forie{l,2,3,4}.

Then there exists a positive, finite number € with the following property.

Ifa, r, h, T, w, and o are as in[2.9, h > 2547,

U= {z e R dist(x,C(T,a,r, h)) < 2r},
w is an integral n varifold in U with locally bounded first variation,
(Q =14 6w < pu(C(Tya,m, b)) <(Q4+1—b2)wpr™,
w(C(Tya,r b+ 041m) ~C (T, a,r,h — 2847)) < (1 = d3)wpr™,
w(U) < Mw,r™,

0 < ey <e, B denotes the set of all x € C(T,a,r, h) with 6*"(u,x) > 0 such that

either  [|6p)|(B,(x)) > &1 M(Bg(ac))l_l/" for some 0 < p < 2r,

or fBQ(@\T&H — T du(§) > ey u(B,(x)) for some 0 < o < 2r,
A= CO(T,a,m,h)~B, A(y) = {zx € A:n(x) =y} fory € R", Y is the set of all
y € B,.(m(a)) such that

Dweawt"(z)=Q and 0"(n,x) € Ny for x € A(y),
Z is the set of all z € B,(w(a)) such that
Ypea)t"(wz) <Q@—1 and 0"(p,z) €Ny forz € A(z),

and N = B, (7(a)) ~(Y U Z), then the following eight statements hold:

(1) Y and Z are universally measurable, and L™(N) = 0.
(2) A and B are Borel sets and

o(ANsptp) C By_s,,(0(a)).
(3) 7({w € A:0"(u,2) = Q}) C V.
(4) A function f:Y — Qq(R™) is uniquely characerised by the requirement
0" (,z) = 0°(| f(W)|l,o0(z)) whenever y €Y and z € A(y).
(5) The function f defined in is Lipschitzian with Lip f < L.
(6) Defining f as in and G = {z e R""™:0(x) € spt f(n(x))}, for L™
almost all y € Y the following is true:
(a) f is approzimately strongly affinely approzimable at y.
(b) Tpp is mapped onto Tan (grath ap Af(y), (ym(x))) by the isometry

X o R — R™ x R™ whenever x € G with w(z) =y (see E|
(7) Ifbe A, 0"(1,0) =Q, 0 <o <r—[T(b—a)l,

Bb,g - C(Ta b, o, 549) N Ba
Ch,p = B,y(m(b)) ~(Y ~7(Bs,p)),
Db,g = C(Ta b7 0, 549) N ﬂ-il(cb,g)a

SHere Tan(S, a) denotes the closed tangent cone of S at a in the sense of [Fed69, 3.1.21].
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then By, is a Borel set, Cy,, Dy, are universally measurable and there
holds

L"(Ch,0) + 11(Ds,0) < '@ 1(Bb,o)
with ' = 3 +2Q + (12Q +6)5™.
(8) If b, 0, Cv.0, Dy, are as in , g : R™ — R™ is a Lipschitzian extension
of ngo f, 7 € Hom(R",R™), § € D(R",R™), ¥ € D(R™,R),
spté C BQ(W(b))7 spty C B64Q(J(b))7
Bisy o (0(®)) € Intfz:0(2) = 1},
and F : Hom(R™,R™) — R denotes the nonparametric area integrand, then
QS (r@y) (PO(), DF(Dg())) dL™x = (6p)(( 0 0) - (07 0 6 0 )|
<mQn'?Lipg[e, |DOIAL" +72Q [y, ¢, |DO@)|t(z,7)* AL x
+n'/2 [, |D((o0)- (0" 0fom))|du
where
n = sup[|D?F(|(B,1/2 14,4 (0)),
72 = Lip (D2F|Bn1/2(L+2HT”)(O)),
Eyp =B, (n(b)) N {y € Y:0°(If()ll. 9(v) # Q}
and t(x,T) is the supremum of all numbers
|7i — 7]
corresponding to all z1,...,2g € R™, 7,...,7g € Hom(R",R™) such that

Q
ap Af(z)(v) = Z[[zl + (v,7;)] whenever v € R™.

i=1
Proof of 7@. The existence of a number ¢ with 1 — ne? > 1/2 such that f
(6) are true is essentially proved in [Men08c|, 1.14 (1) (2) (7)]; the sets Y and Z are
defined as in the proof cited, their universal measurability follows from and
L™(N) = 0 occurs in the last paragraph of the proof of [(1) and (2), loc. cit.], and
is a consequence of a slight modification of the third paragraph of the proof of
[(1) and (2), loc. cit.]ﬂ O

Choice of constants. One can assume 2L < é4. Let gg be a positive, finite number
such that ey in place of ¢ has the property asserted when the last two statements
are omitted.

Choose 0 < s < 1 close to 1 satisfying

(572 —1)Y/2 < min{dy, L}
and define € > 0 so small that
e < min{eg, gum(n, m, Q, M,1/4,5)}, (1 —ne*)(Q —1/4)>Q —1/2.
Clearly, €; satisfies the same inequalities as € and one can assume a = 0, and

r=1. O

SFor z € A with 0"(u,z) = Q one defines § = inf{82/2, (2nyn) " /wn}, X = A(x(z)) and
applies (noting [MenO8bl 2.5]) with Q, d, r, t, and f replaced by Q + 1, 1, 2, 1, and T|X to
obtain > e ¢ 4 (r(ay) 0% (14,€) < Q+6 provided e < qzg(n, m, Q+1, M, 4, s) and (s72—1)1/2 < 64/2,

hence [Men08b}, 2.5] implies (3).
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Proof of @ (Bp,p) is a universally measurable set by [Fed69, 2.2.13], hence Cy ,,
Dy, , are universally measurable sets by [2.3] . . shows

