
. PROGRESS REPORT

1991 - 1994

. April 1994

o

mPD
_______ I N FOR MAT I K ______ _

Max-Planck-Institut fUr Informatik

1m Stadtwald

66123 Saarbrucken

Germany

Bibliothek mp~ Nr: t 3 g~
--_fNFORMATIK __ _

Contents

I The Algorithms and Complexity Group 3

1 Personnel 5

2 Executive Summary 6

3 Research Themes 8
3.1. Parallel Computing 8

3.1.1 Parallel Sorting ~ . . 8
3.1.2 Superfast Parallel Algorithms 10
3.1.3 Dynamic Load Balancing. . . 13
3.1.4 Routing and Sorting in Meshes 15
3.1.5;Parallel Algorithms for Geometric Problems on Network Machines 19
3.1.6 Lower Bounds for Parallel Algorithms. 21
3.1. 7 A Scalar-Product Circuit 24

3.2 Computational Geometry 26
3.2.1 Proximity Problems. 26
3.2.2 Randomized Incremental Constructions (RICs) 28
3.2.3 Abstract Voronoi Diagrams 30
3.2.4 Motion Planning 32
3.2.5 Approximate Decision Algorithms for Geometric Pattern Matching 35

3.3 Data Structures and Graph Algorithms 37
3.3.1 Competitive Analysis of On-Line Algorithms. 37
3.3.2 Network Flow Algorithms 41
3.3.3 Data Structures for Sets and Sequences . 43
3.3.4 Bottom-Up-Heapsort........... 46

3.4 Realization and the LEDA Project 47
3.4.1 The LED A Platform for Combinatorial and Geometric Computing 47
3.4.2 Precision and Degeneracy in Geometric Computations

3.5 Complexity Theory
3.5.1 Circuit Complexity
3.5.2 Communication Complexity
3.5.3 Symbolic Algebra

4 Dissertations

5 Visitors

6 Teaching Activities

7 Organization

50
53
53
55
57

58

60

64

64

8 Cooperations
8.1 BMFT-projects
8.2 SFB 124 VLSI-Entwurfsmethoden und Parallelitat
8.3 ALCOM
8.4 ALTEC
8.5 HC&M
8.6 GIF ..
8.7 Industry

9 Technical Reports

II The Programming Logics Group

65
65
65
65

, 66
66
66
66

67

77

1 Members of the working group 79

2 Research programme and results 81
2.1 Introduction.;...................... 81
2.2 Integrating functional and logic languages 82
2.3 Constraint logic programming and combinatorial optimization 84
2.4 Analysis of declarative programs . 85
2.5 Automated deduction. 87

2.5.1 Background 87
2.5.2 Our results . . 89

2.6 Program synthesis 92
2.7 Transformation of Logical Systems 93
2.8 Nonmonotonic reasoning 95
2.9 Logical frameworks 97
2.10 Knowledge representation using non-classical logics 99

3 Journal and conference activities 102
3.1 Editorial positions 102
3.2 Conference positions 102

3.2.1 Memberships in Organizing Committees 102
3.2.2 Memberships in Program Committees. 102

4 Teaching activities 104
4.1 Lectures and Seminars 104
4.2 Doctorates awarded . . 105
4.3 Habilitations.... . . 105
4.4 Masters theses in progress 105

5 Grants 106
5.1 CCL - Construction of Computational Logics 106
5.2 COMPASS - A Comprehensive Algebraic Approach to System Specifi­

cation and Development . 107

5.3 MEDLAR II - MEchanizing Deduction in the Logics of prActical Reasoning109
5,4 Detecting Redundancy of Clauses and Inferences. 110
5.5 LOGO - Logic Engineering 111
5.6 Automation of Proof by Mathematical Induction. 112
5.7 ACCLAIM - Advanced Concurrent Constraint Languages: Application,

Implementation, and Methodology 113
5.8 MInd IndUS Collaboration on Proof by Mathematical Induction 114
5.9 PROCOPE - Construction of Non.-Classical L()gics ... 115
5.10 EDDS - Efficient Data Structures for Deduction Systems 115
5.11 SOFTI II - Logic of Programming. 117

6 Recent Publications 118

The Max-Planck-Institut fUr Informatik

The "Max-Planck-Institut itir Informatik"

The Max-Planck-Institut fUr Informatik was founded in November 1988 and opened
on Dec. 1st, 1990.

Research Programme

The institute is devoted to basic research in computer science, and in particular to the
st.udy of complex computer systems.

Complexity in computer systems arises for various reasons. A problem can be complex
due to huge masses of data that are to . be processed, sometimes in real time. In such a

. situation efficient algorithms and data structures as well as the exploitation of parallelism
are of great importance. Parallel algorithms are often designed for theoretical machines
which abstract from the actual communication between their processors in one way or
another. It is still an unsolved problem of how to actually build such machines.

Complexity can mean logical complexity as we find it in large software systems where
many layers of abstraction and applications from different problem domains interact in
often unpredictable ways with each other. Here we need to apply methods based on
mathematical logic in order to more systematically develop, structure and reason about
large programs.

Today's computer systems are complex in that they consist of a large number of
hardware components which operate concurrently and which are physically distributed,
often in a non-local manner. We want to better understand the nature of such systems,
how to develop them such that they behave predictably and as wanted and that they
are by construction insensitive to certain faults of their components.

Computer systems are more and more used to realize and simulate some part of the
real or of an imaginary world. Such simulations have to deal with all of the aforemen­
tioned forms of complexity.

Structure
,

According to this research programme the institute is planned to eventually consist of
five research groups in the following areas:

1. Algorithms and Complexity

2. Programming Logics

3. Concurrent and Distributed Systems

4. Computer Architecture

5. Simulation and Virtual Reality

1

The Max-Planck-Institut fiir Informatik

So far two research groups have taken up their work. The algorithms and complexity
group, headed by K. Mehlhorn started on Dec. 1st, 1990. On Jan. 1st, 1991 H. Ganzinger
began to build up his programming logics group. At present 16 research associates, 26
doctorate students and 11 postdocs are affiliated with the institute. The scientific staff
is complemented by . an administrative unit (11 persons, including secretaries), by a
computing support unit (5 persons) and by our library staff (2 persons). The computing
support unit currently operates a network of approximatly 100 workstations.

The Max-Planck-Gesellschaft also supports basic research at universities in the for­
mer GDR.

About 30 research groups are funded by the Max-Planck-Gesellschaft at present.
One of these is associated with our institute. It is led by Prof. Gossel and "investigates
issues in fault tolerant computing.

For 1994 we expect to be able to expand the institute by one or two more research
groups. In full operation the institute will accomodate about 200 researchers, including
doctorial students and postdocs.

Grants

The institute carries out a number of projects related to research grants awarded by the
European Community, by the German Science Foundation (DFG) and by the German
Ministery of Research and Technology (BMFT); for the descriptions of these grants see
sections 1.8 and II.5.

Results

The following two chapters describe in detail, for each of the two research groups, re­
search programme and results obtained since 1991. These results are disseminated mainly
through scientific publications, including about 150 articles in journals, books or pro­
ceedings of major international conferences, and through computer programs such as
the LEDA library of efficient algorithms, the ACID collection for term indexing data
structures and the SATURATE experimental theorem prover.

The institute makes an effort to offering a variety of courses to computer science stu­
dents of the "Universitat des Saarlandes". During the current semester (Winter 93/94),
about 28% of all courses in computer science are taught by members of the institute.

During the past three years 10 doctorial dissertations and 3 "Habilitationen" have
been successfully completed.

Members of the institute have been involved in the organization of 6 workshops and
conferences. In 25 cases we have been invited to join the program committee of major
international conferences, not counting program committee memberships for national
and international workshops. Finally, we serve on the editorial board of 9 scientific
journals.

These figures are a clear indi~ation for the success, the visibility and the outside
appreciation of the institute's work in our community. .

2

Part I
,

The AlgorIthms and Complexity

Group

3

Tbe Algorithms and Complexity Group

1 Personnel

As of December 1st, 1993, the group consists of

Director:
Prof. Kurt Mehlhorn

Senior Researcher:
Privatdozent Dr. TorbenHagerup
Dr. Stefan Na.her
Dr. Christine Riib
Dr. Michiel Smid

Researcher:
Dr. Susanne Albers
Dr. Rudolf Fleischer
Dr. Michael Miiller
Dr. Stefan Schirra
Dr. Jop Sibeyn

Postdocs:
Dr. Srinivasa Arikati
Dr. Sunil Arya
Dr. Greg Barnes
Dr. Shiva Chaudhuri
Dr. Devdatt Dubhashi
Dr. Vince Grolmusz

Graduate students:
Christoph Burnikel
Gerhard KIM
Thomas Lauer
Hans-Peter Lenhof
Markus Paul
Volker Priebe
Ronald Rasch
Thomas Schilz
Erik Schwarzenecker
Christoph Storb
Christian Thiel
Christian Uhrig

Secretaries:
Andrea Eiler
Ingrid Finkler
Martina Horn

. 5

2. Executive Summary The Algorithms and Complexity Group

2 Executive Summary

The goal of the research unit "Algorithms and Complexity" is to understand the com­

putational complexity of algorithmic problems and to develop efficient algorithms and

data structures for their solution. Our work spans from theory to practice . . The outcome

of our theoretical work is publications and the outcome of our practical work is publica­

tions and software, e.g., the LEDA platform for combinatorial and geometric computing.

M.ore specifically, our research concentrates on Computational Geometry, Parallel Algo­
rithms, Data Structures and Graph Algorithms, Computational Complexity, and Imple­

mentation of Algorithms. In each of the five areas we have achieved significant results

over the past three years . We give some highlights now and refer the reader to section 3
for a detailed discussion of our results.

Parallel Algorithms (coordinators: Torben Hagerup and Christine Riib): For both

the PRAM and the mesh model of parallel computation we have developed very efficient

algorithms for such basic tasks as sorting, merging, routing, and load balancing. Some of

the algorithms have even been shown to be optimal. We have also contributed decisively

to the development of superfast (= sublogarithmic running time) PRAM algorithms,

sometimes called the log * -revolution. More on the applied side we have developed par­

allel algorithms for some geometric problems, e.g., the convex hull and the triangulation

problem, whose running time on existing parallel machines, e.g., the INTEL Hypercube,

scales almost linearly. We have also designed an integrated circuit for the high-precision
scalar product required for Kulisch-arithmetic.

Computational Geometry (coordinators: Kurt Mehlhorn and Michiel Smid): We

have done an (almost) definite study of proximity problems in the plane and in higher

dimensional space and we have further investigated the unifying conceptual and algo­

rithmic role of Abstract Voronoi diagrams. For robot motion planning and for geometric

pattern matching we have developed approximation algorithms which bring the prob­

lems in these areas closer to practically useful solutions. We have also contributed to

randomized incremental constructions, one of the most useful algorithmic paradigms in

computational geometry.

Data Structures and Graph Algorithms (coordinators: Torben Hagerup, Kurt

Mehlhorn, and Stefan Naher): We have developed new algorithms for the network flow

problem and new data structures for problems on sets and sequences. We have also in­

vestigated the influence of lookahead in on-line algorithms and settled an old conjecture

concerning heap-sort.

6

The Algorithms and Oomplexity Group 2. Executive Summary

Realization and the LEDA-project (coordinators: Kurt Mehlhornand Stefan Naher):

We have developed the LEDA platform for combinatorial and geometric computing. It
is used by several hundred academic and industrial · groups worldwide as the basis of

their algorithm development. Our experience with the implementation of geometric al­

gorithms has spurred an investigation of precision and degeneracy issues.

Complexity theory: We have concentrated on circuit complexity and its relation to

communic~tion complexity.

Our five research areas are heavily intertwined; in fact, most of us contributed to at least

two areas.

M. Kaufmann and T. Hagerup have completed their Habilitation in 1992 and 1993, re­

spectively. M. Kaufmann has since then become Associate Professor of Computer Science

at the University of Tiibingen. The Habilitation procedure of Stefan N8.her is ongoing.

Ten graduate students have completed their Ph.D. work within the last three years and

graduate students are currently working in our group. Section 4 surveys the topics of

their work and the actual or expected completion dates.

The group contributes to the master's program in Computer Science at the Universitat
des Saarlandes. 35 master's students have written their theses under our supervision in

the last three years, and in the winter term 1993/94 we offer 8 courses and seminars.

Section 6 gives more details.

