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Abstract

Chemical production processes often show a strongly nonlinear behaviour. Under-

standing, controlling, or even exploiting this behaviour can improve the produc-

tivity and safety of a process. Numerical bifurcation analysis has become in the

last two decades a well-established mathematical tool for the nonlinear analysis

of process models. However, traditional bifurcation packages, e.g., AUTO (D+02),

are suitable only for low order systems of ODEs, whereas realistic chemical models

comprise hundreds or thousands of differential equations. Continuation meth-

ods for huge order systems have been published, for example, LOCA (S+02),

DIVA (MKMG00), but are restricted to the continuation of simple singularities,

like limit points and Hopf bifurcations.

This dissertation focuses on the bifurcation analysis of dynamical systems de-

scribed by differential-algebraic equation systems with applications to chemical

engineering models. The objective of this thesis is to develop a nonlinear analysis

software environment Diana with a user-friendly interface for dealing with complex

nonlinear phenomena in engineering sciences. The key aspects of this environment

are object-oriented models, an efficient numerical kernel, and the use of the script-

ing language Python as a powerful-command line interface. Models are created

with the object-oriented and equation based modeling tool ProMoT (TZGG00),

that allows to build object-oriented models, described by differential-algebraic

equations. Different nonlinear algebraic and differential-algebraic solvers are im-

plemented in Diana, based on existing third party open-source code and can be

applied by to the model depending on the special properties of the model.

The nonlinear solvers suite is presented is presented with solvers for the con-

tinuation of steady-state points of continuous dynamical systems, limit points

and singularities of higher codimension, Hopf points and periodic solutions. The

solvers can treat high-dimensional models with help of reduction methods, like, the

Lyapunov-Schmidt reduction (GS85) for the singularity analysis, or the recursive-

projection method (SK93) for the continuation of periodic solutions. The required

higher order derivatives are obtained analytically via an interface to the computer
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algebra system Maxima (FdSMY04), therefore it is possible to find bifurcation

varieties with high accuracy.

The use of the tool will be illustrated by the analysis of three chemical engi-

neering process models: a continuous flow stirred tank reactor model, a spatially

distributed model of a high temperature fuel cell, and a crystallizer in continuous

mode of operation with fines dissolution and classified product removal.
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Zusammenfassung

Chemische Produktionsprozesse zeigen oft ein stark nichtlineares Verhalten. Das

Verständnis dieses Verhaltens, seine Beherrschung oder gar seine technische Nutzung

können die Produktivität und die Sicherheit eines Prozesses verbessern. Die nu-

merische Bifurkationsanalyse ist in den letzten zwei Jahrzehnten zu einem etablierten

mathematischen Werkzeug für die nichtlineare Analyse von Prozessmodellen gewor-

den. Jedoch sind traditionelle Bifurkations-Programmpakete, z. B. AUTO nur

für Systeme von gewöhnlichen Differentialgleichungen niedriger Ordnung geeignet,

wohingegen realistische verfahrenstechnische Modelle aus Hunderten oder Tausenden

von Differentialgleichungen bestehen. Es wurden auch Fortsetzungsverfahren für

Systeme sehr hoher Ordnung veröffentlicht, z.B. LOCA oder DIVA; diese beschränken

sich aber auf die Fortsetzung einfacher Singularitäten wie Umkehrpunkten oder

Hopfbifurkationspunkten.

Diese Dissertation konzentriert sich auf die Bifurkationsanalyse dynamischer

Systeme, die durch Differential-Algebra-Systeme beschrieben werden. Als An-

wendungen werden verfahrenstechnische Modelle betrachtet. Das Ziel der Ar-

beit ist es, eine Software-Umgebung Diana für die nichtlineare Analyse zu en-

twickeln, die eine benutzerfreundliche Bedienoberfläche besitzt und die sich für

die Untersuchung komplexer nichtlinearer Phänomene in Ingenieuranwendungen

eignet. Wesentliche Eigenschaften dieser Software-Umgebung sind objektorien-

tierte Modelle, ein effizienter numerischer Kern und der Einsatz der Skriptsprache

Python als ein leistungsstarkes Kommandozeilen-Interface. Die Modelle werden

mit Hilfe des objektorientierten und gleichungsbasierten Modellierungswerkzeug

ProMoT erzeugt, das es erlaubt, objektorientierte Modelle aufzubauen, die aus

Differential-Algebra-Systemen bestehen. Verschiedene nichtlineare algebraische

und differential-algebraische Gleichungslöser werden in Diana implementiert, die

auf freier Software von dritter Seite basieren und die in Abhängigkeit der speziellen

Eigenschaften eines Modells eingesetzt werden können.

Ein Paket nichtlinearer Lösungsalgorithmen wird präsentiert, das Methoden zur

Fortsetzung stationärer Lösungen kontinuierlicher dynamischer Systeme enthält,
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sowie Methoden zur Fortsetzung von Umkehrpunkten und Singularitäten höherer

Kodimension und zur Fortsetzung von Hopfbifurkationspunkten und periodischen

Lösungen. Die Löser können hochdimensionale Probleme behandeln, wobei als Re-

duktionsmethoden die Lyapunov-Schmidt-Reduktion für die Singularitätsanalyse

und die Rekursive Projektionsmethode für die Fortsetzung periodischer Lösungen

zum Einsatz kommen. Die erforderlichen Ableitungen höherer Ordnung werden an-

alytisch über eine Schnittstelle zum Computer-Algebra-System Maxima bestimmt;

daher ist es möglich, Bifurkationsvarietäten mit hoher Genauigkeit zu ermitteln.

Die Verwendung des Software-Werkzeuges wird anhand der Analyse dreier chemis-

cher Prozessmodelle illustriert: einem kontinuierlichen Rührkesselreaktor, einem

örtlich verteilten Modell einer Hochtemperaturbrennstoffzelle sowie einem kon-

tinuierlich betriebenen Kristallisator mit Feinkornauflösung und klassifizierendem

Produktabzug.
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Chapter 1

Introduction

The goal of computing is insight, not numbers,

and little insight can be derived from a

computation whose validity is not known.

Richard Hamming

1.1 Motivation of the thesis

This thesis will be concerned with the development of a software tool for the quali-

tative analysis of nonlinear differential-algebraic equations that appear in chemical

engineering and related sciences. There are no general methods for solving these

equations and although great ingenuity has been deployed in the treatment of

many types of nonlinear problems, most nonlinear equations remain unresolved.

Such nonlinear problems are essentially irreducible to integral form and the neces-

sary numerical solutions of these types of problems exhibit features that have no

counterparts in integrable nonlinear equations.

The qualitative analysis of nonlinear differential equation leads to the theory of

bifurcations which is not particularly new. The modern era of dynamical systems

theory began in 1890 with the work on celestial mechanics of the French mathe-

matician Henri Poincaré who was trying to solve the three-body problem (BG94).

His concern was the analysis of the earth-moon-sun system under mutual gravi-

tational attraction. The equations for this system were well known at the time

and are relatively simple to write down. Their solutions, Poincaré discovered,

were highly sensitive to changes in the initial conditions. The methods devel-

oped therein laid the basis for the local and global analysis of nonlinear differen-

tial equations. Further development of bifurcation theoretical methods was made

by many prominent mathematicians, like George Birkhoff, Aleksandr Andronov,

1



Heinz Hopf, Andrey Kolmogorov, Vladimir Arnold, Jürgen Moser, Stephen Smale

and others.

In the last decades considerable progress has been made with nonlinearities. On

the one hand, analytical methods have been developed that can extract impor-

tant information from nonlinear equations without actually solving them. On the

other hand, the use of computers has led to important progress in understanding

the nature of the solutions of equations that cannot be handled by any analytical

method. The use of these methods is now spreading into the more engineering

or related sciences. These methods are employed for the detection, identification,

and quantification of structural nonlinearities of process engineering models. With

methods of nonlinear analysis it is possible to predict and distinguish different be-

haviors of models. A wide variety of tasks concerning multiple solutions can be

reduced to studying the dependence of the solutions of a single scalar equation with

respect to the parameters. This technique — known as the Lyapunov-Schmidt re-

duction (GS85) — allows to find the so-called organizing centers of the model.

The organizing center is associated with a distinguished set of values for the pa-

rameters such that all possible different qualitative behaviors occur for parameter

values in a small neighborhood of the distinguished values. Such kind of points

exhibit the most singular behaviour and pseudo-global results may be often ob-

tained by the application of local analysis near the organizing center. Detection

and analysis of the organizing center may give insight of the model behavior,

stability domains, and the model parameter dependence. In application, for ex-

ample, such analysis can be used for the computing of stability boundaries in a

controller or for the recently presented optimization-based constructive nonlinear

dynamics (GMM05). Another topic of the nonlinear analysis is the location of

periodic solutions, determination of the parameter dependence and stability of so-

lutions. Such results are important in applications, for example, in crystallization

processes, because the oscillations should be avoided for a better product quality.

Conversely in special cases the periodic oscillations may be useful for industrial

applications (RMK+06; SRP+98).

With evolution of digital computers diverse nonlinear analysis software has been

created that are based on nonlinear analysis methods. A representative, but not

full, list of existing nonlinear analysis software is given in the next section.
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1.2 A survey of existing tools

One of the firsts software tool that can be mentioned is the FORTRAN sub-

program DERPAR (Kub76) by Milan Kub́ıček. The subprogram is intended for

calculating the dependence of the solution of a nonlinear ODE system on one pa-

rameter. Another FORTRAN package is BIFPACK (Sey93) by Rüdiger Seydel

that can handle nonlinear algebraic equations, boundary-value problems of ODE,

and autonomous differential equations. The widely used package in bifurcation

analysis is AUTO (D+02) by Eusebius J. Doedel and others. The software pack-

age contains algorithms for continuation and bifurcation problems in low-order

ordinary differential equations. Another widespread family of nonlinear software

is LOCBIF (KKLN93) by Alexander I. Khibnik and others, CONTENT (KL97)

by Yuri A. Kuznetsov and Victor V. Levitin, MATCONT (DGK+06) by Willy

Govaerts, Yuri A. Kuznetsov and others. These packages are intended for the

parameter continuation of equilibrium and periodic solutions of ordinary differ-

ential equations, detection and continuation of bifurcation points, periodic and

homoclinic solutions. The packages also implement methods for the analysis of

discrete nonlinear maps and their bifurcations. The tool LOCA (S+02) by A. G.

Salinger that is intended to perform bifurcation analysis of large-scale CFD appli-

cations. The tool PDECONT (Lus97) by Kurt Lust allows to compute periodic

solution of large systems, like discretized PDEs, and to continuate such solutions

with respect to a control parameter. The package is written in C language and

uses the recursive projection method that exploits the property that systems under

study usually have a low-dimensional attractor. This assumption leads to quite

efficient numerical code, implemented in PDECONT, that combines cheap itera-

tive methods for a higher-order solution subspace and Newton’s method with a

direct solver for a lower-order subspace for computing and analyzing periodic solu-

tions. Also should be mentioned the comprehensive chemical engineering software

tool Diva (MKMG00). Diva is purposed for both stationary and dynamic sim-

ulations of chemical engineering processes that can be described by higher-order

differential-algebraic systems. Last not least there are simulation, modeling and

analysis packages for dynamical systems, like XPPAUT (Erm02) by Bard Ermen-

trout and PyDSTool (PyD) that is being developed at the Cornell University.

Existing tools suffer from a number of limitations with respect to to the classes of

models that can be analyzed or with respect to the intended users. The majority

of existing software packages focuses on ODE systems, while chemical process
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models are differential-algebraic. Furthermore, the successful application of most

available NLD tools requires a deep insight in bifurcation theory from the user.

Easy to use software tools for nonlinear analysis of chemical processes are desirable

but hardly available. As exception is Diva, which offer methods for one-parameter

continuation of steady-states and periodic solutions as well as for the two parameter

continuation of limit points and Hopf bifurcation points. However, Diva suffer

from an outdated software architecture that makes extension of the existing tools

very difficult to impossible. For example, Diva gives no possibility to compute

singularities of higher co-dimension and the periodic continuation is only efficient

for low-order systems.

A novel tool should have the following properties:

• modularization, extensibility and object-oriented architecture

• implementations of equation based models which define the behavior of a

system or a process under consideration

• various linear and nonlinear equation solvers

• initial and boundary value solvers for differential equations

• numerical continuation methods for nonlinear and differential equations

• computation of normal forms and testing functions

• visualization of results

This patterns are used to design an architecture of the tool under development.

The tool will be briefly described in the next section.

1.3 The numerical analysis tool Diana

The main topic of the present work is the development of a nonlinear analysis

tool for chemical engineering models. The principal requirement for the pro-

posed tool Diana (the name stands for ”Dynamic sImulation And Nonlinear

Analysis”) is its ability to analyze higher order lumped-parameter or discretized

distributed-parameter models. As a modeling front-end for Diana models the

ProMoT modeling tool (TZGG00) is used. Another essential requirement is the

usage of open source and freely available numerical codes. The used numerical

libraries are distributed with GPL or BSD type licenses. The core libraries are
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BLAS (Don02a; Don02b), LAPACK (ABB+99; GV96), UMFPACK (Dav04), and

ARPACK (LSY98) for basic linear algebra algorithms, SUNDIALS/Ida (HBG+05)

and DASPK (LP99) for the solution of ODE initial value problems, SUNDIAL-

S/Kinsol and NLEQ1S (NW91) for the solution of nonlinear algebraic equations.

The usage diagram of the ProMoT modeling tool with Diana simulation envi-

ronment is shown schematically in Figure 1.1. The whole process of numerical

analysis can be subdivided into two stages.

C++ model
files

Mdl model
files

Python
script files

Result
files

ProMoT Diana

Kernel GUI

Diana

ESO Solvers

LAMaxima Continuation

User

creates

creates

compiles

uses
interactively

visualizes

uses GUI

Figure 1.1: ProMoT/Diana usage diagram

The first stage concerns the creation of a model representation that can be used

in numerical computations. The user creates a model in symbolic form, either

using the object-oriented model definition language Mdl (TGZG97) or by com-

posing predefined modeling elements from model libraries with the graphical user

interface of ProMoT (GKN+03; WAPGK06). The differentiation of the model is

performed in the computer algebra system Maxima that is linked with ProMoT.

The ProMoT kernel processes the model and translates the model description to

Maxima expressions, which are differentiated for a user-defined set of differentia-

tion orders.The model equations as well as the derivatives are translated to C++

source files in GUI or with help of the command line translator mdl2diana. The

resulting model can be compiled and linked to a shared library, which represents

the model for the simulation tool, by the dianac script.

The compiled model is used as an input to the simulation environment Diana.

The environment is based on the dynamic object-oriented programming language
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Python and inherits the Python command line user interface. Python wrappings

for the CAPE-OPEN C++ interfaces by the SWIG (Simplified Wrapper and Inter-

face Generator) software development tool are generated. The wrappings allow to

define simulation scenarios interactively or via Python scripts.

Various Python libraries give the possibility to extended simulation capabilities.

For example, NumPy library is a Python wrapping for the BLAS/LAPACK libraries and

can be used to apply linear algebra algorithms to results of simulations. The library

gives an opportunity to use generic linear algebra algorithms within simulation

scripts. On the other hand, GUI libraries, like PyGTK or PyQt, can be used in

online plots during simulations or for a development of a graphical front-end for

the simulation results. The developed software has also possibility to save data in

a numerical format for the post-processing in other tools, e.g., Matlab.

Some results of the dynamic simulation of a continuous stirred tank reactor (see

Section 4.1) or a circulation loop reactor (MKG+99) are presented in Figure 1.2.

In Figure 1.3 results of the parameter continuation of steady state and periodic

solutions are presented. The solid lines in Figure 1.3 stand for stable solutions,

dashed lines stand for unstable solutions, boxes are Hopf bifurcation points, and

marked circles are stable periodic solutions.
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a) CSTR example b) circulation loop reactor example (MKG+99)

Figure 1.2: Dynamic simulation results in Diana

1.4 Outline of the thesis

The present thesis covers some theoretical aspects of the dynamic simulation and

nonlinear analysis, description of software implementation aspects and case stud-

ies. A brief outline of the thesis is given in the following.
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Figure 1.3: Parameter continuation results in Diana; solid lines are stable steady-state
solutions; dashed line is an unstable steady-state solution; circles are periodic
solutions: upper branch is stable and lower branch is unstable; upper square
is the supercritical Hopf point and lower is the subcritical one; asterisks mark
limit points

The parameter continuation and the bifurcation analysis of steady-state points

are the focus of Chapter 2. At first, the notion of the dynamical system under

treatment is presented. After that follows the basic topic of the chapter — the pa-

rameter continuation algorithm and an application to the steady states and their

singularities. The chapter highlights the singularity theory and discusses how sin-

gularity methods are used in applications. The Lyapunov-Schmidt reduction in

the limited context of ordinary differential equations will also be introduced in

this chapter. Further the recognition problem and unfolding in a neighborhood of

singularities will be presented. After that, the numerical singularity computation

and corresponding augmented systems will be discussed. Next topic under discus-

sion are dynamical systems in the presence of a pair purely imaginary eigenvalues.

At first the Hopf bifurcation point will be introduced. The numerical computa-

tion and corresponding augmented systems for the Hopf bifurcation point will be

discussed in the next section. At the end of the chapter the limited case of the

Hopf point singularities will be discussed.

Chapter 3 deals with dynamical systems with the presence of periodic solutions.

The discussion covers solution with shooting methods of periodic boundary value

problems and initialization in the neighborhood of the Hopf bifurcation point. The

Recursive Projection Method (SK93) and its applications to various numerical

problems are also studied in this chapter.

The three case studies in this thesis form an important part of it — they illustrate

7



how the described methods are used in applications. An important phase in the

nonlinear analysis of a problem that is not addressed in this thesis is the model

building. The reason for this is that there are no general rules: each problem has

its own peculiarities justifying an individual approach. Also it will be assumed

that ProMoT and Diana are installed successfully, and that the reader is already

familiar with the Python language that will be used to present simulation examples.
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Chapter 2

Parameter Continuation Methods and

Bifurcations of Equilibria

In the following chapters the main theme of the thesis will be explored: bifurcation

analysis, the study of possible changes in the structure of solutions of a differen-

tial equations system depending on variable parameters. The structural changes

of solutions with a parameter change or bifurcations can be local, i.e., at such bi-

furcation point the stability of an equilibrium or fixed point is changed and can

be analyzed via the system linearization at the point, or global if the structural

changes in the phase space cannot be detected in any small neighborhood, as is

the case with local bifurcations. In this chapter numerical algorithms for the bi-

furcation analysis of the continuous-time dynamical system will be discussed. The

analysis of the system will be restricted to the study of the dependence of equilib-

ria or steady-state points on parameters, as well as locating and analyzing their

local bifurcations.

Another issue that is covered in the chapter is the singularity analysis of bifur-

cation varieties. There are numerous publications on applications of singularity

analysis to chemical engineering systems. It has been shown in many cases that

bifurcation analysis may help to understand the process behavior in greater detail

and to improve process design and process operation. The numerical methods

for the computation of singularities are also well established. However, there are

hardly publications dealing with implementation issues. Especially the automatic

generation of the augmented equation systems defining the singularities has hardly

been addressed so far in open literature. Currently, this step is done manually by

the user in most cases, using some symbolic manipulation tool. In this way, the

generation of the augmented system requires a lot of work and insight from the

user. Consequently, the application of singularity analysis is currently reserved

to specialists with a sound background in nonlinear analysis. On the other hand,
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the resulting bifurcation diagrams are understandable and instructive for a much

broader community. One can expect that bifurcation and singularity analysis will

find considerably more applications, if the barriers to use these methods are lower.

The purpose of the chapter is to present the nonlinear analysis tools with easy-to-

use interfaces and a low entry level to make them comprehensible to non-specialists

in the nonlinear analysis.

The chapter is structured as follows:

The first section describes some notions from the dynamical systems and differential-

algebraic equation systems. The representation of the dynamical system will be

extensively used in the next sections to present nonlinear analysis methods and

algorithms. Section 2.2 describes the numerical continuation methods used. The

steady-state continuation solver and the linearized stability analysis are topics of

Section 2.3.

The special case of the finite-dimensional Lyapunov-Schmidt reduction in a pres-

ence of a simple zero eigenvalue is presented in Section 2.4. Section 2.5 summarizes

mathematical methods of singularity analysis of real bifurcation varieties. The sec-

tion gives a brief overview of the main results that are discussed in Chapters I –

IV of the book by Golubitsky and Schaeffer (GS85). Another topic is the symbolic

differentiation that is widely used in numerical nonlinear analysis and is described

in Section 2.6. The higher order derivatives will be used for the computation of

bifurcations norm forms or test functions. Section 2.7 discusses the automatic

generation of the augmented equation system and presents the singularity analysis

solver.

The final three sections are dedicated to the Hopf bifurcation theorem and the

related bifurcation point. Section 2.8 discusses the CL-Hopf Bifurcation Theorem

and calculation of the periodic orbit approximation in a neighborhood of the Hopf

point. The augmented system and the solver class for the Hopf point calcula-

tion in Section 2.9 are presented. Concluding Section 2.10 highlights degenerate

Hopf points and test functions that allow to detect such points and perform the

parameter continuation.

2.1 Model description

The definition of a simulation model is based on the notion of a dynamical system,

the mathematical formalization of the general scientific concept of a deterministic

process. The future state of many chemical systems can be predicted to a certain
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extent by knowing their state and the laws governing their evolution. All possible

states of a system can be presented by points of some set or state space X of the

system. The evolution of a dynamical system is defined as a change of the system

state with respect to an independent variable or time t. Concerned dynamical

systems in the thesis will be time continuous with t ∈ R. An evaluation law of a

dynamical system determines the state xt ∈ X of the system at time t, provided

the initial state x0 ∈ X is known. With the time-invariable laws, the behavior of

such a system is completely defined by its initial state. An evaluation operator of

the dynamical system is a map ϕt that is defined in the state space X

ϕt : X → X

and transforms an initial state x0 ∈ X into some state xt ∈ X at time t > 0:

xt = ϕtx0.

It is possible to give a proper definition of a dynamical system.

Definition 2.1. A dynamical system is a pair {X, ϕt}, where X is a state space and

ϕt : X → X is a family of evaluation operators satisfying the properties

ϕ0 = id,

where id is the identity map on X, id x ≡ x for all x ∈ X, and

ϕt+s = ϕt ◦ ϕs or ϕt+sx = ϕt(ϕsx),

for all x ∈ X and t, s � 0, such that both sides of the last equation are defined.

In the Diana framework a differential equation system is used to define a continuous-

time dynamical system. The state space of a system is finite-dimensional X = R
n

with coordinates (x1, x2, . . . , xn). In the case of differential equations any point x in

the state space is determined also by its “velocity” or time derivative ẋ ∈ R
n. The

law of evaluation ϕt of the system is given implicitly by a system of differential-

algebraic equations (DAE)

f(t, x, ẋ, ν) = 0, x(t0) = x0, (2.1)

where the vector ν ∈ R
p contains time-independent parameters and the vector-
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valued function f : R×R
n×R

n×R
p → R

n is supposed to be differentiable sufficiently

many times or smooth. The case when f has removable discontinuities is not

treated in the thesis and topic of the current development in the Diana framework.

A general system of the differential-algebraic equations in form (2.1) can be

characterized by the differential index di, the minimum integer m, such that the

system of equations (2.1) and

df(t, x, ẋ, ν)

dt
= 0

. . .

dmf(t, x, ẋ, ν)

dtm
= 0

can be solved for ẋ = ẋ(x). For alternative definitions of the DAE index, like,

geometrical, perturbation, or tractability indices, see (HW96) or (Gea90). For the

numerical solution of such systems different reduction techniques are proposed, for

example (Pan88; Gea88; MS93).

