日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion

MPS-Authors
/persons/resource/persons84193

Schölkopf,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Smola, A., & Schölkopf, B. (1998). On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. Algorithmica, 22(1-2), 211-231. doi:10.1007/PL00013831.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-E7F5-5
要旨
We present a kernel-based framework for pattern recognition, regression estimation, function approximation, and multiple operator inversion. Adopting a regularization-theoretic framework, the above are formulated as constrained optimization problems. Previous approaches such as ridge regression, support vector methods, and regularization networks are included as special cases. We show connections between the cost function and some properties up to now believed to apply to support vector machines only. For appropriately chosen cost functions, the optimal solution of all the problems described above can be found by solving a simple quadratic programming problem.