S10+ |TH(b)| < h, C(T,b,0,610) C C(T,0,1,h).
Let v denote the Radon measure characterised by
X) = [xJ"T(&) du(§)
whenever X is a Borel subset of UEI and note
|Tpp—T| <e for ualmost all z € A,
hence 1 — JHT(x) < 1 — (JHT(x))? < ne? for those z. Therefore
(1—ne?)uL A<viLA.
This implies the coarea estimate
(1 —ne?) u(C(T,b, 0,010) N (W))
< w(Boy N7 (W) + QLMY W) +(Q — DEM(ZNW)
for every subset W of R™; in fact the estimate holds for every Borel set by [Fed69,
3.2.22(3)] and 7y (uL B) is a Radon measure by [Fed69, 2.2.17]. In particular,
taking W = B, (m(b)) yields
(1= ne®)u(C(T,b, 0,640)) < pU(Byo) + Qune”,
thus one can assume, since 8Q + 6 < F, that
11(Bb,o) < jwno".
Next, it will be shown that this assumption implies
LMY N Bg(w(b))) > 0.
Verifying, since (572 — 1)1/2 < 44, that
{£€B,(0):[T(& —b)| > s|¢ —b|} € O(T,b,0,040),
may be applied with
6, X, d, r, t, and f replaced by,
1/4, {b}, 0, 2, o, and Ty,
to obtain
n(C(T,b, 0,010)) > (Q — 1/4)wy0".
Hence by the coarea estimate with W = B, (w (b)) it follows
(Q = 1/2)wno”
< W(Byg) + QL™ (Y N By(m(b)) +(Q — 1)L™(Z N B,y(n(b)))
< (Q = 1/2)wno" + L (Y N B,(1(b))) — 1£™(Z N B,(n(b))),
L"(ZNB o(m(0)) <4L"(Y N Bg(w(b))), LMY N B,(m(b))) > 0.
Next, in order to estimate £"(Z N B, (w(b))), the following assertion will be proved.

)
If z € ZN B,(n(b)) and HW(E"LR" Z,z) = 0, then there exist ¢ € R™ and
0<t<oo with

2 € B(¢) C By(n(b), L"(B5,(¢)) <6-5" u(By N (By(C)))-

"Here JHT(€) denotes the Jacobian of T' with respect to p at £ which can be expressed as
[An (T|Tep)l|, cf. [Fed69, 3.2.22].
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Since L™(Y N B,(w(b))) > 0, some element B,(¢) of the family of balls
{By,((1—0)z+06m(b):0 <6 <1}

will satisfy

2 € By(¢) € By(m(b)), 0< LY NB(Q) < 3L™(Z N By(Q))
Hence there exists y € Y N B,(¢). Notingf] for € € A(y) with 6" (11,€) > 0

By (17 (-1 (€)) € 7 H(By(Q)),
TH(€=b)| < LIT(E = b)| < Lo by (),

(s72—1)V2|T(k — €)| < L2t <2Lp < 40 for k € 7 1(B,(C)),

the inclusion
{k € By(n-(y—)1():|T(k = )] > slr — &|} € C(T,b, 0,820) N7~ (B,(C))
is valid and [2-6] can be applied with
8, X, d, r, and f replaced by
1/4,{€ € Ay) :0"(1,€) > 0}, 1, 2, and 1= (y—¢) 1 [{§ € Ay) : 0" (1, §) > 0}
to obtain
(Q — 1/4)wnt"™ < pu(C(T,b, 0,640) N7 (B,(())).

The coarea estimate with W = B,(¢) now implies

(Q = 1/2)wnt"

< p(Bre NTH(BL(Q))) + Qﬁ"(Y NB,(¢)) +(Q —1)L™(Z N B,(¢))
= p(Byo N [B,(Q)]) + (Q — 1/2)wnt™
+ 3L (Y N B,(Q) - %ﬁ“(Z N B,(¢)),
hence
3LM(B(Q)) < LYZNB,(C) < 4p(Boe N1 H(By(()))

and the assertion follows.
L™ almost all z € Z N B,(m(b)) satisfy the assumption of the last assertion (cf.
[Fed69) 2.9.11]) and Vitali’s covering theorem (cf. [Fed69) 2.8.5]) implies

LM(Z N B,(m(b)) < 6-5"u(By,)-
Clearly,
L(m(Bue)) < H"(B,p) < i(Bh,)-
Since Cy o~ N C (Z N B,(w(b))) Un(Bs,,), it follows
L™ (Ch) < (L+6-5")u(Bo,g)-
Finally, applying the coarea estimate with W = C} , yields
(1= ne*)(Dyo) < 1(Bpo) + QL (Ch ) < (1+Q +6Q-5")u(By,). O

8Recall from [Sim83] that the functions g, : R**™ — R"+™ are given by g, (x) = r~!(z—a)
for a,z € R"*™ 0 < r < oo.
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Proof of . Let I, f; be associated to f as in and define B; = dmn f; for
1€ and G as in @ Note by , since L < 64/2,

GNa (By(m(b)) ~Cho = GNC(T,b,0,(62/2)0) ~ 7 (Ch ),
T(Bb,o) C Chps /L(C(T, b, 0,040) ~(GU 71'_1(01,79))) =0.

Therefore one computes using and recalling that Cy ,, Dy, ,, and, by also
71(Cy,,) are universally measurable

ZmeBg(w(b))~Cb,g (DO(z), DF (ap D f;(x))) dL"x

i€l
=d(peGnal( (B,(m(b)) ~Cb4) (0" 0B om)
=6(uL GNC(T,b,0,(64/2)0) ~ 7 (Cho)) (W o0o)- (6" 0bom))
= 6(pLC(T,b,0,640) ~ 7 (Chy)) (0 0) - (0" 0 f o))
Ou)(poa)-(0"0bom) =d(urDyo)(¢oa)- (0" 0bom)),
hence

QJs (Tr(b)) D9<$) DF(Dg(x))) dL"z — (6pu)(( 0 0) - (6" 0B om))
= QJ,, , (DO(x), DF(Dg(x))) AL
+Q( f,; o=, (DO(x), DF(Dg(x))) ALz

) ZfB (B, (x(b) ~ Cy , (DO(), DF(ap D fi(x))) dﬁ%)

el

— 3(1e Do) (Y 00) - (" 0 6o m)).