The Diana framework allows to solve only differential index-one models. It is

not a strong restriction on models, because models with differential index one are

most relevant for chemical and biological applications. The pleasing property of

index-one systems is the regularity of a DAE, which implies existence and unique-

ness results by employing the existence theory of vector fields, as in the following

theorem.

Theorem 1. Let (2.1) be a regular DAE, let M be the configuration space1, and let v

be the corresponding vector field of this DAE. The vector field v to be of the class Ck for

k > 0 is assumed. Then, for any (t0; x0) ∈ M there exists a solution x : I → Rn of the

DAE on an open interval I containing t0 with x(t0) = x0. Moreover, any solution is a

mapping of the class Ck and any two solutions x1 and x2 with x1(t0) = x2(t0) are equal

on the intersection of their domain.

Proof. The notion of regularity of DAEs and references to the proof of the above result

is presented in (Rei91). �

Also throughout the text partial Jacobian matrices fx(t, x, ẋ, ν) and fẋ(t, x, ẋ, ν)

are assumed to be continuous. Furthermore, the nullspace of fẋ(t, x, ẋ, ν) is sup-

1the configuration space is the space of possible positions that a physical system may attain and is is

typically “half” of a phase space
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posed to be invariant of (x, ẋ, ν), i.e.,

N(t) := ker fẋ(t, x, ẋ, ν), (2.2)

and to vary smoothly with t.

In terms of theorem 1 solutions of the differential equations system (2.1) define

a dynamical system. Obviously, the evaluation operator ϕt : R
n → R

n with

ϕtx0 = x(t, x0, ν)

in the state space R
n produces a continuous-time dynamical system {Rn, ϕt}. The

function x(t) := x(t, x0, ν) is called a solution starting at x0.

Theorem 1 guarantees existence and uniqueness of the solution x(t, x0, ν), but

does not give methods to find it. Usually, only in a few simple cases the solution can

be found analytically. Computers give possibilities to compute an approximation

of a solution curve. For computer numerical methods the dynamical model should

be defined and prepared in form of a simulation model that have specified interface

to communicate with a numerical code. The notion of the simulation model with

methods and parameters will be presented in Appendix A.2

2.2 Parameter continuation methods

Continuation methods determine nonsingular solutions of an underdetermined sys-

tem in the form

f(x, λ) = 0, (2.3)

where x ∈ R
n is a state vector, λ ∈ ν is a free scalar parameter, and f : R

n×R → R
n

is a smooth enough function. To simplify this notation further in the section, the

vector {x, λ} will be denoted as y ∈ R
n+1.

If the following conditions are satisfied

(a) f(x0, λ0) = 0, x0 ∈ R
n and λ0 ∈ R,

(b) the matrix fx(x0, λ0) is nonsingular,

(c) f and fx are smooth near the point {x0, λ0},

then it follows from the Implicit Function Theorem that there exists a unique,

smooth function x(λ) such that f(x(λ), λ) = 0 and x(λ0) = x0 in the neighborhood
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of the point {x0, λ0}. A solution y0 := {x0, λ0} of (2.3) is regular if the matrix

R
n × R

n+1

{fx(y0) | fλ(y0)}

has maximal rank n. If the matrix fx is singular at the regular point, the point

is called a simple fold or limit point . This situation corresponds to a codim-0

bifurcation point and will be discussed later.

Near the regular point y0 the Implicit Function Theorem guarantees existence

of a unique one-dimensional continuum of solutions. The solutions at the regular

point can be parametrized by introducing an additional curve length parameter ζ.

With this parameter the solution y(ζ) must satisfy the equation

f(y(ζ)) = 0, with y(0) = y0. (2.4)

The numerical solution of the continuation problem (2.4) means computing a

sequence of points

y(0), y(1), . . . ,

approximating the solution curve y(ζ) with a desired accuracy. An initial point

y(0) is assumed to be known and equals {x0, λ0}. To track the numerical solutions

along the arc length parameter ζ, predictor-corrector algorithms are widely used

methods, e.g., (Kel77; Sey94). In these methods, the kth step of the continuation

starts from an approximation of a solution y(k) and tries to find the next solution

point y(k+1):

y(k) → y(k+1).

With the predictor-corrector methods, that are used in this work, every step is

split into two substeps:

y(k) predictor−−−−−−−→ ỹ(k+1) corrector−−−−−−−→ y(k+1).

The predictor step gives a first estimate of the next point ỹ(k+1) on the solution

curve y(ζ). The corrector locates the point y(k+1) with desired accuracy using the

predicted value as an initial guess, and for the corrector the notion of a parametriza-

tion that allows to calculate the unique point y(k+1) is significant. The distance

between two consecutive solution points is called a step size σ(k). The step size

strategy depends on the predictor, the corrector, and the underlying parametriza-

tion. In the following, all three components of the predictor-corrector method will
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be explained in detail.

2.2.1 Predictors

Two approaches have been used here for the predictor step (Figure 2.1), namely:

• the tangent predictor that calculates a tangent vector to the solution curve

at the regular point y(k),

• the chord predictor that uses extrapolation formula for the previously com-

puted points.

y(k)
�y (k)

y(ζ)

y(k−1)

y(k)

�y (k)

y(ζ)

a) Tangent predictor b) Chord predictor

Figure 2.1: Illustration of predictors

Tangent predictor

The tangent predictor calculates a unit tangent vector �y (k) to the solution curve

y(ζ) at the regular point y(k). The tangent vector ȳ(k) can be found by solving a

linear algebra problem

fy(y
(k))ȳ(k) = 0 (2.5)

that is derived from the differentiation of Equation (2.4) by the arc length param-

eter ζ. The system of linear algebraic equations (2.5) has a unique solution (up to

a scalar multiple) since rank fy(y
(k)) = n by assumption of regularity. To compute

the vector ȳ(k) from (2.5), one has to extend the linear system by a scalar equation

to obtain n+1×n+1 matrix. The usual way is to fix one variable or a norm of the

tangent vector. In this work, the computation of the tangent vector is performed
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after the corrector iteration and the last Newton iteration matrix in step k is used

in (2.5) as the matrix fy(y
(k)). The system is extended with a derivative of the

parametrization equation, which fixes a norm or a selected variable of the vector

ȳ(k). This approach reduces numerical costs to compute the tangent vector, be-

cause after the corrector iteration the matrix in (2.5) has been already decomposed.

Finally, the vector ȳ(k)is normalized and accepted as the unit tangent vector �y (k).

Chord predictor

The chord predictor is based on the extrapolation of two previously computed

points of the solution curve, so at step k the predictor vector is

�y (k) =
y(k) − y(k−1)

||y(k) − y(k−1)||2
.

This approach assumes that at least two successive solution points have been com-

puted. So this predictor type is not suitable for the first step of the continuation

algorithm.

2.2.2 Correctors

With the predictor result the initial guess ỹ(k+1) for the corrector step can be

defined as

ỹ(k+1) := y(k) + σ(k)�y (k).

As system (2.4) consists of n equations and n + 1 unknowns, an auxiliary scalar

equation n(y) = 0 has to be added that makes the extended system regular. The

choice of the auxiliary equation defines the type of parametrization. The following

parametrizations are used in this work (Figure 2.2).

Local parametrization

The local parametrization (Sey94; MKMG00) fixes during the corrector step the

value of the ith variable. This leads to the parametrization equation

n(y) := yi − ỹ
(k+1)
i . (2.6)

The index i is determined by the unit tangent vector �y (k) such that

|�y (k)
i | = max(|�y (k)

1 |, . . . , |�y (k)
n+1|).
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y(k)
ỹ(k+1)

n(y) = 0

y(k+1)

y(ζ)

y(k)
ỹ(k+1)

n(y) = 0

y(k+1)

y(ζ)

a) Local b) Pseudo-arc length

Figure 2.2: Parametrization types

In this case, the variable yi is locally the most rapidly changing along the curve

y(ζ).

Pseudo-arc length parametrization

The pseudo-arc length parametrization defines a hyperplane passing through the

point ỹ(k+1) that is orthogonal to the vector �y (k):

n(y) := 〈y − y(k), �y (k)〉 − σ(k). (2.7)

If the curve is regular and the step size σ(k) is small enough, one can prove that

the Newton iterations for the extended system will converge to a point y(k+1) on

the continuation curve, see (Kel77).

Newton iterations

The Gauss-Newton corrector is used to find the exact solution point starting from

the approximation of the predictor step. The corrector produces iterations

y(k+1,i+1) = y(k+1,i) + δ(i),
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where δ(i) is a Newton update on the ith iteration, and defined as

δ(i) = −
{

fy(y)

ny(y)

}−1 {
f(y)

n(y)

}∣∣∣∣∣∣
y=y(k+1,i)

. (2.8)

The matrix inverse in (2.8) with help of the sparse LU decomposition UMF-

PACK (Dav04) is computed. This allows to reuse sparsity pattern of the model

Jacobian matrix. Also the decomposed matrix of the last Newton iteration is

used in the calculation of the tangent predictor. Exit conditions for the Newton

iterations are

(a) ||{f(y(k,i)); n(y(k,i))}||2 < εf .

(b) ||δ(k,i)||2/||y(k,i)||2 < εx for ||y(k,i)||2 	= 0 or ||δ(k,i)||2 < εx for ||y(k,i)||2 = 0.

(c) the maximum number of function evaluations is exceeded.

(d) the maximum number of iterations is exceeded.

For the first two conditions the continuation step is marked as accepted, for the

last two the step is rejected and the step size is decreased by the step size control.

2.2.3 The step size control

A step size control uses the rate of convergence of the Newton iteration to adjust

the step size σ of the predictor step. In (dHR81) it was shown that a convergence

radius cannot be deduced from the previously calculated steps. Because of the

negative result regarding of the convergence radii extrapolation, the step size con-

trol simply uses the number of the Newton iterations N (k) on the kth step as a

parameter for

σ(k+1) = ξσ(k), where ξ =

⎧⎪⎨
⎪⎩

ξ1, N (k) < N1,

1, N1 � N (k) � N2,

ξ2, N (k) > N2,

(2.9)

with scaling factors ξ1 > 1 and ξ2 < 1. The values N1 and N2 specify numbers of the

Newton iterations for whose the step size will be increased, remains unchanged, or

decreased. These parameters have default values N1 = 3, N2 = 8 and depend on

the underlying task.
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This approach is simple but other more sophisticated variants can be pro-

posed. For example, in Diva the step size control adjust the predictor step size

depending on the rate of convergence of the Newton iteration at the corrector

step (MKMG00).

2.2.4 The continuation algorithm

The continuation algorithm is based on the above described parts and can be

presented as follows:

Input: x0, λ0, σ(0)

Output: y(1), . . . y(kmax)

begin

y(0) ← initial correction(x0, λ0)

�y (0) ← predictor(y(0))

k ← 0

repeat

ỹ(k+1) = y(k) + σ(k)�y (k)

y(k+1) ← corrector(ỹ(k+1))

�y (k+1) ← predictor(y(k+1))

σ(k+1) ← stepsize(y(k+1), σ(k))

compute test functions(y(k+1))

if test condition occurs then
return ContiOkTestFunction

end

k ← k + 1

if k � kmax then
return ContiOkMaxStepsMade

end

until boundary not achieved ;

return ContiOkAchievedBoundary
end

Algorithm 1: Predictor-corrector parameter continuation

The following notation for algorithms will be used throughout the text. Key-

words are designated by the bold font, function calls are presented with the

typewriter font, the bold sans-serif font denotes constants, and italic type repre-

sents variables or shortened texts in algorithms. The Input and Output sections

contain, respectively, arguments and results of an algorithm. The main algorithm

body is enclosed in the keywords pair begin/end. For the algorithm control flow
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usual statements for loops or conditions, like, repeat/until or if/then/end, are

used. The symbol ← stands for the assignment statement, which can be parallel,

e.g., a, b← 1, 2.

The main parts of the above algorithm has been described above in this section.

The function compute test functions has abstract definition and defines an eval-

uation of task-defined test functions that are computed along the solution curve.

This function closely related to the continuation sub-task and will be described in

following sections.

The realization of the parameter continuation solver base class DianaContinuation

is described in appendix section A.4. The description of the solver contains meth-

ods and parameters definitions. As an example of the application of the elabo-

rated continuation methods can serve the steady-state continuation solver that is

described in the next section.

2.3 Steady-state continuation and the linearized stability

analysis

A steady state of the dynamical system is characterized by the vanishing time

derivatives vector ẋ in Equation (2.1). In addition, the differential-algebraic equa-

tions system is implied to be autonomous, so it does not depend on the variable

t. Using the above assumptions, the task under study will have the form of a

nonlinear algebraic system

f(x, ν) = 0, f : R
n × R

p → R
n, (2.10)

where f is a sufficiently smooth function. This system can be used directly in the

algorithm described in Section 2.2 for the steady-state continuation.

Information about stability of a steady-state point x0 of the dynamical sys-

tem (2.1) can be found from the linearized system of equations in the neighborhood

of the point. This important result in the study of dynamical systems is stated in

the following theorem.

Theorem 2 (Local Hartman-Grobman Theorem for Flows). Let

ϕ : R
n × R → R

n
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be the (local) flow generated by an autonomous equation

ẋ = f(x)

with a hyperbolic equilibrium point x0. Let A denote the linearization of f at point x0.

Then there are neighborhoods U and V of x0 and a homeomorphism

h : U → V

such that

ϕ(h(x), t) = h(x0 + etA(x− x0))

whenever x ∈ U and x0+etA(x−x0) ∈ U or, in a neighborhood U of x0, ϕ is topologically

conjugate to its linearization.

Proof. The proof of the theorem is based on a global Hartman-Grobman theorem for

maps (Gro59; Har60). �

The linearization of an autonomous differential-algebraic equation at a hyper-

bolic equilibrium point x0 results in the following generalized eigenvalue problem

fẋ(x0, 0, ν)V Λ + fx(x0, 0, ν)V = 0. (2.11)

where the diagonal matrix Λ contains generalized eigenvalues Λi and V is the

corresponding eigenspace such that

ϕ(h(x), t) = h(x0 + V etΛ(x− x0))

with h defined in Theorem 2.

The equilibrium point x0 of a dynamical system is called hyperbolic if none of the

real parts of the eigenvalues of (2.11) are equal to zero. The steady state of the

dynamical system in the implicit DAE form (2.1) is locally stable at the hyperbolic

equilibrium if the real parts of all eigenvalues of the linearized system are positive;

it is unstable if at least one real part is negative. It should also be noted that

the stability results in Diana, due to the implicit form of the differential-algebraic

equation (2.1), differ from standard results in the linearized stability that assumes

local stability for negative real parts of all eigenvalues of A and loss of stability if

at least a one eigenvalue has positive real part.
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The case of a vanishing real part of at least one eigenvalue is called a critical

point . The presence and behavior of such critical points is of great interest for

understanding the dynamics of the system, as critical points indicate stability

changes and bifurcations.

A solution of the generalized eigenvalue problem (2.11) in the solver implemen-

tation with the QZ algorithm (ggev function in the LAPACK library (ABB+99))

or with the implicitly restarted Arnoldi iteration (naupd function in the ARPACK

library (LSY98)) is performed. The steady state continuation solver computes gen-

eralized eigenvalues along a continuation curve and allows to detect a sign change

in the real parts of the eigenvalues (Figure 2.3). The limit point bifurcation in
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Λ
(k)
i Λ

(k+1)
i∗ �Λi

�Λi

Λ
(k)
i Λ

(k+1)
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(k+1)
i+1

∗

∗

a) Limit point bifurcation b) Hopf bifurcation

Figure 2.3: Local bifurcations of an equilibrium

Figure 2.3a is characterized by a simple zero eigenvalue Λi or singularity of fx.

With the second bifurcation a pair of complex conjugate eigenvalues of the lin-

earization (2.11) around the fixed point cross the imaginary axis of the complex

plane. The point has the name Hopf or Andronov-Hopf bifurcation and is charac-

terized by a stability change and, under reasonably generic assumptions about the

dynamical system, a periodic orbit branching from the fixed point.

The implementation of the steady-state parameter continuation solver class

SteadyStateContinuation with methods and parameters description is described in

Appendix A.4.1. Initial values for the continuation solver are taken from variables

and parameters of an ESO model instance. These values can contain, for example,

results of a dynamic simulation of the model or previous parameter continuation

results.

Further analysis in this chapter will be devoted to the analysis of non-hyperbolic

equilibrium points. In Sections 2.4 and 2.5 the theoretical background for the
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singularity analysis of limit point varieties will be summarized. Section 2.7 presents

the numerical computation and the continuation of such varieties and a solver class.

2.4 The Lyapunov-Schmidt reduction

In engineering applications it is quite important to determine stability domains

of the system. One of the possible scenarios for the stability change is a crossing

of the imaginary axis by a real eigenvalue. The scenario corresponds to the fold

or limit bifurcation point where an equilibrium point may lose stability. The

parameter dependency of the fold points can be analyzed via reduction of the

system to a single scalar equation and computing solutions of this equation. In

the following section the finite-dimensional Lyapunov-Schmidt reduction will be

presented (GS85, I.3).

Consider the nonlinear system

f(x, ν) = 0, f : R
n × R

p → R
n (2.12)

that defines the equilibrium point curve of the underlying differential equation (2.1).

Let at the solution point x0, ν0 of the system (2.12) the Jacobian matrix A :=

fx(x0, ν0) have rank n − 1. In the case with the Lyapunov-Schmidt reduction a

scalar equation may be defined as

g(z, ν) = 0, g : R× R
p → R (2.13)

that has locally one-to-one correspondent solutions to the original full system.

The reduction procedure assumes a definition of R
n orthogonal space splittings

R
n = ker A⊕M,

R
n = N ⊕ range A

(2.14)

with dimensions dim range A = n − 1, dim ker A = 1, so that dimM = n − 1, and

dimN = 1. The projection E of R
n onto range A splits the original system (2.12)

into an equivalent pair of equations

Ef(x, ν) = 0,

(I − E)f(x, ν) = 0.
(2.15)

The vector x also can be decomposed in form x = v+w where v ∈ kerA and w ∈ M .
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So (2.15) has the form

Ef(v + w, ν) = 0,

(I − E)f(v + w, ν) = 0.
(2.16)

For the first equation of the Implicit Function Theorem a mapping W (v, ν) can be

found that satisfies near the point x0 = v0 + w0, ν0

Ef(v + W (v, ν), ν) ≡ 0, W (v0, ν0) = w0. (2.17)

In fact, differentiation of the first equation in (2.16) with respect to the w variable

at the solution point x0, ν0 produces a linear map

EA : M → range A (2.18)

that is invertible. Now, the reduced map φ : ker A×R
p → N can be obtained from

the second equation in (2.16)

φ(v, ν) = (I − E)f(v + W (v, ν), ν). (2.19)

The reduced function φ may be calculated in numerical applications in an ap-

propriate basis for subspaces of R
n, namely, ker A and N . With unit-length basis

vectors v0 ∈ ker A and v∗0 ∈ N system (2.19) can be defined as a scalar function

g(z, ν) = 〈v∗0, φ(zv0, ν)〉, (2.20)

where 〈., .〉 is the Euclidean inner product. The function (2.20) does not depend

on the projection E, indeed

g(z, ν) = 〈v∗0, (I − E)f(zv0 + W (zv0, ν), ν)〉
= 〈v∗0, f(zv0 + W (zv0, ν), ν)〉 (2.21)

due to orthogonality of the vector v∗0 to the range A. The zeros of g are in one-to-

one correspondence with φ and with solutions of f(x, ν) = 0 independently from

the choice of the vectors v0 ∈ ker A and v∗0 ∈ N . This result is proved in (GS85,

A2).

The augmented system that specifies a numerical computation of the vectors v0

and v∗0 will be presented in Section 2.7.

For the analysis of zeros of g(z, ν), a computation of derivatives with respect to

z and ν is required. The derivatives computation of g is based on the higher-order
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directional derivatives of f that are introduced as follows

(dkf)x,ν(v1, . . . , vk) =
∂

∂t1
· · · ∂

∂tk
f

(
x +

k∑
i=1

tivi, ν

)∣∣∣∣∣
t1=···=tk=0

. (2.22)

Numerically such derivatives are calculated with symbolically computed higher-

order derivatives of f (2.32), for example, if k = 3

(d3f)x,ν(u, v, w) =

n∑
i,j,l=1

∂3f

∂xi∂xj∂xl
(x, ν)uiviwj .

It also should be noted that the differentiation of (2.17) with respect to z results

after the substitution v = zv0 at the point x0, ν0

0 = Efx(zv0 + W (z, ν), ν) · (v0 + Wz(z, ν)) = EAWz(z, ν) = Wz(z, ν),

with EAv0 = 0 and the invertible linear map EA.

Applying the chain rule to (2.21) yields following expressions for the derivatives

of g with respect to the variable z and a parameter λ ∈ ν

gz = 〈v∗0, d f(v0 + Wz)〉,
gzz = 〈v∗0, d2f(v0 + Wz, v0 + Wz) + d f(v0 + Wzz)〉,

gzzz = 〈v∗0, d3f(v0 + Wz, v0 + Wz, v0 + Wz)

+3d2f(v0 + Wz, Wzz) + d f(v0 + Wzzz)〉,
gλ = 〈v∗0, fλ + d f(Wλ)〉,

gzλ = 〈v∗0, d fλ(v0 + Wz) + d2f(v0 + Wz, Wλ) + d f(Wzλ)〉.

(2.23)

Recalling that v∗0 is orthogonal to range A and Wz(z0, ν0) = 0, the formulas (2.23)

at the point x0, ν0 become

gz = 0,

gzz = 〈v∗0, d2f(v0, v0)〉,
gzzz = 〈v∗0, d3f(v0, v0, v0) + 3d2f(v0, Wzz)〉,

gλ = 〈v∗0, fλ〉,
gzλ = 〈v∗0, d fλ(v0) + d2f(v0, Wλ)〉

(2.24)

25



for the higher-order derivatives d2f , d3f , fλ, and d fλ that are evaluated at the

point x0, ν0. Unknown derivative Wzz can be obtained via double differentiation

of (2.17) with respect to z

E · d fx,ν(Wzz) + E · d2fx,ν(v0 + Wz, v0 + Wz) = 0

or at the point x0, ν0

Wzz = −A−1 · E · d2fx0,ν0(v0, v0).

Similar, differentiation of (2.17) with respect to λ yields to

Wν = −A−1 · E · fλ.

The next section shows some theoretical results of the singularity theory and

applications to the bifurcations analysis of the above defined reduced function g.

2.5 The singularity recognition and unfolding

In this section singularities of a scalar smooth function

g(z, ν) : R× R
p → R (2.25)

and their application to the bifurcation theory of DAEs will be studied. By a

bifurcation a change in the number of solutions of the equation g(z, ν) = 0 as

parameters ν vary will be defined. If equation (2.25) represents, for example, a

reduced DAE system in the neighborhood of a fold point, then the bifurcation

analysis results of the scalar equation will show qualitative changes of equilibrium

points in the phase portrait of the underlying DAE system.

Without loss of generality, let the function g have a zero at the origin g(0, 0) = 0.

The trivial case gz(0, 0) 	= 0 is treated by the Implicit Function Theorem and (2.25)

can be uniquely solved for z as a function of ν at some neighborhood of the

origin. A point for which gz(0, 0) = 0 is called a singularity and will be the main

topic of the section. At such points ng(ν), the number of solutions of g(z, ν) = 0,

discontinuously changes the value. To the rest of the section λ ∈ ν will be the

selected scalar parameter under consideration of the singularity analysis.