The group is involved in seven national and international research projects and cooper­

ates with two industrial partners. Section 8 gives details.

7

3. Research Themes

3 Research Themes

3.1 Parallel Computing

3.1.1 Parallel Sorting

Investigator: Torben Hagerup

The Algorithms and Complexity Group

Sorting is one of the most important and well-studied problems in sequential computa­

tion. Its role in parallel computation is perhaps even more dominant. It is therefore

not surprising that parallel sorting has been thoroughly investigated. Our group has

participated intensively in this effort and made substantial contributions.

The classical setting for the study of sorting is the comparison model, in which infor­

mation about the input elements can be obtained only through pairwise comparisons.

It is well-known that the sequential complexity of sorting n elements in this model is

0(n log n). A celebrated result by Ajtai et al. [1] states that n elements can be sorted in

O(log n) time on a parallel machine with n processors. In view of the sequential lower

bound, the algorithm of Ajtai et al. makes optimal use of the available processors and

essentially settles the question for the case of at most n processors. Employing more

than n processors to sort n elements, we can hope to sort faster than in 0(log n) time on

the CRCW PRAM. Two other lower bounds, however, quickly become relevant. One,

by Beame and Hastad [4], says that we cannot compute the parity of n bits faster than

in 0(log n/log log n) time unless we use more than a polynomial number of processors

(which we will consider unfeasible); by implication, we cannot sort any faster. For some

applications of sorting this lower bound can be circumvented by resorting to so-called

padded sorting, where the output array is allowed to contain slightly more than n cells,

cells not holding an input element being marked with a special null value; after this

modification, computing the parity no longer reduces to sorting, which renders the lower

bound of Beame and Hastad irrelevant. The second lower bound [2, 3, 5) states that

even if we only count comparisons (in which case there is no difference between padded

sorting and standard sorting), we still cannot sort faster than in o (log n/log k) time

with kn processors, for k ~ 2. We have worked towards the ultimate goal for padded

sorting set by this very general lower bound. In the randomized case, we reached the

goal completely by giving an algorithm with expected running time O(log n/log k) [13],
in the deterministic case we came close [14]. These results have found applications in

string sorting (see below) and in the construction of Voronoi diagrams [15].
Although the algorithm of Ajtai et al. [1] is optimal in .the comparison-based setting,

this is not necess,!,rily so if the elements to be sorted allow additional operations besides

comparisons. E.g. , small integers can be sorted in linear time sequentially, so that we

could hope to sort n integers in O(1og n) time with just O(n/log n) processors. For

very small integers, this is indeed possible [7]. For integers of about the same size as n,

8

The Algorithms and Complexity Group 3. Research Themes

the most interesting case, the goal has never been reached, but we have given the best
algorithms known for the PRAM model: For the EREW and CREW PRAMs in [7], for
the deterministic CRCW PRAM in [9], and for the randomized CRCW PRAM in [8].
For the related problem of integer merging, we showed in [11], quite surprisingly, that
two sorted sequences of n sufficiently small integers can be merged in o(log n) time on

the very weak EREW PRAM, for which .elose to no sublogarithmic-time algorithms are
known.

The recent surge of interest in computational biology has revitalized the area of string

processing, the strings of interest being chiefly those encoded by: molecules such as DNA.

We have studied parallel sorting and merging of strings of characters, equipped with
the usual lexicographical ordering, the assumption being that two characters, but not
two strings, can be compared in constant time [12, 10]. Our most recent work gives,

in particular, a complete characterization of the complexity of string merging on the
EREW PRAM. I

We plan to continue work in all of the directions described above: padded sorting, integer
sorting, and string sorting. In addition, we would like to discover simpler versions of the
known efficient algorithms for standard parallel sorting [1, 6].

References

[1] M. Ajtai, J. Koml6s,E. Szemeredi An O(nlog n) sorting network. Proceedings 15th

Ann. ACM Symp. on Theory of Computing (STOC), 1983, 1-9

[2] N. Alon, Y. Azar The average complexity of deterministic and randomized parallel

comparison-sorting algorithms. SIAM J. Comput., Vol. 17, 1988, 1178-1192

[3) Y. Azar, U. Vishkin Tight comparison bounds on the complexity of parallel sorting.

SIAM J. Comput., Vol. 16, 1987, 458-464

[4] P. Beame, J. Hastad Optimal bounds for decision problems on the CRCW PRAM.

J. ACM, Vol. 36, 1989, 643-670

[5) R. B. Boppana The average-case parallel complexity of sorting. Inform. Process.

Lett., Vol. 33, 1989, 145-146

[6] R. Cole Parallel merge sort. SIAM Journal Comput., Vol. 17, 1988, 770-785

9

3. Research Themes The Algorithms and Complexity Group

Work of our group:

[7] S. Albers, T. Hagerup Improved Parallel Integer Sorting without Concurrent Writ­

ing. Proceedings 3rd Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 1992, 463472

[81 H. Bast, T. Hagerup Fast Parallel Space Allocation, Estimation and Integer Sorting
(revised). Technical Report MPI-I-93-123

[9] P.C.P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, S. Saxena Improved
deterministic parallel integer sorting. Inform. and Comput., Vol. 94, 1991, 29-47

[10] T. Hagerup Optimal Parallel String Algorithms: Sorting, Merching and Computing
the Minimum. Technical Report MPI-I-93-152

[11] T. Hagerup, M. Kutylowski Fast Integer Merging on the EREW PRAM. Proceed­

ings 19th International Colloquium on Automata, Languages and Programming
(ICALP), Vol. 623, 1992, 318-329

[12] T. lIagerup, O. Petersson Merging and Sorting Strings in Parallel. Proceedings 17th

Symposium on Mathematical Foundations of Computer Science, Springer Lecture

Notes in Computer Science, Vol. 629, 1992, 298-306

[13] T. Hagerup, R. Raman Waste Makes Haste: Tight Bounds for Loose Parallel Sort­

ing. Proceedings 33rd Annual Symposium on Foundations of Computer Science

(FOCS), 1992, 628-637

[14] T. Hagerup, R. Raman Fast Deterministic Approximate and Exact Parallel Sorting.

Proceedings 5th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), 1993, 346-355

[15] S. Sen Tight bounds for some problems in computational geometry: The complete

sub-logarithmic parallel time range. Technical Report MPI-I-93-129

3.1.2 Superfast Parallel Algorithms

Investigators: Rolger Bast, Shiva Chaudhuri and Torben Ragerup

The compaction problem of size n is as follows: Given an array A of size n, k of whose

cells contain an object, place the objects in A in an array of size exactly k; the number

k, in general, is not provided as part of the input. In the PRAM model of computation,

10

The Algorithms and Complexity Group 3. Research. Themes

compaction is intimately related to processor allocation, variously known as load bal ...

ancing or processor scheduling, and as such is one of the most fundamental concerns of

efficient algorithms. Compaction problems of size ~ can be solved in O(1og n/log log n)
time with optimal speedup by means of prefix summation [2]. On the other hand, a lower
bound by Beame and Hastad [1] precludes the existence of faster efficient algorithms;

this, in effect, became the limiting factor of many fast parallel algorithms. It came as
a surprise when in 1991 Matias and Vishkin [5] demonstrated that approximate com­
paction problems of size n can be solved in O(log*n) expected time by an n-processor
,randomized algorithm. This heralded a host of fast algorithms for problems that pre­

viously were thought not to have fast solutions. ,We have contributed many of these
algorithms, which we term "superfast algorithms".

In [7] we showed that so-called static perfect hashing problems of size n can be solved
in O(log*n) expected time with optimal speedup. The task here is, given n (presumably

large) integers, to map these injectively to a range of size O(n) (by means of a hash
function). Gil et aJ. [3] later showed that a dynamic dictionary data structure with
O(log*n) expected update time and constant lookup time can be derived from any such

result. [3] and [4] gave other examples of superfast randomized algorithms. The main

result in [6] is that so-called semisoriing problems of size n can be solved in O(log*n)

expected time with optimal speedup. Semisorting takes as input n records with integer
keys and is like sorting in that it groups together all records with a common key; it differs
from sorting in that the different key values may not occur in increasing order. Our

semisorting result has numerous applications: It allows a significant simplification of the

hashing result of ,[7] (this still needs to be worked out), it is an essential ingredient in the
padded-sorting scheme of [12] (see Section 3.1.1), we used it in a very fast algorithm for
computing the Voronoi diagram of random sites in the plane [11], and it leads to simpler
simulations between different variants ofthe CRCW PRAM (again, this is planned work).

The results mentioned above all concern randomized algorithms. Until recently no de­
terministic superfast algorithm for even the basic approximate compaction problem was

known. In [10] we provided such an algorithm, with a running time of O((log log n)3).
In [8] we showed that no deterministic algorithm can solve approximate compaction

problems of size n faster than in time 9(log log n), which implies that "superfast" de­

terministic algorithms are, of necessity, slower than their randomized counterparts. Al­

though applications of deterministic approximate compaction are less immediate than

those of randomized approximate compaction, we subsequently derived 'fast determin­

istic algorithms for padded sorting [13] (see Section 3.1.1) and approximate and exact

selection [9J. Work in progress aims at discovering additional applications of our results.

References

[1] P. Beame, J. Hastad Optimal bounds for decision problems on the CRCW PRAM.

11

3. R~sea.rch Themes The Algorithms and Complexity Group

J. ACM, VoL 36; 1989, 643-670

(21 R. Cole, U. Vishkin Faster Optimal Parallel Prefix Sums and List Ranking Inform.
and Comput."VoL 81, 334-352

[3] J. Gil, Y. Matias, U. Vishkin Towards a Theory of Nearly Constant Time Paral­

lel Algorithms Proceedings 32nd Annual Symposium on Foundations of Computer
Science (FOCS), 698-710

[4] M.T. Goodrich Using Approximation Algorithms to Design Parallel Algorithms that

May Ignore Processor Allocation Proceedings 32nd Annual Symposium on Founda­
tions of Computer Science (FOCS), 1991, 711-722

[5] Y. Matias, U. Vishkin Converting High Probability into Nearly-Constant Time -

with Applications to Parallel Hashing Proceeding 23rd Annual ACM Symposium on

Theory of Computing (STOC), 1991, 307-316

Work of our group:

[6] H. Bast, T. Hagerup Fast Parallel Space Allocation, Estimation and Integer Sorting

(revised) Technical Report MPI-I-93-123

[7] H. Bast, T. Hagerup Fast and Reliable Parallel Hashing Proceedings 3rd Annual
ACM-SIAM Symposium on Parallel Algorithms and Architectures (SPAA), 1991,
50-61

[8] S. Chaudhuri A Lower Bound for Linear Approximate Compaction Proceedings of

2nd Israel Symposium on Theory of Comput. and Sys. (ISTCS), 1993, 25-32

[9] S. Chaudhuri, T. Hagerup, R. Raman Approximate and Exact Deterministic Parallel

Selection Proceedings 18th Math. Fdtns. of Compo Sci., Springer LNCS, VoL 711,

1993, 352-361

[10] T. Hagerup Fast Deterministic Processor Allocation Proceedings 4th Annual ACM­

SIAM Symposium on Discrete Algorithms (SODA), 1993, 1-10

[11] T. Hagerup, J. Katajainen Improved Parallel Bucketing Algorithms for Proximity

Problems Proceedings 26th Hawaii International Conference on System Sciences,

VoL 2: Software Technology, 1993, 318-327

[12] T. Hagerup, R. Raman Waste Makes Haste: Tight Bounds for Loose Parallel Sorting

Proceedings 33rd Annual Symposium on Foundations of Computer Science (FOCS),

1992, 628-637

12

, , ,

.~

The Algorithms a,nd Complexity Group 3. Research Themes

[13} T. Hagerup, R. Raman Fast Deterministic Approximate and Ezact Parallel Sorting

Proceedings 5th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), 1993, 346-355

3.1.3 Dynamic Load Balancing

Investigators: Torben Hagerup and Thomas Lauer

Because of the increasing commercial availability of parallel computers with a significant

number of processors, a study of dynamic load balancing was initiated in cooperation

with the Siemens AG (division: ZFE BT SE 42). The goal is to find dynamic load

balancing algorithms that perform well for large systems (asymptotic results), but for

smaller systems (commercially available sizes) as well. This is advantageous because you

can change the size of your computer and benefit directly from the greater number of

processors without changing your load balancing algorithm.