The first summand may be estimated using
DF(0) =0, |DF(a)|l <mlal <mn'/?Lipg

for a € Hom(R",R™) with ||a|| < Lipg. The second summand can be treated
noting

Z ap Df;(x) where I(x) ={i € [:x € dmnap Df;}
ZGI (x)

for £™ almost all € B, (7 (b)) ~ Cj, and applying [2.7 with
XY, f,a,r,and {z1,...,2¢}
replaced by Hom(R",R™), Hom(Hom(R",R™),R), DF, 7, t(z,7),
and {ap Df;(x):i € I(x)}

for £ almost all z € Ey , ~Cy ,. Finally, the third summand is estimated by use
of

|S e < n1/2|ﬂ| for S € G(n+m,n), B € Hom(Rn+m’Rn+m). O

2.11. Remark. Concerning measurability, note that £" measurability of W does
not imply g measurability of 7=1(WW) but only v measurability. An example is
provided by taking m = 1, n > 1, W to be a H"~! nonmeasurable subset of
S ={reR":|z| =1} and p = H"L 7 (S) as may be verified by use of [Fed69,
2.2.4, 2.6.2, 3.2.23]. In the case W = C}, this difficulty could also have been
resolved by making use of 7=} (Y ~7(Bs,)) N By, = 0.
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2.12. Lemma. Suppose n,m € N, U is an open subset of R"T™, 1 is an integral n
varifold of locally bounded first variation in U, and 0 < L < co.

Then there ezists a countable, disjointed family H of p measurable sets covering
w almost all of U such that for each member Z of H there exist

gZRnHRm, G R" _)Rm’ ACR”, QEN,
7€ O0"(n,m), o€O*(n,n—m), TeDR"R™)
with the following five properties:
) com*=0,G=n"+0%0g, and G(A) = Z.
) Lipg < L.
) A is an L™ measurable subset of dmn Dgﬂ
) — [ (DO(z), DF(Dg(z))) dL™x = T(#) whenever § € D(R™,R™) where F :

Hom(R"™, R™) — R denotes the nonparametric area integrand.
(5) Whenever y € A there holds

0" (1, G(y)) = Q. imDG(y) = Tk,
i o™ ', IP9(x) — Dg(y)|* dL"x = 0,

(1

2
3
(4

limo " YT - T, =0
9109 | y|—11

Lys0
where T, € D'(R™,R™) is defined by

T,(6) = [ F(Dg(y))o (B, (G(y)) o 0(x) AL
whenever § € D(R™,R™).

Proof. Observe that if some p measurable set Z has the properties listed in the
conclusion so does every p measurable subset of Z. Therefore, in order to prove
the assertion, it is enough to show that for p almost all @ € U there exists a p
measurable set Z having the above mentioned properties and additionally satisfies
0" (L Z,a) > 0; in fact one can then take a maximal, disjointed family H of such
Z (hence u(Z) > 0) and note H is countable and 6" (p|J H,a) = 0 for H™ almost
all a € U~|JH by [Fed69l 2.10.19 (4)] so that u(U ~|JH) > 0 would contradict
the maximality of H.
Assume L < 1/8. Fix Q € N. Define

G =0, =03=1/2, S4=1/4, a=1/2, ¢=2 M =6mQ,
e = ggrm(n,m,Q, L, M,01,02,05,04), €1 =¢,
and S : dmn7,, — Hom(R"*™ R"*™) by
S(x) =Typ whenever z € dmnT),.
For i € N let C; denote the set of all z € spt u such that either B1/i($) ¢ U or
|0pl|(B,(x)) > E/QL(BQ(l'))lil/n for some 0 < ¢ < 1/,

let D;(b) for b € dmnT), denote the set of all z € U such that either Bl/i(x) ¢ U
or

S, |S€) — SBP dp(€) > (2/4) p(B(x)) for some 0 < o < 1/i
and define X; for ¢ € N by
X; = {x € U:G"z/(”fl)(uLC’i,x) = O} ifn>1,
X, =U~C; ifn=1,

9n contrast to Dg here denotes the classical derivative.
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as well as Y; for i € N by
Y,=Un {b:9n+aq(MLDi(b),b) = 0}.

Note X; C X;41, Y; C Y41 for i € N. X; are Borel sets by [Men08b, 2.9]. Y; are u
measurable sets by [Men08bl 3.7 (2)]. Moreover,

p(U~U{X;:i e N}) =0
by [Men08bl 2.5], [Men08bl 2.9, 2.10] and
w(U~U{Yi:i eN}) =0

by [Men0O8bl 3.7 (2)] and Brakke’s estimate of tiltex, in [Bra78| 5.5, 5.7].
The conclusion will be shown at a point a such that for some i € N

0" (1,a) =Q, aedmnT, BQ/Z-(a) cVu,
aceX;nNY, 0"(pu U~X;a)=0, 0" (urU~Y;,a)=0,
0" (u,-) and S are approximately continuous at a with respect to p.

w almost all @ € U with 0™(u,a) = @ satisfy this conditions by the preceding
remarks and [Fed69l 2.9.11, 2.9.13]. Fix such a, ¢, abbreviate T' = T, 1, and choose
o € O*(n,n—m), m € O*(n,m) such that o o7* = 0 and im7* = T. Moreover,
choose 0 < 6r < 1/i such that
(Q = 1/2)wnr™ < u(C(T,a,1,1)) < (Q +1/2)wnr™,
w(C(Tya,r,5r/4) ~C(T,a,r,r/2)) < (1/2)w,r",

p({z € R :dist(z, C(T' a,r,7)) < 2r}) < p(Byija(z,(a) < Mwpr™.

Now apply with h =7 to obtain B, A, Y, f, G, By, Cp,o, Db, and Ej ,
with the properties listed there and use Kirszbraun’s theorem (cf. [Fed69, 2.10.43])
to extend ng o f to a function g : R™ — R™ such that

Lipg = Lip(ng o f) < Lip f < L.
Define
Wo = B,(a) N X; 1Y 0 {b: |S(b) — S(a)| < £/2},
W =An{b:0"(u,b) = Q} N Wy.
Next, it will be shown
B C C;UD;(b) wheneverbe Wy.
If x € B, then z € C(T,a,r,r), 0*"(p,x) > 0 and
either ||0pul|(B,(x)) > & u(B,(x))* "™ for some 0 < s < 2r,
or fés(m)|5(§) — S(a)|du(€) > e u(By(x)) for some 0 < s < 2r.
In the first case, this implies = € C;, in the second case,
e u(B(2)) < [5. ) |5(€) = S(a)| dpu(€)
< [, ()|S(&) = S(®)[ dp(€) + |S(b) — S(a)| u(B,()),
(6/2) w(By(2)) < [, ()|S(&) = S(B)] dpu(€)
< (B, (@) ([ 5. 1S(€) — SO dpu(€)) ",
hence = € D;(b), and the claim is proved. It implies the estimate

hﬁ)l o " tu(By,) =0 forbe W
0
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which will be central to the remaining arguments (here the definition B,, =
C(T,b,0,0/4) N B is extended to b € R"™™ () < p < 00). A simple consequence is,
since a € Wy, that ™ (uL B,a) = 0, hence