To classify the bifurcation diagrams of equation (2.25) an equivalence relation
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should be introduced. Two smooth functions g, h : R×R → R in a sufficiently small

neighborhood of the origin are equivalent if there exist functions Z(z, λ), Λ(λ) and

S(z, λ) such that the relation

h(z, λ) = S(z, λ)g(Z(z, λ), Λ(λ)) (2.26)

holds around the origin. Moreover, the following requirements

S(z, λ) > 0, Zz(z, λ) > 0, Λ′(λ) > 0 and Z(0, 0) = Λ(0) = 0

should be satisfied. If g and h are equivalent, then their multiplicity functions are

related as follows

ng(Λ(λ)) = nh(λ). (2.27)

With the defined equivalence relation the following recognition problem can be

formulated. For a given function g, which has the simplest form, find all the func-

tions h equivalent to g and define criteria that characterize such functions. The

simplest function g is called a normal form and represents a class of equivalent

bifurcation problems. The solution of the recognition problem by singularity the-

ory methods is based on a finite list of terms in the Taylor series of h such that

the question of equivalence is determined only by the values of the derivatives of

h on this list, and all other terms can be ignored. The monomials zkλm in the

Taylor series are divided into three classes: low order terms that do not appear

in the series of h, higher-order terms that have no influence on the equivalence,

and non-zero intermediate-order terms. In numerical applications degenerate sin-

gular points will be detected by vanishing low order terms and non-vanishing

intermediate-order terms.

After the recognition of the equivalence class for the function g in terms of the

singularity theory, another type of problem may be formulated. This problem

concerns a small perturbation of the function g. Such perturbations may cause

significant changes in the solutions bifurcation diagram of the function. The study

of such changes is termed “imperfect bifurcation”.

Under a versal unfolding of a smooth function g(z, λ) a parametrized family of

functions will be understood

G(z, λ, α), (2.28)

where α are unfolding k parameters (α ⊆ ν), satisfy the following two conditions:

(a) G(z, λ, 0) = g(z, λ),
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(b) any sufficiently small perturbation of g is equivalent to G(z, λ, α) in the neigh-

borhood of the origin.

If the number of additional parameters is irreducible, then G is called a universal

unfolding. The minimal number k of parameters α, needed for the description of

all perturbations, is called the codimension of g. In this work, the definition of the

codimension based on the number of unfolding parameters is used (GS85). Some

authors use an alternative definition of the codimension based on the number of

vanishing derivatives (GM97) or the number of independent conditions determin-

ing the bifurcation (Kuz04). The second definition leads to a value of the codi-

mension larger by one compared to the definition used in this work, i.e., a limit

point is a codimension-0 singularity in this work, but a codimension-1 singularity

according to the second definition.

The notion of unfolding has the following aspects which are important for ap-

plications. Equation

G(z, λ, α) = 0 (2.29)

appears in many mathematical models of chemical engineering problems. It always

neglects some physical effects, many of those are beyond the control of the person

performing the experiment. So, a more accurate description of the physical system

would lead to

G(z, λ, α) + p(z, λ, α) = 0, (2.30)

where p is a small perturbation representing what the model neglects. Thus, it

only remains to require that equation (2.29) has bifurcation diagrams equivalent

to equation (2.30) in a neighborhood of a subset of interesting parameters α0 ⊆ α.

This is satisfied when G(z, λ, α) is a versal (or universal) unfolding of G(z, λ, α0) and

this fact has two meaningful consequences for the model. First, it ensures that the

model describes all possible phenomena. Secondly, it is possible to find which of

the parameters (or algebraic expressions formed from them) are important for the

universal unfolding. The necessary condition for G(z, λ, α) to be a versal unfolding

is that the codimension of G(z, λ, α0) is not greater than the number of parameters

α0. On the other hand, when the codimension of G(z, λ, α0) exceeds the number

of auxiliary parameters, the model should be approached with caution. There are

three possibilities for an explanation. Either the model is not able to describe all

phenomena which can occur, or the problem exhibits a symmetry which makes the

codimension smaller, or in the universal unfolding of G(z, λ, α0) there are so-called

modal parameters (moduli) which do not influence the bifurcation diagrams from
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Normal form codim Name

εz2 + δλ 0 Limit point

ε(z2 − λ2) 1 Simple bifurcation
ε(z2 + λ2) 1 Isola center
εz3 + δλ 1 Hysteresis

εz2 + δλ3 2 Asymmetric cusp
εz3 + δλz 2 Pitchfork
εz4 + δλ 2 Quartic fold

εz2 + δλ4 3
εz3 + δλ2 3 Winged cusp
εz4 + δλz 3
εz5 + δλ 3

Table 2.1: Normal forms for singularities of codim g � 3

the topological point of view.

The main result of the singularity theory for singularities with codimension three

or less is stated in the following theorem.

Theorem 3 (The Classification Theorem (GS85, IV.2)). Let g(z, λ) : R
2 → R be a

function that is defined in a sufficiently small neighborhood of the origin, satisfying

g = gz = 0 at (0, 0). If codim g � 3, then g is equivalent to one of the following

bifurcation problems listed in table 2.1.

Parameters ε and δ of the normal forms in table 2.1 equal ±1, so all possible signs

of monomials in the normal forms are considered. The origin point of the normal

forms in table 2.1 presents different type of bifurcations, like, simple bifurcation

(either transcritical or isola), hysteresis, pitchfork, and winged cusp points. These

points are so-called organizing centers that are associated with a distinguished set

of values for the parameters such that all possible different qualitative behaviors

occur for parameter values in a small neighborhood of the distinguished values.

Such kind of points exhibit the most singular behavior and pseudo-global results

often may be obtained by the application of local analysis near the organizing

center.

Applications of the theoretical results above, in numerical computations, will be

shown in the next section.
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2.6 Symbolic differentiation

The most commonly used approach for computing derivatives are finite difference

schemes with different orders. The numerical error for derivative of order i cal-

culated by finite differences can be described as a sum of the round-off and the

truncation errors in the simplest case (for example (Hig96)):

erri = ai
δm

εi
+ biε, (2.31)

where ai and bi are factors that depend on the mapping f(x, ẋ, ν) and δ is the

machine unit round-off. In Figure 2.4 (factors ai = bi = 1 and δm = 10−16) it is

possible to see that with an increase of the order of differentiation the absolute

numerical error increases, whereas the interval of the permitted ε values for a

required tolerance relative to the optimum value decreases. This means that for

higher order derivatives it becomes increasingly difficult to choose a suitable value

for ε. The numerical approximation of the higher order derivatives may become

inaccurate, if ε differs slightly from the optimal value (which usually is not known).

For this reason, it was decided against the usage of finite difference approximation

in this work.

ε

er
r i

err1

err2

err3

10−12 10−8 10−4 100

10−8

10−4

100

Figure 2.4: Numerical error of derivatives calculated by the finite differences with the
first order approximation

To avoid the described numerical problems, automatic or symbolic differentiation

of f can be used. For the problems considered here high order derivatives in sparse

form are required. Such derivatives are used, for example, to compute derivatives of

the function g after the Lyapunov-Schmidt reduction in (2.24). Thorough analysis
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of existing tools shows that no automatic differentiation code exists that can handle

this sort of problem. Therefore, an approach based on symbolic differentiation is

proposed in the following. The algorithm is able to differentiate via computer

algebra system Maxima (FdSMY04) any mathematical expression that can be

present in ProMoT models.

The differentiation approach for the summation expressions is based on the

assumptions that follow from the chain rule and the differentiation δ-rule proposed

in (Wan94). The chain rule requires that all derivative entries with the same indices

should be summed. Differentiation of the summations can be described with the

Kronecker symbol, defined as

δij =

{
1, if i = j,

0, if i 	= j.

For single sums of the form ∑
i=Δ

S(xi)

the derivative by the variable xj can be presented as S′(xi)δij with loop indices

i, j ∈ Δ. Multiple summations

∑
i1=Δ1

. . .
∑

in=Δn

S(xi1,...,in)

can be differentiated by the variable xj1,...,jn in the same manner and the result

will be

S′(xi1,...,in)δi1j1 . . . δinjn

for loops indices i1, j1 ∈ Δ1, . . . , in, jn ∈ Δn. The order of loops can be arbitrary

due to the commutative property of the summation.

Differentiation of conditional and summation expressions are performed by dif-

ferentiation of conditional branches. The treatment of conditionals and summation

expressions is illustrated by the following example:

f1(x)i := x1 + xi +

{
exp(xn−i+1), x1 � 0

sin(xi), x1 < 0

}
, for i = 1 . . . n,

f2(x, y) := x1 +
∑n

i=1 xi + y.
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The symbolic differentiation in Maxima produces:

∂f1(x)i/∂x1 = 1

∂f1(x)i/∂xi = 1 +

{
0, x1 � 0

cos(xi), x1 < 0

}
,

∂f1(x)i/∂xn−i+1 =

{
exp(xn−i+1), x1 � 0

0, x1 < 0

}
,

and

∂f2(x, y)/∂x1 = 1, ∂f2(x, y)/∂xi = 1, ∂f2(x, y)/∂y = 1.

Finally, the resulting matrix ∂{f1, f2}/∂{x, y} is formed by sorting all produced

symbolic expressions into an initially empty matrix and taking into account the

limits of the index i:

1 + ∂f1(x)i

∂xi
|i=1 0 0 . . . 0 ∂f1(x)i

∂xn−i+1
|i=1 0

1 1 + ∂f1(x)i

∂xi
|i=2 0 . . . ∂f1(x)i

∂xn−i+1
|i=2 0 0

...
...

...
...

...
...

1 + ∂f1(x)i

∂xn−i+1
|i=n 0 0 . . . 0 1 + ∂f1(x)i

∂xi
|i=n 0

1 + 1 1 1 . . . 1 1 1

By applying the described procedure recursively, higher order derivatives of the

model equations with respect to state variables, state derivative or parameters can

be generated. The result are expressions

∂(k+l+m)f(x, ẋ, ν)

∂x(k)∂ẋ(l)∂ν(m)
, k, l, m � 0 (2.32)

with a k+ l+m+1 element indices tuple (i1, . . . , ik+l+m+1). The obtained higher or-

der derivatives will be used for the singularity analysis of the reduced test function

in the numerical realization of the singularity analysis solver in Section 2.5.

2.7 The numerical singularity computation

The problem of computing higher order singularities can be divided into two sub-

problems, namely, the generation of an augmented equation system defining the

considered singularity, and the numerical solution of the nonlinear system. The

last problem is discussed in Section 2.2 and will not be treated here.
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The solution of the first subproblem requires extensive symbolic manipulations.

Especially for complex high-order chemical process models, the manipulations can

no longer be done manually, but a computer tool is highly desirable that generates

the augmented system automatically.

The Lyapunov-Schmidt reduction, which is presented in Section 2.4, requires an

augmentation of the initial system (2.10). In this work, the approach proposed by

Kunkel is used (Kun91). The augmented system of choice is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x, ν) = 0,

fx(x, ν)v0 − βv∗0 = 0,

fT
x (x, ν)v∗0 − γv0 = 0,

||v0||2 = 1,

||v∗0||2 = 1,

(2.33)

with the singular values β and γ, the eigenvector v0 and the adjoint eigenvector

v∗0 that correspond to the zero eigenvalue. The augmented system has 3n + 2

equations.

The definition of a singularity of codimension k leads to k + 1 additional equa-

tions, which fix the parameter vector α ∈ R
k+1, which is a subset of the model

parameters ν. The k + 1 additional equations can be described by using the fol-

lowing test functions, which result from the Lyapunov-Schmidt reduction (2.24):

gz = 〈v∗0, d f(v0)〉,
gzz = 〈v∗0, d2f(v0, v0)〉,
gλ = 〈v∗0, fλ〉,
gzλ = 〈v∗0, d fλ(v0)− d2f(v0, f

−1
x fλ)〉,

(2.34)

where λ ∈ ν is the parameter that is used in the singularity normal form definition

and does not depend on the choice of the parameters subset α, fλ is a derivative of

f by the parameter λ, dkf is defined by (2.22), and the inner product 〈x, y〉 stands

for the vector product xT y.

Because the Jacobian matrix fx is singular for gz = 0, the vector f−1
x fλ in the

test function gzλ is calculated by an iterative least squares solver LSQR (PS82).

Based on the test functions gz, . . . , gzλ different conditions for singularities can

be defined. One obtains the following singularity conditions:
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• limit point bifurcation (codimension 0, α ∈ R
1):

gz = 0, equivalent to the normal form ±z2 ± λ

• isola or simple transcritical bifurcation (codimension 1, α ∈ R
2):

gz = gλ = 0, equivalent to the normal form ±z2 ± λ2

• hysteresis (codimension 1, α ∈ R
2):

gz = gzz = 0, equivalent to the normal form ±z3 ± λ

• pitchfork (codimension 2, α ∈ R
3):

gz = gzz = gλ = 0, equivalent to the normal form ±z3 ± λz

• winged cusp (codimension 3, α ∈ R
4):

gz = gzz = gλ = gzλ = 0, equivalent to the normal form ±z3 ± λ2

The corresponding flow chart in Figure 2.5 shows an analysis sequence for singu-

larities with codim � 3. Nodes in the flow chart are normal forms that may be

equivalent to the reduced model equation under study. Edges show directions of

the recognition process and corresponding zeros of the test functions (2.34). In

codim g

0

1

2

3 z5 ± λ z4 ± zλ z3 ± λ2 z2 ± λ4

z4 ± λ

gzzzz = 0
gλ = 0

z3 ± xλ

gzzz = 0
gxλ = 0

z2 ± λ3

gzz = 0 | d3g| = 0

z3 ± λ

gzzz = 0
gλ = 0

z2 ± λ2

gzz = 0 | d2g| = 0

z2 ± λ

gzz = 0 gλ = 0

Equilibrium

gz = 0

Figure 2.5: A flow chart for the recognition problem of singularities of codimension � 3
(shaded blocks have been implemented)
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Figure 2.5 the conditions | d2g| = 0 and | d3g| = 0 specify points where matrices

d2g =

(
gλ gλz

gα gαz

)

and

d3g =

⎛
⎜⎝

0 gzz gzλ

gα gαz gαλ

gβ gβz gβλ

⎞
⎟⎠

are singular (GS85, Table 3.2).

The numerical analysis starts from an equilibrium point where the test function

gz vanishes. This situation corresponds to codimension-0 limit point and can

be detected during a steady-state continuation by a real eigenvalue that crosses

the imaginary axis. With the continuation of a limit point’s branch, points with

vanishing gzz and gλ can be found. These points can be used as initial points

for the continuation hysteresis or simple bifurcation varieties, respectively. At the

pitchfork point the derivatives gzz and gλ are simultaneously equal to zero. On the

pitchfork variety with the derivative gzλ the most degenerate winged cusp point

can be detected. Such organizing point shows diversity in nonlinear phenomena in

a small enough neighborhood. Detection of the other five degenerate points, that

are equivalent to the normal forms z5 ± λ, z4 ± zλ, z2 ± λ4, z4 ± λ, and z2 ± λ3,

requires implementation of the test function gzzz and gzzzz.

The implementation of the singularity analysis solver SingAnalyser with meth-

ods and parameters is described in Appendix A.4.2.

2.8 The Hopf bifurcation

The second type of equilibrium bifurcation, which has been presented in Fig-

ure 2.3b, is the Hopf point. It is a local bifurcation in which a fixed point of an

autonomous dynamical system

f(x, ẋ, ν) = 0 (2.35)

loses stability as a pair of complex conjugate eigenvalues of the linearization around

the fixed point cross the imaginary axis of the complex plane. The existence and

the properties of a small amplitude limit cycle branching from the fixed point can

be described by the Hopf bifurcation theorem. In the following theorem, without
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loss of generality, the equilibrium point is assumed at the origin and the critical

value of the bifurcation parameter κ is 0.

Theorem 4 (CL-Hopf Bifurcation Theorem (HKW81)). If

(a) f(0, 0, κ) = 0 for a scalar parameter κ ∈ ν in an open interval containing 0, and

0 ∈ R
n is an isolated stationary point of f ,

(b) all partial derivatives of the components f (l) of the vector f of orders l � L + 2

(L � 2) exist and are continuous in x, ẋ and κ in a neighborhood of (0, 0, 0) in

R
n × R

n × R,

(c) A(κ) = fx(0, 0, κ) and Ȧ(κ) = fẋ(0, 0, κ) have a pair of complex conjugate gener-

alized eigenvalues Λ1 and Λ̄1 such that

Λ(κ) = α(κ) + iω(κ),

where

ω(0) = ω0 > 0, α(0) = 0, α′(0) 	= 0,

(d) the remaining generalized eigenvalues have strictly negative real parts,

then the system (2.35) has a family of periodic solutions: there exist an εP > 0 and a

CL+1-function

κ(ε) =

L/2∑
i=1

κ2iε
2i + O(εL+1) (0 < ε < εP )

such that for each ε ∈ (0, εP ) there exists a periodic solution pε(t), occurring for κ = κ(ε).

There is a neighborhood U of x = 0 and an open interval I containing 0 such that for

any κ ∈ I the only non-constant periodic solution of (2.35) that lie in U are members

of the family pε(t) for values of ε satisfying κ(ε) = κ, ε ∈ (0, εP ). The period T (ε) of

pε(t) is a CL+1-function

T (ε) =
2π

ω0

⎡
⎣1 +

L/2∑
i=1

τ2iε
2i

⎤
⎦ + O(εL+1) (0 < ε < εP ).

Exactly two of the Floquet exponents of pε(t) approach 0 as ε → 0. One is 0 for ε ∈
(0, εP ), and the other is a CL+1 function

ϑ(ε) =

L/2∑
i=1

ϑ2iε
2i + O(εL+1) (0 < ε < εP ).
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The periodic solution pε(t) is orbitally asymptotically stable with asymptotic phase if

ϑ(ε) < 0 but is unstable if ϑ(ε) > 0. If there exists a first non-vanishing coefficient κ2k

(1 � k � [L/2]), then there is an ε1 ∈ (0, εP ] such that the open interval

I 1 = {κ : 0 < κ/κ2k < κ(ε1)/κ2k}

has the following properties. For any κ in I 1 there is a unique ε ∈ (0, ε1) for which

κ(ε) = κ. Hence the family of periodic solutions pε(t) (0 < ε < ε1) may be parametrized

as p(t, κ) (κ ∈ I 1). For κ ∈ I 1, the period T (κ) and Floquet exponent ϑ(κ) are

CL+1-functions of |κ|1/k. The first non-vanishing coefficient ϑ2k is given by

ϑ2k = −2α′(0)κ2k

and

sgnϑ(κ) = sgnϑ2k (κ ∈ I 1).

Thus the members p(t, κ) (κ ∈ I 1) of the family of periodic solutions are orbitally

asymptotically stable with asymptotic phase ϑ2k < 0 and are unstable if ϑ2k > 0.

Proof. The interested reader will find the full proof of the theorem in (HKW81). �

The initial approximation of a periodic solution is based on the previous theorem

and requires calculation of the terms κ2i, τ2i and ϑ2i for i = 1, . . . , [L/2]. The

approximation of the periodic solution in the case of non-vanishing first coefficient

κ2 	= 0 is good enough with the first triple of coefficients κ2, τ2 and ϑ2 in most of

the applications.

The algorithm of evaluation of coefficients is described in (HKW81, Chapter 2)

and can be applied to the system that has the m � n generalized eigenvalues Λi(κ)

of the Jacobian matrices at the critical point x∗, κ∗

A =
∂f

∂x
(x∗, 0, κ∗), Ȧ =

∂f

∂ẋ
(x∗, 0, κ∗)

and satisfies Theorem 4 requirements (c) and (d):

(a) Λ1(κ
∗) and Λ2(κ

∗) are a conjugate pair with vanishing real part,

(b) �Λ′1(κ
∗) 	= 0,

(c) ω0 := �Λ1(κ
∗) 	= 0,

(d) �Λj(κ
∗) < 0, for j = 3, . . . , m.
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With the proposed algorithm it is possible to make initial approximation of the

period as

T (ε) =
2π

ω0
+ O(ε2),

and an initial periodic solution

x(ε) = x∗ + ε�[e2πit/Tv] + O(ε2),

where v is an eigenvector the corresponds to Λ1(κ
∗).

For the specified small ε, the above presented algorithm allows to find an in-

formation about the periodic orbit in the ε-neighborhood of the Hopf point. In

applications this algorithm will be used in a simplified version for an initial ap-

proximation of a periodic solution branching from the non-degenerate Hopf point

in Section 3.3.

2.9 Continuation of the Hopf bifurcation point

The numerical continuation of the Hopf point is based on the approach that is

used in AUTO2000 (D+02). It uses the imaginary part of the Hopf eigenvalue as

an unknown of the continuation problem. The augmented system in Diana for

the continuation of the Hopf bifurcation point is given by the following 3n + 2

equations for the variables x, u, w, and ω0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x, 0, ν) = 0,

fẋ(x, 0, ν)uω0 + fx(x, 0, ν)w = 0,

fẋ(x, 0, ν)wω0 − fx(x, 0, ν)u = 0,

||u||22 + ||w||22 = 1,

uT w = 0.

(2.36)

In system (2.36) the eigenvector v1 = u + iw corresponds to the eigenvalue iω0

(ω0 > 0) of the generalized eigenvalues problem

fẋ(x, 0, ν)v1iω0 + fx(x, 0, ν)v1 = 0. (2.37)

In the Diana package the solution of the equation system (2.36) is realized in

the solver class HopfPointContinuation. The class realization is described in Ap-

38



pendix A in Section A.4.3.

The next section presents definitions of degenerate Hopf points and possible

extensions for the Hopf point continuation algorithm.

2.10 Singularities of the Hopf bifurcation point

With the parameter continuation of the Hopf bifurcation point it is possible to

detect singular points where some conditions of Theorem 4 are violated. At these

points new phase portraits of the dynamical system can be produced. In partic-

ular, periodic orbits appear generically near single-Hopf points, while homoclinic,

quasiperiodic, and chaotic motions exist near double-Hopf points with two pairs

of purely imaginary eigenvalues. In the following, possible singularities will be

described.

�λi

�λi

∗
λ1,2

�λi

�λi

∗

∗

∗

λ1

λ2

λ̄2

�λi

�λi

∗

∗

∗

∗

λ1

λ̄1

λ2

λ̄2

a) Bogdanov-Takens bifurcation b) Fold-Hopf bifurcation c) Double-Hopf bifurcation

Figure 2.6: Degenerate Hopf Bifurcations

The first kind of singularity appears when ω0 vanishes and a critical equilibrium

has a zero eigenvalue λ1,2 = 0 of algebraic multiplicity 2 but of geometric multiplic-

ity 1 (Figure 2.6a). These are conditions for the Bogdanov-Takens (or double-zero)

bifurcation. In a two parameter bifurcation diagram at the Bogdanov-Takens point

varieties of limit points, Hopf points, and saddle-homoclinic bifurcations coincide.

The last bifurcation is global and corresponds to the appearance of homoclinic or-

bits which join a saddle equilibrium point to itself. More precisely, the orbit to

an equilibrium at x0 is called homoclinic if for a point x on the orbit ϕtx → x0 as

t→ ±∞.

The fold-Hopf bifurcation in Figure 2.6b appears when a vanishing real eigenvalue
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coexists with a pair of purely imaginary eigenvalues. The bifurcation point in the

parameter plane lies at a tangential intersection of the limit point and the Hopf

point varieties. Depending on the system, a branch of torus bifurcations can

emanate from the fold-Hopf point. In this case, branches of orbits saddle-focus,

homoclinic and heteroclinic orbits, occur in the neighborhood of the bifurcation

point. The heteroclinic orbit Γ is characterized by the equilibrium points x1 and

x2, such that for any point x on the orbit Γ the dynamical system attracts to

ϕtx → x1 as t → −∞ and ϕtx→ x2 as t→ +∞.