Let us first explain what we mean by load balancing: in order to solve a problem ef­

ficiently on a parallel computer we have to distribute the work over the available pro­

cessors. We call this task load distribution, because the load (work) must be distributed

over the processors. We will define load balancing as a special kind of load distribution

and introduce it below.

If the load pattern is known in advance, we can do load distribution by a static function

mapping the load packages to the processors; for examples, see [BI85, MS90}. But often

the load pattern is data-dependent and not known in advance. So we have to look for

dynamic load distribution schemes, which distribute the load as it arises. The overall

strategy in most of the algorithms concerned with dynamic load balancing is nearly the

same: when a load package is generated in a processor, it is sent to another randomly

chosen processor, which consumes the package, i.e., carries out the associated task. If
the number of packages is sufficiently large (n > p log p, where n is the number of

packages and p is the number of processors), one can show that with high probability

the processors will have nearly the same number of packages. Some refinements of this

strategy with corresponding analysis can be found in [KZ88} and [LNRS89}.

But this strategy has two disadvantages: all load packages must be sent to another

processor, and load packages generated in the same processor with high probability will
be consumed in different processors. The first problem is a disadvantage because we have

to route many packets even if it is not necessary (for example: if all processors generate

nearly the same number of load packages). The second problem is a disadvantage because

a parent problem often creates many related child problems that can be solved more

efficiently if they are located in the same processor.

From these disadvantages the idea of load balancing arises (we call this strategy load

balancing to distinguish it from the former idea of simple load distribution). In a load

13

3. Research Themes The Algorithms and Complexity Group

balancing algorithm a processor normally works on its own problems, and only if its load

diverges heavily from the average over all processors, it tries to balance its load with

another processor.

A first attempt at load balancing was made in [RSU91]. That paper gives an algorithm

where a processor initiates a balancing step in dependence of the size of the local load,

and it is shown that the expected load on each processor varies only bya constant factor

from the average load. Motivated by the practical experiments in [LMRT91, LM92]

and [LMRT92], LUling and Monien proposed another dynamic load balancing scheme

in [LM93]. Here a processor balances its load with another processor if its load has

grownj shrunk by more than a constant factor since its last balancing step. In the analysis

they also prove that the expected load on each processor varies only by a constant factor

from the average load. Moreover some experiments and numerical calculation lead to

the suggestion that the variance is also small.

Our goal is to derive bounds showing that not only the expected load but also the actual

load of each processor is within a small range around the average load. To do this, we

extended the algorithm in [LM93] and gave a high-probability analysis. So far we can

achieve our goal if we allow periodical counting waves. These are periodically started

computations over the whole network that compute a quantity related to the average

load.

We will next try to extend the algorithm further to guarantee that waves are only

executed when they are necessary. This is important .because we are interested in load

balancing, and a periodically activated wave conflicts with the idea that a load balancing
step is activated only when the load differs heavily from the average.

References

[BI85]

[KZ88]

S. Bhatt, I. Ipsen: How to Embed Trees in Hypercubes. Yale University Re­

search Report YALEUjDCSjRR-443 1985

R. Karp, Y. Zhang: A Randomized Parallel Branch-and-Bound Procedure.

Proceedings of the 20th Annual ACM Symposium on Theory of Computing 1988,

pp 290-300

[LNRS89] T. Leighton, M. Newman, A.G. Ranade, E. Schwabe: Dynamic Tree Embed­

dings in Butterflies and Hypercubes Proc. of the 1st ACM Symp. on Parallel

Algorithms and Architectures 1989,pp 224-234

[MS90] B. Monien, I. H. Sudborough: Embedding one Interconnection Network in

Another Computing Supp. 7, pp 257-282

14

The Algorithms and Complexity Group 3. Research Themes

[RSU91} L. Rudolph, M. Slivkin-Allalouf, E. Upfal: A Simple Load Balancing Scheme

for Task Allocation in Parallel Machines Proc. of the 1991 ACM Symp. on

Parallel Algorithms and Architectures 1991, pp 237-245

[LMRT91} R. Lilling, B. Monien, F. Ramme: Load Balancing in Large Networks: A

Comparative Study 3'rd IEEE Symposium on Parallel and Distributed Processing

1991, pp. 686-689

[LMRT92} R. Lilling, B. Monien, M. Racke, S. Tschoke: Efficient Parallelization of a

Branch & Bound Algorithm for the Symmetric Traveling Salesman Problem

European Workshop on Parallel Computing 1992

[LM92] R. Liilirig, B. Monien: Load Balancing for Distributed Branch & Bound

Algorithms Proceedings of Int. Parallel Processing Symposium 1992, pp 543-

549

[LM93] R. Lilling, B. Monien: A Dynamic Load Balancing Algorithm with Provable

Good Performance Proc. of the 5. ACM Symp. on Parallel Algorithms and

Architectures 1993, pp 164-172

3.1.4 Routing and Sorting in Meshes

Investigator: Jop F. Sibeyn

Outline of the Problems

One of the main problems in the simulation of idealized parallel computers by realistic

ones is that of message routing through the sparse network of links connecting a set of

. processing units (PUs) among each other. In our research we consider the case ofthe nxn

mesh, in which n2 PUs are connected by a regular two-dimensional grid of bidirectional

communication links. There may also be additional wrap-around connections between

the two PUs at opposite ends of each row and each column of the network; this type of

mesh is called torus. A mesh without wrap-around connections is referred to as square.

We assume the MIMD model, where in a single step each PU can perform an arbitrary

amount of internal computation and transmit one packet of information (of bounded

length) to each of its neighbors.

Most research has focused on the 1-1 routing problem, also called the permutation routing

problem, in which each node is the origin and destination of at most one packet. However,

in many practical applications a PU may have to communicate with a number of other

PUs at the same time. This motivates the definition of the k-k routing problem, in which

each PU can be the source and destination of up to k packets. Other variants are the

l-k routing problem and the generall-k routing problem.

15

3. Research Themes The Algorithms and Complexity Group

Another .fundamental problem that involves the rearranging of packets within a processor

network is the sorting problem. Again, several variants of the problem have been studied.

In the 1-1 sorting problem, each PU initially holds a single packet, where each packet

contains a key drawn from a totally ordered set. The packets have to be rearranged such

that the packet with the key of rank i is moved to the PU with index i, for all i. In the

k-k sorting problem, each PU is the source and destination of k packets.

There are several variants of the above problems. Often considered are meshes of dimen­

sion d > 2. It turns out that k-k problems for sufficiently large k can be generalized with­
out problem to higher-dimensional meshes, but for small k, particularly for k = 1, there

are no optimal algorithms known for d > 2. Routing and sorting on one-dimensional

meshes is important as subroutine for problems on higher-dimensional meshes. In addi­

tion, routing and sorting on a one-dimensional mesh with a wrap-around connection, a

ring, is non-trivial and gives many interesting lower bounds and algorithms.

One may also assume that in addition to the connections with the neighbors there are

buses by which fast communication over longer distances is enabled. E.g., there may be

one such bus connected to all PUs in each row and one bus connected to all PUs in each

column of the mesh. The restriction is that at most one packet may be transferred over

a bus at a time.

Routing on One-Dimensional Arrays

On the linear array without wrap-around connections there are trivial algorithms with

optimal performance. Makedon and Simvonis were among the first to consider the k-k
routing problem on a ring [7]. Independently Kaufmann and Sibeyn developed an algo­

rithm [14] which is faster and more general. In [18] Sibeyn analyses the sorting problem.

Among other things, it is established in that paper that sometimes sorting is harder than

routing by a factor: 1-1 sorting without making copies has a lower bound of 2/3. n steps,

whereas the 1-1 routing problem can be solved trivially in n/2 steps. The algorithms

developed there resulted in new ideas which led to near-optimal deterministic routing

and sorting algorithms for higher-dimensional meshes presented in [15].

Permutation Routing on Two-Dimensional Meshes

The first routing algorithms which came close to the lower bound of 2· n - 2 steps were

given by Kunde [2] and Rajasekaran and Tsantilas [10]. Leighton, Makedon and Tollis [5]

presented the first deterministic algorithm with optimal routing time and constant size

queues. The latter paper is of great theoretical importance but the maximal queue size

is still impractically large. Rajasekaran and Overholt [9] reduced the queue size Q to less

than 200. In [11] Chlebus, Kaufmann and Sibeyn give a further considerable reduction

16

The Algorithms and Complexity Group 3. llesearch Themes

of Q. One of the algorithms has optimal routing time, T = 2· n - 2 with Q = 48, another

algorithm has much smaller queues, Q = 16, but T = 2· n + 0(1).

k-k Routing and Sorting

In [3], Kunde showed that k-k routing and sorting on squares can be performed in

k . n + o(k . n) steps with a queue size of k. A randomized algorithm for k-k routing

with running time max{4·n,k·n/2}+o(k·n) was presented by Kaufmann, Rajasekaran

and Sibeyn in [12) . Similar results for tori were given in [13) . These algorithms were

improved and extended to randomized sorting on squares and tori 1:>Y using an idea of

Reif and Valiant and of Reischuk to randomly select a set of splitters. After sorting these

splitters, the packets can estimate their rank and determine a corresponding preliminary

destination. Then Kunde [4], and independently Kaufmann, Sibeyn and Suel showed

that the bounds mentioned can also be achieved deterministically. Both algorithms can

easily be generalized to higher-dimensional meshes, but there the latter algorithm per­
forms considerably better.

1-k Routing

1-k routing reflects practical purposes better than the routing of permutations: if the

PU s are working independently of each other and generate packets that have to be trans­

ferred to other PUs, then it is unrealistic to assume that every PU is the destination of

at most one packet . The parameter k, 1 :5 k :5 n 2
, need not to be known by the PUs,

but is needed for stating the complexity of the problem. The 1-k routing problem has

also nice applications in the context of hot-potato worm-hole routing. Hot-potato routing

is a routing paradigm in which packets may never be queued at a PU but have to keep

moving at all times until they reach their destination [16, 1]. This model is used in many

practical systems. In a recent paper of Newman and Schuster [8) it is demonstrated

that under a mild condition any efficient 1-k routing algorithm with working queue size

(the number of packets that already moved and did not yet reach their destination) at

most four is useful as a subroutine for the hot-potato worm-hole routing problem. In

[19] Sibeyn and Kaufmann present a near-optimal deterministic algorithm running in

..jk . n/2 + O(n) steps. An alternative algorithm has slightly worse routing time but

working queue size three.

Routing on Meshes with Buses

Meshes with buses have been considered by Leung and Shende [6] who conjectured that

n steps would be a lower bound for permutation routing. In [17] Sibeyn, Kaufmann

17

3. Research Themes The Algorithms and Complexity Group

and Raman show that this is not true by giving an algorithm which requires 0.78 . n

steps. This comes close to improved lower bounds. The algorithm and lower bounds are

generalized to higher dimensions: for permutations the routing time remains below 2· n

. for all dimensiQns d= 0(n1/3).

References

[1] Feige, U., P. Raghavan, 'Exact Analysis of Hot-Potato Routing,' Proc. 33rd Symp.

on Foundations of Computer Science, pp. 553-562, IEEE, 1992.

[2] Kunde, M., 'Routing and Sorting on Mesh Connected Processor Arrays,' Proc. VLSI

Algorithms and Architectures, Lecture Notes in Computer Science, 319, pp. 423-433,

Springer-Verlag, 1988.

[3] Kunde, M., 'Concentrated Regular Data Streams on Grids: Sorting and Routing

Near to the Bisection Bound', Proc 32nd Symposium on Foundations of Computer

Science, pp. 141-150, IEEE, 1991.

[4J Kunde, M., 'Block Gossiping on Grids and Tori: Deterministic Sorting and Routing
Match the Bisection Bound,' Proc. European Symp.on Algorithms, LNCS 726, pp.

272-283, Springer-Verlag, 1993.

[5J Leighton, T., F. Makedon, Y. Tollis, 'A 2n - 2 Step Algorithm for Routing in an

n x n Array with Constant Size Queues,' Proc. Symposium on Parallel Algorithms

and Architectures, pp. 328-335, ACM, 1989.

[6J Leung, J., S.M. Shende, 'On Multi-Dimensional Packet Routing for Meshes with

Buses,' In Proc. 3rd IEEE SPDP, pp. 834-837, 1991. J. of ParI. and Dist. Comp.,

to appear.

[7] Makedon, F., A. Simvonis, 'Multipacket Routing on Rings,' Proc. 1st Intern. ACPC

Conference, LNCS 591, pp. 226-237, Springer-Verlag, 1991.