0"(p U~W,a) =0, 0"(p.W,a)=Q.
The proof will be concluded by showing the existence of a set N with u(N) =0
such that Z = W ~ N has the desired properties. Define T' € D'(R",R™) by
T(0)=—[(Db(x), DF(Dg(x)) dL"z for § € D(R",R™)
where F' : Hom(R",R™) — R denotes the nonparametric area integrand. Note

W C G and 7(W) C Y by 210|(B) {@) (6). Consider b € W such that m(b) €
dmn Dg, im DG (7 (b)) = Ty and

1 07 o500 |9(6) — SO du(©) = 0.

These conditions are satisfied by u almost all b € W by , [Fed69,
3.1.5, 3.2.17], and Brakke’s estimate of tiltex,, in [Bra78, 5.5, 5.7]. Therefore it

remains to verify the last two statements of for p almost all such b, i.e.
lim o™ [, ()| Pg(w) = Dg(y)|* dL"w = 0,

13?0197"71|T—Ty|_171 0

.0

where Ty, is defined as in .
For this purpose choose f;, I as in[A4] First, observe that for every 0 < v < oo
for £™ almost all y € Y with

sup{| ap Df;(y) — Dg(b)|*:y € dmnap Df;,i € I} > v
there exists £ € G such that
(&) =y, [S(€) SO > ey

with ¢ = (1+L?)(1 - (2L)%)~'m by[A.4] (6) and estimates on tilted planes, see
e.g. [AlI72, 8.9 (5)]. Since L < 1/8 this implies by that & € C(T,b, 0,040),
hence

B,(n(b) N {y € Y :t(y, Dg(b))* > 7}
is H™ almost contained in
for 0 < o < r — |b— al, hence one obtains the tilt estimate
fYnBQ(ﬁ(b))t(% Dyg(b))*dL™y < C_lfc(T,b,9,54g)|S(f) — S()* dp(€).
Since, by B, (7 (b)) ~Y C Cyp 4,
fBQ(w(b)) |Dg(:z:) - Dg(b)|2 dl"x
< Jyn, =opt@ Dg(b))? AL + 4mL*u(Cy,,),

the first of the two remaining statements follows from .
To prove the last remaining statement, suppose that § € D(R™ R™) and ¢ €
D(R™,R) satisfy

sptd C BT (0), |D9|oo;071 <1,
spt ¢ C By4(0), 7{78(0) Clnt{z:¢(z) =1}, 0<¢ <1.
Moreover, let

Ob0 =0 "00Nr),00  Vbo =1 ONo(t),0
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for 0 < o < r —|b— al and such 6, 1, and define
71 = sup ID2FI(Byu oy (0)), 2 = Lip (D2FIBy0, (0).
Apply with 7 = Dg(m (b))
Qs ooy (DB o(2). DE(Dg(@))) ALz — (31 (i, 00) - (5" o 61, o))
<@L, DOyl AL +12Q 5,y | DO y(@)lt(z, Dy(b)? AL

+n' 2 [ ID(,000) - (0% 0 0y 0 7))| dps.
The first and the third summand on the right hand side may be estimated by use

of @ as follows
Je,,|DOsol AL™ < 07" 1LY (Ch ) < To™" ' 1u(By,p),
Jo, ID((We,000) - (07 0 0p,p0m) [ dp < 07" (1 + [Dl 1 )1(Db,g)
STo "1+ DY 0,1 1(Bre)
where I' = Ijz1q@) (@, 7). To estimate the remaining summand, one computes
Jeuy~ 0y, PO o @)z, Dg(0))* L™ < 071" [y oyt Dg(b))* AL
and uses the tilt estimate. Therefore one infers that the supremum of all numbers
QS (n(1y) (Do o(x). DF(Dg(x))) dL™x — (51) (15 0 0) - (0" o b1, o )|
corresponding to § € D(R",R™) such that spt & C BY(0), [Df] .o, < 1 tends to 0
as o | 0. Moreover, for every such 6
[01)(p,0 0 0) - (07 00,0 0m))| < [|6p]|(C(T' b, 0,0/4)) "0l 0.1
< [16pll(C(T' b, 0, 0/4)) 07",
hence

limsup o~ " ! |T|—1,1;rr(b),9 <0
0l0

for p almost all b € W by [Fed69l 2.9.5]. Since also, noting
(Ypoo00) (6" 0by,o0m) = 97"((1/J oc)-(c*o0fo 7T)) ° M, 0,
C(T,0,1,00) N Tyu © C(T,0,1,1/8)

by the restriction imposed on L,
15?01(5#)((%,9 00)- (0" 0bp,0m))

= —QF,(b) s (40 0)(@)(0" 0 0o m)(x) A(H" L Typ)(a)

— QI F(Dg(r(6)o (F, (5)) » 0(x) dL"a
for p almost all b € W as may be verified by use of [Fed69, 2.9.9, 2.9.10], one infers
the conclusion from [B.2l O

2.13. Remark. From Brakke’s perpendicularity of mean curvature, see [Bra78l, 5.8],
one infers by an elementary calculation that

H,(G(y)) = (0" — 7" o (Dg(y))") (¢ (HL(G(¥))))
for £™ almost all y € A.