Two pairs of purely imaginary eigenvalues produce a double-Hopf or Hopf-Hopf

bifurcation (Figure 2.6c) The dynamical system has very rich nonlinear dynamics

in a neighborhood of the double-Hopf point. Depending on the particular proper-

ties of the system under consideration, there are around thirty different dynamical

scenarios, divided into simple and difficult cases. A complex heteroclinic structure

is formed in a neighborhood of the bifurcation point. Thus, “strange” dynamics

exist near a generic Hopf-Hopf bifurcation. The corresponding parametric por-

trait has, in addition to local bifurcation curves, a bifurcation set corresponding

to global bifurcations, such as, heteroclinic tangencies of equilibrium and cycle in-

variant manifolds, homoclinic orbits, and associated bifurcations of long-periodic

limit cycles.

The final bifurcation with disappearance of the first characteristic exponent ϑ2 in

terms of Theorem 4 is concerned. At this point a generalized Hopf bifurcation occurs

and a Hopf point variety is separated into two domains with ϑ2 < 0 and ϑ2 > 0.

For nearby parameter values, the system has two periodic orbits which collide and

disappear via a saddle-node bifurcation of periodic orbits. The coexisting stable

and unstable periodic orbits can disappear at a non-degenerate fold bifurcation of

the periodic orbit bifurcation.

The normal forms derivation for the Bogdanov-Takens, fold-Hopf, double-Hopf,

and generalized Hopf bifurcations are described in the book by Y. Kuznetsov (Kuz04,

Chapter 8). The book also describes possible phase portraits for the presented bi-

furcations.

Test functions for the bifurcation described above are presented in (GKS98).

The article presents another type of the augmented system for the Hopf point

continuation, which does not suffer from the disadvantage, that system (2.36) pos-

sesses, which assumes non-zero ω0. Thus, using (2.36), the solver could not pass a

Bogdanov-Takens point where ω0 = 0 and detect it regularly.

In case the dynamical model has the identity Jacobian matrix fẋ = In and can
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be presented by an ODE system

ẋ− f(x, ν) = 0, (2.38)

the augmented system can be defined as in the software package CONTENT (KL97).

The augmented system, in this specific case, reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(x, ν) = 0,

(f2
x(x, ν) + γIn)u = 0,

〈u, u〉 = 1,

〈L, u〉 = 0,

(2.39)

where u = �v1, L is an arbitrary constant vector that is not orthogonal to the

kernel of the matrix f2
x(x, ν) + γIn.

Obviously, a point with γ > 0 corresponds to the Hopf point with ω2
0 = γ,

for γ < 0 the point is a neutral saddle, and the critical case with γ = 0 is the

Bogdanov-Takens bifurcation.

2.11 Conclusion

The numerical nonlinear analysis of equilibrium points in continuous dynamic sys-

tems has been introduced in this chapter. The main topic of the chapter is the

parameter continuation of solutions of the nonlinear algebraic system. Such non-

linear algebraic system can define various phenomena of the dynamical system,

for example, the analysis of equilibrium or steady-state points that has been dis-

cussed in this chapter. Computation of the parameter dependence of such points

is of great interest in engineering applications, because it gives insight in a model

behavior with changing parameters.

The base solver, which allows to continuate abstract nonlinear problems with

respect to the selected parameter, has been presented. The continuation class

implements the predictor-corrector algorithm with the tangent or chord predictors.

The corrector is the Newton iteration solver with the local or pseudo-arc length

parametrization equation.

As the first solver example, the fixed point continuation solver has been intro-

duced. The solver also computes stability of the equilibrium points with the help

of the linearized stability criterion. Critical points where the equilibrium point
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changes its stability can be detected with the solver via monitoring real parts of

the eigenvalues that correspond to the linearization of the differential-algebraic

system. Such critical points can be characterized by vanishing real parts of the

eigenvalues. In applications, two types of non-degenerate critical points are dis-

tinguished.

The first type is the limit or fold point that corresponds to a simple zero real

eigenvalue. The limit point and the analysis of singularities of the one-dimensional

limit point variety are the second topic of the chapter. At first, the Lyapunov-

Schmidt reduction has been presented. The reduction procedure defines a scalar

equation that has one-to-one correspondent solutions to the original full system.

Also derivatives of the reduced function are derived. Vanishing derivatives of

the reduced function determine singular points of the equation solution curve.

The singularity theory predicts complex nonlinear behavior in a neighborhood

of the most degenerate point. Section 2.5 summarizes mathematical methods of

singularity analysis and gives a brief overview of the main results applied to a

real bifurcation point variety. The section also presents perturbed bifurcation

diagrams for the selected singularity points. Finally, the augmented system and

the numerical computation and continuation of the singularity points have been

discussed.

The last part of the chapter is dedicated to the Hopf bifurcation, the second type

of non-degenerate critical points. The system possesses a periodic orbit branching

from the bifurcation point at the bifurcation point. After the CL-Hopf Bifurcation

Theorem statement the algorithm for the computation of the low-order terms in

the Poincaré normal form has been presented. The algorithm allows to find an ap-

proximation of the periodic orbit in a small neighborhood of the bifurcation point.

The augmented system and the solver class for the Hopf point calculation are

topics of Section 2.9. Finally a small overview of the degenerate Hopf bifurcation

points has been presented.

The implemented nonlinear solvers SteadyStateContinuation, SingAnalyser, and

HopfPointContinuation, that are described in Appendix A.4, allow to perform the

nonlinear analysis for Diana models. The first solver locates steady-state points of

a dynamical system for a given initial state and performs the continuation of such

points with respect to the specified parameter. Along the steady state continuation

curve the solver can compute generalized eigenvalues of the model linearization.

The eigenvalues deliver stability information of the computed steady state. Also

the critical points, when the real parts of the eigenvalues change a sign, can be
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detected.

Critical steady-state points can be used as starting points for the next two

solvers. The SingAnalyser class makes a parameter continuation of limit points.

Additionally, the solver computes derivatives of the reduced function that allow

to detect singularities of the solution curve and initiate continuation of a more

singular point variety. The derivatives derivatives gz, gzz, gλ and gzλ of the reduced

equation (2.13) have been implemented in the solver for the user-defined parameter

λ ∈ ν. With the vanishing derivatives, simple bifurcation hysteresis, pitchfork, and

winged cusp points can be found, and the parameter continuation can be used to

find varieties of these points.

The last solver HopfPointContinuation is used to find a parameter dependence of

the Hopf bifurcation point for a dynamical system. The solver can be initiated at

a critical steady-state point with a conjugate pair of purely imaginary eigenvalues.

The solver only computes a variety of Hopf points without computing the test

functions for degenerate or singular points. The implementation of test functions

for an ordinary differential equations case has been presented in the last section.

Implementation of these functions, which allow to detect degenerate Hopf points,

like Bogdanov-Takens, zero-Hopf, double-Hopf, or generalized Hopf bifurcation

points, may be used as a part of the future development of the Diana nonlinear

analysis suite.
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Chapter 3

Periodic Orbits Continuation and the

Recursive Projections Method

Periodic oscillations in chemical engineering studies are widely distributed phe-

nomena and essential for the design and control of processes. Computation of the

parameter dependence of periodic oscillations is of great interest in applications,

because it gives insight about a model behavior with changing parameters. Nu-

merically such task results a periodic boundary-value problem that can be solved

with different well established methods, like shooting or finite difference methods,

see (AMR95).

Often a high-dimensional system has only low-dimensional dynamics. The idea

of combining Newton’s method with a direct solver for a low-dimensional sub-

space and cheap iterative methods for a higher-dimensional one can be applied

for such system. For the computation and analysis of periodic solutions the

separation can lead to quite efficient algorithms. The idea was first proposed

for steady-state solutions of large symmetric problems by Jarausch and Mack-

ens (JM82; JM84; JM87) — they called their method the “condensed Newton -

supported Picard” method — and later extended it to non-symmetric problems by

Shroff and Keller (SK93) in their “Recursive Projection Method” or RPM. Further

development of the recursive projection method can be found in the comprehensive

work by Lust (Lus97; LRSC98), where extensions and improvements of the RPM

were analyzed.

More specifically, in this method the property that many chemical engineering

models with distributed parameters have periodic orbits with only a few unstable

or weakly stable modes are used. The aim of the chapter is to develop a numerical

computation of periodic solutions for high-dimensional systems, like, population

balance models. The computation of the stability of periodic solutions and the

determination of parameter values, at which stability changes occur, will also be
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presented here.

The chapter is structured as follows: Section 3.1 presents periodic solutions for

differential-algebraic equation systems. Numerically such solutions lead to a peri-

odic boundary-value problem with an additional phase condition equation. A no-

tion of the monodromy matrix and characteristic multipliers will also be presented.

Stability of periodic solutions in terms of the Poincaré map and non-hyperbolic

fixed points of the map in Section 3.2 are presented. The next Section 3.3 summa-

rizes numerical methods for the parameter continuation of periodic solutions and

shows initial solution approximation in a neighborhood of the Hopf point in terms

of Theorem 4.

The second part of the chapter is dedicated to the recursive projection method.

Section 3.4 discusses the method derivation for a fixed value problem of a mapping

with a nonlinear algebraic restriction. Also the implemented numerical algorithm

in this work is presented. The final Section 3.5 is dedicated to applications of the

RPM method to fixed value problems, like, a solution of linear algebraic system,

the parameter continuation of steady states and periodic orbits for a dynamical

system.

3.1 Periodic solutions

This chapter will mainly be concerned with periodic solutions of an autonomous

differential-algebraic equation system in implicit form

f(x, ẋ, ν) = 0, x(0) = x0, (3.1)

where f : R
n × R

n × R
p → R

n is supposed to be differentiable sufficiently many

times. In the following let

ϕ(x0, t, ν), ϕ : R
n × R× R

p → R
n (3.2)

denote the solution of the equation system (3.1) that is generated by the evaluation

operator ϕt and satisfies

ϕ(x0, 0, ν) = x0,

ϕ(x0, t + τ, ν) = ϕ(ϕ(x0, t, ν), τ, ν).
(3.3)
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A periodic orbit or cycle is a non-constant closed solution of (3.1) with a constant

T > 0 such that

ϕ(x0, t, ν) = ϕ(x0, t + T, ν), 0 � t < T. (3.4)

The smallest positive value of T for which this condition holds is called the period

of the periodic orbit. For the autonomous DAE system (3.1), an orbit is completely

determined by one point of the orbit, so it is sufficient to compute only a point

x0 on the periodic orbit. Hence, a periodic orbit can be found as the solution of a

boundary value problem for equation (3.1) with a periodic boundary condition

ϕ(x0, T, ν) = x0. (3.5)

The boundary value problem for the T -periodic differential equations does not fix

the solution completely since any solution can be translated freely in time, i.e., if

ϕ(x0, t, ν) is a solution then so is ϕ(x0, t + τ, ν) for any τ and every point x0 on the

periodic orbit can be used to determine the limit cycle. Therefore, an additional

equation

s(x0, T, ν) = 0 (3.6)

that is called a phase condition is required. The phase condition selects one peri-

odic solution among infinitely many periodic solutions corresponding to the same

periodic orbit but having different initial points. The equation s(x0, T, ν) = 0 de-

fines a Poincaré surface which is an (n − 1)-dimensional affine hyperplane. The

orbit should intersect this surface transversely, that is, 〈ϕ̇, sx0〉 	= 0 should hold.

Possible variants of phase conditions are:

(a) s(x, T, ν) := xi− x̄i, for some variable xi in the vector x0 and x̄i is a predicted

value in the range of ϕi.

(b) s(x, T, ν) := ϕ̇i(x, 0, ν), that specifies zero time derivative for ith variable at

the initial time point.

(c) s(x, T, ν) := ϕ̇(x, 0, ν)T (x− z) is a phase condition with built-in transversality.

Here, z is a point near the orbit, for example, a solution on the previous

continuation step.

(d) The integral phase condition

s(x, T, ν) :=

∫ T

0
〈ϕ(x, t, ν), ˙̃ϕ(t)〉 dt
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minimizes the square of L2-norm

D(τ) :=

∫ T

0
||ϕ(x, t + τ, ν)− ϕ̃(t)||22 dt

of the difference between the solution ϕ and the previously calculated one

ϕ̃ with respect to the time shift τ . This phase condition equation is widely

used in the periodic orbits continuation, for example, in AUTO (D+02) or

CONTENT (KL97).

With one of the defined phase conditions above the periodic boundary-value

problem can be written as a nonlinear-algebraic system for the variables x0 and T

as
ϕ(x0, T, ν)− x0 = 0

s(x0, T, ν) = 0
(3.7)

The transversality requirement for the phase condition guarantees that (3.7) will

have a nonsingular Jacobian matrix for regular solutions.

The parameter continuation of periodic orbits will be discussed in Section 3.3

and to the rest of the section the parameters vector ν will be fixed.

Another notion that will extensively be used in this chapter is a monodromy or

principal matrix . The monodromy matrix M for a periodic orbit is defined as a

sensitivity matrix with respect to the initial values at a time point T

M(x0, T, ν) =
∂ϕ(x0, t, ν)

∂x0

∣∣∣∣
t=T

(3.8)

The monodromy matrix can be obtained from a homogeneous linear variational

equation that results after differentiation of f(ϕ, ϕ̇, ν) ≡ 0 with respect to x0

fx(ϕ, ϕ̇, ν)
∂ϕ

∂x0
+ fẋ(ϕ, ϕ̇, ν)

d

d t

∂ϕ

∂x0
= 0 (3.9)

that corresponds to a linear DAE system for the matrix M

fẋ(ϕ, ϕ̇, ν)Ṁ(x0, t, ν) + fx(ϕ, ϕ̇, ν)M(x0, t, ν) = 0, M(x0, 0, ν) = I. (3.10)

In terms of the fundamental matrix Φ(t) for (3.10), the monodromy matrix can be

defined as Φ(t0)
−1Φ(t0 +T ), so the monodromy matrix does not depend on a choice

of an arbitrary initial time point t0. Also the monodromy matrix does not inherit

sparsity structure of Jacobian matrices of the underlying DAE system (3.1). In
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the following, numerical algorithms M will be treated as a full dense matrix n×n.

The matrix-vector product Mv expresses in the first order approximation how a

small perturbation at x0 in the direction v will evaluate in a one cycle. Computa-

tion of Mv does not require the full n× n matrix M . Using the linearity of (3.10),

the vector w := Mv can be obtained from an n-dimensional DAE system

fẋ(ϕ, ϕ̇, ν)ẇ(t) + fx(ϕ, ϕ̇, ν)w(t) = 0, w(0) = v. (3.11)

The eigenvalues of M are called the characteristic multipliers or Floquet multipliers

μ. For the periodic solution the monodromy matrix has a unit eigenvalue with the

corresponding eigenvector ϕ̇(x0, T, ν). In fact, using properties (3.3) and (3.4) the

following expression

ϕ(x0, t, ν)|t=T = ϕ(x0, t + T, ν)|t=T = ϕ(ϕ(x0, t, ν), T, ν)|t=T

after a differentiation with respect to t at the point t = T gives

ϕ̇(x0, T, ν) =
∂ϕ(x0, T, ν)

∂x0
ϕ̇(x0, T, ν) = Mϕ̇(x0, T, ν).

Moreover, if μ is a characteristic multiplier of the system (3.10), then a nontrivial

solution ϕ̄ exists satisfying

ϕ̄(x0, t + T, ν) = μϕ̄(x0, t, ν). (3.12)

The proof of this statement can be found in (Far94, p. 53). The vector ϕ̄(x0, 0, ν) is

an eigenvector corresponding to the multiplier μ. So the characteristic multipliers

contain local stability information of the periodic orbit. Namely, the periodic

orbit is stable if all of the characteristic multipliers, except trivial one, have a

magnitude strictly less than 1; and the periodic orbit is unstable if at least one

the characteristic multiplier has a magnitude greater than 1. The non-hyperbolic

case with non-trivial characteristic multipliers on the unit circle presents a local

bifurcation of the periodic orbit and will be treated in Section 3.2.

It also should be noted that the monodromy matrix for the DAE index-one

problem (3.10) may be singular with dim ker M = dimker fẋ. This fact is based

on the existence of a decomposition (LMW98, Theorem 3.1) of the fundamental
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solution matrix

Φ(t) = H(t)

(
eϑt 0

0 0

)
H(0)−1.

where H ∈ C1 is nonsingular and T -periodic. Exponents ϑ are called Floquet

or characteristic exponents such that eϑT are characteristic multipliers of the sys-

tem (3.10).

If the interval [0, T ] is split in sub-intervals with m points 0 < t1 < . . . < tm < T

then the expression

ϕ(x0, T, ν) = ϕ(ϕ(. . . ϕ(ϕ(x0, t1, ν), t2, ν), tm, ν), T, ν),

after the differentiation with respect to x0, gives

M(x0, T, ν) = M(xm, T, ν) ·M(xm−1, tm, ν) · . . . ·M(x1, t2, ν) ·M(x0, t1, ν), (3.13)

where x1, . . . , xm are solution points at t1, . . . , tm. Expression (3.13) can be used

in the computation of the monodromy matrix in methods with the split time

interval, e.g., multiple shooting or collocation methods for the periodic boundary-

value problem (3.7).

3.2 Stability and bifurcations of periodic orbits

How the behavior of solutions near a periodic orbit can be investigated in terms

of the dynamics of a map will be shown in this section.

The local stability of the periodic orbit can be deduced by analyzing the Poincaré

map or a first recurrence map, which is the intersection of a periodic orbit in the state

space of a continuous dynamical system with a certain (n−1)-dimensional subspace,

called the Poincaré or transversal section. The Poincaré section Ω (Figure 3.1) can

be given implicitly by a scalar equation p(x) = 0 as

Ω = {x | p(x) = 0} (3.14)

an n − 1-dimensional hypersurface that cuts the periodic orbit transversely in

the first point of a periodic orbit x0, i.e., p(x0) = 0 and transversality condition

〈ϕ̇, px(x0)〉 	= 0 is satisfied. The Poincaré map Π : U → Ω near a periodic orbit Γ is

defined to be the map

x �→ ϕ(x, TΩ(x), ν) (3.15)
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for x ∈ U where U is a sufficiently small neighborhood of point x0 in Ω.

Ω

x∗0 x1

Π(x1)

x2

Π(x2)

Figure 3.1: A Poincaré section Ω and dynamic system trajectories

The system (3.1) has a periodic solution in a neighborhood of the solution Γ

if and only if the Poincaré map has a fixed point, i.e., there is a positive integer

k such that Πk(x0) = x0. The following theorem states correspondence between

eigenvalues of the Poincaré map linearization and characteristic multipliers of a

variational system (3.9).

Theorem 5 ((Far94, Theorem 5.2.2)). The eigenvalues of the linearization DΠ : Ω→ Ω

of the Poincaré map attached to the T -periodic solution Γ of the system (3.1), considered

as an n−1 dimensional linear operator, are equal to the characteristic multipliers of the

variational system with respect to the solution Γ provided that the number 1 is deleted

once from the set of the multipliers.

The local stability of the periodic solution Γ depends on the contractivity of the

corresponding Poincaré map and with Theorem 5 on eigenvalues of the monodromy

matrix M . If 1 is a simple characteristic multiplier of the variational system (3.9)

and the remaining n− 1 characteristic multipliers are in modulus less then 1, then

by the previous theorem all n− 1 eigenvalues of the Poincaré map linearized at x0

are in modulus less then 1. This implies that in a neighborhood of x0 the Poincaré

map is a contraction mapping and the periodic orbit is asymptotically stable. The

periodic orbit is unstable if at least one of the characteristic multipliers lies outside

the unit circle. There are three cases of codimension-1 non-hyperbolic points with

the non-trivial unit characteristic multipliers:
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• μi = 1: fold bifurcation of a periodic orbit

The study of the parameter dependency of periodic solutions can lead to

the bifurcations of such solutions when some of the characteristic multipliers

leave the unit circle. The first scenario that will be presented here is charac-

terized by a simple eigenvalue 1 of the Poincaré map linearization or a double

eigenvalue 1 of the monodromy matrix M with a geometric multiplicity of

either one or two. The non-degenerate case of this bifurcation is called a fold

point of the periodic orbit. In a sufficiently small neighborhood of the critical

parameter value two possible phase portraits can coexist with two periodic

solutions (a stable and an unstable one) or without periodic solutions.

• μi = −1: period doubling bifurcation

A non-degenerate period doubling occurs when a single characteristic mul-

tiplier crosses the unit circle transversally at −1 and no other characteristic

multiplier is one in modulus except the trivial characteristic multiplier 1. In

a period doubling point, a branch of periodic solutions with approximately

doubled period appears or disappears. These solutions go twice around the

original periodic orbit. On the period doubled branch, the bifurcation point

is seen as a pitchfork bifurcation with two independent eigenvectors. The

monodromy matrix at the bifurcation point computed on the period doubled

branch is the square of the monodromy matrix on the two-sided branch. The

period doubling bifurcation is also known as flip bifurcation or subharmonic

bifurcation (the latter since it gives rise to a new solution branch of periodic

solutions with approximately half the frequency of the original branch).

• μi = e±iϑ: bifurcation into torus

In this scenario, a pair of complex conjugate eigenvalues of the monodromy

matrix crosses the unit circle. Except for this pair and the trivial characteris-

tic multiplier 1, no other characteristic multiplier lies on the unit circle. The

torus bifurcation is also known as the Neimark-Sacker bifurcation or Hopf

bifurcation of limit cycles.

In the analysis of the torus bifurcation, there is a distinction between whether

the eigenvalues cross the unit circle at a root of unity or not, i.e., between

whether there exists an n ∈ N : μn = 1 or not or equivalently, whether 2π/ϑ is

a rational or irrational number. In the first case, the system has a resonance

phenomena. Especially the cases ϑ = 2π/3 and ϑ = 2π/4 require special

analysis. These two regimes are known as strong resonance. If the eigenvalues
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are another root of unity, the regime is known as a weak resonance. In the

latter case, the Poincaré section has at one side of the bifurcation an invariant

“circle” of periodic points with alternating stability, corresponding to the

existence of two periodic solutions with different stability nearby the original

solution. When the critical Floquet multipliers are not a root of unity, there

are no new periodic trajectories, but there is an invariant surface at one side

of the bifurcation point.

The precise analysis of the phenomena is beyond the scope of this work. A

complete analysis can be found in (Arn83; HK91; Kuz04).

3.3 Continuation of periodic solutions

For the continuation of periodic solutions for the differential-algebraic equation

system (3.1) the algorithm that has been described in Section 2.2 can be applied.

The nonlinear algebraic problem (2.3) is defined for the point x0 on the periodic

orbit Γ, the periodic orbit period T , and a scalar parameter κ ∈ ν. These variables

form an n + 2 dimensional vector {x0, T, κ} that is subject to a nonlinear-algebraic

problem ⎧⎪⎨
⎪⎩

ϕ(x0, T, κ)− x0 = 0,

s(x0, T, κ) = 0,

n(x0, T, κ) = 0,

(3.16)

where ϕ(x0, T, κ) is a flow generated by the implicit differential-algebraic equation

system

f(x, ẋ, κ) = 0, x(0) = x0, (3.17)

s(x0, T, κ) is one of the phase conditions from Section 3.1, and n(x0, T, κ) is the

parametrization equation that has been described in Section 2.2.2.