[8] Newman, I., A. Schuster, 'Hot-Potato Worm Routing is almost as easy as Store­

and-Forward Packet Routing,' Proc. IS TCS, 1993.

[9] Rajasekaran, S., R. Overholt, 'Constant Queue Routing on a Mesh,' Journal of

Parallel and Distributed Computing, pp. 160-166, June 1992.

[10] Rajasekaran, S., Th. Tsantilas, 'Optimal Routing Algorithms for Mesh-Connected
I

Processor Arrays', Algorithmica, 8, pp. 21-38, 1992.

18

The Algorithms and Complexity Group 3. Research Themes

Work of our group:

[11] Chlebus, B.S., M. Kaufmann, J.F. Sibeyn, 'Deterministic Permutation Routing on
Meshes,' Proc. 5th Symp. on Parallel and Distributed Processing, IEEE, 1993.

[12] Kaufmann, M., S. Rajasekaran, J.F. Sibeyn, 'Matching the Bisection Bound for
Routing and Sorting on the Mesh,' Proc. 4th Symp. on Parallel Algorithms and

Architectures, pp. 31-40, ACM, 1992.

[13] Kaufmann, M., J.F. Sibeyn, 'Optimal Multi-Packet Routing on the Torus,' Proc. :ird
Scandinavian Workshop on Algorithm Theory, pp. 118-129, Springer-Verlag, 1992.

[14] Kaufmann, M., J.F. Sibeyn, 'Deterministic Routing on One-Dimensional Arrays,'

Proc. 4th Symp. on Parallel and Distributed Processing, pp. 376-383, IEEE, 1992.

[15] Kaufmann, M., J.F. Sibeyn, T. Suel, 'Derandomizing Algorithms for Routing and
Sorting on Meshes,' Proc 5th Symposium on Discrete Algorithms, SIAM, 1994.

[16] Sibeyn, J.F., Algorithms for Routing on Meshes, Ph. D. Thesis, Universiteit Utrecht,
Utrecht, 1992.

[17] Sibeyn, J.F., M. Kaufmann, R. Raman, 'Randomized Routing on Meshes with
Buses,' Proc. 1st European Symposium on Algorithms, LNCS 726, pp. 333-344,
Springer-Verlag, 1993.

[18] Sibeyn, J.F., 'Deterministic Sorting on Circular Arrays,' Proc. Computing Science

in the Netherlands, SION, 1993.

[19] Sibeyn, J.F., M. Kaufmann, 'The l-k Routing Problem on Meshes, with Applica­
tions to Worm-Hole Routing,' Proc. 11th Symp. on Theoretical Aspects of Computer

Science, Springer Verlag, 1994.

3.1.5 Parallel Algorithms for Geometric Problems on Network Machines

Investigator: Christine Riib

This work is concerned with parallel algorithms for geometric problems in the plane
(e.g. convex hull, triangulation of a point set, red-blue intersection detection) that can
be implemented efficiently on existing parallel machines. Most of these machines consist
of a collection of processors, each with its own local memory, that are connected by some
interconnection network. Communication between the processors is done via message

passing through this network. Interconnection networks used in existing machines are,

19

3. Research Tbemes Tbe Algoritbms and Complexity Group

e.g., the two-dimensional mesh (e.g. Intel Paragon), the hypercube (e.g. NCubes NCube,

Intel iPSC/860), or the fat tree (e.g. Thinking Machines ·CM5).

For somebody implementing an algorithm this means that, in general, the interconnec­

tion network of the machine he uses is fixed. Also, the number p of available processors

is independent of the size n of the input and, in fact, in general p ~ n. Other points of
consideration are that 'communication is, to a varying degree, relatively expensive com­

pared to local computation, and that only a few message passing routines like broadcast

and global operations on standard data types are available to stcut with. Last not least

there is always a fast sequential algorithm that acts as 'an opponent: a parallel algorithm

has to be significantly faster than the best known sequential algorithm.

From the above observations follows that a practicable parallel algorithm can be im­

plemented to run on various networks and is scalable, i.e., the speedup achieved is a

function of the number p of processors and not dependent on the size of the input (ide­
ally, the speedup is p). Since communication is relatively expensive, we are interested

in algorithms that do much work locally, i.e. sequentially, and because of the sequential

opponent the constant factors involved should be small.

Here we propose parallel algorithms for several geometric problems in the plane that

consist of local computation plus some basic parallel routines such as merging, sorting,

or prefix computations. One advantage of this approach is that one can abstract from

the underlying architecture of the machine used: only the implementation of the basic

routines depends on the architecture. These basic routines have in common that they

can be implemented efficiently on many parallel machines: they are'scalable, have small

constant factors, do much work locally, and send mostly long messages. (The latter is
important on many parallel machines: sending several short messages takes much more

time than sending the same information in one long message.)

We have considered the following geometric problems in the plane:

1. Convex hull of a point set

2. Upper/Lower envelope of non-intersecting line segments

3. Triangulation of a point set

4. All nearest neighbours

5. Point location

6. Red-blue intersection detection

7. Red-blue intersection reporting.

The running times of the algorithms depend on the architecture used; here we list the

running times for a hypercube machine. For the first 6 problems we achieve a run­

ning time of O«n/p) log (n/p) + (logp)2), and for the 7th problem a running time of

O«n/p)(log(n/p) + (logp)2) + kip) if p ~ vn, where p is the number of processors

used, n is the size of the input, and k is the number of points of intersection in the last

problem. (Note that O«n/p)(1og(n/p) + (logp?) is the time used by the best known

20

The Algorithms and Complexity Group 3. Research Themes

practicable algorithm to sort n elements on a p-node hypercube.)

Problems 1, 2, and 5-7 were considered previously in [DFR93] and [DF93]. The running

times achieved there are O((n/p)(log(n/p) + (logp)2) for problems 1 and 2,

O((n/p)(log nlogp+ (logp)2)) for problems 4 and 5, and O((n/p)(log nlogp+ (logp)2) +

k / p) for problem 6. All these results hold only under the restriction that n ~ p2 (n ~
p2log p for problem 2). That is, our results are asymptotically as least as good as the

previously known results and either valid for a larger range of p of else asymptotically

faster. This is due to the fact that the basic parallel routines used here are more powerful

than the basic routines used in [DF93] and [DFA93], namely sorting, broadcast and total

exchange.

We have implemented the basic routines on an Intel iPSC /860 and started to implement
some of the proposed geometric algorithms.

References

[DF93] O. Devillers, A. Fabri, Scalable Algorithms for Bichromatic Line Segment Inter­

section Problems on Coarse Grained Multicomputers, Proceedings of the 3rd Workshop

on Algorithms and Data Structures, LNCS 709, 1993, 277-288.

[DFR93] F. Dehne, A. Fabri, A. Rau-Chaplin, Scalable Parallel Geometric Algorithms

for Coarse Grained Multicomputers, Proceedings of the 9th Annual ACM Symposium
on Computational Geometry, 1993, 298-307.

Work of our group:

[R93] ' Ch. Riib, Scalable Parallel Algorithms for some Geometric Problems in the Plane,

manuscript, 1993.

3.1.6 Lower Bounds for Parallel Algorithms

Investigator: Shiva Chaudhuri

The CRCW PRAM is one of the most frequently used models of parallel computation.

Many algorithms are easily described on this model, and it has therefore become an

important vehicle for expressing parallelism. To complement the effort in developing

algorithms on this model, it is important to study lower bounds on this model. Our

efforts in this direction are classified into the three categories below.

21

3. Research Themes The Algorithms and Oomplexity Group

Small domain lower bounds

Lower bounds in parallel computation often depend critically on the domain size of

the problem that is being solved. Typically these lower bounds use Ramsey theoretic

arguments to force the algorithms to behave in a structured manner on some subset of
the inputs. However, applying Ramsey theoretic arguments necessitates assuming an

unrealistically large domain size. These lower bounds become invalid when considering

smaller domains. Thus, a major thrust of parallel complexity is to prove lower bounds

for problems defined on smaller domains.
/

In [9], we investigated the complexity of chaining, a simple problem, on a CRCW PRAM

with n processors. Informally, the problem is, given an input consisting of n bits, link

the l's in the input into a chain. We show a lower bound of n(a(n)) time for this

problem. This lower bound is tight, since the problem can be solved in time O(a(n))
[2, 6]. This implies, via reductions, lower bounds for several related problems: ordered

chaining, prefix maxima, range maxima and parenthesis matching with nesting level.

These problems appear frequently as subproblems in parallel algorithms, for example, in

integer sorting, merging, lowest common ancestor and compaction (see [5, 4, 6]) .

A measure of CRCW PRAM complexity

The computation of Boolean functions by circuits leads naturally to their study in all
models of parallel computation. Much work has been done on investigating properties

of Boolean functions which are measures of the difficulty of computing the function.

Sensitivity is one such measure of Boolean functions which has been extensively studied

[3]. Cook, Dwork and Reishuk [3] show that the complexity of computing a function

f on a CREW PRAM is related to the sensitivity of f. They prove a lower bound of

n(log S J) on the time required to compute f. Because of the close relationship between

CRCW PRAMs and unbounded fan-in circuits, it is an interesting open problem to find

a measure of Boolean functions which classifies the complexity of computing the function

on a CRCW PRAM. In [11] , we investigate this problem.

The AND function has sensitivity n and therefore takes 9(log n) time on a CREW

PRAM. However, AND can be computed in constant time on a CRCW PRAM. Thus,

sensitivity is not an appropriate measure of CRCW PRAM complexity. We investigate

another measure, everywhere sensitivity, defined by Vishkin and Wigderson [7] . An intu­
itive interpretation of the everywhere sensitivity of a function is the minimum number of

input bits whose values need to be revealed to convince an adversary of the value of the

function . Our main result is that computing a function f : D'" ~ R of everywhere sen­

sitivity es(f) requires time n(log log es(f)/(log 4PIDI-Ioges(f))]) on a CRCW PRAM
with P ~ n processors and unbounded memory. The lower bound holds for nonuniform

algorithms as well. For computing, with n processors, a Boolean function of everywhere

sensitivity n, for instance, PARITY, this gives a lower bound of O(log log n). This is

weaker than the bound of O(log n/ log log n) obtained by Beame and Hastad [1]. How-

22

,
i
~
-\
~

, .. ~•. -.l
"
,

i
("

The Algorithms and Complexity Group 3. Research Themes

ever, surprisingly, for n processors and everywhere sensitivity O(n), the bound is tight

for nonuniform algorithms.

Lower bounds for approximate problems

A useful paradigm in computation is the computation of increasingly accurate approxi­

mations to the object sought, until it is eventually computed exactly. The AKS sorting

network is perhaps the most dramatic example of the use of this paradigm. Recently,

some problems, which have the common feature that they are all approximate versions

of problems, have been the subject of much study. For some applications, it is enough to

solve the approximate version, which can often be solved faster than the exact version

[13, 8]. For each approximate problem, there is an accuracy parameter A ~ 1/(n + 1).

When A = 1/ (n + 1) each of the above three problems reduces to its exact version, which
is known to require n(log n/log log n) time, by the lower bound of Beame and Hastad

[1]. However, as A increases', these lower bound techniques no longer apply; in fact, many

of these problems can be solved in poly(log log n) time. In [11], we develop techniques
for proving lower bounds for some of these problems.

In approximate selection, the task is to find, from n elements, an element whose rank dif­

fers from a specified rank by at most An. In approximate counting, given a bit vector, the

goal is to compute an integer that lies between S/(A+ 1) and S(A+ 1), where S is the num­

ber of 1 's in the input vector. We prove the following bounds: approximate selection with

accuracy A ::; 1/4 with Cn processors requires n(log[log n/ log CJ) time. Approximate

counting with accuracy A ~ 2 using Cn processors requires O(log[log n/(log A + log C)])
time. These bounds are easily seen to imply lower bounds for other approximate problems

such as interval allocation and approximate pre/iz summation [12, 13]. In particular, the

bound for approximate counting directly implies the bound for approximate compaction

proved in [10].

The methods used to prove the lower bounds are of independent interest, being general

enough to have applications to other computational models.

References

[1] P. Beame and J. T. Hastad. Optimal bounds for decision problems on the CReW

PRAM. J~urnal of the ACM, 36 (1989), pp. 643-670.

• [2] O. Berkman and U. Vishkin, "Recursive *-Tree Parallel Data Structure", Proc. of

30th IEEE FOCS, 1989, 196-202.

