English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer

MPS-Authors
/persons/resource/persons83996

Joshi,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83995

Jha,  D
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83903

Engelmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Joshi, R., Jha, D., Su, W., & Engelmann, J. (2011). Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer. Journal of Peptide Science, 17(1), 8-13. doi:10.1002/psc.1305.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BCC8-2
Abstract
Peptide nucleic acids (PNAs) are DNA mimics with a neutral peptide backbone instead of the negatively charged sugar phosphates. PNAs exhibit several attractive features such as high chemical and thermal stability, resistance to enzymatic degradation, and stable binding to their RNA or DNA targets in a sequence-specific manner. Therefore, they are widely used in molecular diagnosis of antisense-targeted therapeutic drugs or probes and in pharmaceutical applications. However, the main hindrance to the effective use of PNAs is their poor uptake by cells as well as the difficult and laborious chemical synthesis. In order to achieve an efficient delivery of PNAs into cells, there are already many published reports of peptides being used for transport across the cell membrane. In this protocol, we describe the automated as well as cost-effective semi-automated synthesis of PNAs and PNA-peptide constructs on an automated peptide synthesizer. The facile synthesis of PNAs will be helpful in generating PNA libraries us able, e.g. for high-throughput screening in biomolecular studies. Efficient synthetic schemes, the automated procedure, the reduced consumption of costly reagents, and the high purity of the products are attractive features of the reported procedure.