The periodic boundary-value problem can be solved with either shooting or

collocation methods (AMR95). In this work only single shooting method with a

“black-box” DAE solver is used. The chosen DAE solver is the DASPK (LP00)

that, in addition to ϕ calculation for (3.17), allows to compute the sensitivity of

the solution ϕ with respect to the initial value x0 and the parameter κ.

The integral phase condition

s(x0, T, ν) :=

∫ T

0
〈ϕ(x0, t, ν), ˙̃ϕ(t)〉 dt (3.18)
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is used in this algorithm and computed also with the DASPK solver. In (3.18)

the reference solution ϕ̃(t) is equal to the previously computed one, or to an initial

approximation near the Hopf bifurcation point at the first continuation point. The

DAE system (3.17) is extended with an additional variable s and an equation

ṡ = 〈x, ˙̃ϕ(t)〉, s(0) = 0,

where ˙̃ϕ(t) is a time derivative of a smooth interpolation of the reference solution.

This approach allows to use DASPK to compute derivatives ∂s/∂x0 and ∂s/∂κ.

The parametrization equation n(x0, T, κ) in (3.16) does not differ from the one,

described in Section 2.2.2, and may be either local (2.6) or pseudo-arc length (2.7).

The Newton update Jacobian matrix for the corrector step of the continuation

algorithm 2.2.4 can be formulated for the boundary-value problem (3.16) described

above as

J(x0, T, κ) :=

⎡
⎢⎣

ϕx0(x0, t, κ)− I ϕ̇(x0, t, κ) ϕκ(x0, t, κ)

sx0(x0, t, κ) ṡ(x0, t, κ) sκ(x0, t, κ)

nx0(x0, t, κ) nT (x0, t, κ) nκ(x0, t, κ)

⎤
⎥⎦

t=T

, (3.19)

which is a dense (n+2)×(n+2) matrix. It also can be proven that J is nonsingular

for regular points of the periodic solution branch. Computation of ϕx0 and sx0

requires a solution of the linear variational system for (3.17) and (3.18)

fẋ(ϕ, ϕ̇, κ)ϕ̇x0(t) + fx(ϕ, ϕ̇, κ)ϕx0(t) = 0

ṡx0(t)− 〈ϕx0(t), ˙̃ϕ(t)〉 = 0
, with

ϕx0(0) = I

sx0(0) = 0
, (3.20)

and for the ϕκ and sκ

fẋ(ϕ, ϕ̇, κ)ϕ̇κ(t) + fx(ϕ, ϕ̇, κ)ϕκ(t) + fκ(ϕ, ϕ̇, κ) = 0

ṡκ(t)− 〈ϕκ(t), ˙̃ϕ(t)〉 = 0
, with

ϕκ(0) = 0

sκ(0) = 0
.

(3.21)

With the DASPK solver the initial value problem (3.17) and the linearized varia-

tional equation systems (3.20)–(3.21) are solved jointly for the time interval [0, T ].

The computed Newton update matrix J is used to produce the following iteration

process ⎡
⎢⎣

x
(i+1)
0

T (i+1)

κ(i+1)

⎤
⎥⎦ =

⎡
⎢⎣

x
(i)
0

T (i)

κ(i)

⎤
⎥⎦− J−1

⎡
⎢⎣

ϕ(x
(i)
0 , T (i), κ(i))− x

(i)
0

s(x
(i)
0 , T (i), κ(i))

n(x
(i)
0 , T (i), κ(i))

⎤
⎥⎦ , (3.22)
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for the corrector procedure described in 2.2.2. The presented method is applicable

only for small enough systems because an n-dimensional model requires computa-

tion of (n+1)2 sensitivity variables in terms of the variational systems (3.20)–(3.21).

Another issue that will be covered in this section is the initial approximation of

the periodic solution. In this work an approach based on the algorithm that has

been described in Section 2.8 is used. In a neighborhood of the Hopf point the

period T can be approximated by 2π/ω0, where ω0 is a positive imaginary part of

the critical eigenvalue. The initial periodic solution is approximated with

ϕ̃(t) = x∗ + εe2πit/Tv1 = x∗ + ε(cos(2πt/T )�v1 − sin(2πt/T )�v1),

˙̃ϕ(t) =
2πε

T
e2πit/Tv1 =

2πε

T
(− sin(2πt/T )�v1 − cos(2πt/T )�v1),

(3.23)

where x∗ is the Hopf bifurcation point, v1 is an eigenvector corresponding to the

critical eigenvalue iω0, and ε defines a small neighborhood near the Hopf point.

3.4 The recursive projection method

The recursive projection method (SK93; Lus97) addresses the problem that finds

a fixed point x∗ of a recursive iteration

x(i+1) = F (x(i), ν) (3.24)

such that

x∗ = F (x∗, ν), (3.25)

for the smooth enough mapping F : R
n × R

m → R
n.

The usual way to find the fixed point x∗ in (3.24) is the fixed point iteration

that generates a sequence of the points x0, x1, x2, . . . which are hoped to converge

to the point x∗. The initial point x0 is supposed to be in a sufficient neighborhood

of the solution point x∗. The convergence speed and the stability of fixed point

iteration are determined by eigenvalues of the map linearization Fx at the point

x∗. The method is divergent if at least one eigenvalue lies outside the unit disk,

and convergent if all eigenvalues are inside the unit disk. But the method is

convergent with slow convergence speed if some eigenvalues lie near the unit disk.

The other way to find the fixed point x∗ is to use the Newton iteration for the

nonlinear-algebraic problem

F (x, ν)− x = 0.
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But this method requires computation of the full matrix Fx on each iteration that

requires considerable numerical cost for n � 1. In this section the RPM algorithm

that combines quadratic convergence of the Newton method for a low-dimensional

solution subspace and the low-computational cost fixed point Picard iteration for

a high-dimensional subspace will be presented.

Also in different applications to (3.24) a nonlinear algebraic constraint G may

be added that satisfy in implicit form

G(x, ν) = 0.

The nonlinear constraint G should satisfy requirements of the Implicit Function

Theorem to make a parametrization of the solution x∗(ν). Such constraints may

be a parametrization equation for the parameter continuation of the solution x∗ or

a phase condition in the periodic solutions computation for fixing of the solution

with respect to a time shift. This two examples of additional nonlinear equations

will be discussed below in Section 3.5.

3.4.1 Mathematical background

The recursive projection method exploits the fact that slow convergence speed or

divergence of (3.24) is caused by a small number of eigenvalues that have modulus

greater than 1 −  for a user-defined positive value . The idea of the method

is to split the solution space into a “stable” or fast converging subspace and an

orthogonal “unstable” one, where the solution has slow convergence or diverges.

The splitting allows to apply different numerical algorithms in each subspace. In

this work, the Picard iteration in the “stable” subspace and the Newton iteration

in the “unstable” one will be used. Combination of this methods results in the

so-called Newton-Picard method that was introduced in a work by Shroff and

Keller (SK93) and extended in a work by Lust (Lus97).

Let the task be defined in terms of (3.24) as

x(i+1) = F (x(i), ν), x ∈ R
n,

0 = G(x(i), ν), ν ∈ R
m,

(3.26)

where x(i) ∈ R
n is a vector of unknown variables for an iteration i, ν ∈ R

m is a

parameters vector, F : R
n×R

p → R
n is a sufficiently smooth map and G : R

n×R
p →

R
p are smooth nonlinear constraints that are used to find a parametrization of x
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with respect to ν The objective of the task (3.26) is to find such a point {x∗, ν∗}
that fulfill the following equalities

x∗ = F (x∗, ν∗),

0 = G(x∗, ν∗).
(3.27)

The Newton iteration can be used to solve the task mentioned above in a

nonlinear-algebraic form
F (x, ν)− x = 0,

G(x, ν) = 0.
(3.28)

The Newton update on ith iteration is computed from the following linear algebra

problem [
F

(i)
x − I F

(i)
ν

G
(i)
x G

(i)
ν

][
Δx(i)

Δν(i)

]
= −

[
r(i)

G(i)

]
(3.29)

where r(i) := F (x(i), ν(i))−x(i) is a residual vector. With the computed values Δx(i)

and Δν(i) the iteration update is x(i+1) = x(i) + Δx(i), ν(i+1) = ν(i) + Δν(i). This

numerical approach is very expensive in many cases, when the calculation of the

first order derivative matrix F
(i)
x is the time-consuming part.

To avoid complete computation of the matrix F
(i)
x a stabilization procedure is

proposed (SK93). Let F ∗ := Fx(x∗, ν∗) have eigenvalues {μk}n
1 that for some  > 0

are ordered as

|μ1| � · · · � |μnp| > 1−  � |μnp+1| � · · · � |μn| (3.30)

and np � n. Then it is possible to define the maximal invariant subspace U of F ∗

belonging to {μk}np

1 eigenvalues with projectors P and Q := I − P that induce an

orthogonal direct sum decomposition

R
n = U ⊕ U⊥ = PR

n ⊕QR
n.

A subspace decomposition can be introduced for the mapping F in (3.28)

0
!
= Q(F (x, ν)− x) = QF (p + q, ν)− q, q ≡ Qx ∈ U⊥,

0
!
= P (F (x, ν)− x) = PF (p + q, ν)− p, p ≡ Px ∈ U ,

(3.31)

so the linearization of the first mapping in U⊥ has eigenvalues |λ(QF ∗Q)| � 1 − 

with a magnitude less than one and is stable for the fixed point iteration in U⊥
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subspace.

Let Vp ∈ R
n×np define an orthonormal basis for U that is spanned by the eigen-

vectors of F ∗ corresponding to {μk}np

1 and Vq is an orthonormal basis for U⊥ with

Vq ⊥ Vp, so

P = VpV
T
p , p̄ = V T

p x ∈ R
np , p = Vpp̄,

Q = VqV
T
q = I − VpV

T
p , q̄ = V T

q x ∈ R
n−np , q = Vq q̄,

where p̄ and q̄ are solution coordinates in “unstable” and “stable” subspaces.

With the projectors P and Q the original task (3.29) can be rewritten as

r̄q = V T
q r = V T

q (QF (Vpp̄ + Vq q̄, ν)− Vq q̄) = 0

r̄p = V T
p r = V T

p (PF (Vpp̄ + Vq q̄, ν)− Vpp̄) = 0

G(Vpp̄ + Vq q̄, ν) = 0

and the Newton iteration is transformed to

⎡
⎢⎣

V T
q (F

(i)
x − I)Vq V T

q (F
(i)
x − I)Vp V T

q F
(i)
ν

V T
p (F

(i)
x − I)Vq V T

p (F
(i)
x − I)Vp V T

p F
(i)
ν

G
(i)
x Vq G

(i)
x Vp G

(i)
ν

⎤
⎥⎦
⎡
⎢⎣

Δq̄(i)

Δp̄(i)

Δν(i)

⎤
⎥⎦ = −

⎡
⎢⎣

V T
q r(i)

V T
p r(i)

G(i)

⎤
⎥⎦ .

Using the fact that V T
p Vp = Ip, V T

q Vq = Iq and Vp ⊥ Vq, the previous system can

be separated

⎡
⎢⎣

V T
q F

(i)
x Vq − Iq 0 0

0 V T
p F

(i)
x Vp − Ip V T

p F
(i)
ν

0 G
(i)
x Vp G

(i)
ν

⎤
⎥⎦
⎡
⎢⎣

Δq̄(i)

Δp̄(i)

Δν(i)

⎤
⎥⎦ = −

⎡
⎢⎣

V T
q (r(i) + F

(i)
ν Δν(i))

V T
p (r(i) + F

(i)
x VqΔq̄(i))

G(i) + G
(i)
x VqΔq̄(i)

⎤
⎥⎦

(3.32)

The resulting system (3.32) has the following properties:

(a) The spectrum of the restricted to U⊥ matrix F
(i)
x has eigenvalues that satisfy

|λ(V T
q F

(i)
x Vq)| � 1 − . This gives a possibility to apply matrix-free iterative

schemes to calculate the solution in U⊥. The iterative scheme in this work is

the Picard iteration, but it is possible to apply other schemes, for example,

Krylov subspace methods BiCGSTAB or GMRES (GV96; Saa00).

(b) relatively small size of the bottom right part (np + m) × (np + m), so the

Newton update can be applied in U space with low computational cost.
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3.4.2 Numerical algorithm

In this section the RPM algorithm for the setting up (3.32) and its solution is

presented. The interested reader will find the detailed analysis of the method in a

work by Lust (Lus97).

The recursive projection method substitutes the corrector step in the parameter

continuation algorithm that has been described in Section 2.2.4. The Newton-

Picard corrector algorithm schematically can be presented

Input: x(0), ν(0), V
(0)
p

Output: x∗, ν∗, μ

begin
i← 0

repeat

V
(i)
p , μ(i) ← power iteration(V

(i)
p , x(i), ν(i))

Δq̄
(i)
r , Δq̄

(i)
ν ← picard iteration(V

(i)
p , x(i), ν(i))

Δp̄(i), Δν(i) ← newton iteration(V
(i)
p , x(i), ν(i), Δq̄(i))

Δx(i) ← V
(i)
p Δp̄(i) + Δq

(i)
r + Δq

(i)
ν Δν(i)

if ||{r(i), G(i)}||2 < εf or ||{Δx(i), Δν(i)}||2 < εx then

break

end

x(i+1) ← x(i) + Δx(i)

ν(i+1) ← ν(i) + Δν(i)

V
(i+1)
p ← basis update(V

(i)
p , μ(i))

i ← i + 1
until i < kmax ;

x∗ ← x(i)

ν∗ ← ν(i)

μ← μ(i)

end
Algorithm 2: Newton-Picard corrector step

The solution of the separated system (3.32) can be done in the following stages

of Algorithm 2:

(a) The first step of the algorithm (the function power iteration in Algorithm 2)

is the computation of the orthonormal basis Vp for U and a restriction of the

matrix Fx to the subspace U . The algorithm does not require computation

of the full matrix Fx, but only a matrix-matrix product W := FxVp, where Vp

has size n × np. The matrix restriction is V T
p FxVp = V T

p W and contains first
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np ordered by magnitude eigenvalues of Fx. This step is performed with the

power subspace iteration (Saa92, Chapter V).

Input: V
[0]
p

Output: Vp with U ≈ span{Vp}, μ

begin

W = V
[0]
p

repeat

Vp ← orth(W ); W ← F
(i)
x Vp

[S, Y ] ← schur(V T
p W )

descending reordering of S and Y to satisfy (3.30)

μ← diag(S)

Vp ← VpY ; W ← WY
until convergence of μ(1 : np) ;

Vp ← Vp(1 : np)
end

Algorithm 3: Power subspace iteration

The linear algebra functions are based on the LAPACK library. The function

orth(W) computes an orthonormal basis for the range of W and is based on

the QR-decomposition (orgqr LAPACK function). The function schur(A)

produces a quasitriangular Schur matrix S and a unitary matrix Y so that

A = Y SY T and Y T Y = I. This function uses the gees LAPACK function.

After computing S and Y , the matrices are reordered accordingly to (3.30).

The method for the basis computation is not restricted to the power subspace

iteration. Alternatives for this method may be other matrix-free methods for

eigenproblems, for example, based on the idea of Krylov subspaces (GV96;

Saa92). Here may be mentioned Lanczos and Arnoldi iterations for symmet-

ric and possibly non-symmetric matrices, that are realized in the ARPACK

library (LSY98).

(b) In the second step (the function picard iteration in Algorithm 2) the solu-

tion update Δq̄ with an iterative method in Q subspace is computed by

[
V T

q (Fx − I)Vq

]
Δq̄ = −V T

q (r + FνΔν).

With the property |λ(V T
q FxVq)| < 1 the Picard iteration

Δq̄(k+1) = V T
q FxVqΔq̄(k) + V T

q (r + FνΔν), k = 1, 2, . . . , npic,

60



is convergent. Reformulating the iteration to the equivalent Neumann series

the update Δq(k) is read for npic iterations

VqΔq̄ = Δq = (I − VpV
T
p )

npic∑
k=1

F k
x · (r + FνΔν)

:= Δqr + ΔqνΔν,

(3.33)

where Δqr and Δqν are the vector x updates in the subspace U⊥ that corre-

spond to the residual vector r and parameters ν respectively.

(c) In the third step (the function newton iteration in Algorithm 2) the solution

in the P subspace with a direct linear algebra method (the LAPACK function

gesv) is implemented for a system

[
V T

p (Fx − I)Vp V T
p (Fν + FxΔqν)

GxVp Gν + GxΔqν

][
Δp̄

Δν

]
= −

[
V T

p (r + FxΔqr)

G + GxΔqr

]
.

(d) The solution x is updated with a vector

Δx(i) = VpΔp̄ + Δqr + ΔqνΔν,

so the next solution iteration will be

x(i+1) = x(i) + Δx(i)

ν(i+1) = ν(i) + Δν(i).

(e) Exit conditions for the Newton-Picard iterations in this work are

(1) for ||{r(i), G(i)}||2 < εf or ||{Δx(i), Δν(i)}||2 < εx the current solution is

accepted as a fixed point,

(2) if the maximum number of iterations is exceeded, the recursive projec-

tion method fails.

(f) As the recursive projection method progresses, the basis Vp for U will change.

A basis update (the function newton iteration in Algorithm 2) should be

performed after each iteration if the number of eigenvalues μ(1 : np) is changed

during the iteration. The basis vectors V
(i+1)
p for the next iteration contain

only eigenvectors of Fx that correspond to the eigenvalues |μ| > 1− .
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In the following section some examples of recursive projection method applica-

tions will be presented.

3.5 Application of the recursive projection method

The RPM algorithm described above can be applied to different numerical prob-

lems to speedup the convergence rate of the iterations method or even make it

convergent. Such problems may be iterative solution of the linear algebra systems,

or continuation of steady-state and periodic solutions for dynamical systems. In

this section these three numerical problems are presented in form (3.26). The prob-

lems also are supplied with simple examples to give an insight into the method.

3.5.1 Linear algebraic problem

For the problem Ax = b with x, b ∈ R
n and A ∈ R

n×n the Picard fixed point

iteration reads

x(i+1) = (I −A)x(i) + b,

and convergence of the iteration process depends on the eigenvalues of the matrix

I−A. The task in form (3.26) for the recursive projection method can be presented

as
F (x) := (I −A)x + b, x(0) = 0 ∈ R

n,

G(x) := ∅, ν ∈ ∅. (3.34)

Application of the RPM to (3.34) results the solution vector x∗ such that Ax∗ = b,

and the dominant np eigenvalues μ of the matrix I − A with the corresponding

eigenvectors Vp that belong to the low-dimensional “unstable” subspace.

The following example shows an application of the RPM to a linear algebraic

problem for the matrix A that has the size n = 100. In the example the matrix

I − A has 5 eigenvalues outside the unit disk (Figure 3.2). The results of the

system solution with the RPM are shown in Figure 3.3. Solid lines are residual

norms ||x(i) − x∗||2 of the stabilized process, dashed lines are residual norms of

the fixed point iterations without the RPM stabilization. Points with marks

denote Newton updates after every five Picard iterations. After every Newton

update the number of “unstable” eigenvalues and the dimension of the subspace U
is compared. In case if the number of such eigenvalues is more than the subspace

dimension dim U (i), the basis V
(i+1)
p for the next Picard iteration is extended by one

vector. The only difference in sub-figures of Figure 3.3 is the initial approximation
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Figure 3.2: Eigenvalues of the test matrix Fx := (I −A)
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a) empty initial subspace U = ∅ b) initial subspace with dim U (0) = 5

Figure 3.3: Residual norms for Picard iterations; dashed lines are residual norms without
the RPM stabilization; the RPM stabilization is performed after every five
Picard iterations (denoted by marks); at this points the solution x(i) is

corrected by a Newton update and the basis V
(i)
p is updated

of the basis V
(0)
p . In the left sub-figure the algorithm starts with an empty initial

“unstable” subspace U and in the right sub-figure it starts with the subspace U
spanned by five randomly generated vectors. This leads to a difference in the

convergence of the iteration process. The iterative process in the first example

after only five basis updates is stabilized (i = 30) and afterward it is similar to the

second one.

This example shows significance of the initial “unstable” subspace U and of

the basis update strategy. Namely, starting with an empty U or extension of the

basis V
(i)
p with a small number of eigenvectors may lead to slow convergence (60

iterations in the first case and 18 in the second one).
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3.5.2 Calculation of steady-state solutions

The recursive projection method can be applied for a continuation of an equilib-

rium point of an autonomous DAE system

f(x, ẋ, γ) = 0, f : R
n × R

n × R → R
n

with a dynamic flow ϕ(x0, t, γ), such that f(ϕ, ϕ̇, γ) ≡ 0 and ϕ(x0, 0, γ) = x0. The

equilibrium point in terms of a phase flow ϕ can be defined as a fixed point

x∗ = ϕ(x∗, τ, γ)

for some time interval [0, τ ] with τ > 0. The task in form (3.26) can be presented

as
F (x, ν) := ϕ(x, τ, γ), x(0) = x0 ∈ R

n,

G(x, ν) := n(x, γ), ν = {γ} ∈ R,
(3.35)

where n(x, γ) is the parametrization equation that has been defined in 2.2.2. The

Newton-Picard method substitutes the corrector step in the predictor-corrector

algorithm from Section 2.2.4. The corrector applied to (3.35) results the steady-

state solution point x∗, γ∗ such that x∗ = ϕ(x∗, τ, γ∗). As a byproduct the algorithm

computes the dominant np eigenvalues μ of the fundamental matrix Φ(τ) of ho-

mogeneous linear variational equation (3.9). An approximation of the basis for

the “unstable” subspace U is also computed and defined by Vp basis vectors. The

dominant eigenvalues μ contain stability information of the steady-state point: if

at least one eigenvalue lies outside the unit disk the equilibrium point is unstable,

and is stable if all eigenvalue’s magnitudes are less then one.

3.5.3 Calculation of periodic solutions

A natural approach to compute stable periodic solutions is the straightforward time

integration of (3.1). The time integration for a boundary-value problem (3.16) is

equivalent to a fixed point iteration

x(i+1) = ϕ(x(i), T (x(i)), ν), (3.36)

which can be a subject of the recursive projection method that has been described

above.
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The periodic solution continuation system in form (3.26) can be presented as

F (x, ν) := ϕ(x, T, ν) x(0) = x0 ∈ R
n,

G(x, ν) :=

{
s(x, T, ν)

n(x, T, ν)

}
ν = {T, γ} ∈ R

2,

where n(x, T, ν) is a parametrization equation (Section 2.2.2) and s(x, T, ν) is a

phase condition that has been defined in Section 3.1. For this task the Newton-

Picard method also substitutes the corrector step in the predictor-corrector al-

gorithm from Section 2.2.4. The Newton-Picard corrector results the corrected

periodic solution point x∗, γ∗ with period T ∗ such that

x∗ = ϕ(x∗, T ∗, γ∗),

0 = s(x∗, T ∗, γ∗),

0 = n(x∗, T ∗, γ∗).

(3.37)

In addition it computes the dominant np eigenvalues μ of the monodromy matrix

M . An approximation of the basis for the “unstable” subspace U is also computed

and defined by Vp basis vectors. The dominant eigenvalues μ of the matrix VpF
∗V T

p

are characteristic multipliers and contain stability information of the periodic orbit.

In the following subsection, a simple example gives an insight in the recursive

projection method that is applied to a two-dimensional dynamical model.

3.5.4 Show case example

The steady state and periodic solution continuation is shown by a two-dimensional

dynamical system defined by

ẋ1 = 2πx2 + δ(R− (x2
1 + x2

2))x1, x1(0) = x1,0,

ẋ2 = −2πx1 + δ(R− (x2
1 + x2

2))x2, x2(0) = x2,0.