[3] S. Cook, C. Dwork and R. Reischuk. Upper and Lower Time Bounds for Parallel

,Random Access Machines Without Simultaneous Writes. SIAM Journal on Com­

puting, Vol. 15, No.1, (1986), pp. 87-97.

23

3. Research Themes The Algorithms and Complexity Group

[4] J. Gil and L. Rudolph, "Counting and Packing in Parallel" , International Conference

on Parallel Processing, 1986, 1000-1002.

[5] Y. Matias and U. Vishkin, "On Parallel Hashing and Integer Sorting, Proc. of 17th

ICALP, 1990, 729-743.

[6] P. Ragde, "The Parallel Simplicity of Compaction and Chaining", Proc. 17th
ICALP, 1990, 744-751.

[7] U. Vishkin and A. Wigderson. Trade-offs between depth and width in parallel

computation. SIAM Journal on Computing., 14 (1985) pp. 303-314.

Work of our group:

[8] S. Chaudhuri, T. Hagerup and R. Raman. Approximate and Exact Deterministic

Parallel Selection. In Proc. 18th Math. Fdtns. of Compo Sci., Springer LNCS, Vol.
711, (1993), pp. 352-361.

[9] S. Chaudhuri and J. Radhakrishnan, "The Complexity of Parallel Prefix Problems
on Small Domains", Proc. 33rd IEEE FOCS, 1992, 638-647.

[10] S. Chaudhuri, "A Lower Bound for Linear Approximate Compaction", Proc. of 2nd
Israel Symp. on Theory of Compo and Sys., 1993, 25-32.

[11] S. Chaudhuri, "Sensitive Functions and Approximate Problems", Proc. of 34th

IEEE FOCS, 1993.

[12] T. Hagerup. Fast Deterministic Processor Allocation. In Proc. 4th ACM-SIAM

SODA (1993), pp. 1-10.

[13] T. Hagerup and R. Raman. Fast Approximate and Exact Parallel Sorting. In Proc.

5th Annual SPAA (1993), pp. 346-355.

3.1. 7 A Scalar-Product Circuit

Investigators: Michael Miiller, Christine Riib, Wolfgang Riilling

In recent years, methods for solving numerical problems have been developed that, in

contrast to traditional numerical methods, compute intervals, which are proven to con­
tain the true solution of the given problem (cf. [1], [2]). These methods rely on an exact

evaluation of inner product expressions in order to obtain good (i.e. small) enclosure

24

The Algorithms and Complexity Group 3. Research Themes

intervals. Practical experiments have shown that, using these methods, even ill condi­

tioned problems can generally be solved with maximum accuracy. Since the exact inner

product computation is a basic operation for these methods we developed a circuit to

support the difficult part of the inner product computation: the accurate accumulation

of the partial products .

.Prob4b.lr Ibe besl Tr/lf 10 do Ibe 4ccumuklJo.o er4c1.lr JS 10 use 4 ./0.06' .i£red-,po.i.ol 4C­