2.14. Remark. Since J*T needs not be bounded from below on Dy , by a positive
function, the use of |DO|_ ., instead of |DO|,,, for some 1 < p < oo in the
estimation of be,g |D((p,p00) - (0% 00,o0m))| du seems to be inevitable. The
resulting complications will be resolved in
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3. PROOF OF THE MAIN THEOREM

The crucial estimate which allows to combine the preceding two sections in order
to prove [3.5 and hence the main theorem [3.7)is given in [3.4] For this purpose the
precise form of some standard estimates needed is given in [3.1] and [3.3]

3.1. Lemma. Suppose n,m € N, 1 <p < oo, andp <n/(n—1) ifn > 1.
Then there exists a positive, finite number € with the following property.
If Y is as in ¥ € @2 Hom(R",R™) with |[¥ — T|| <&, aeR”, 0<r < o0,
and u € Wy (B,(a),R™), T € D'(B,(a), R™) satisfy
—J5 (a) (DO(2), Du()),¥) dL"x = T(0) whenever § € D(B,(a),R™),
then
r_l_n/plu’lp;am S I—‘T—n|T‘|71,1;¢z,'r

where T" is a positive, finite number depending only on n, m, and p.

Proof. The estimate is considered to be classical and can be shown, for example,
as follows.

Assuming p > 1, one deduces from [GT01, Lemma 9.17] in conjunction with a
perturbation argument that, for a suitable number e, LP theory is available for the
differential operator associated to W, the asserted estimate then being provable by
a duality argument. O

3.2. Remark. LP theory is availabe for a much wider class of elliptic differential
operators, see [ADNAH9, [ADNG4]. However, the smallness condition on [|[¥ — ||
makes it possible to refer to more elementary methods.

3.3. Lemma. Suppose n,m € N, 0 < ¢ < M < o0,
F : Hom(R™,R™) — R is of class C?,
|D?F(0)|| < M, <(7'7 7), DQF(O')> > c|7)? for o,7 € Hom(R"™, R™),
a€R", 0<r<oo, and u,v € WH%(B,(a),R™) with
u—v e Wy?(B,(a), R™).
Then for every affine function P : R™ — R™
D = W)y, < (MID( = Py + 1L(0)]_y 0,)
where Ly is defined as in[1.3
Proof. Compute for € D(B,(a), R™)
Lr(v)(0) = —fB | (DO(x), DF(Dv(x)) — DF(DP(x))) dL"x
f o) ((DO(z), D(v — P)(x)), A(z)) dL"x
where A(z fo D?F(tDv(z) + (1 — t)DP(z)) dL't.
This implies for § € D(B T(a), R™)
fi. (DO(), D(v — u)(x)), A(x)) AL
= [y (o) ((DO@), D(u — P)(x)), A(x)) dL"x — Li(v)(6).
Letting 6 approximate v — u in W12(B, (a), R™), one obtains

C(lD(U - u)|2;a,r)2 S (M|D(u - P)|2;a,r + |LF(’U)|71,2;(1,T) |D(U - u)|2;a,r' U
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3.4. Lemma. Suppose n,m € N, 1 < p < oo, p<n/(n—1) i n>1 F is
related to € = ggq(n,m,p) as in LipD?F < o0, a € R*, 0 < r < oo, and
w,v € WY2(B, (a),R™) with u — v € Wy*(B,(a), R™).
Then for every affine function P : R™ — R™
PPl — < TP (|Le(0) = Le()]| .,
+ Llp(D2F)(|D(U, - P)|2;a,'r + |D(U - P)|2;a,r)2)
where T' is a positive, finite number depending only on n, m, and p.

Proof. Let A = Lip D?F, choose ¢ € Hom(R",R™) such that DP(z) = o for
x € R", and define ¥V = D?F(0), T = Lp(v) — Lr(u), the £ B, (a) measurable
function A : B,.(a) — ©? Hom(R", R™) by

A(z) = [} D*F(tDv(x) + (1 — t)Du(z)) — D*F(o) dL't
whenever z € B,.(a), and S € D'(B,.(a),R™) by

S(0) = [ (o) ((DO(x). D(v — u)(x)), Ala)) dL"z + T(0)
whenever 6 € D(B,.(a),R™). One computes

DF(Dv(z)) — DF(Du(z))

- <D(v —u)(x), [} DDF(tDv(x) + (1 — t) Du(x)) d£1t>

for L™ almost all € B,.(a) and infers
S(0) = ~ [y (o) ((DO(), D(v - u)(2)), ¥) AL
whenever 6 € D(B,.(a),R™), hence by
P o~ ST TS g,

where I'y = I'ggy(n, m, p). It remains to estimate |S|_, ., , by use of the definition
of S. One estimates

|A(z)|| < [y IID*F(tDuv(z) + (1 — t)Du(z)) — D*F(to + (1 — t)o)|| ALt
< A t{D(v — P)()| + (1 — t)|D(u — P)(x)|dL't
= A(|D(v = P)(@)| + [D(u — P)(x)|)/2
for L™ almost all € B,.(a). Finally,
1S -1 100 ST a0 + A/25 () (ID(u = P) ()| + |D(v = P)()])* dL". O

)
(

3.5. Lemma. Suppose n,m € N, 1 <p < oo, andp <n/(n—1) ifn > 1.

Then there exists a positive, finite number € with the following property.

If F is related to € as in Lip D’F < oo, U is an open subset of R"™,
u: U — R™ is weakly differentiable, A denotes the set of all a € dmn Du such that

limsupr—""" [, (@) Pulz) — Du(a)*dL"z < o,

rl0
B denotes the set of all a € dmn Du such that
lriﬁ)lr*”*lfBr(a)\Du(x) — Du(a)|?dL"z = 0,

and C denotes the set of all a € U such that

limsupr " Y Lp(u)| ;.. < 00,
rl0 Y

then A, B, and C are Borel sets and the following two statements hold:
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(1) For L™ almost all a € ANC there exists a polynomial function Q, : R™ —
R™ of degree at most 2 such that

. —9_ -
I;II&T "/P|u N Qa|1);a,r =0.

(2) For L™ almost all a € BN C the polynomial function Q. of part and
the (constant) distribution T, of[B.9 are related by
T.(0) = J,0(x) » (D*Qu(a), Cr(DQu(a))) dL"z
for 6 € D(U,R™) where Cp is defined as in[1.9
Proof. Let = = min{agn(n, m, p), 1/2, an(n, m. . 2), azm(n, m, 2,2)}. Suppose F
and u satisfy the hypotheses with . Clearly A and B are Borels sets. C is a Borel
set by Abbreviate A = Lip D?F and T = L (u).