The system can be transformed in polar coordinates as follows

ρ̇ = δρ(R− ρ2), ρ(0) = ρ0 > 0,

θ̇ = 2π, θ(0) = θ0,
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and solved for ρ(t, ρ0), θ(t, θ0)

ρ(t, ρ0) = ± eδ R t
√

R ρ0√
R − ρ2

0(1− e2 δ Rt)
,

θ̇ = 2πt + θ0

A steady-state solution of the system with radius 0 (ρ=0) exists for all R, see

continuation diagrams in Figure 3.4. Stability of the steady-state is determined

by a product δR, for a positive value of the product the steady-state is unstable,

and for negative is stable. However, when R is positive, there also coexists a

periodic solution of fixed radius
√

R with a period 1. Stability of the periodic

branch also determined by the parameter δ, for a positive value the branch is stable

and for negative is unstable. The limiting case at the origin is a Hopf bifurcation.

Depending on the sign of the parameter δ the bifurcation point may be either

a subcritical Hopf bifurcation (Figure 3.4a) or a supercritical Hopf bifurcation

(Figure 3.4b). In the figure, solid and dashed lines present stable and unstable

R

x1(t)

0 1

1

I II

III

R

x1(t)

0 1

1

IV

a) continuation diagram for δ < 0 b) continuation diagram for δ > 0

Figure 3.4: Continuation of steady states and periodic solutions; solid and dashed lines
are stable and unstable steady-state branches; filled and empty circles are
stable and unstable periodic solution branches; points show initial conditions
for stabilization examples in Figures 3.5 – 3.6

steady state branches. Periodic solution branches are indicated with circles. Filled

and empty circles branches correspond respectively to stable and unstable periodic

solutions.

To show the stabilization process at four different cases I – IV in Figure 3.4 the

recursive projection algorithm is applied. The initial values and parameters are

presented in Table 3.1. Results of the Newton-Picard stabilization for different

parameters and initial values are shown in Figures 3.5 – 3.6. The dimension of
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Point Figure x
(0)
1,0 x

(0)
2,0 R δ

I 3.5a 0.3 0.3 -1 -0.1
II 3.5b 0.3 0.3 1 -0.1
III 3.6a 1.5 0.0 1 -0.1
IV 3.6b 1.5 0.0 1 0.1

Table 3.1: The initial values and parameters for the test examples I – IV

the unstable subspace is constant and the unstable subspace basis consists of two

vectors. In both cases the parametrization equation fixes the parameter value R

(Table 3.1). For periodic solution branches an additional phase condition fixes

the period T = 1. The stabilization procedure of steady states periodic solution

branches is applied with a fixed time interval τ = 1. Solid lines in Figures 3.5 – 3.6

show the iterative stabilization process with the stabilization Newton steps at time

points t = 1, 2, . . . and dashed lines show dynamic simulations that start at time

points t = 0, 1, 2 . . . without the stabilization. The stabilization iteration in the

example can be treated as one Picard step for a map x(i+1) := ϕ(x(i), 1, R) with a

consequent Newton step. Computed fixed points and corresponding eigenvalues
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a) starting point I, the iteration
converges to an unstable focus

a) starting point II, the iteration
converges to a stable focus

Figure 3.5: The Newton-Picard stabilization for the steady state continuation; solid line
is a stabilized iteration process; dashed lines are unstabilized dynamic simu-
lations

of the matrix Fx are summarized in Table 3.2.
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Figure 3.6: The Newton-Picard stabilization for the periodic orbit continuation; solid
line is a stabilized iteration process; dashed lines are unstabilized dynamic
simulations

Point x∗1 x∗2 μ1 μ2

I 0.0 0.0 1.1052 1.1052
II 0.0 0.0 0.9048 0.9048
III 0.89 -0.45 1.2214 1.0
IV 0.89 -0.45 1.0 0.8187

Table 3.2: Results of the test examples I – IV

3.6 Conclusion

The numerical computation of periodic solutions of dynamical systems has been

introduced in this chapter. The chapter at first concentrated on the definition of

periodic orbits and a corresponding periodic boundary-value problem. The stabil-

ity analysis of periodic orbits also has been presented in this chapter. The stability

analysis is based on the Poincaré map definition and leads to the determining of

the stability information of fixed points of the map. The non-hyperbolic fixed

points of the Poincaré map are of great interest in applications, since such points

specify stability changes. In Section 3.2 three possible non-hyperbolic fixed points

with connection to the underlying periodic orbits have been presented.

The next topic that has been covered in this chapter is the parameter contin-

uation of periodic orbits. The used method is the single shooting method that

has been applied to the periodic boundary-value problem with additional phase
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and parametrization equations. The boundary-value problem with the Newton

iteration method has been solved. This approach only can be used for quite small

models, because the Newton method requires computation of the full n× n sensi-

tivities matrix.

In the second part of the chapter the recursive projection method in the form

of the fixed value problem for a map has been presented. The system under study

is projected onto the low-dimensional generalized eigenspace of the linearization

matrix, corresponding to the unstable and weakly stable modes, and its high-

dimensional orthogonal complement. The high-dimensional subsystem is solved

using an iteration method. In this work the Picard iteration is implemented, but

in possible extensions of the RPM implementation more sophisticated methods

can be used, such as BiCGSTAB or GMRES (BBC+94). The low-dimensional

subsystem is solved using a direct linear system solver. Information on the domi-

nant eigenvalues in low-dimensional subspace also can be obtained from the split-

ting. The presented method will be efficient for a relatively small unstable sub-

space. Instead of computing n2 sensitivities as with the full Newton method, only

n × (np(1 + nsub + npic)) sensitivities are required. Additionally, n × (npnsub) and

n× (npnpic) are required for two extra steps, namely, nsub subspace iterations and

npic iterations for the linear algebra solving with the Picard iteration.

After the recursive projection method introduction, three applications are pre-

sented. The first application is a linear algebraic system solution. The system is

presented as a simple iteration method that only will converge for limited cases

when the matrix I −A has only eigenvalues with a magnitude less than one. The

application of the stabilization procedure separates the solution vector into two

subspaces that have eigenvectors as a basis. The first subspace is spanned by the

eigenvectors of A that correspond to the eigenvalues with a magnitude less than

one, such that the Picard iteration will converge in the subspace. The second one

has a basis that is spanned by eigenvectors corresponding to other eigenvalues that

cause slow convergence or divergence of the iteration method. The solution vector

is updated with a direct method in this subspace. For such a low-dimensional

subspace the method will require low computational costs. As an additional result

the method computes dominant eigenvalues and corresponding eigenvalues for the

matrix A.

The second and third application are continuation tasks for steady-state points

and periodic solutions of dynamic systems. The system integration has been done

as a “black-box” dynamic solver that allows to compute sensitivities and matrix-
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vector products Mv that are required for the iterative Newton-Picard method.

Compared to an ordinary single shooting method, the Newton-Picard greatly

reduces computational costs for high-dimensional simulation models with low-

dimensional dynamic behavior.

It is important to note that the cost for one iteration step is proportional to

the cost of one time integration. The amount of matrix-vector products with the

monodromy matrix needed in the subspace and Picard iterations is independent of

the number of degrees of freedom of the spatial discretization. Hence, if an efficient

time integration code is available, the method particularly suits for problems that

require a fine spatial discretization to capture the behavior of the physical system

correctly and is very well suited to produce quantitative results, which usually

require much finer discretizations than are required for the generation of qualitative

results only. Additionally, the method computes dominant eigenvalues of Fx that

can be interpreted in the stability analysis of fixed points.
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Chapter 4

Case Studies

The present chapter contains examples of the nonlinear analysis of three chemi-

cal engineering models: a continuous flow stirred tank reactor model, a spatially

distributed model of a high temperature fuel cell, and a crystallizer in continuous

mode of operation with fines dissolution and classified product removal. These

models show highly nonlinear behavior and can be used to present the nonlinear

analysis algorithms implemented in this work.

The first example is a low dimensional model of a continuous flow stirred tank re-

actor. How the model sources can be generated and compiled in Diana simulation

environment will be shown for this example. Also a basic dynamic simulation will

be presented. The parameter continuation of a fixed point, the computation of the

limit point variety with singular points detection, and the perturbation diagrams

in a neighborhood of such points will be discussed in this example.

The second example is a spatially distributed molten carbonate fuel cell model.

The destabilizing effect in this model leads to the formation of temperature hot

spots. The nonlinear analysis helps to understand the formation of the hot spots

to avoid damage of the fuel cell. The highly nonlinear behavior of this model is

shown by the detected winged cusp points.

The last model represents a mixed-suspension-mixed-products removal crystal-

lizer. The crystallizer is modeled by a discretized population balance equation and

a mass balance equation. In recent studies (see, for example, (PK02)) periodic so-

lutions in this model have been found. But due to the size of the model, traditional

periodic solution continuation methods were not applicable in the past. It will be

shown that the RPM algorithm in Diana is able to treat problem of such a high

dimension easily.

71



4.1 Nonlinear analysis of a CSTR

For the continuous flow stirred tank reactor case study the well studied nonlinear

benchmark problem of the iron(III)-catalyzed oxidation of ethanol with hydro-

gen peroxide to ethanal and acetic acid (ZMOG99) will be considered. Previous

experimental and theoretical studies showed that this reactor can have a very com-

plex steady-state and dynamic behavior (Haf68; ZMOG99; ZPMG00). The model

shows highly nonlinear behavior and can display temperature and concentration

oscillations, steady-state multiplicities, and Hopf bifurcation points.

The mass balances of the model read

dcH2O2

dt
=

q̇in

V
(cH2O2,in − cH2O2)− (r1 + r2 + r3),

dcCH3CHO

dt
=

q̇in

V
(cCH3CHO,in − cCH3CHO) + (r1 − r2),

dcCH3COOH

dt
=

q̇in

V
(−cCH3COOH) + r2

dccat

dt
=

q̇in

V
(ccat,in − ccat)− (r4 − r5),

where ci are concentrations, V is the liquid phase volume, q̇in denotes the volumetric

feed flow, and ci,in specify the feed concentrations.

The dependence of the reaction rates ri on the reactor temperature T is described

by the Arrhenius equation. The rate expressions reads

r1 = k1e
−E1/(RT )ccat cH2O2

r2 = k2e
−E2/(RT )ccat cH2O2 cCH3CHO,

r3 = k3e
−E3/(RT )ccat cH2O2 ,

r4 = k4e
−E4/(RT )ccat

√
cCH3CHO,

r5 = k5e
−E5/(RT )(cF,ges − ccat).

where cF,ges is the total iron concentration. The pre-exponential factors ki and

energies of activation Ei can be found in (ZMOG99).

The energy balance reads

V ρcp
dT

dt
= ρcpq̇in(Tin − T ) + (UA)cool(Tcool − T ) + V

3∑
i=1

ri(−ΔhR)i.

Vcoolρcp
dTcool

dt
= ρcpq̇cool(Tcool,in − Tcool) + (UA)cool(T − Tcool).
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where q̇cool is the volumetric coolant inlet flow, Tin, Tcool and Tcool,in are the tem-

perature of the feed flow, the temperature of the cooling water in the coil, and the

temperature of the coolant inlet flow. (UA)cool signifies an overall heat transfer

coefficient, which describes the energy transfer to the cooling coil. The values

(−ΔhR)i specify the reaction enthalpies under standard conditions, and ρcp is a

heat capacity of the liquid phase.

4.1.1 Dynamic simulation of a CSTR

The model source files from the MDL file (in this example the file name is hafke.mdl)

can be produced with a command

mdl2diana Hafke_Reactor -f hafke.mdl

in a shell command line. The first argument is the model entity name, and the

second one specifies the model file name after the command line flag -f. The

compilation of the resulting C++ sources with the script dianac

dianac HafkeReactor

is performed.

Basic dynamic simulation of the CSTR can be demonstrated with the next script.

1 import sys , os

2 from diana import *

3 dm=GetDianaMain (sys.argv)

4 mm=dm.GetModelManager ()

5 sf=dm.GetSolverFactory ()

6

7 modelname=’model/HafkeReactor .so’

8 model=mm.CreateModel(CAPE_CONTINUOUS , modelname)

9 model.Initialize ()

10 eso=model.GetActiveESO ()

11 epar=eso.GetRealParameters ()

12 evar=eso.GetStateVariables ()

13

14 solver=sf.CreateSolver (CAPE_DAE , model , ’ida.so’)

15 solver.Initialize ()

16 spar=solver.GetParameters ()

17

18 ri=dm.CreateReportingInterface(’basic’)

19 solver.SetReportingInterface(ri)

20 ri.Add(spar[’T’])
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21 ri.Add(epar[’qknormal ’])

22 for var in evar: ri.Add(var)

23

24 par =({’qk’: 4.0e-5, ’Tend’:10000} , {’qk’: 3.0e-5, ’Tend ’:20000} ,

25 {’qk’: 1.0e-5, ’Tend’:30000} , {’qk’: 2.7e-5, ’Tend ’:60000})

26

27 spar[’VerboseLevel ’].SetValue (2)

28 spar[’T0’].SetValue (0)

29

30 for p in par:

31 spar[’Tend ’].SetValue (p[’Tend’])

32 epar[’qknormal ’].SetValue (p[’qk’])

33 solver.Solve()

34

35 outdir=’DynamicSimulation ’

36 if not os.path.isdir(outdir ): os.mkdir(outdir)

37 ri.WriteDataMatlab (outdir+’/Example .m’)

Listing 4.1: The dynamic simulation of the CSTR in Diana

In line 1 of the script the Python and Diana modules are imported. The next

three lines 2 – 4 initialize DianaMain, ModelManager and SolverFactory instances.

The model manager mm loads the CSTR compiled model HafkeReactor.so in line 6,

and in line 7 the model instance model is initialized. For convenience, in the lines

8 – 10 references to an ESO instance eso, real parameters epar and state variables

collections evar are assigned. The IDA solver solver is loaded and initialized in

the lines 12 – 14. After that, a reporting interface ri in the lines 16 – 20 for

the independent variable t, the model parameter q̇cool, and the state variables is

initialized. The lines 22 – 31 present a simple simulation scenario. In this scenario

the volumetric coolant inlet flow q̇cool changes the value during the simulation at

the time points 10,000; 20,000; and 30,000. Finally, the results in the Matlab form

in the lines 33 – 34 are saved to a result file.

Dynamic simulation results (Figure 4.1) show quite complicated behavior of the

CSTR model. On the figure the model has either stable periodic or steady-state

solutions for different values of the coolant inlet flow q̇cool Such a behavior assumes

existence of the Hopf point bifurcation for some values of the parameter q̇cool. This

model will be used in further case studies to present capabilities of the nonlinear

analysis tools in Diana.
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Figure 4.1: Simulation results of the CSTR for different values of the volumetric coolant
inlet flow q̇cool

4.1.2 Singularity Analysis of a CSTR

Previous experimental and theoretical studies showed that this reactor can show

a very complex steady-state and dynamic behavior(Haf68; ZMOG99; ZPMG00).

However, for this model higher order singularities have never been investigated

before, mainly, because the derivation of the augmented equations system is very

tedious even for such a comparatively small system. In the following, it will be

shown that a singularity analysis can be done very easily using the Diana nonlinear

suite, and that such a singularity analysis is a highly efficient way to elucidate

the nonlinear system behavior and to understand the process in a wide range of

operation and model parameters.

The first step of the analysis consists in a continuation of steady-state solutions.

The inlet temperature of the coolant Tcool,in is used as a continuation parameter

in the following Python script (Listing 4.2). The script uses the preloaded ESO

instance model/eso of the CSTR model and loads initial point data in line 1. In the

lines 3 – 10 the solver instance conti for the steady-state parameter continuation

(the shared library sstate.so) with the reporting interface ri are initialized. Some

of the continuation parameters in the lines 12 – 16 are tuned. The inlet temperature

of the coolant Tcool,in is marked as the continuation parameter in line 17. In

addition, the method AddFreeParameter receives the lower and upper boundary

values of the parameter. The actual continuation and storing of the results is

done in the lines 18 – 19. During the continuation the solver computes linearized

stability information along the solution curve and detects bifurcation points.

Under suitable conditions a hysteresis behavior as shown in Figure 4.2 exists.
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1 eso.LoadState(’InitialPoint .dat’)

2

3 conti=sfactory .CreateSolver (CAPE_CONTI , model , ’sstate.so’);

4 conti.Initialize ();

5 cpar=conti.GetParameters ()

6 ri=main.CreateReportingInterface(’basic’);

7 conti.SetReportingInterface(ri);

8 ri.Add(epar[’tkzu’]]);

9 ri.Add(evar[’t’]);

10 ri.Add(cpar[’Stability’]);

11

12 cpar[’VerboseLevel ’].SetValue (0)

13 cpar[’MaxStepsAmount ’].SetValue (5000)

14 cpar[’MaxStepSize ’].SetValue (5.0)

15 cpar[’StabilityCheck ’].SetValue (True)

16 cpar[’ConditionCheck ’].SetValue (SingularityNone )

17 conti.AddFreeParameter (’tkzu’, 250.0, 400.0)

18 conti.Continuate ()

19 ri.WriteDataMatlab (’OneParameterContinuation.m’)

Listing 4.2: The steady-state continuation of the CSTR model

Such a hysteresis can be found easily in most cases, using either physical consid-

erations or well-known graphical constructions (vH58). The solution branches in

Figure 4.2 lose stability in Hopf bifurcation points (ZMOG99). This points can

be a subject of a further analysis, for example a Hopf point continuation curve in

Figure 4.3, however, this is not considered further in this work.

Tcool,in [K]

T
[K

]

285 290 295 300 305 310

300

320

340

360

Figure 4.2: Initial one-parameter continuation of steady states; solid lines stand for stable
solutions; dashed lines stand for unstable solutions; asterisks mark limit
points and circles are Hopf bifurcation points

The two limit points in Figure 4.2, which border the interval of multiple steady

states, change their position, if another model parameter, e.g., the coolant flow
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Figure 4.3: The two-parameter continuation of the Hopf point; the starting point is taken
from the continuation in Figure 4.2 for the initial value of the volumetric feed
flow q̇in = 50.4 [l/h]

rate q̇cool is varied. The position of the two limit points as a function of the model

parameters Tcool,in and q̇cool is depicted in the left diagram of Figure 4.4. The curve

in the left diagram was generated by a two parameter continuation, using one of

the limit points from Figure 4.2 as a starting value. In order to detect a singularity

of the next higher codimension, the test function gzz of Eq. 2.24 is evaluated along

the solution branch (see right diagram in Figure 4.4). Eventually, this test function

vanishes and indicates the occurrence of a codimension-1 hysteresis point (diamond

box in Figure 4.4).
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Figure 4.4: Left diagram: the limit point continuation, asterisks mark the limit points
shown in Figure 4.2; right diagram: gzz test function that indicates a hys-
teresis point when vanishing

This diagrams are plotted with the data produced by the following script (List-

ing 4.3). This script has minor changes with the previous from the previous one.

The solver instance sing is loaded from the shared library sanalyser.so. Instead
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1 eso.LoadState(’LimitPoint.dat’)

2

3 sing=sfactory .CreateSolver (CAPE_CONTI , model , ’sanalyser.so’)

4 sing.Initialize ()

5 spar=sing.GetParameters ()

6 spar[’ConditionShow ’].SetValue (SingularityGxx )

7 ri=main.CreateReportingInterface(’basic’)

8 sing.SetReportingInterface(ri)

9 ri.Add(epar[’tkzu’])

10 ri.Add(evar[’temp’])

11 ri.Add(spar[’Gxx’])

12

13 spar[’VerboseLevel ’].SetValue (2);

14 spar[’MaxStepSize ’].SetValue (5.0);

15 spar[’InitialDirection ’].SetValue (-1);

16 spar[’ConditionEquations’]. SetValue (SingularityGx );

17 conti.AddFreeParameter (’tkzu’, 250.0, 400.0)

18 sing.AddFreeParameter (’qknormal ’, 0.5e-10, 5e-3);

19 ret=sing.Continuate ();

20 ri.WriteDataMatlab (’LimitPointContinuation.m’);

Listing 4.3: The limit point continuation of the CSTR model

of the stability information, the reporting interfaces gets the value of the test

function gxx during the continuation. Also, the solver has two “free” continuation

parameters that are changed along the continuation curve. In addition to the inlet

temperature of the coolant Tcool,in, the coolant flow rate q̇cool is added. The pa-

rameter ConditionEquations is changed to the value SingularityGx that adds an

equation gz = 0 to the augmented system 2.33.

The exact value of the hysteresis point can be computed with an extension of the

previous script. The script changes the value of the parameter ConditionCheck to

SingularityGxx, that adds estimation of the test function gzz along the continua-

tion curve. The result of the continuation is checked in line 21. If the return value

shows that the test function has changed the sign (the value ContiOkTestFunction)

than an additional parameter cH2O2,in and the equation gzz = 0 are added to the

solver in the lines 22 – 24.

Three parameter continuation can compute this hysteresis point as a function

of three model parameters, e.g., Tcool,in, q̇cool, and the inlet concentration of hy-

drogen peroxide cH2O2,in. The result is shown in the left-hand diagram of Fig-

ure 4.5. Similar to the previous step, a new test function gλ is evaluated in

addition to the computation of the solution branch. In this continuation the λ
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17 spar[’ConditionCheck ’].SetValue (SingularityGxx )

18 conti.AddFreeParameter (’tkzu’, 250.0, 400.0)

19 sing.AddFreeParameter (’qknormal ’, 0.5e-10, 5e-3)

20 ret=sing.Continuate ()

21 if ret== ContiOkTestFunction:

22 sing.AddFreeParameter (’c_zu [1]’, 0.0, 10000.0);

23 spar[’ConditionEquations’].SetValue (SingularityGx |

24 SingularityGxx )

25 if sing.Solve ()!= SolveSuccess :

26 print ’Error in the hysteresis point calculation ’

27 else:

28 eso.SaveState(’Hysteresis.dat’)

29 else:

30 print ’Error in the hysteresis point estimation ’

Listing 4.4: The hysteresis point location

is the coolant flow rate q̇cool and is specified by the value of the solver parame-

ter LambdaParameter. This allows to find the co-dimension 2 pitchfork bifurcation

point marked by a square box in Figure 4.5, the organizing center for the chosen

set of three free parameters. Before considering the relevance of the organizing

center for the model behavior, one should note that this singularity is detected

with a minimum input from the user. Each time a singularity is detected, the

corresponding test function gz = 0, gzz = 0, gλ = 0 is added automatically to the

augmented equation system by setting the parameter ConditionEquations to a

value SingularityGx|SingularityGxx|SingularityGp. All the user has to do is to

choose another free model parameter for the next continuation run and to restart

the continuation algorithm.
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Figure 4.5: Hysteresises continuation and corresponding gλ test function; square box is
a pitchfork bifurcation point

The singularity theory predicts that in the vicinity of the organizing center all
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possible kinds of qualitative behavior of the system occur. This is illustrated

by the bifurcation diagram in Figure 4.6. One can see that at the organizing

center two curves of singularity varieties meet, which divide the parameter region

in four domains I to IV of qualitatively different nonlinear behavior. Figure 4.7

shows typical one-parameter bifurcation diagrams for each of the four domains. In

domain I, there are two solution branches: a low temperature branch that exists

for all values of the coolant flow, and a high temperature branch that vanishes

for coolant flows above q̇cool ≈ 0.75l/h. When starting the reactor at the high

temperature branch and slowly increasing the coolant flow, one will find a sudden

temperature drop at q̇cool ≈ 0.75l/h, as the system moves to a stable steady state at

the lower branch. A further slow increase of the coolant flow first causes a gradual

increase of the reactor temperature and later, at q̇cool ≈ 1.4l/h a sudden jump of the

reactor temperature, when one of the limit points on the lower branch is passed.