cumulator in which all intermediate sums can be stored with full accuracy. But if the
~~~~~~ u.~ ~.,..~~~<:..\.~ ~\. ~~~~\.~ ~.,..~<:..\.~\.~~ ~~~\.\.~~~~~\. ~~~~.,..~"\ \.\)..~ ~<:..<:..~~~\.~.,.. 

must have more than 4000 bits. The problem is that a carry resulting from an addition 

can propagate over almost the whole accumulator. A similar problem arises when we 

want to determine the most significant bit of the accumulator to round its contents to 

a floating-point number. It is too expensive to solve these problems sequentially and 

even a. carry propagation tree of this size is not affordable. Our solution is to partition 

the accumulator into words and to associate with each word information which makes it 

possible to handle the problems sufficiently fast with a moderately sized circuit (cf. [3]). 

The circuit which we have developed using a semi custom design system with 1.2 p,m 

CMOS technology has a size of 8.8 mm x 8.75 mm and consists of approximately 5000 

standard cells (60000 transistors), 4 K bit RAM and 7 K bit ROM (cf. [4]). Assuming 

typical conditions (supply voltage 5.0 V, temperature 25°C) our simulations yield that 

the addition of a floating-point summand takes about 575 ns and the rounding and out­

putting of the result takes about 850 ns. Note that our summands are exact products of 

double precision floating-point numbers; a Transputer TSOO-30 for example needs 667 ns 

for a double precision multiplication. 

References 

[1] U. Kulisch and W. L. Miranker, Computer Arithmetic m Theory and Practice, 

Academic Press, New York, 1981 

[2] U. Kulisch and W. L. Miranker (eds.), A New Approach to Scientific Computation, 

Academic Press, New York, 1983 

Work of our group; 

[3] M. Miiller, Ch. Riib, W. Riilling, Exact Accumulation of Floating-Point Numbers, 

Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pp. 64-69, 1991 

25 



3. Research Themes The Algorithms and Complexity Group 

[4] M. Miiller, Entwurf eines Chips fUr ausliischungsfreie Summation von Gleitkomma­

zahlen, Ph.D. Thesis, Universitat des Saarlandes, 1993 

3.2 Computational Geometry 

3.2.1 Proximity Problems 

Investigators: Sunil Arya, Mordecai Golin, Sanjiv Kapoor, Hans-Peter Lenhof, Rajeev 
Raman, Christian Schwarz, Michiel Smid 

Proximity problems are among the fundamental problems in computational geometry. A 

large part of our work on these problems can be found in the Ph.D. theses of Hans-Peter 

Lenhof [6] and Christian Schwarz [8]. The above mentioned investigators worked-in 
close collaboration-on the following problems. 

The closest pair problem: Given a set S of n p~ints in rn.d, the goal is to find a 

closest pair in S, i.e., points P, Q E S such that d(P, Q) = min{d(p, q) : p, q E S,p =I q}. 
Here, d(p, q) denotes the Minkowski Lt-distance between p and q for a fixed 1 :::; t :::; 00. 

Although this problem has been solved optimally already in 1976, we developed a new 

optimal algorithm: In [4], a very simple randomized algorithm is presented, having 

an expected running time of O(n). (Provided the floor-function is available at unit­

cost.) This algorithm can also be implemented in the algebraic decision tree model of 

computation. Then the expected running time becomes O(nlog n), which is optimal 

in this model. Both implementations are the most simple algorithms among all known 
optimal closest pair algorithms. 

In [4], a more general problem is solved optimally: Given k, 1 :::; k :::; (;), the algorithm 

finds the k closest pairs, i.e., the k smallest among all (;) distances, in O(nlog n + k) 
time. This problem arises e.g. in molecular biology: Atoms that are close together 

interact more than atoms that are far apart. Hence, it is important to identify the 

atoms that are close. Our algorithm is sufficiently simple that it can be implemented. 

(At this moment, a student implements it. Even for higher dimensions the algorithm 

performs very well.) 

In the dynamic closest pair problem, we have to maintain the closest pair if points are 

inserted and/or deleted in the set S. Intuitively, insertions are easier to handle than 

deletions: If a point is inserted, we only have to check the neighborhood of this new 

point. On the other hand, if we delete a point that is part of the closest pair, then we 

have to find the new closest pair. Indeed, we obtained an optimal solution for the case 

where only insertions have to be supported: In [9], a data structure of size O( n) is given 

that maintains the closest pair in O(log n) time per insertion. 

For the fully dynamic problem, no optimal solutions are known, although we designed 

26 
,', ., 

.. i I i 



The Algorithms and Complexity Group 3. Research Themes 

near-optimal solutions. In [10], a data structure of size O(n(log n)d) is given that main­

tains the closest pair in O( (log n )d log log n) time per insertion and deletion. This was 

the first closest pair data structure having polylogarithmic update time. Recently, 

this result was improved in [5]: For d ~ 3, the closest pair can be maintained in 
O( (log n )d-1log log n) time per update using O( n) space. In the planar case, there is 

a data structure of size O( n) that maintains the closest pair in O( (log n)2 / (log log n )Ie) 
time per update. Here, k is an arbitrary fixed integer. 

The above mentioned dynamic data structures are all deterministic. In [3], a randomized 
data structure is given that maintains-· for any dimension d ~ 2-the closest pair in 
O((log n)2) expected time per insertion and deletion. This structure has O(n) expected 

sIze. 

Clustering problems: Again, a set S of n points in IRd is given. In addition, we are 

given an integer k, 2 :::; k :::; n. The goal is to find k points that are as close as possible. 

This problem has many applications, e.g. in pattern recognition and statistics. It turns 

out that different closeness measures give rise to different algorithms. In [2], we give a 
general transformation: Given any algorithm that solves the k-point clustering problem, 

the transformation produces another algorithm that solves the same problem by reducing 

it to O(n/k) clustering problems, each for only O(k) points. Using this transformation, 
we obtained the currently best known results for these problems. 

The post-office problem: In this problem, we want to store a set S £; IRd of n 

points (= post-offices) in a data structure such that for any query point q E IRd we 
can efficiently :find a point in S that is closest to q. Besides of theoretical interest, this 
problem is important in areas such as pattern recognition, data compression and speech 

processing. Researchers from the latter area are interested in solutions for moderate 

dimensions d. 

In the plane, the post-office problem can be solved optimally by means of Voronoi dia­

grams. In higher dimensions, however, this problem is very difficult to solve. In view of 

this, we studied the approximate post-office problem: Given a query point q E IRd, find 

a point pES such that the euclidean distance between q and p is at most 1 + € times 

the distance between q and its true neighbor. Note that for most practical applications, 

a solution to this version of the problem suffices. 

In [1], a static optimal solution to this approximation problem is given: The data struc­

ture has size O(n) and a query time of O(log n). In [5], a dynamic data structure is 
given having size O( n(log n )d-l) that solves queries in O( (log n )d-l log log n) time. In 

this data structure, points can be inserted and deleted in O( (log n )d-l log log n) time. 

27 



3. Resea:rcb Tbemes Tbe Algoritbms and Complexity Group 

References 

[lJ S. Arya, n.M. Mount, N.S. Netanyahu, R. Silverman, A. Wu. An optimal algorithm 

for approximate nearest neighbor searching. To appea:r inProc. 5th SODA, 1994. 

Work of our group: 

[2J A. Datta, H.-P. Lenhof, C. Schwarz, M. Smid. Static and dynamic algorithms for 

k-point clustering problems. Proceedings 3rd (WADS), LNCS Vol. 709, Springer­
Verlag, 1993, 265-276. 

[3J M. Golin, R. Raman, C. Schwarz and M. Smid. Randomized data structures for the 

dynamic closest-pair problem. Proc. 4th SODA, 1993, 301-310. 

[4J M. Golin, R. Raman, C. Schwarz and M. Smid. Simple randomized algorithms for 

closest pair problems. Proc. 5th Canadian Conf. Computational Geometry, 1993, 
246-251. 

[5J S. Kapoor and M. Smid. New techniques for exact and approximate dynamic closest­

point problems. In preparation. 

[6J H.-P. Lenhof. Distanz- und Suchprobleme in der algorithmischen Geometrie und 

Anwendungen in der Bioinformatik. Ph.D. Thesis. Universitat des Saarlandes, 
Saarbriicken, 1993. 

[7] H.-P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. Proceedings 

33rd FOeS, 1992, 380-386. 

[8J C. Schwarz. Data structures and algorithms for the dynamic closest pair problem. 

Ph.D; Thesis. Universitat des Saarlandes, Saarbriicken, 1993. 

[9J C. Schwarz, M. Smid and J. Snoeyink. An optimal algorithm for the on-line closest 

pair problem. Proc. 8th ACM Symp. on Computational Geometry, 1992, 330-336. 

[10] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic time. 

Discrete Comput. Geom. 7 (1992), 415-431. 

3.2.2 Randomized Incremental Constructions (RICs) 

Investigators: Kurt Mehlhorn, Stefan Meiser (till Aug 93), Michael MillIer, Ronald 

Rasch, Joachim Ziegler 

28 



The Algorithms and Complexity Gl'O~p 3. Research Themes 

Incremental construction, i.e., to solve a problem of size n by first solving a problem of 

size n -1 a.Ii.d then extending the solution to the full size, is a basic algorithmic paradigm. 

Clarkson and Shor [CS89] have shown that in the geometric setting adding the elements 

in random order frequently yields algorithms with optimal expected running time. They 

have demonstrated this for such diverse problems as convex hulls, Voronoi diagrams, line 

segment intersections, and intersections of spheres. They have also given a general but 

quite complicated and unintuitive analysis of the expected running time of RICs. 

In [CMS92] we give a simple expected case analysis using and extending the backwards 

analysis technique ofR. Seidel [Sei91]. We can treat not only insertions but also deletions. 

An alternative and equally simple analysis was given by Mu.hD.uley [Mul90]. We also give 

a tail estimate for the space complexity of RICs. In [MSW92] we extend the tail estimate 

technique to the time complexity of RICs for line segment intersection. A general tail 

estimate for time is still an unresolved problem. In [AGK+92] we treat the related 

question of optimum stopping rules for randomized algorithms. 

We applied RICs to AbstraCt Voronoi diagrams, cf. section 3.2.3, and to the convex hull 

problem in arbritrary dimensions. For the latter problem we obtained an optimal data 

structure for convex hulls under random insertions and deletions [CMS92]. Miiller and 

Ziegler [MZ93] describe an implementation of the convex hull algorithm. 

References 

[CS89J 

[Mul90] 

[Sei91] 

K. L. Clarkson and P. W. Shor. Applications of random sampling in com­

putational geometry, II. Journal of Discrete and Computational Geometry, 
pages 387-421, 1989. 

K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Computation, 

pages 253-280, 1990. 

R. Seidel. Backwards analysis of randomized geometric algorithms. New 

Trends in Discrete and Computational Geometry, J. Pach (ed.), Springer 

Verlag, pages 37-67, 1993. 

Work of our group: 

[AGK+92] H. Alt, L. Guibas, R. Karp, K. Mehlhorn, and A. Widgerson. A method for 

obtaining randomized algorithms with small tail probabilities. Rep. Max­

Planck-Institut fUr Informatik, (MPI-I-92-110), 1992. 

[CMS92] Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on 

randomized incremental constructions. In Computational Geometry: Theory 

29 



3. Research Themes The Algorithms and Complexity Group 

and Applications, volume 3, pages 185-212, 1993. Full version available · as 
MPI-report MPI-I-92-112. 

[MSW92] K. Mehlhorn, M. Sharir, and E. Welzl. Tail estimates for the space complex­
ity of randomized incremental constructions. In ACM-SIAM Symposium on 
Discrete Algorithms, volume 3, pages 89-93, 1992. Full version available as 

MPI-report MPI-I-91-113. 

[MZ93] M. Miiller and J . Ziegler. An implementation of a convex hull algorithm. 
manuscript, 1993. 

3.2.3 Abstract Voronoi Diagrams 

Investigators: Kurt Mehlhorn; Stefan Meiser (till Aug 1993), Ronald Rasch, Michael Seel, 

Nicole Zimmer 

Since 1975, when Shamos and Hoey ([SH75]) discovered Voronoi diagrams for com­

puter science, Voronoi diagrams are among the structures most frequently investigated 

in Computational Geometry. This is motivated by the wide range of applications for 

which Voronoi diagrams have been proved a powerful tool. For a survey on the topic we 

refer to [Aur91], [LS86], [Oka92], [Kle89] or [Mei93], which provide exhaustive collections 
of examples. 

In general, the Voronoi diagram is defined for a space M, a finite set S of sites and a 
distance measure d giving a distance for each pair (z, s) with z E M and s E S. In this 

setting the Voronoi diagram partitions M into regions such that each region contains all 
points of M having the same closest site among the elements of S. Different types of 

Voronoi diagrams are obtained by varying the space, frequently M = IR?, the shape of 

the sites, such as points, spheres, polyhedra, and the distance function, e.g., Lp-norms, 

convex distance functions, weighted distance functions. 

With the notion of abstract Voronoi diagrams Klein [Kle89] has proposed a unifying 
approach to Voronoi diagrams for the important case M = [R2. Klein's approach covers 

the most important types of Voronoi diagrams in the plane by replacing the notion of 

distance by the topological concept of bisecting curves. 

We have contributed to the mathematical as well as the algorithmic treatment of abstract 

Voronoi diagrams. From the algorithmic point of view the interest was focused on the de­

sign of an algorithm for the construction of all types of Voronoi diagrams included in the 

abstract Voronoi diagram model. Early results [MMD91] led to an O(nlog n) random­

ized algorithm where n = lSI . This algorithm was the first algorithm computing abstract 

Voronoi diagrams in their full generality provided a certain general position assumption 

is satisfied. The key idea consists in reducing the dependency from the particular kind 

of Voronoi diagram to a single basic operation, namely the construction of a Voronoi 

30 



The Algorithms and Complexity Group 3. Research Themes 

diagram of five sites. Later, Klein, Mehlhorn, and Meiser [KMM90, KMM93, Mei93] 
removed the general position assumption. Further improvements in the computation of 

abstract Voronoi diagrams benefit from new results in the theory of randomized incre­

mental constructions [BDS+92, CMS92]. 

Instances of the algorithm have been implemented by Zimmer [Zim92] and Seel [See93] 

for the following types of Voronoi diagrams: 

1. point sites under L 1- and L 2-metric 

2. Power diagrams 

3. line segments under L2-metric 

In contrast to an earlier version Seel's implementation also checks the legality of the 

input without violating the asymptotic time bound. 

In respect to the mathematical treatment of abstract Voronoi diagrams Meiser [Mei93] 

contributed a simplified characterization of abstract Voronoi diagrams and significantly 

enlarged the collection of Voronoi diagrams known to be enclosed by the abstract Voronoi 

diagram model. 

Recent results show that the abstract Voronoi diagram approach even allows to consider 

higher order Voronoi diagrams. In particular, Mehlhorn, Meiser, and Rasch [MMR92] 

investigate furthest site abstract Voronoi diagrams and give an description of the main 

properties of these diagrams. Furthest site abstract Voronoi diagrams are shown to 

have tree structure and linear complexity. Additionally, the work includes an O( n log n) 
randomized algorithm for the computation of these diagrams which preserves the features 

of the algorithm calculating nearest site abstract Voronoi diagrams. 

References 

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey. ACM Computing Surveys, 

23(3):395-405, 1991. 

[BDS+92] J. D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli­

cations of random sampling to on-line algorithms in computational geometry. 

Discrete & Compo Geometry, 8(1):51-72, 1992. 