To prove part , the criterion will be verified with ¢ = 2, j = 0. For this
purpose let a € ANC, 0 < r < oo such that B.(a) C U and u,, = u|B,(a) €
W12(B,(a),R™). Using the direct method of the calculus of variation, one con-
structs v, , € WH2(B,.(a), R™) such that

Var — Uar € Wy (B, (a), R™),
LF (Ua,r) =0.
Define P, : R — R™ by P,(z) = (z, Du(a)) for x € R™. By one estimates
r_l_n/ph)am - ua,rlp;a,r
S Flfrin(|T|—1,1;a,r + A(|D(uaﬂ” - Pa)lQ;a,r + |D(Ua77’ - Pa)lZ;a,r)Q)'
with Ty = Iigg(n, m, p). Bywith c¢=1/2, M = 2 one infers
| D(va,r — ua,r)|2;a,r < A|D(ua,r — Pa)

|2;a,r7
hence

PP g = |

< Flr—n(|T|71,l;a,r + A(GID(UG,T - Pa)lQ;a,r)Q)'

p;a, v —

Since a € AN C, this implies

lim sup 7‘727”/p|va7r — Ua,r| g, < 00.
10 pia,

Therefore part follows from
To prove part , assume now additionally that the assumptions of are valid
i

for a, i.e. a € BN C, and Q,, T, satisfy the conclusions of part (1) and
respectively. Choose y € R™ such that

Tu(0) = [,0(x) eydL"x for 6 € D(U,R™).

Using the direct method of the calculus of variation, one constructs functions w, , €
W12(B,(a),R™) such that

Wa,r — Ua,r € WOLQ(BT(Q)rRm)?
Lp(war)(0) = [5 (@0(x) o ydL"x  whenever § € D(B,(a), R™).
By one estimates
—1-n/ _
r plwaﬂ" uaaTlp;a,r
<Iyr (|7 - Tol 1 1.0, + A(D(Uayr — Pa)lg.q, + [ D(wa,r — Pa)|2;a,r)2)'
Since, by Poincaré’s inequality,

‘fBT(a)e(x) o yd[,"m‘ < |y|F2T1+n/2|D9|2;a,r



28 ULRICH MENNE

where I's is a positive, finite number depending only on m and n, one infers from

B3
1D (W r = ttar)lnsq e < AD (e — P)lys, , + 2Talylr /2,
hence
rTP |, — Ua,r| e r
STy " (|7 = Tal _y 1.0,y + A6D(ta,r — Pa)lyy,, + 20aly|r'T7%)%).
Since a € BN C, this implies

im 2 /P _ _
lrlfgr |we,r ua7r|p;a,r =0.

Therefore by the assumption on @,

i Qul =0

Define P : R™ — R™ by P(z) = Qq(a) + (x — a, DQy(a)) for z € R", R = Q, — P,
S:R™ — R™ by S(z) = % ((x,%), D*Qq(a)) for z € R™ and note r?Ron, L =5

% (wa,r — P) o1, BY(0) — S|BY(0) in LP(B}(0),R™)
asr | 0. By
r_n/2|D2(waJ' - P)|2;a,’r/2 S F3(r_2_n/p|wa17 - Plp;a,’r + ‘y|)
i/p  1/2
where I's = max{w,'", wy' " }rg(n, m,2), hence

1imsup7“_"/2|D2(wa,r =Py, rj2 < 00
rl0 o

This implies by use of an interpolation inequality and weak compactness properties
of Sobolev spaces

12 (wa — P) o1 | Bla(0) — SIB75(0)
weakly in W*2(B}),(0),R™) as 7 | 0. By Rellich’s embedding theorem
P2 — Qu) 01 Bla(0) — 0 in WI2(BJ,(0),R™)
as | 0. Using this convergence, one computes for 6 € D(By,(0),R™)
fBI‘/z(O)G(x) eydllz = rfnfBrp(a) (O oney,)(z)eydLmz
= —r—n—lfBr/2(a)< (D9) © 1g,r, DF(Dwg () ) dL z,
7" 5, @ {(DO) @ lasrs DF(Duwa,r(w)) = DF(DQa(x))) dL ]
<" N Lip DF)r21D0]y0 1 |D(wa,r = Qa)lgy, — 0 asr |0,
S (D)0, DE(DQ,(2) ) AL™
=1y (00m0) () o (DQue), Cr(DQ,(x) ALz
— fB?N(O)O(x) ° <D2Qa(a), CF(DQa(a))> dL"x asr |0,
hence
y = (D?Qu(a), Cr(DQu(a))),

as claimed. 0



SECOND ORDER RECTIFIABILITY OF INTEGRAL VARIFOLDS 29

3.6. Remark. Clearly, by [ReS68] for L™ almost alla € ANC
Qo(a) =u(a), DQ(a)= Du(a).

Also by [CZ61, Theorem 9] (see also [Zie89, 3.6-8]), there exists a sequence of
functions wu; : R™ — R™ of class C? such that

cr (A NC~ U {a:D"u;(a) = D*Q,(a) for k € {0, LZ}}) =0.
i=1

3.7. Theorem. Suppose n,m € N, U is an open subset of R"™™ and p is an

integral n varifold in U of locally bounded first variation.

Then p is countably rectifiable of class C? and for every n dimensional subman-
ifold M of U of class C? there holds

ﬁu(x) =Hy(z) forp almost all z € M

—

where —H,, corresponds to the absolutely continuous part of dp with respect to p
and Hys denotes the mean curvature of M.

Proof. 1t is enough to prove the existence of a countable collection of n dimensional
submanifolds of U of class C? such that for each member M

ﬁu(x) = Hy(z) for y almost all z € M.

For this purpose define p = 1, ¢ = ggy(m,n,p), I' = Irg(m - n,2), s = ¢/I.
Denote by F' : Hom(R"™,R™) — R the nonparametric area integrand, and choose
0 < § < oo such that

|D?*F(c) — D*F(0)|| < s whenever o € B;(0) N Hom(R",R™).

