English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity

MPS-Authors
/persons/resource/persons84215

Shelton,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83797

Bartels,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Blaschko, M., Shelton, J., & Bartels, A. (2010). Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 22 (pp. 126-134). Red Hook, NY, USA: Curran.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C0C0-8
Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels
of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting
state activity can be used as a source of unlabeled data to augment discriminative regression techniques in a semi-supervised setting. We evaluate this setting
empirically yielding three main results: (i) regression tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.