[Kle89] 

[LS86] 

R. Klein. Concrete and Abstract Voronoi Diagrams. LNCS 400, Springer 

Verlag, 1989. 

D. Leven and M. Sharir. Intersection and Proximity Problems and Voronoi 

Diagrams, pages 187-228. J. Schwartz and C. K. Yap (Eds.), Advances in 

Robotics, Vol. 1, Lawrence Erlbaum, 1986. 

31 



3. Research Themes The Algorithms and Complexity Group 

[Oka92] A. Okabe, B. Boots, and K. Sugihara. Spatial tesselations: concepts and 

applications of Voronoi diagrams. Wiley, New York, 1992. 

[SB75] M.1. Shamos and D. Boey. Closest point problems. In Proc. 16th IEEE Symp. 

on Foundations of Computer Science, pages 151-162, 1975. 

Work of our group: 

[CMS92] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incre­

mental constructions. In Computational Geometry: Theory and Applications, 

3:185-212, 1993. 

[KMM90] R. Klein, K. Mehlhorn, and S. Meiser. On the construction of abstract Voronoi 

diagrams, part II. In SIGAL Symp. on Algorithms, Tokyo, LNCS 450, pages 
138-154, 1990. 

[KMM93] R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construc­

tion of abstract Voronoi diagrams. In Computational Geometry: Theory and 

Applications, 3:157-184, 1993. 

[Mei93] S. Meiser. Zur Konstruktion abstrakter Voronoidiagramme. PhD thesis, Uni­

versitat des Saarlandes, 1993. 

[MMD91] K. Mehlhorn, S. Meiser, and C. 6' Dlinlaing. On the construction of abstract 

Voronoi diagrams. Discrete (1 Computational Geometry, 6:211-224, 1991. 

[MMR92] K. Mehlhorn, S. Meiser, and R. Rasch. Furthest Site Abstract Voronoi Dia­

grams. Technical Report MPI-I-92-135, Max-Planck-Institut fiir Informatik, 

Saarbriicken, 1992. 

[See93] M. Seel. Eine Implementierung Abstrakter Voronoidiagramme. Master's the­

sis, Universitat des Saarlandes, 1993. in preparation. 

[Zim92] N. Zimmer. Die Konstruktion abstrakter Voronoidiagramme. Master's thesis, 

Universitat des Saarlandes, 1992. 

3.2.4 Motion Planning 

Investigator: Stefan Schirra 

Here we consider the geometric version of a fundamental problem in robotics: 

32 



. Tbe Algorithms and Complexity Group 3. Research Tbemes 

Given a geom.etric description of a robot and its environment and two posi­

tions of the robot, is there a collision-free path between these positions? 

If yes, we would also like to get such a 

path. This problem is known as the mover's 

problem. For this problem many exact al­

gorithms hav been developed in the past 

decade, see [3, 4]. Measured in the size of 

the environment, e.g. the number of poly­

gon corners, they have polynomial worst 
case time complexity. However, the ·degree 

of the polynomials that give the bounds on 

the running time, is quite high and excludes 

these algorithms from being used in prac­
tice. We have shown that approximate al­

gorithms can result in much better running 

times in many practical applications. This 

was already known, in fact, the first algo-
, rithms for the mover's problem have been 

approximate. 

-·1 I. -• -. 
-

In contrast to former approaches our algorithms come with a bound on the approximation 

and are much faster for "easy problems". Here "easy" reflects the human intuition of 

the difficulty of a motion planning problem. In Figure 1, the problems in the left and 
the right example are easy. 

The problems are obviously solvable and unsolvable respectively. In an intuitive sense, 

a solvable problem is easy if a much larger object could be moved as well, e.g. moving 

a p~ncil through an office door. An unsolvable problem is easy if a much smaller object 
cannot be moved either, e.g. moving a car through an office door. If the state of the 

problem switches from solvable to unsolvable or vice versa by varying the size of the 

object slightly, then the problem is intuitively difficult, e.g. moving a desk through an 

office door. So far, the time bounds of motion planning algorithms have been given 

with respect to the size of the environment (number of polygonal corners) exclusively. 

In Figure 1 however, the polygonal environment is the same in all three cases. The 

complexity of our algorithms depends on the intuitive notion of the difficulty of a motion 

planning problem, which we call the tightness of the problem, as well as on the size of 

the environment. 

Let us be more precise. In [5] we started with an approximate algorithm . for moving a 

rectangle R with sides of length a and b between polygons. Let P be a motion planning 

problem for rectangle R. For a real number a > 0 we use aR to denote the rectangle 

with sides aa and ab and Pa the problem P with R replaced by aR. The tightness Ccrit 

33 



3. Research Themes The Algorithms and Oomplexity Group 

o D 

Figure 1: Motion planning problems with different tightness 

of P is given as follows: 

• If P is solvable then Ccrit = inf { C; P1+e is unsolvable} . 

• If P is unsolvable then Ccrit = inf{c; P1/(1+e) is solvable}. 

We show in [5] that the motion planning problem for a rectangle amidst polygonal 

obstacles can be solved in time O((ec~1 + l)n(1og n)2) where n is the number of corners 
of the polygons and Ccrit the tightness of the problem. In [6] this has been improved to 

O((ec~1 + l)nlogn). The bounds for the best known exact algorithms for this problem 
are in n(n2 ) [1, 2]. . 

In [6] the basic idea has been generalized to more complex motion planning problems 

like chains of polygons with joints moving amidst polygonal obstacles in the plane or 

polyhedra moving amidst polyhedral obstacles in 3-space. 

References 

[1] L.P. Chew and K. Kedem. High-clearance motion planning for a convex polygon 

among polygonal obstacles. Technical Report 184/90, Tel Aviv University, 1990. 

[2] K. Kedem and M. Sharir. An efficient motion planning algorithm for a convex 

polygonal object in 2-dimensional space. Discrete and Computational Geometry, 

5:43-75, 1990. 

[3] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991. 

[4] J.T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In Handbook 

of Theoretical Computer Science Vol. A: Algorithms and Complexity. Elsevier, 1990. 

34 



The Algorithms and Complexity Group . 3. Research Themes 

Work of our group: 

[5] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Naher, S. Schirra, and C. Uhrig. 

Approximate motion planning and the complexity of the boundary of the union of 

simple geometric figures. Algorithmica, 8:391-408, 1992. 

[6] S. Schirra. Approximative Bewegungsplanungsverfahren. PhD thesis, Universitat des 

Saarlandes, 1992. 

3.2.5 Approximate Decision Algorithms for Geometric Pattern Matching 

Investigator: Stefan Schirra 

We investigate algorithms that decide whether two geometric objects resemble each other 

to a given degree after applying a transformation from a set of allowed transformations 
T. The practical motivation behind our study comes from computer vision, where an 

observed image is compared to a hypothesized model. We have been mainly interested 

in comparing point sets. 

Perfect resemblance of two geometric patterns means geometrically congruence. Due two 

inaccuracies in the input data and rounding-errors in the computations exact congruence 

is of theoretical interest only, see [4]. More realistic is approximate congruence, i.e. 

congruence with a tolerable error bound. We say that point sets A and B are congruent 

with tolerance e, or e-congruent, if there exists an isometry I and a bijection I : A -+ B 

such that dist(I(a),I(a)) :5 e, for all a E A, where dist(o,.) is the distance function for 
our chosen metric. 

Several researchers have studied approximate congruence, notably Baird [1] and Alt, 

et al. [4]. The distinguishing feature of their decision algorithms is the high run-time: 

no algorithm is known for T = set of translations with o(n6 ) run-time, and for T = 

set of rigid motions, the best known bound is 8( n8
). For models with a large number 

of points, such performance is unacceptable. Therefore we developed approximate de­

cision algorithms: For a specified metric and isometry class, let eopt(A, B) denote the 

minimum value of e such that A and B are e-congruent. We call decision algorithms 

which always return a correct answer complete decision algorithms, while an algorithm 

which either returns a correct answer or chooses not to answer we call an approximate 

decision algorithm. An approximate decision algorithm is called (a, f3)- approximate [7], 

if, for any e tf. [eopt(A, B) - a, eopt(A, B) + f3], it correctly answers a query, and for 

e E [eopt(A, B) - a, eopt(A, B) + f3], it either answers correctly or chooses not to answer. 

We call [eopt(A,B) - a,eopt(A,B) + f3] the indecision interval. An (a,f3)-approximate 

35 



3. Research Themes The Algorithms and Complexity Group 

algorithm has the desirable property that it will not return an incorrect answer; if it is 
not sure, it will simply say that it does not know the answer. 

Let n be the cardinality of A and B. In [7] we presented ("y, "y )-approximate algorithms 

for approximate congruence with tolerance e with running time O«e/"Y)2n2.S ) for trans­

lations and running time O«e/"Y)2n4) for rigid motions. In[6] we improved these bounds 

to O«e/"Y)4n1.S) and O«e/"Y)Sn2
.
S) respectively. So for rigid motions we have a speed-up 

of O(ns.S) if"Y = e/c for some constant c ~ 1. 

It is possible to remove the indecision from our approximate decision algorithms, and 

obtain complete decision algorithms whose time-complexity is dependent on the difficulty 

of the problem instance. Specifically, if we think of Ke = leopt( A, B) - e I as the "difficulty 
parameter", then each of our approximate decision algorithms can be transformed into 

a complete decision algorithm, with Ke replacing "Y in the time bound. 

Recently we investigated approximate decision algorithms for Hausdorff-distance of point 

sets [5]. In some sense Hausdorff-distance of point sets under (a subset of) rigid motions 

is a relaxation of approximate congruence. Point sets A and B are called e-close if their 

Hausdorff-distance 

h(A, B) := max(maxmindist(a, b),maxmindist(b, a)) 
cEA bEB bEB cEA 

is at most e. Here it is sufficient that every point has an e-close point in the other 

point set. A matching (and hence equal cardinality) is not required. In [5] we present 

algorithms with indecision interval [8 - "Y, 8 + "Y] where 8 is the Hausdorff-distance. For 

point sets of cardinality nand m resp. we get running time O«e/"Y)2(n+m) log(n+m)) for 
Hausdorff-distance under translations and 0« e /"Y )2nm log ( nm)) for Hausdorff-distance 

under rigid motions. So far the best (complete) decision algorithm for Hausdorff-distance 

under translation has running time O( nm( n + m) log ( nm)) [3]. For rigid motions the 

best bound is O(m3n2 log(nm)) [2]. 

References 

[1] H.S. Baird. Model-Based Image Matching Using Location. MIT Press, 1984. 

[2] L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, and 

D. Kravets. Geometric pattern matching under Euclidean motion. In Proc. of the 

5th Canadian Conference on Computational Geometry, pages 151-156, 1993. 

[3] D.P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope ofVoronoi-surfaces 

and its applications. In Proc. of the 7th ACM Compo Geom. Conference, pages 194-

203, 1991. 

36 



The Algorithms and Oomplexity Group 3. Research Themes 

Work of our group: 

[4] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symme­

tries of geometric objects. Discrete and Computational Geometry, 3:237-256, 1988. 

[5] L.P. Chew, K. Kedem, and S. Schirra. Approximate decision algorithms for 

Hausdorff-distance. in preparation, 1993. 

[6] P.J. Heffernan and S. Schirra. Approximate decision algorithms for point set congru­

ence. In Proc. of the 8th ACM Symp. on Computational Geometry, pages 93-101, 

1992. 

[7] S. Schirra. Approximate decision algorithms for approximate congruence. Informa­

tion Processing Letters, 43:29-34, 1992. 

3.3 Data Structures and Graph Algorithms 

3.3.1 Competitive Analysis of On-Line Algorithms 

Investigators: Susanne Albers and Boris Teia 

Many on-line problems can be formulated as follows. An on-line algorithm is presented 

with a sequence of requests that must be served in their order of occurrence. In particular, 

the on-line algorithm must satisfy each request without knowledge of any future requests. 

The processing of requests incurs cost and the goal is to minimize the cost incurred on 

the entire request sequence. Competitive analysis [ST85] is a powerful means to analyze 

the performance of on-line algorithms. An on-line algorithm A is called c-competitive 

if there exists a constant a such that for every request sequence, the cost incurred by 

A is at most a plus c times the cost incurred by the optimal off-line algorithm. The 

optimal off-line algorithm knows the entire request sequence in advance and pays only 

the minimum cost. The competitive factor of A is the infimum of all c such that A is 

c-competitive. 

We have investigated the problem of lookahead in on-line algorithms: What improvement 

can be achieved in terms of competitiveness if an on-line algorithms knows not only the 

present request to be served but also some future requests. In many applications, requests 

do not necessarily arrive on:e after the other but rather in blocks of possibly variable size. 

It may also be possible to delay the service of requests so as to wait for some incoming 

requests. In general, an interesting question is, what is it worth to know a part of 

the future. The two main problems that we have studied with respect to lookahead 

are paging and the list-update problem. We have also addressed caching, the k-server 

problem and metrical task systems. 

37 



3. Research Themes The Algorithms and Complexity Group 

First, we have introduced a new model of lookahead. Consider the intuitive model of 

lookahead which we call weak lookahead. An algorithm is on-line with a weak lookahead 

of size 1 if it always sees the present request and exactly 1 future requests. This model 

of lookahead is usually of little or no advantage. The reason is that an adversary can· 
replicate requests in the lookahead, thereby weakening the effect of lookahead. The new 

model of lookahead that we have defined is called strong lookahead. An algorithms is 

on-line with a strong lookahead of size 1 if it sees the present request and a sequence of 

future requests. This sequence contains 1 pairwise distinct requests which also differ from 
the present request. Our definition is motivated by an analysis of request sequences that 

occur in practice: Subsequences of consecutive requests generally contain a number of 

distinct requests. From a theoretical point of view, we require an adversary to reveal some 
really significant information on future requests. Our main results can be summarized 

as follows. 

Paging: The paging problem is to decide which pages to store in a small fast memory 

so as to minimize the number of page faults. Let k be number of pages that can be 

held in fast memory. The competitive factors of optimal deterministic and randomized 

on-line paging algorithms without lookahead equal k and H(k), respectively, [ST85, 

FKLMSY91, MS91]. Here H(k) denotes the k-th harmonic number. It is well known 

that weak lookahead cannot improve these factors at all. Strong lookahead is the first 
model of lookahead that can reduce the competitive factors. We have developed a variant 

of the algorithm LRU (Least Recently Used) that, given a strong lookahead of size 1, 
is (k - I)-competitive. The algorithm is optimal because we can also show that no 

deterministic on-line algorithm with strong lookahead 1 can be better than (k - 1)­
competitive. In the area of randomized algorithms we have developed a variant of the 

MARKING algorithm [FKLMSY91] that is 2H(k -I)-competitive if a strong lookahead 

1 is given. This competitiveness is nearly optimal since no randomized on-line algorithm 

with strong lookahead 1 can be better than H(k - I)-competitive. These bounds hold 

against the oblivious adversary. We have also developed a number of nearly optimal 

on-line algorithms which make only little use of lookahead. 

The list-update problem: The problem consists of maintaining a list of n items as an 

unsorted linear list . Each request is an access to an item in the list, where accessing the 

i-th item in the list incurs a cost of i. The competitive factor of optimal deterministic 