Using there exists G : Hom(R",R™) — R of class C® such that

D'G(0) = D'F(0) fori={0,1,2}, 0 € B;;5(0) N Hom(R",R™),

|D?G(0) — D*F(0)|| <Ts =¢ whenever o € Hom(R",R™),
D@ has compact support,

hence Lip D2G < co. Now, the conclusion is obtained by combining With
L=m"125/2 and With F replaced by G. O

APPENDIX A. ALMGREN’S NOTATION FOR () VALUED FUNCTIONS

In this appendix the part of Almgren’s notation for ) valued functions used in
the body of the text is summarised for the convenience of the reader.

A1 (cf. [AImO0, 1.1 (1) (3)]). Suppose @ € N and V is a finite dimensional Euclid-
ian vector space.
Qo (V) is defined to be the set of all 0 dimensional integral currents R such that

R= 2?21[[351]] for some x1,...,2q € V. A metric G on Qg(V) is defined such that
: 1/2
(L2 ke, 2 lid) = win { (Sl — ) ¥ 57 € S@)

whenever z1,...,29,¥1,...,Y0 € V where §(Q) denotes the set of permutations
of {1,...,@Q}. The function ng : Qq(V) — V is defined by

no(R) = Q' [zd||R||(z) whenever R € Qqp(V).
If R = 2?:1[[1’1]] for some 1,...,2q € V, then ng(R) = é 2?:1 r;. Lipng =

Q_1/2~
Whenever f: X — Qg(V) the Q valued graph of f is defined by

graphg, f = {(z,v) € X x V:v €spt f(z)}.
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A2 (cf. [AIm00, 1.1(9) (10)]). Suppose n,m,Q € N.
A function f : R™ — Qo(R™) is called affine if and only if there exist affine
functions f; : R” — R™, ¢ =1,...,Q such that
f(z) = Z?Zl[[fi (x)] whenever x € R™.

fi,-.., fo are uniquely determined up to order.

Let a € ACR", f: A— QoR™). fis called approzimately affinely approz-
imable at a if and only if there exists an affine function g : R — Q¢g(R™) such
that (see [Fed69, 3.1.2])

ap lim G(f(x), g(x))/|z — a| = 0.

r—a

The function g is unique and denoted by ap Af(a). f is called approzimately strongly
affinely approzimable at a if and only if ap Af(a) has the following property: If
ap Af(a)(z) = Z?Zl [gi(x)] for some affine functions g; : R” — R™ and g;(a) =
gj(a) for some ¢ and j, then Dg;(a) = Dg;(a).

A.3. Definition (cf. [AIm00, T.1(23)]). Whenever f: X — Y, g: X — Z the join
f X g of fand g is defined by
(f x g)(x) = (f(z),g(x)) whenever z € X.

A.4. The following proposition in [Men08cl, 1.11] or [Men08al D.11] will be used for
calculations involving Lipschitzian @) valued functions.

If n,m,Q € N, A is L™ measurable, f : A — Qg(R™) is Lipschitzian, I is
countable, and to each i € I there corresponds a function f; C graphg f with L™
measurable domain and Lip f; < Lip f such that

#{i: fi(z) =y} = 0°(| f(@)|l,y) whenever (z,y) € A x R™,
then f is approximately strongly affinely approximable with
ap Af(a)(v) = Xicr(o)lfi(x) + (v,ap Dfi(x))]  whenever v € R™

at L™ almost all a € A where I(a) = {i € [:a € dmnap Df;}. Moreover, such
functions f; do exist whenever n, m, Q, A, and f are as above.

A.5. Suppose U is an open subset of R, Y is a Banach space and T € D'(U,Y).
Then T has a unique extension S to

{0 € £E(U,Y):sptf NsptT is compact}
characterised by the requirement
S(0) = S(n) whenever sptT C Int{x:6(x) = n(zx)}.
The extension will usually be denoted by the same symbol 7'

A.6. Suppose n,m,Q € N, U is an open subset of R”, A is an £™ measurable subset
of U, L"(A) < o0, f: A— Qo(R™) is Lipschitzian, f; for i € I are as in and
T € O*(n+m,n), o € O*(n+m,m) such that o o * =0 (see [2.8).

Defining an integral n varifold p in 7=*(U) by the requirement

1) = [ U (R@)]] o(0)) dHa
for every Borel subset X of 77 1(U), a simple calculation shows
(dp)(c*obom) =3, fdmnfi (DO(z), DF (ap D f;(z))) AL x

whenever 6 € D(U,R™); here F denotes the nonparametric area integrand and the
convention [A5] is used.
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APPENDIX B. LEBESGUE POINTS FOR DISTRIBUTIONS

In general, for a distribution T € D/'(R™,R™) one cannot determine a value
y € R™ at a given point a € R". However, in case the rescaled distributions
7" (Ner)2T whose values at § € D(R™,R™) equal r~"T'(f o n,,) converge in
D'(R™,R™) to a constant distribution T,, this distribution T;, can be called the
value of T' at a. The main theorem of this appendix, asserts that if the distri-
butions r~" (1) T are locally bounded with respect to the norm |- |71,1;_), defined
in[[.7]as r | 0 for all a in a set A then they actually converge for £™ almost all
a € A to a constant distribution T, with respect to this norm. As the author could
not find this result in the literature, it is included here. Its proof uses techniques
from [Fed69, 2.9.18] or [MenO8b), 3.1].

B.1. Lemma. Suppose n,m € N, A is a closed subset of R", R € D'(R™ R™),
dist(spt R, A) >0, 0 <y < 00, and 0 < r < oo such that

IRl 1100 < v 0"t whenever 0 < o < 5r, x € A.
Then
|R|_y 10, ST 7L (Byr(a)~A) forac A
where I' is a positive, finite number depending only on n.