In domain II, there is still one solution branch that vanishes for larger values of

the coolant flow, and one branch that exists for all values of q̇cool. In contrast

to domain I, this second branch is now completely stable. Domain I and II are

separated by a transcritical bifurcation variety. This means that at the border

between the two domains, the two solution branches meet and form a fork-like

structure. The border between domain II and domain III is a hysteresis variety,

i.e., domain III possesses an additional hysteresis compared to domain II. This can

be seen from Figure 4.7 c). Finally, a transition from domain III to domain IV

causes the unstable part of the lower solution branch from domain III to connect

with the left-hand side part of the upper solution part. The stable part of the

lower solution branch and the right-hand side part of the upper solution part form

another completely stable solution branch in domain IV.

From the discussion of Figure 4.6 and Figure 4.7 it should become clear that the

organizing center contains system information in a very condensed manner. Once

the organizing center is known, it is sufficient to determine steady-state solutions

at a few points in the parameter space in order to understand the parameter

dependent steady-state behavior of the system completely. From Figure 4.6 and

4.7, one can read the qualitative behavior of the CSTR for any value combination

of Tcool, q̇cool and cH2O2,in without having to compute the solutions explicitly.
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4.2 Singularity analysis of a Molten Carbonate Fuel Cell

As the second example of the singularity analysis tool, a spatially distributed model

of a high temperature fuel cell is considered. The control of the cell temperature

is one of the most important issues for the process operation of high temperature

fuel cells. Temperature maxima, temperature minima and spatial temperature

gradients have to be kept within strict limits in order to avoid damage of the

fuel cell. Therefore, a thorough understanding of the formation of hot spots is

crucial for the development of process control strategies. Such understanding can

be gained from singularity analysis, as will be shown in the following.

An analysis of this model shows that nonlinear effects are mainly caused by the

temperature dependent electrical conductivity of the electrolyte in combination

with the exothermic electrochemical reaction. The effect can occur in solid oxide

fuel cells (SOFCs) as well as in MCFCs. It is illustrated in Figure 4.8. The charge

resistance
reduced local increased

heat production

local temperature
increase

increased
current density

Figure 4.8: Temperature dependent electrical conductivity causes thermal instabilities

transport in the electrolyte of a high temperature fuel cell is mainly accomplished

by migration of ions. Therefore, the electrical conductivity of the electrolyte in-

creases with increasing temperature (e.g., (YRSM+04)). This property may be

a potential source of instability: A local temperature rise reduces the resistance

of the electrolyte and hence increases the local current density. As the current

density is directly coupled to the reaction rate, the reaction rate and hence the

reactive heat production increase locally. This causes a further temperature rise,

i.e. the temperature disturbance is amplified. It will be shown later that this

mechanism may narrow down the part of the electrolyte that actually transports

charge. Channels of high current density may form in the electrolyte, and hot

spots will result. The generation of electrical current may be reduced to narrow
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channels with very high temperatures (MKS04; MKS06).

4.2.1 MCFC model

A spatially one-dimensional model is considered. The space coordinate is in the

direction of the main coordinate of the electrode area, as shown in Figure 4.9. The

main model assumptions are:

• Heat conductivity of the electrodes and the electrolyte in η direction is de-

scribed by Fourier’s law.

• The electrochemical reactions on anode and on cathode side are of the Butler-

Volmer type.

• It is assumed that the gas composition in the anode bulk and in the cath-

ode bulk is constant, i.e., low fuel utilization and negligible concentration

polarization is assumed.

• In the electrolyte, charge is transported only perpendicular to the η coordi-

nate. The electrical conductivity of the electrolyte is temperature dependent

and is described by an Arrhenius function.

A detailed derivation of the model was given in (MKS04).

10

tot

Itot
A

C
�

�

�

Figure 4.9: Scheme of the high temperature fuel cell considered in this work
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The resulting dimensionless model equations read

∂Θ

∂τ
=

∂2Θ

∂η2 +
(
B − φtot

)
i′ −Bi1Θ (4.1)

∂Θ

∂η

∣∣∣∣
0,τ

= Bi2Θ(0, τ) (4.2)

∂Θ

∂η

∣∣∣∣
1,τ

= −Bi2Θ(1, τ) (4.3)

i′ = ψA exp

(
γA Θ

1 + Θ

){
exp

(
−(1− βA)γeq φA

1 + Θ

)
−

−KA
eq exp

(
βAγeq φA

1 + Θ

)}
(4.4)

i′ = ψC exp

(
γC Θ

1 + Θ

){
exp

(
−(1− βC)γeq φC

1 + Θ

)
−

−KC
eq exp

(
βCγeq φC

1 + Θ

)}
(4.5)

i′ = ψE exp

(
γE Θ

1 + Θ

)(
φA + φC − φtot

)
(4.6)

I =

1∫
0

i′dη (4.7)

The unknowns in this model are the cell temperature Θ, the current density i,

the potential difference on anode φA and on cathode φC side and the total cell

voltage φtot. The first three lines of the equation system above contain the energy

balance and the corresponding boundary conditions. Equations 4.4 and 4.5 give

a correlation for i due to the Butler-Volmer reaction kinetics. Equation 4.6 states

Ohm’s law for the electrolyte. The last line is an overall charge balance of the cell

that sums up the local current densities to a total cell current.

4.2.2 Cell operation at constant voltage

This section considers the steady state behaviour of the fuel cell, if the cell voltage

is kept fixed. This mode of operation simplifies the mathematical analysis, as the

integral equation (4.7) can be considered as an explicit equation for I and does

not have to be solved for one of the other variables.
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System of infinite length

In a first step, the steady state solutions for a system of infinite length are studied.

The steady state version of (4.1) can be transformed to the following system of

two ordinary differential equations:

dΘ

dη
= Θp (4.8)

dΘp

dη
= (φtot −B)i′ + Bi1Θ (4.9)

The newly introduced variable Θp is the derivative of the temperature profile with

respect to space or, in other words, the spatial temperature gradient. For a given

total cell voltage φtot, the steady state system is completed by the three implicit

algebraic correlations (4.4-4.6) for the unknowns i′, φA, φC . A phase plane analysis

can be applied to the steady state system: For different solutions, the temperature

gradient is plotted against the temperature at the same point. The independent

variable η is eliminated and appears as an arclength parameter in this represen-

tation of the solution. A typical result is shown in Figure 4.10. Solutions with a

spatially constant temperature profile are points on the Θp = 0 axis or equilibrium

points of (4.8,4.9). Those equilibrium points are either saddle points or marginally

B = 0.9328

ψA = ψC = 7.385 · 104

γA = γC = 15.04

γeq = 32

ψE = 4.86 · 103

γE = 1.04

Bi1 = 6480

Bi2 = 1.08

βA = 0.5

KA
eq = 10−7

Table 4.1: Parameter values used in the simulations of MCFC

stable focuses, as follows directly from the Jacobian

J :=

(
0 1

Bi1 + (φtot −B) ∂i′

∂Θ
0

)
(4.10)
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Figure 4.10: Steady solutions of an infinite length system for constant cell voltage; φtot =
0.425, other parameters as in Table 4.1; ×-labels are saddle points and ·-
labels are marginally stable focuses (centers)
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The spatially inhomogeneous solutions can be grouped into two categories. The

first category are solutions coming from and going towards infinity, e.g., solution

”I” in Figure 4.10. They are characterised by a single temperature maximum, the

utter right point of curve ”I”. The second category are solutions on closed trajec-

tories, e.g., solution ”II” in Figure 4.10. Those solutions are periodic in space and

lead to the formation of temperature patterns and current density patterns: When

moving along the space coordinate, the temperature oscillates between a minimum

temperature (the utter left point of curve ”II”) and a maximum temperature (the

utter right point of curve ”II”). As the closed trajectories surround focuses, the

existence of a focus point is a prerequisite for pattern solutions. Figure 4.11 shows

the location of saddle node bifurcations in the γE-φtot parameter plane. The sad-

dle node bifurcations denote parameter values, where a focus and a saddle point

coincide. Focuses and pattern solutions exist in the shaded region of Figure 4.11.

Obviously, the phenomenon of pattern solutions can be found in a large area of
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I = 1 steady state
II, III, V = 3 steady states
IV= 5 steady states

II

IV

Figure 4.11: Saddle node bifurcations of an infinite length system in the γE-φtot plane,
parameters as in Table 4.1

parameter values.

System of finite length

The phase plane analysis is extended now to a system of finite length that has to

fulfil the boundary conditions (4.2, 4.3). In a phase diagram, the left and the right

boundary condition are straight lines with slope Bi2 and −Bi2, respectively. They
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are shown as dashed lines in Figure 4.12. Steady state solutions of the finite length
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Figure 4.12: Steady solutions of an finite length system for constant cell voltage; φtot =
0.425, other parameters as in Table 4.1; dashed lines are points fulfilling
the boundary conditions; circles on the trajectories mark boundary points
of the solutions

system always start on the upper dashed line, follow one of the solution trajectories

of the infinite length system, and end on the lower dashed line. The distance in

space covered while moving from the starting point to the end point must be

equal to the length of the system. If the system is long enough, a solution may

take several turns on a closed trajectory before reaching the right boundary point.

Due to those additional conditions, only a subset of the solutions of the infinite

length system are solutions of the finite length system, as well. In Figure 4.12, the

solutions of the finite length system are indicated by bold lines. The corresponding
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temperature profiles are shown in Figure 4.13. In this example, five solutions are
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Figure 4.13: Spatial temperature profiles of the solutions I – V in Figure 4.12

found to coexist. The solutions III – V are periodic pattern solutions moving on

closed trajectories of the infinite length system. They are symmetric with respect

to the centre of the considered space interval. But also asymmetric solutions are

possible, as can be seen from solution I and II. Both solutions run along the same

trajectory of the infinite length system, but start and end at different boundary

points.

The described method to construct solutions of the finite length system is quite

convenient, if the cell voltage is a given parameter. However, it is hardly applicable

to the case of constant cell current. Further, one does not obtain information

on the stability of the found solutions. Therefore, in the next section numerical

bifurcation analysis will be applied to the system.
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4.2.3 Cell operation at constant current

Usually, fuel cells are characterised by current-voltage plots, which show the volt-

age response of a cell to a given current. Therefore, in this section the cell be-

haviour is analysed numerically for the case of constant cell current. A cell with a

finite length is considered. After spatial discretization, the model consists of 201

algebraic and 200 ordinary differential equations. The scripts for the calculation

of continuation curves are similar to presented in the previous section and are

omitted here.

The purpose of the nonlinear analysis is to show that in high temperature fuel

cells thermokinetic instabilities may result from the temperature dependent elec-

trical conductivity of the electrolyte. An example for this behavior is shown in

Figures 4.14 – 4.17. Figure 4.14 shows a pitchfork variety in the γA−Bi2 parameter

plane. The winged cusp point, which is characterized by vanishing test functions

g, gz, gzz, gItot
, gzItot

, was located in a similar way as described in the previous

example. The point is shown as a triangle mark in Figure 4.14.

Bi2

γ
A

1 1.5 2 2.5 3
10

12

14

16

Figure 4.14: The pitchfork variety of the fuel cell model; triangle is the winged cusp
point

Figure 4.15 shows codimension-1 and codimension-2 singularities in the vicinity

of the found winged cusp point. Figure 4.16 shows a bifurcation diagram with the

cell current as a bifurcation parameter. Parameters γK , γA and Bi2 are chosen

in a parameter domain close to the winged cusp. For the magnified region of

interest on the right-hand side of Figure 4.16 steady-state profiles are presented.

The bifurcation diagram is typical for the complexity of the system behavior. For

small values of the cell current Itot < 8678.5 (Figure 4.17a), the steady state solution

is always stable and unique. At the critical cell current value Itot ≈ 8678.5 two limit
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Figure 4.15: Singularity varieties of the fuel cell model; solid lines are hysteresis varieties,
dashed lines are isola or transcritical bifurcation varieties, square boxes are
pitchfork bifurcation points

points appear simultaneously. Therefore, five steady states coexist in the interval

8678.5 < Itot < 12991 between the limit points and a subcritical pitchfork point

(Figure 4.17b). In the next interval 12991 < Itot < 15500 that is limited by two

subcritical pitchfork points (Figure 4.17c) the internal temperature peak becomes

unstable and the system has two stable steady states with high temperatures on

the left or right borders.

Interestingly, the nonlinear phenomena presented so far have no direct relation

to the winged cusp point. This point is responsible for the appearance of a hystere-

sis in the interval 36524 < Itot < 37255. The hysteresis causes the appearance two

additional unstable steady states and the model acquires five co-existing steady

states for Itot = 3.7 ·104 (see Figure 4.17d). The two stable solutions possess a high

temperature peak at the right or at the left system boundary and hence are no fea-

sible operation points. The three unstable solutions have a moderate temperature

maximum in the middle. This is a very useful result for the process operation. If

the unstable steady states are stabilized by a suitable feedback control, it is possi-

ble to operate the fuel cell at much higher currents with a lower temperature level
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inside the cell. Obviously, this insight would hardly have been obtained without

the tool of numerical singularity analysis.
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Figure 4.16: The steady-state temperature dependence Θ(Itot) and a magnified region
of interest
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Figure 4.17: Steady-state profiles Θ(η) for parameters γK = 1.02, γA = 12.0, Bi2 = 1.5
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4.3 Periodic solutions in a MSMPR Crystallizer

Periodic oscillations in crystallization processes have been found by various au-

thors in theoretical and experimental studies ((RL88), (PK02)). Such results are

important in applications, because the oscillations should be avoided for a bet-

ter product quality. Conversely in special cases the periodic oscillations may be

useful for industrial applications (RMK+06; SRP+98). A continuous mixed sus-

pension mixed product removal (MSMPR) crystallization process is considered as

an example. The process is described by a population balance model including

a fines dissolution and a classified product removal, which are possible sources of

nonlinear behavior (PK02). A crystallizer in continuous mode of operation with

the fines dissolution and a classified product removal is shown in Figure 4.18. The

crystallization process is modeled under the following assumptions:

• ideal mixing

• isothermal operation

• constant overall volume (liquid+solid)

• nucleation of crystals of negligible size

• size-independent growth rate

• no particle breakage, attrition or agglomeration.

The population balance equation for the particle size distribution F (L, t) is

∂F

∂t
= −∂(GF )

∂L
− q

V
(hf (L) + hp(L))F (4.11)

with the boundary condition

F (0, t) =
B(c, t)

G(c, t)
=

kb(c(t)− csat)
b

kg(c(t)− csat)
g
. (4.12)

The classification functions specifying the fines dissolution and the product clas-

sification are given by

hf (L) = R1(1− h(L− Lf )),

hp(L) = 1 + R2h(L− Lp),
(4.13)
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Figure 4.18: Continuous crystallizer with fines dissolution and classified product removal

where h(L) is a unit step function and R1 = qf/q and R2 = (qq−q)/q are the recycle

ratios.

The mass balance of solute is

MA
dc

dt
=

q(ρ−MAc)

V
+

ρ−MAc

ε

dε

dt
+

qMAcin

V ε
− qρ

V ε

(
1 + kv

∫
∞

0
(hp(L)− 1)FL3 dL

)
(4.14)

where ε is the void fraction which is given by

ε = 1− kv

∫
∞

0
FL3 dL.

For the numerical simulation the population balance model (4.11) and (4.14) has

to be converted to a set of differential algebraic equations. For the population

balance of the dispersed phase a simple finite difference approximation on a non-

equidistant but fixed grid is used according to

zi = Lmax

(
i

N

)3

, i = 0, 1, . . . , N

with maximal length of crystals Lmax and a total number of grid points N .
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Figure 4.19: Hopf points continuation and instability region in the R1/b plane (results
for unphysical negative values of R1 are added for the sake of completeness)

The model parameters can be found in (PK02). The population balance equa-

tion (4.11) of the model is discretized with 200 grid points.

To locate a region with periodic solutions the Hopf point continuation is per-

formed. The results are shown in Figure 4.19. The region II presents a parameter

domain in the R1/b plane with oscillatory behavior. As shown in the figure for a

fixed reflux ratio R1 it is possible to have domains without oscillations, and do-

mains with one or two oscillatory regions. In Figure 4.20 periodic continuation

diagrams computed with the RPM are presented. Four sub-figures in Figure 4.20

correspond to the dashed lines on the Hopf points diagram for different reflux ratios

R1. In Figure 4.21 corresponding diagrams with the “slowly convergent” Floquet

multipliers are presented. For  = 0.9 there are only two of these multipliers in the

sense of ordering (3.30). Consequently, the restricted monodromy matrix V T
p MVp

has a low dimension (2 × 2). Treating this small subspace by Newton iteration is

of course much faster then applying Newton iteration to the whole n-dimensional

model, for example, computation of a periodic solution branch for the MSMPR ex-

ample with 200 grid points requires in average two hours with the RPM reduction

and two and half days without it.

In Figure 4.22 results of the dynamic simulation of the model for some param-

eters are presented. Figure 4.22c shows result for the periodic solution branch
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Figure 4.20: The periodic orbits continuation for different values R1 in Figure 4.19
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Figure 4.21: Corresponding Floquet multipliers to the diagrams in Figure 4.20 (the solid
line shows the trivial unit multiplier and the dashed line is the dominant
one)
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for the smaller value of the nucleation exponent b in Figure 4.20b. The solution

branch terminates at the region for lower values of the exponent due to the nu-

merical failure of the dynamic solver DASPK. For such values the left boundary of

the population distribution function f reaches high values and the solver returns

a computational error.

This example presents the virtues of the recursive projection method applied to

the continuation of the periodic solutions for large systems. Also the numerical

calculation shows that the continuous mixed suspension mixed product removal

crystallization process with growth and nucleation terms has low-dimensional dy-

namics. This property of the reactor model can be used for the development of

efficient numerical codes for the optimization, parameter estimation, or control of

the model.
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Figure 4.22: Results of the dynamic simulation for different parameter values
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

The majority of chemical engineering processes is characterised by strong non-

linearities. Many studies, including the three examples of this work, show that

singularity analysis can help to understand the parameter dependent behavior of

chemical processes much better, to detect undesired system states caused by non-

linearities, and to make use of nonlinear effects for improved process operation

or process design. As chemical processes typically contain a large number of free

parameters, the nonlinear behavior in a high-dimensional parameter space has to

be characterized, and a tool is desirable that does this characterization efficiently

and without much input from the user side.

In this thesis, a family of nonlinear analysis tools in the software package Diana

has been presented. The software developed in this project is able to generate

automatically augmented equation systems for the analysis of higher order singu-

larities and can be applied to complex models of high system order. The user only

is asked to provide his model equations in a symbolic form. The software consists

of two separate tools: the package ProMoT for the symbolic manipulation of the

model and for the generation of a C++ code containing the model equations, and

the numerical solution engine Diana. The model interface of Diana follows the

CAPE-OPEN standard. Therefore, the continuation and solution algorithms in

Diana can be applied to any model with a CAPE-ESO interface. This makes the

tool sufficiently open to other simulators.

This thesis makes several contributions in numerical nonlinear analysis and ap-

plications in bifurcation analysis:

• The basic object-oriented software architecture for the dynamic simulation

and nonlinear analysis tool Diana has been implemented. The architecture
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includes a definition of simulation models that presents continuous dynamic

systems in the implicit differential-algebraic equations form. Also the sym-

bolic differentiation with a variable order of the model functions with re-

spect to the state variables and the model parameters has been provided.

The model interface of the choice is the CAPE-OPEN standard interface

DAESO. This interface allows to use the defined model with third-party

simulation environments via object request mechanisms, like, CORBA or

DCOM. The software architecture also contains solver interfaces that allow

to make numerical simulations or analysis of models. In this interface suite

the differential-algebraic equation solver based on a BDF solver IDA/Sundi-

als has been implemented.

• In addition to the CAPE-OPEN standard, the extended interfaces for the

parameter continuation and bifurcation analysis have been introduced. The

realization of this interfaces includes a predictor-corrector continuation solver

that is used as a base abstract class. The solver computes a one-dimensional

solution curve of a nonlinear subproblem that is defined in a derived solver.

In this work three subclasses of the parameter continuation solver have been

implemented:

– The first solver locates steady-state points of a dynamical systems for

a given initial state and performs the continuation of such points with

respect to the specified parameter. Along the steady state continua-

tion curve the solver can compute generalized eigenvalues of the model

linearization. The eigenvalues deliver stability information of the com-

puted steady state. Also the critical points, when the real parts of the

eigenvalues change a sign, can be detected.

– Another solver allows to compute varieties of limit steady-state points.

The solver reduces the model to a scalar equation in a one-dimensional

subspace that belongs to a zero eigenvalue of the steady-state lineariza-

tion. This is performed with the help of the Lyapunov-Schmidt reduc-

tion. In addition, the solver computes derivatives of the reduced scalar

equation that form the basis for the singularity analysis of the limit point

variety. The set of implemented derivatives provide capabilities for the

detection and continuation singular points, like, hysteresis, pitchfork, or

winged cusp points.

– The last solver forms the augmented system for the Hopf point com-
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putation and the parameter continuation of such points. Monitoring of

eigenvalues along a Hopf point curve gives possibility to detect degener-

ate Hopf points.

• Another issue that has been covered in this work is the parameter contin-

uation of periodic solutions. Periodic solutions are computed using single

shooting, which can be applied to high-dimensional systems with the recur-

sive projection method. In addition to the original works in (SK93; Lus97)

coupling terms that are important for non-normal problems have not been

neglected. The implementation of the RPM is similar to the one described

in (Lus97): the use of multiple varying Picard steps at each Newton-Picard

step, the use of orthogonal subspace iteration with projection instead of ordi-

nary orthogonal subspace iteration and a different and more robust strategy

to determine the basis size.

• The three model examples in this work form an important part of it — they

illustrate how implemented methods are used in applications.

That there are still many open questions has been pointed out at the end of the

chapters of this work. The proposed possible extensions of the current work will

be presented in the next section.

5.2 Suggestions for future work

In this section several aspects that deserve further attention for future work will

be shown. It is clear that much work remains to be done in the area of the nu-

merical nonlinear analysis. In addition to the implemented features, the following

nonlinear problems can be subjects for future work:

• the implemented derivatives of the reduced equation (2.13) give possibility

to find only hysteresis, pitchfork, or winged cusp organizing centers (see Fig-

ure 2.5). With additional derivatives gzzz, gzzzz, more degenerate points, like,

asymmetric cusp or quartic fold, can be detected.

• in Section 2.10 the degenerate Hopf bifurcation points have been presented.

Namely, generalized Hopf, Bogdanov-Takens, zero-Hopf, and double-Hopf

points. The computation of such points is of great importance in various ap-

plications, due to a diverse variety of nonlinear phenomena in neighborhoods
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of such points. Such points indicate appearance of saddle-focus homoclinic

and heteroclinic orbits, quasi-periodic and chaotic motions in a dynamical

system.

• for engineering applications it is quite important to analyze parameter depen-

dency and bifurcations of fixed points in discrete maps that present discrete

dynamical systems. One can develop a discrete dynamical system extension

for the Diana simulation environment. The application of the recursive pro-

jection method as the reduction procedure will give possibility to analyze

high-dimensional discrete models that possess “low-dimensional” dynamics.

• enhancement of the recursive projection method can also be a topic for fu-

ture work. For example, the Picard step in algorithm 2 can be substituted

with other iterative methods, like GMRES or BiCGSTAB (BBC+94). The

power iteration step for the computing of eigenvalues can also be replaced

by more sophisticated methods, for example, the implicitly restarted Arnoldi

method (LSY98).

