English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

The effect of cognition on the visually-induced illusion of self-motion (vection)

MPS-Authors
/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84199

Schulte-Pelkum,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83788

Avraamides,  MN
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84287

von der Heyde,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Riecke, B., Schulte-Pelkum, J., Avraamides, M., von der Heyde, M., & Bülthoff, H. (2004). The effect of cognition on the visually-induced illusion of self-motion (vection). Poster presented at Fourth Annual Meeting of the Vision Sciences Society (VSS 2004), Sarasota, FL, USA.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-D865-2
Abstract
INTRODUCTION: The illusion of self-motion induced by moving visual stimuli has typically been attributed to bottom-up perceptual processes. Here, we investigated whether a cognitive factor such as spatial presence can contribute to the illusion. Spatial presence was indirectly manipulated by presenting either a photorealistic image of a natural scene or modified versions of the same stimulus. Those were created by either scrambling image parts in a mosaic-like manner or by slicing the original image horizontally and randomly reassembling it. We expected scene modifications to decrease spatial presence and thus impair vection. METHODS: Twelve observers viewed stimuli projected onto a curved projection screen (FOV: 54 ×40.5 ). Dependent measures included vection onset time, vection intensity, and convincingness of the illusion (0–100 ratings). Spatial presence was assessed with presence questionnaires. RESULTS: Scene modification led to both reduced presence scores and impaired vection: Modified stimuli yielded significantly longer vection onset times, lower perceived intensity, and lower convincingness ratings than the intact market scene. No clear difference was found between the sliced and scrambled stimuli or among the number of slices or mosaics (2, 8, or 32). Results suggest that high level information (consistent reference frame for the intact market scene) dominated over the low-level information (more contrast edges in the scrambled stimulus, which are known to facilitate vection). CONCLUSIONS: Results suggest a direct relation between spatial presence and self-motion perception. We posit that stimuli depicting naturalistic scenes provide observers with a convincing reference frame for the simulated environment which enables them to feel “spatially present”. This, in turn, facilitates the self-motion illusion. This work has important implications for both self-motion perception and motion simulator design and applications.