Proof. Assume r < 2, let a € A, § € D(R",R™) with sptf C B,(a), choose
0 < & < min{r, dist(spt R, A)}, define

B = {z € R":dist(z,spt(RL0)) < e/2}

where R 60 € &'(R™,R) is defined by (R 6)(v) = R(v0) for v € E(R™,R), and apply
[Fed69l 3.1.13] to obtain S, v, and h with & = {R"™ ~ A,R™ ~ B}; in particular S
is a countable subset of |J @,

h(z) = 55 max{min{1, dist(z, A)}, min{1, dist(z, B)}} for z € J®

and v for s € S form a partition of unity on |J ® with sptv, C Bth(s)(s) forse S.
Noting |J® = R" one defines T'= {s € S: BNsptvs # 0} and infers

Y scsmrbs(x) =0 for x € R™ with dist(z,spt(RL6)) < e/2,
hence (RL0)(} ,cqrvs) =0 and

R(0) = R((ZSGTUS)Q) = ZSGTR(U89)~

Choose &(s) € A for each s € T such that |s — {(s)| = dist(s, A). If s € T' then
there exists y € BNsptvs C B, | »(a) and one observes

dist(y,A) < |y —a| <r+¢/2<(3/2)r < % <1, h(y) = 2—10dist(y,A),
|s —y| < 10h(s) < 10h(y) + s —yl, |s—y| < 20h(y) = dist(y, 4) < |y — al,
dist(s, A) < |s — y| + dist(y, A) < 2dist(y, A) < 3r < % <1,
BN By (s) #0,  55dist(s, B) < $h(s), 0 < h(s) = 55 dist(s, A),
ls —&(s)| <|s—al <|s—yl+|y—a| <2r+e<3r <3,
By, (5)(8) € By (a) ~ A.
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Moreover, for any = € 13_310,1(8)(5)7 seT
[z = &(s) < o —s[ +[s = £(s)] < (3/2)]s — &(s)] < b,
SPtVs C B(gya)js—g(s))(§(5));
dist(s, A) < dist(z, A) + |z — s| < dist(z, A) + £ dist(s, A),
|s — &(s)] = dist(s, A) < 2dist(x, A),
dist(z, A) < dist(s, A) + |z — s| < 3 dist(s, 4) < 1,
h(x) > g5 dist(z, A) > g5ls — &(s)]-

Using the estimates of the preceding paragraph and the estimates of |Dv;| given
in [Fed69, 3.1.13], one infers for s € T, since ¢ has compact support in B,.(a),

|(Dv6)0] s, < V240[s — &(s)| | DY)
ID(0.0)] 0y < V4O(]s — £(5)[ ' + 1) DO
where V; is a positive, finite number depending only on n with V740 > 1, hence
[R(vs0)] < 7(3/2)" s — &(s)["T1V140(]s — &(s)| "' + 1) D)
= 7(3/2)" "1 V140[s — &(s)|" (r + |5 — &(s)]) | DY)
< AVA160(3/2)" w,  (20)"r L7 (Byy ) () | DO

Recalling from [Fed69, 3.1.13] that the family {Bh(s)(s):s € S} is disjointed, one
concludes

ooa,r?

ooa,T

ocosa,r
ocoja,T

oosa,r”

|R(9)| S F'yr‘cn(BM‘(a’) NA)|D9|oo;a,r
where I' = 8(30)" Vw1 O

B.2. Theorem. Suppose n,m € N, U is an open subset of R™, T € D'(U,R™), and
A denotes the set of all a € U such that

limsupr™""|T| | 1.0, < 0O
"o JLia,

Then A is a Borel set and for L™ almost all a € A there exists a unique T, €
D'(U,R™) with D;T, =0 fori e {1,...,n} such that

lmr ' "7 —T,| 1.0, =0
T‘J,O it had]

Moreover, T, depends L™ L A measurably on a.
Proof. The conclusion is local, hence one may assume sptT to be compact and
U =R". Since |T|_, 4., , depends lower semicontinuously on (a,r), the sets

A= {a ER™:T| | ,,<ir"ttfor0<r< (10)/1}

defined for ¢ € N are closed. Observing A = J{4;:¢ € N}, the conclusion will be
shown to hold for £™ almost all a € A;.

Let 0 < & < 5/i, choose ® € D(R",R) with [®dL" =1, spt® C B}(0) and
define @, (z) = e "®(¢71z) for x € R,

T.(0) =T(®.x0) = [f.e0dL™ for § € D(R",R™)
with f. € E(R™, R™) given by
z o fo(x) =Ty(P.(y —x)z) whenever z € R" and z € R™,
see [Fed69l 4.1.2]. Clearly T. — T as ¢ | 0 and
|fe(z)] < 1'2”"'1|D<I>|00;071 for t € R", a € A; with |x —a| <e.
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One defines a. to be the characteristic function of {x € R":dist(z, 4;) < e} and
S.,R. € D'(R",R™) by

S.(0) = [acf-e0dL™ for € D(R™,R™), R.=T.—8..

Estimating for a € 4;, 0 < ¢ < 5r <5/i, 0 € D(R™,R™) with spt 6 C B,(a) and
| D6 <1

o0sa,0 =
spt(®e #0) C B, ,(a), [Te(0)] <i(e+ )"t <a2"Hlpt! ife <y,
{z € spt R, :dist(z, A;) <e} =0, R.(0)=0 ife>op,
[Se(0)] < lacfel oo 010, < 127 D] 1m0
|Rel 1 10,0 S 70" with y = 2"7N(1+ DOy wn),
[B:I may be applied with to obtain
|Re| 4 1.0 < CyrL™(By.(a)~A;) for0<r<1/i

Since L'(L£",R™) is separable, one can use [DS88, V.4.2,V.5.1,1V.8.3] to infer
the existence of S € D'(R",R™), f € L>(L",R™) and a sequence €; | 0 as j — 00
such that

S(0) = [fe0dL™ for § € D(R",R™), S., — S asj— oo
Defining R =T — S and noting R.;, — R as j — oo,
[R| ) 10, < Dyr LBy (a)~A;) for0<r<1/i
and [Fed69, 2.9.11] implies

hfIOlTilianl_Ll;a’T =0 for L™ almost all a € A;.

Moreover,
|[(F(2) = (@) @ 0(@) AL x| < ([ (o|F(2) = F(a)] AL 2) 7| DO sy,

whenever @ € A, 0 < r < o0, § € D(R",R™) with sptd C B,(a) and [Fed69,

2.9.9] implies that one can take T, defined by T,(8) = [6(x) e f(a)dL™z for

0 € D(R™,R™) for L™ almost all a € A; in the existence part of the conclusion.
The uniqueness follows, since every T, admissible in the conclusion satisfies

T " Nar) 2T =T, 7 "Nap)pxT — T, asr |0 O
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