• the implementation of augmented systems for bifurcation analysis of codimension-

0 bifurcations of periodic orbits may be also an interesting task. Such bifur-

cations determine stability domains of periodic solutions and appearance of

new periodic branches. Another capability to increase stability and accuracy

of the periodic solution and their bifurcations computation is the solving

of periodic boundary-value problems (3.7) with more sophisticated methods,

like, multiple shooting or collocation schemes (AMR95).

• recent results in numerical bifurcation analysis show great interest in compu-

tation and continuation of global phenomena, like, homoclinic, heteroclinic,

point-to-periodic, or periodic-to-periodic orbits. The significant progress has

been made in the continuation of homoclinic and heteroclinic connections

involving cycles. A method based on projection boundary conditions for

computing point-to-periodic and periodic-to-periodic connections has been

introduced in (DR04). Another work (DKKvV07) also presents an algorithm

for computation of point-to-periodic orbits. Such a global bifurcation analy-

sis allows to understand many interesting phenomena in dynamical systems,

like, the occurrence and disappearance of chaotic behavior.

• The continuation methods can also be extended to computing 2- or 3-dimensional

manifolds with the multiple parameter continuation algorithm (Hen03).
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• The usability of the software may be further increased by graphical user

interface. So a better interface based on a graphical environment is highly

required. The graphical user interface may consist of two parts. There should

be a database to store computed solution paths, data on the convergence of

the solver and bifurcation diagrams. Furthermore, a graphical front-end is

needed that serves several purposes: to visualize the results, to prepare the

input for the next run and to manage the database. The graphical user in-

terface should assist in the choice of good defaults for the various parameters

in the algorithm and be useful for both, “expert users” who understand the

underlying algorithms and are capable to choose good values for all param-

eters of the algorithms, and “normal users” who have little understanding

about the underlying code. The front-end should give possibility to visualize

different types of plots, like bifurcation diagrams, phase plots, and specific

system information, like, eigenvalues of a system linearization or characteris-

tic multipliers, etc. Also the user feedback in the front-end is required. The

user can stop a continuation and start another one from the desired initial

point, or even start another continuation type based on the previous results.

For example, the periodic orbits continuation can be started from the Hopf

point, or the hysteresis point variety continuation can be started from the

hysteresis point on a limit point continuation curve.
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Appendix A

Software Architecture

The generic interfaces for solvers and models in Diana are based on the specifi-

cations developed by the CAPE-OPEN community (JKB+99). These interfaces

are designed to be used across an inter-process communication and they allow to

exchange specific models and numerical algorithms without changes in the source

codes. These interfaces are wrapped into the Python scripting language.

The first section of the appendix describes namespaces, packages and classes that

are implemented in Diana. The next three section briefly discuss realization of the

Diana simulation models, dynamic solvers, and parameter continuation solvers.

For more detailed information about classes, interfaces and implementation the

interested reader can refer to the automatically generated documentation (Pro).

A.1 Class diagrams of Diana

The general UML package diagram under development is presented in Figure A.1.

The diagram depicts the system splitting up into logical groupings in sense of

CAPE-OPEN standard interfaces and provides the dependencies among these

groupings. The CAPE-OPEN interfaces in two different C++ namespaces are pre-

sented (Figure A.1).

The namespace Common consists of six packages, namely:

• Types is a package for elementary types, interfaces naming, and undefined

values.

• Error package gives a classification and a hierarchy of potential errors occur-

ring in CAPE-OPEN compliant components.

• Identification package declares the identification interface that provides the

means for all CAPE-OPEN components to be identified by the name and
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Figure A.1: The package diagram of the implemented CAPE-OPEN interfaces

their textual description.

• Utilities package defines the interface that provides the means to set the sim-

ulation context, to collect component parameters, to manage a life-cycle of

components (creation and termination).

• Collection is the package that defines a collection interface. The interface is a

standard way to manage the collections of things. The aim of the Collection

interface is to give a component the possibility to expose a list of objects to

any client of the component.

• Parameter package defines a standard access to component parameters. This

specification will be used by CAPE-OPEN components wishing to expose

some of their internal data to their clients. The interface is made up of two

different parts, each corresponding to a different client need: the first part

is a fixed, static aspect that describes the parameter, such as a type, name,

description, etc. The second part deals with the value of the parameter itself.

In the namespace Numeric::Solvers interfaces for the dynamic simulation models
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and solvers are defined. All interfaces in this namespace are derived from the

ICapeIdentification and ICapeUtilities interfaces. The first interface declares identifi-

cation methods to work with names and descriptions of instances. The second one

declares common methods for simulation models and solvers.

A simulation model in the Diana environment is presented as an instance

of the DianaContinuousModel class (see Figure A.2), which implements inter-

faces ICapeNumericModel, ICapeNumericContinuousModel and IDianaContinuousModel.

The DianaContinuousModel class aggregates an instance of an Equation Set Ob-

ject (ESO) that can be retrieved with GetActiveESO method. The interface

IDianaContinuousModel is an extension of the CAPE-OPEN standard and specifies,

for example, methods for a generation of linear time-varying variational equations

for the initial ESO.

The equation set object in the CAPE-OPEN standard is a software abstraction

of a set of nonlinear algebraic (NLAESO) or mixed differential and algebraic equa-

tions (DAESO). Dynamical models by the standard interfaces ICapeNumericESO

and ICapeNumericDAESO are presented. This interfaces allow to get an access to

specific properties of the system, like state variables, parameters, Jacobian matri-

ces, and so on. Definition of dynamical models in Diana has been presented in

Section 2.1. The interface IDianaDAESO is an ESO extension and provides meth-

ods to work with issues that are not specified in the CAPE-OPEN standard, like

higher order Jacobian matrices, absolute tolerances, Jacobian matrices with re-

spect to parameters, and so forth. The implementation of ESO common methods

is done in the classes DianaDAESO while is responsible for the ESO initialization,

access to the ESO properties an instance state save and restore, numerical differ-

entiation with finite differences, and DianaXmlDAESO, which is mainly intended for

the ESO initialization from an XML file. The class ModelDAESO is not included in

the Numeric::Solvers or Diana namespaces and represents a user defined ESO. This

class implementation in the C++ language is generated by the ProMoT modeling

tool from a user-defined model description (TGZG97).

Definitions of solver interfaces in the namespace Numeric::Solvers in Figure A.3

are presented. An IDASolver class in the figure is based on the Implicit Differential-

Algebraic (IDA) solver from the SUNDIALS library (HBG+05). The class realizes

CAPE-OPEN interfaces ICapeNumericSolver, ICapeNumericDAESolver, that allow to

perform basic operation with solvers, like changing tolerances, solution of models,

and working with the solution vector. Additional interfaces IDianaNumericSolver

and IDianaNumericDAESolver extend standard interfaces with methods that allow to
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Figure A.2: Diana models class diagram
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Figure A.3: The IDA solver class diagram

work with results collections or reporting interfaces. The class IDASolver realizes

a solution of the underlying dynamic system with the help of the IDA solver and

will be described in Section A.3.

For the nonlinear analysis various solvers in Diana are implemented. The solvers

share the possibility to make a parameter continuation of specific nonlinear phe-

nomena in dynamical systems.

All provided nonlinear solvers are derived from the DianaContinuation class which

realizes IDianaContinuation interface and implements one-parameter pseudo-arc

length continuation. The continuation algorithm has been presented in Section 2.2.
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Figure A.4: The Continuation package class diagram

The class DianaContinuation has three protected abstract methods packModelVector,

packModelResidual, and packModelJacobian that define a nonlinear task. These meth-

ods in subclasses SteadyStateContinuation, SingAnalyser and HopfPointContinuation are

realized. The first class implements a solver that computes a steady-state solution

for the dynamical system. The solver also allows to compute linearized stability

criteria for steady states and detects local codim-1 bifurcations. The second solver

SingAnalyser fulfills model reduction in the presence of a simple zero eigenvalue to

a one-dimensional test function. Also the solver computes a set of derivatives of

the test function that allows to recognize singularities of the test function solu-

tions curve. The reduction process in Section 2.4 and the solution of the recog-
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nition problem in Section 2.5 has been described. Sections 2.3 and 2.7 highlights

numerical algorithms and organization of the solver’s SteadyStateContinuation and

SingAnalyser.

The creation of model and solver instances is in general performed in a fac-

tory design pattern, where the class for the object is identified by name. This

abstraction is useful, because it will allow to get the instances in different ways:

(a) as an instance created from a dynamically loaded C++ shared library;

(b) as a direct python instance;

(c) as an remote instance published by an external CAPE enabled simulation

package.

The diagrams presented in the section are not complete and only selected classes

are presented. The detailed Diana class diagram can be found in the automatically

generated documentation (Pro).

A.2 Diana simulation models

The simulation model in Diana presents the continuous-time dynamical system in

the DAE numerical form that can be used in numerical computations. The DAE

numerical form is described by the component equation set object DianaDAESO that

encapsulates the differential-algebraic ESO and presents the system of differential-

algebraic equations (2.1). The class has the following methods:

• The Initialize, Terminate methods that are called to initiate and terminate ESO

instances.

• The Get/SetComponentName, Get/SetComponentDescription are access methods

to the specified component name and description.

• The GetNumVars, GetNumEqns, GetNumRealParams methods return dimensions

of the state variable vector x, residual vector f and parameter vector ν.

• The GetStateVariables, GetParameters methods return collections with state

variables x or parameters ν.

• The Get/Set(All)Variables are access methods to the state vector x.

• The Get/Set(All)Derivatives are access methods to the derivatives vector ẋ.
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• The Get/Set(All)Parameters are access methods to the parameters vector ν.

• The GetAbsoluteError method returns an absolute error vector εatol for the

state variables.

• The Get(All)Residuals methods return the residual vector f .

• The GetLowerBounds, GetUpperBounds methods return user defined maximal

and minimal values for the state variables.

• The Get/SetIndependentVar are access methods to the independent variable t.

• The GetJacobianStruct. Get(All)JacobianValues methods return either the struc-

ture or values of the Jacobian matrix ∂f/∂x.

• The GetDiffJacobianStruct Get(All)DiffJacobianValues methods return either the

structure or values of the Jacobian matrix ∂f/∂ẋ.

• The GetAllParJacobianValues method returns values of the Jacobian matrix

∂f/∂ν.

• The GetHighOrderJacobian method returns values of the higher order Jacobian

matrix ∂(k)f/∂{x, ẋ, ν}(k).

• The Save/LoadState are methods that save and restore a state of the ESO

instance.

• The LoadStateDiva method loads the state variables vector and the parameters

vector from Diva generated files.

In addition to the vector ν, the ESO parameters collection also contains the

following parameters:

• The SymbolicJacobian parameter shows whether a symbolic differentiation

(True) or finite differences (False) for the Jacobi matrices computation will

be used. If the parameter SymbolicJacobian is False, then the following pa-

rameters control the calculation of the finite differences:

– The FDPartition shows whether the Minpack DSM algorithm (CGM84)

for an optimal or near-optimal consistent partition of the Jacobian ma-

trices will be applied (True) or not (False).

– The FDOrder parameter specifies an approximation order of the finite

difference formula.

– The FDEpsilon is the machine-dependent spacing ε in equation (2.31).
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A.3 Diana dynamic solvers

Dynamic simulation in the Diana environment is performed by a set of numerical

differential algebraic solvers. This allows to use the solver instance as a “black-

box” integrator in Python scripts. The setup of the solver can be changed by

a set of parameters, for example, the relative error tolerance, the type of the

internal linear algebra solver, etc. This parameter concept is derived from the

CAPE-OPEN standard, where parameters have a name and a value, and contain

also a specification with a default value and a documentation text, which makes

them self-explanatory. Solvers accept different reporting interfaces to process the

results of the simulation directly. This allows to generate simulation logs or plots

of simulation results. In Diana different integration codes have been used, like

BDF or Runge-Kutta, this allows to solve different problem types, like systems of

stiff ordinary or differential algebraic equations.

This section describes the IDASolver solver (Figure A.3). Information about the

other solvers can be found in more recent documentation.

The IDASolver class is based on the IDA solver that is a part of the SUNDI-

ALS software family (HBG+05). It solves the initial-value problem (IVP) for

the DAE system in the general form (2.1). The integration method used in IDA

is the variable-order, and the variable-coefficient BDF (Backward Differentiation

Formula) (BCP96). The application of the BDF to the DAE system results in a

nonlinear algebraic system to be solved at each step. The solution of the nonlinear

system is accomplished with some form of Newton iteration. This leads to a linear

system for each Newton correction. The linear systems are solved by the direct

dense LAPACK (ABB+99) or sparse UMFPACK (Dav04) linear algebra solvers.

Prior to integrating a DAE initial-value problem, an important requirement is

that the pair of vectors x0 and ẋ0 are both initialized to satisfy the DAE residual

f(t0, x0, ẋ0, ν) = 0. For semi-explicit differential index-one systems, IDA provides

a routine that computes consistent initial conditions from a user’s initial guess.

For this, the solver identifies sub-vectors of x0, denoted xd and xa, which are its

differential and algebraic parts, respectively, such that f depends on ẋd but not on

any components of ẋa. The assumption that the system is “index one” means that

for a given t and xd, the system f(t, x, ẋ, ν) = 0 defines xa uniquely. In this case,

a solver within IDA computes xa and ẋd|t=t0, given xd and an initial guess for xa.

For the computation of the initial values IDA solves the system f(t0, x0, ẋ0, ν) = 0

for the unknown components of x0 and ẋ0, using Newton iteration.
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The class IDASolver has the following methods:

• The Initialize, Terminate methods that are called to initiate and terminate

solver instances.

• The Get/SetComponentName, Get/SetComponentDescription are access methods

to the specified component name and description.

• The GetParameters method returns collections of solver parameters.

• The Solve method starts the solution of the ESO that is associated with the

solver instance.

• The GetSolution method returns the solution vector x.

• The Get/SetRelTolerance are access methods to the relative tolerance vector

εrel.

• The Get/SetAbsTolerance are access methods to the absolute tolerance vector

εabs.

Parameters of the solver class are:

• The Start parameter specifies the start of a new simulation (True) or contin-

uation of the current one (False).

• The CalcIC parameter controls whether consistent initial conditions are com-

puted at the initial time (True) or not (False).

• T is the current value of the independent variable t.

• T0 is the starting value of the independent variable.

• Tend is the final value of the independent variable.

• Tout is an interval for an equidistant output mode.

• The Intermediate parameter with the True value tells the solver to take one

internal step and to return the solution at the point reached by that step,

otherwise integration proceeds to the parameter value Tend without interrup-

tion.

• The VerboseLevel is a verbosity level of the solver.
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• The MaxInternalSteps parameter specifies the maximum number of steps to be

taken by the solver in its attempt to reach the next output time.

• LASolver specifies whether the dense or sparse linear algebra solver will be used.

A.4 Diana continuation solvers

The continuation algorithm in the class DianaContinuation is realized (Figure A.4).

The class DianaContinuation implements methods of the interfaces IDianaNumericSolver

and IDianaContinuation:

• The Solve method solves a nonlinear task f(x, λ) = 0 for the constant param-

eter λ.

• The Continuate method performs a continuation of the underlying nonlinear

task (2.4).

• The AddFreeParameter method adds the parameter λ to the nonlinear system

(2.4).

• The RemoveFreeParameter method removes the parameter λ from the nonlinear

system.

Selected parameters of the continuation solver class are:

• The Parametrization parameter specifies the parametrization type, either

PseudoArclength or Local.

• The Predictor is the predictor type (Tangent or Chord)

• The StepSize is the current step size σ(k).

• The InitialStepSize is the initial step size σ(1).

• The InitialDirection is the initial direction of a continuation (possible values

are 1 or -1).

• The SucceededStepScale is the step size scaling factor ξ1.

• The FailedStepScale is the step size scaling factor ξ2.

• The SuccessIts is a number of the Newton iterations N1 for the successful step.
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• The FailedIts is a number of the Newton iterations N2 for the failed step.

• The StepNumber is a number of the continuation step k.

• The MinStepSize is the minimal step size σmin.

• The MaxStepSize The is the maximal step size σmax.

• The MaxStepsAmount is the maximal number of steps kmax.

• The MaxNewtonIts is the maximal number of Newton iterations Nmax.

A.4.1 Steady-state continuation solver

The class SteadyStateContinuation (see Figure A.4) inherits the parameter contin-

uation algorithm from DianaContinuation and implements the protected methods

packModelVector, packModelResidual, and packModelJacobian. The methods assemble

the steady state continuation problem in form (2.3) that is based on the model

ESO (2.1). The class SteadyStateContinuation extends the parameter set of the base

solver with the following parameters:

• The EigSolver parameter specifies the algorithm for the eigenvalues computa-

tion. The value of the parameter may be either Lapack or Arpack.

• The EigMonitor parameter shows a number of monitored eigenvalues

(0¡EigMonitor� n)

• The EigConverged is a number of converged eigenvalues.

• The Stability shows the local stability of the computed steady-state point.

• The StabilityCheck parameter controls whether the linearized stability will be

computed (True) or not (False).

• The ConditionCheck parameter specifies the bifurcation type that will be

checked during the continuation. Possible types are: a real eigenvalue

crossing the imaginary axis (SteadyStateZRE), a pair of complex conju-

gate eigenvalues crossing the imaginary axis (SteadyStateZCE), and the

SteadyStateNone value that specifies an empty condition. The test condition

can be combined with a bitwise OR operator —, for example, an expression

SteadyStateZRE—SteadyStateZCE specifies monitoring of both conditions.
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A.4.2 Singularity analyzer solver

The class SingAnalyser implements the augmented system (2.33) and the test

functions (2.34) in the abstract methods packModelVector, packModelResidual and

packModelJacobian of the base DianaContinuation class (see Figure A.4). In the spec-

ified nonlinear system the unknown variables vector has 3n + 2 + k + 1 variables

and consists of the model state variables x, the eigenvectors v0 and v∗0, the singular

values β and γ, and k + 1 model parameters α. The residuals vector has 3n + 2

augmented system equations, k test functions, and the parametrization equation.

The class SingAnalyser extends the parameter set of the base solver with the

following parameters:

• The ConditionEquations parameter determines a set of the test functions that

will be added to the augmented system (2.33). Possible values are:

SingularityNone empty set of the test functions,

SingularityGx gz = 0,

SingularityGxx gzz = 0,

SingularityGp gλ = 0,

SingularityGxp gzλ = 0.

The test functions can be combined with a bitwise OR operator —, for ex-

ample, an expression SingularityGx—SingularityGxx specifies gz = gzz = 0.

• The ConditionCheck parameter indicates a set of the test functions that will

be checked for zero-crossing values during the continuation. If one of the

test values crosses zero line, the solver stops the continuation and returns the

ContiOkTestFunction return value.

• The ConditionShow parameter describes a set of the test functions that will be

computed but not checked during the continuation.

• The ConditionCurrent parameter contains an identifier of the test function that

had changed the sign if the solver returned ContiOkTestFunction.

• The LambdaParameter parameter specifies the model name of the parameter

λ under consideration of the recognition process.

• Gx, Gxx, Gp, Gxp are values of the test functions gz, gzz, gλ, and gzλ, respec-

tively, for the calculated continuation point.

119



The initial state variables and parameters values for the singularity analy-

sis solver are taken from the steady-state point continuation that returns the

SteadyStateZRE condition flag or from a previous singular points variety contin-

uation. An initial approximation of the values β and γ and corresponding left and

right eigenvectors v0 and v∗0 are computed from the eigenvalue problems

fT
x fxv0 = β2v0,

fxfT
x v∗0 = γ2v∗0 ,

at the starting continuation point with the ARPACK library function naupd.

A.4.3 Hopf point continuation solver

The class HopfPointContinuation implements the augmented system (2.36) in the

abstract methods packModelVector, packModelResidual, and packModelJacobian of the

base class DianaContinuation (see Figure A.4). In the specified nonlinear system the

unknowns vector has 3n+3 variables and consists of the model state variables x, the

real u and imaginary w parts of the eigenvector, the imaginary part of eigenvalue

ω0, and the two model parameters from the vector ν. The residual vector has 3n+2

augmented system equations (2.36) and the parametrization equation (see 2.2.2).

The class HopfPointContinuation extends the parameter set of the base solver with

the following parameters:

• The EigMonitor parameter shows a number monitored eigenvalues

(0¡EigMonitor� n)

• The EigConverged is a number of converged eigenvalues.

The initial state variables and parameters values for the Hopf point continuation

are taken from the steady-state point continuation that returns SteadyStateZCE

condition flag. An initial approximation of the eigenvalue iω0 and corresponding

eigenvector uiw is computed from the generalized eigenvalue problem (2.37) at the

initial point with LAPACK or ARPACK methods as in the SteadyStateContinuation

class.
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von Rührkesselreaktoren., Messen, Steuern, Regeln 11 (1968), 204–

208.

[Har60] P. Hartman, A Lemma in the Theory of Structural Stability of Differential

Equations, Proceedings of the American Mathematical Society, 11

(1960), no. 4, 610–620.

123



[HBG+05] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,

D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of Nonlin-

ear and Differential/Algebraic Equation Solvers, ACM Transactions on

Mathematical Software 31 (2005), no. 3, 363–396.

[Hen03] M. E. Henderson, Multiple Parameter Continuation: Computing Im-

plicitly Defined k-manifolds, International Journal of Bifurcation and

Chaos 12 (2003), no. 3, 451–476.

[Hig96] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,

Philadelphia, 1996.
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[JKB+99] M. Jarke, J. Köller, B. Braunschweig, W. Marquardt, and L. von

Wedel, CAPE-OPEN: Experiences from a Standardization Effort in

Chemical Industries, Proc. of 1st IEEE Conference on Standardisa-

tion and Innovation in Information Technology (SIIT 99) (Aachen,

Germany), 1999, pp. 25–35.

[JM82] H. Jarausch and W. Mackens, CNSP — A Fast, Globally Convergent

Scheme to Compute Stationary Points of Elliptic Variational Problems,

Tech. report, Institut für Geometrie und Praktische Mathematik,

Aachen, Germany, 1982.

[JM84] H. Jarausch and W. Mackens, Numerical treatment of bifurcation

branches by adaptive condensation, Numerical Methods for Bifurcation

Problems 70 (1984), 296–309.

[JM87] H. Jarausch and W. Mackens, Computing Bifurcation Diagrams for

Large Nonlinear Variational Problems, Progress in Large Scale Scien-

tific Computing (Basel) (P. Deuflhard and B. Engquist, eds.), vol. 7,

Birkhauser Verlag, 1987.

124



[Kel77] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue

problems, Applications of Bifurcation Theory (New York) (P. Rabi-

nowitz, ed.), Academic Press, 1977, pp. 159–384.

[KKLN93] A. I. Khibnik, Y. A. Kuznetsov, V. V. Levitin, and E. V. Nikolaev,

Continuation techniques and interactive software for bifurcation analysis

of ODEs and iterated maps: physics, Proceedings of a NATO advanced

research workshop held at the Centre for Nonlinear Phenomena and

Complex Systems on Homoclinic Chaos (1993), 360–371.

[KL97] Y. A. Kuznetsov and V. V. Levitin, CONTENT: A multiplatform envi-

ronment for continuation and bifurcation analysis of dynamical systems,

Tech. report, Centrum voor Wiskunde en Informatica, Amsterdam,

The Netherlands, 1997.
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Poincaré map, 50

predictor

chord, 16

tangent, 15

recognition problem, 27

regular solution, 14

simple fold, 14

simulation model, 13

singularity, 26

state space, 11

step size, 14

test function, 20

universal unfolding, 28

versal unfolding, 27

129