on-line algorithms without lookahead equals 2 [ST85, KR90j. We have derived lower 

bounds on the competitive factors of on-line algorithms if a strong or weak lookahead 

of size I is given. We have shown that an on-line algorithm requires a strong lookahead 

of size O( n) in order to be better than 2-competitive. If an on-line algorithm is given 

a weak lookahead, the situation is worse. A lookahead of size O( n 2
) is necessary to 

asymptotically beat the competitive factor of 2. However, the cost ants hidden in the 

O-notation are very small. For this reason, we have also developed competitive on-line 

38 



The Algorithms and Complexity Group 3. Research Themes 

algorithms for both models of lookahead. 

See [A92, A93a] for more detailed results on lookahead in on-line algorithms. 

Another problem that we have addressed is the k-server problem [MMS88]. The problem 

consists of scheduling the motion of k mobile servers which cover points in a metric 

space M. A request sequence consisting of points in M must be served. In response to 

each request, a server must be moved to the requested point, unless a server is already 

present. The goal is to minimize the total distance traveled by the servers. Manasse 

et al. [MMS88] demonstrated that no deterministic on-line algorithm for the k-server 

problem can be better than k-competitive. They also conjectured that for every k 
there exists a k-competitive deterministic on-line k-server algorithm. This conjecture 

is still open. So far, k-competitive algorithms are known only for the following special 

cases: (a) k = 2 [MMS88]; (b) the total number of points in the metric space equals 

k + 1 [MMS88]j (c) the metric space is isomorphic to a line or tree [CKPV90, CL91]; 

(d) the uniform metric space (paging) [ST85] . However , the proposed algorithms differ 

in each case. Coppersmith et aI. [CDRS90] have presented a more general approach. 

They gave a randomized on-line algorithm that is k-competitive for resistive spaces. 

In fact, all the four cases mentioned above are examples of resistive spaces. We have 

developed a deterministic k-server algorithm, called HANDICAP, that is k-competitive 

in the cases (a)-(d), see [T93]. Furthermore, HANDICAP is k-competitive against the 
• 

lazy adversary. An adversary is lazy if it always poses the next request at a point at 

which it has a server but the on-line algorithm has not (provided that there is such 

a point). Finally we have proved that HANDICAP is 157-competitive if k = 3. The 

analysis of that proof is quite loose and we conjecture that HANDICAP is 3-competitive 

for k = 3. 

A third problem that we have studied is the on-line replication problem. Consider a net 

of processors, each of which has its local memory. These local memories store pages that 

ate assumed to be read-only. Suppose a processor p wants to read an information from 

page B. IrB is stored in p's local memory, then this read operation can be satisfies at 

zero cost. Otherwise,. p has to access the local memory of the closest processor q with 

the page and incurs a cost equal to the distance from p to q. If p has to read page B 
frequently, it might be worthwhile to replicate B to p's local memory. However, such a 

replication incurs a high cost equal to f3 times the distance from p to q, where f3 is the 

page size factor. The replication problem is to decide which pages should be replicated 

to which processors. Black and Sleator [BS89] considered that case that the proces­

sor net forms a tree and presented a deterministic on-line replication algorithm that 

achieves an optimal competitive factor of 2. Recently, Koga [K93] gave a randomized 

1. 71-competitive algorithm for trees and a 4-competitive algorithm for circles. We have 

developed a randomized replication algorithm for trees which achieves a competitive fac­

tor Of (e~l) ~ 1.58. The algorithm is optimal because we can show that no randomized 

39 

44 



3. Research Themes The Algorithms and Complexity Group 

on-line replication algorithm can be better than (e~l)-competitive. Furthermore, we 

have developed a technique for transforming a large class of c-competitive algorithms 

for trees into 2c-competitive algorithms for circles. As a result, we obtain a randomized 

(e~l )-competitive algorithm for circles. We also derived two 4-competitive algorithms 

for circles that are either memoryless or use only one random number during an initial­

ization phase and run completely deterministically thereafter. See [A93b] for details. 

References 

[BS89] D.L. Black and D.D. Sleator. Competitive algorithms for replication and migra­

tion problems. Technical Report Carnegie Mellon University, CMU-CS-89-201, 1989. 

[CKPV90] M. Chrobak, H. Karloff, T. Payne and S. Vishwanathan . . New results on 

server problems. In Proe. 1st Annual ACM-SIAM Symposium on Discrete Algorithms, 

pages 291-300, 1990. 

[CL91] M. Chrobak and L.L. Larmore. An optimal on-line algorithm for k servers on 

trees. SIAM Journal on Computing, 20(1):144-148, 1991. 

[CDRS90] D. Coppersmith, P. Doyle, P. Raghavan and M. Snir. Random walks on 

weighted graphs, and applications to on-line algorithms. In Proe. 22nd Annual ACM 

Symposium on Theory of Computing, pages 369-378, 1990. 

[FKLMSY91] A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E. Young. Com­

petitive paging algorithms. Journal of Algorithms, 12:685-699, 1991. 

[IRWS91] S. Irani, N. Reingold, J. Westbrook and D.D. Sleator. Randomized competitive 

algorithms for the list update problem. In Proe. 2nd Annual ACM-SIAM Symposium 

on Discrete Algorithms, pages 251-260, 1991. 

[KR90] R. Karp and P. Raghavan. Personal communication, transmitted through [IRWS91]. 

[K93] H. Koga. Randomized on-line algorithms for the page replication problem. To ap­

pear in Proe. 4th International Annual Symposium on Algorithms and Complexity, 1993. 

[MMS88] M.S. Manasse, L.A. McGeoch and D.D. Sleator. Competitive algorithms for 

on-line problems. In Proe. 20th Annual ACM Symposium on Theory of Computing, 

pages 322-333, 1988. 

40 



The Algorithms and Complexity Group 3. Research Themes 

[MS91] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging 

algorithm. Algorithmica, 6:816-825, 1991. 

[ST85] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging 

rules. Communication of the ACM, 28:202-208, 1985. 

Work of our group: 

[A92] S. Albers. The influence of lookahead in competitive on-line algorithms. Technical 
Report Max-Planck-Institut fUr Informatik, MPI-I-92-143, 1993. 

[A93a] S. Albers. The influence of lookahead in competitive paging algorithms. In Proc. 

1st European Symposium on Algorithms, pages 1-12, 1993. 

[A93b] S. Albers. Improved randomized algorithms for the replication problem. Manuscript, 
November 1993. 

[T93] B. Teia. Ein Beitrag zum k-Server Problem. Ph.D. Thesis, Max-Planck-Institut 
fUr .Informatik, 1993. 

3.3.2 Network Flow Algorithms 

Investigators: J. Cheriyan (till Nov 1990), T. Hagerup, K. Mehlhorn 

Given a directed graph G, a source vertex a.Ii.d a sink vertex, and a capacity function on 

the edges, the problem is to compute a maximal flow from the source to the sink. This 
problem has a long history and is one of the basic problems of combinatorial optimiza­
tion. Previous to our' work, the best algorithms had running time O(n3 ) [Kar74] and 

O(nmlog(n2 /m)) [GT88]. 

Cheriyan and Hagerup [CH89] introduced the idea of randomization into network flow 

algorithm. They achieve a running time of O(nm + n2(logn)3) thus reaching the long­
standing goal of O(nm) running time for all non-sparse graphs. In [CHM91], we simplify 

and refine their approach and add a bit-compression technique to speed up the search 

for the so-called "eligible edges". We achieve a bound of O( min {nm, n3 I log n}). For 

dense graphs, this breaks the O(n3
) barrier. In [CM91], we show the usefulness of the 

'bit-compression technique for other graph problems. In particular, we show how to 
solve the maximal matching problem in bipartite graphs in time O( n2•5 I log n). The 

latter result was also obtained by Motwani and Feder [FM91] using completely different 

41 



3. Research Themes The Algorithms and Oomplexity Group 

techniques. 

All our network flow algorithms were derandomized by Alon and King, Rao, and Tarjan, 

and Philipps and Westbrook [Alo90, KRT92, PW93]. 

References 

[Alo90] N. Alon. Generating pseudo-random permutations and maximum flow algo­

rithms. IPL, 35:201-204, 1990. 

[FM91] T. Feder and R. Motwani. Clique partitions, graph compression and speeding­

up algorithms. 23rd Annuat ACM Symposium on Theory of Computing, pages 
123-133, 1991. 

[GT88) A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow prob­
lem. Journal of the ACM, 35:921-940, 1988. 

[Kar74] A.V. Karzanov. Determining the maximal flow in a network by the method 

of preflows. Soviet Math. Dokl., 15:434-437, 1974. 

[KRT92] V. King, S. Rae, and R.E. Tarjan. A faster deterministic max-flow algorithm. 

ACM-SIAM Symposium on Discrete Algorithms, 3:157-164, 1992. 

[PW93] S. Philipps and J. Westbrook. Online load balancing and network flow. 25th 

Annual ACM Symposium on Theory of Computing, pages 402-411, 1993. 

Work of our group: 

[CH89] J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. IEEE 
Symposium on Foundations of Computer Sience, 30:118-123, 1989. Full version 

available as Tech. Rep. no 988, School of Operations Research and Industrial 

Engineering, Cornell University, October 1991. 

[CHM91] J. Cheriyan, T. Hagerup, and K. Mehlhorn. An 0(n3) maximum-flow algo­

rithm. Technical Report MPI-I-91-120, Max-Planck-Institut fUr Informatik, 

1991. A preliminary version was published in ICALP 90. 

[CM91] J . Cheriyan and K. Mehlhorn. Algorithms on dense graphs. Technical Report 

MPI-I-91-114, Max-Planck-Institut fUr Informatik, 1991. 

42 



The Algorithms and Complexity Group 3. Research Themes 

3.3.3 Data Structures for Sets and Sequences 

Investigators: Paul Dietz, Rudolf Fleischer, Kurt Mehlhorn, Rajeev Raman, Rajamani 

Sundar, Christian Uhrig 

One of the most common (and most important) data structures used in efficient algo­
rithms are balanced search'trees. A great variety of them can be found in the literature. 

Basically, they all store a set of n keys such that location, insertion and deletion of keys 

can be accomplished in O(log n) worst case time. 

In general, updates (insertions or deletions) are done in the following way: First, locate 

the place in the tree where the change has to be made; second, perform the actual update; 

and third, rebalance the tree to guarantee that future query times are in O(log n). The 

second step usually takes only 0(1) time, whereas steps 1 and 3 both need O(log n) time. 

However, there are applications which do not need the first step because it is already 

known where the key has to be inserted or deleted in the tree. In these cases we would 

like to have a data structure which can do the rebalancing step as fast as the actual 

update, i.e. in constant time. 

It has been well known for a long time that some of the standard balanced search 

trees can achieve 0(1) amortized update time once the position of the key is known 

([082]). However, for the worst case update time, the best known method had been a 

complicated O(log* n) algorithm by Harel ([H79]). Recently Levcopoulos and Overmars 

came up with an algorithm achieving optimal 0(1) update time ([L088]). They use the 
bucketing technique of [082]: Rather than storing single keys in the leaves of the search 

tree, each leaf (bucket) can store up to O(log n) keys. In fact, the buckets in [L088] 

have size O(log2 n); therefore, [L088] also need a 2-level hierarchy of lists to guarantee 

O(log n) query time within the buckets. 

In [F92], we simplify their approach 'considerably and reduce the bucket size to 2 log n, 

which means that we need only an ordered list to store the elements of a bucket. The 

analysis of our algorithm seems simpler and more natural than in [L088]. 

The main disadvantage of the bucketing technique used in our data structure as well 

as in [L088] is the fact that finger searches can not be supported efficiently. Only a 

non-combinatorical data structure (using bit manipulations and precomputed tables) is 

known which achieves constant update time and efficient finger searches ([DR90]). 

In many applications the implementation of some additional operations concerning sets 

(besides insertions and deletions) can be of interest (for instance for the implementation 

of high-level languages such as SETL ([S74]) and Hermes ([SBGLYY91]), where sets and 

sequences are supported as primitive data types). 

Suppose we want to maintain an initially empty family F of sets 8 over a 'Universe U 
and allow such operations as Insert(z, 8) (insert the element z E U into set 8 E F), 

Delete( z, S), M ember( z, S) (is z in 8?), Equal( S1, 82) (is Sl equal to 82 ?), Subset( Sl, S2) 

43 

-



3. Research Themes The Algorithms and Complexity Group 

(is Sl a subset of S2 ?), and Intersection(Sl, S2) (compute and report the set Sl n S2)' 
Yellin ([YeI92]) designed a data structure that supports all these operations and achieves 

a running time of O( .y'n( n + q) log n) for processing an intermixed sequence of n updates 

(Insert, Delete) and q queries (Member, Subset, Equal, Intersection), when nand q 

are not known in advance . . In [DMRU93], we present a simpler solution improving the 

running time to 0(( q + n.jq) log n). We also give a lower bound proof for the arithmetic 

monoid model ([Fre81]' [Yao85]) and show that our upper bound, up to factors being 

polylog in n,is tight in this model. 

Furthermore, we consider a variant of the problem mentioned above, where we only allow 
a limited number of memory cells, say m.For this variant we present an algorithm with 

running time O(n2log n/m1/ 3) for processing a sequence of n operations (updates as well 

as queries). Again we prove a matching lower bound (up to polylog in n factors). 

Another interesting problem is the maintenance of an initially empty family :F of se-
. quences s over a universe U where the operations M akesequence( s, a) (create the new se­

quence s consisting of a E U), Concatenate(sl' S2, S3) (create the new sequence 83 by con­

catenating the existing sequences Sl and S2 without destroying them), Split(8}, 82, 83, i) 
(create the new sequences Sl and S2 by splitting S3 at position i without destroying it) 

and Equal( s}, S2) (is 81 equal to S2?) have to be supported efficiently. We are especially 

interested in solutions where equality tests can be performed in constant time. Pugh 

([Pugh88]), and Pugh and Teitelbaum ([PT89]) gave a randomized representation of se­

quences that supports updates in O(log n) expected time, where n is the total length 

of the sequences involved. However, their solution only handles sequences where no du­

plicate elements occur. Sundar and Tarjan ([ST90]) presented a deterministic solution 
and achieved O( y'n log m + log m) amortized time for an update operation using O(.y'n) 
amortized space. Here, m denotes the total number of operations performed so far. In 

[MSU93], we present a randomized solution that handles the general case and needs 

O(log2 n) expected time and space. We also give a deterministic data structure which is 

essentially a derandomization of the randomized one. It supports update operations in 

time O(1og n(log m log* m + log n)) using O(1og n(log n + log* m)) space. 

References 

[DR90] 

[Fre81] 

P.F. Dietz, R. Raman. A Constant Update Time Finger Search Tree. 

Advances in Computing and Information - ICCI '90, LNCS, Vol. 468, 

Springer, 100-109, 1990. 

M. L. Fredman. A Lower Bound on the Complexity of Orthogonal Range 

Queries. Journal of the ACM, 28: 696-705, 1981. 

44 



The Algorithms and Complexity Group 3. Research Themes 

[H79] D. Harel. Fast Updates with a Guaranteed Time Bound per Update. 

[L088] 

[082] , 

[083] 

[Pugh88] 

[PT89] 

[S74] 

Technical Report, Dept. of ICS, University of California at Irvine, 1979. 

C. Levcopoulos, M.H. Overmars. A Balanced Search Tree with 0(1) 
Worst-Case Update Time. Acta {nformatica 26,269-277, 1988. 

M.H. Overmars. A 0(1) Average Time Update Scheme for Balanced 
Search Trees. Bull. EATCS, 18: 27-29, 1982. 

M.H. Overmars. The Design of Dynamic Data Structures. Lecture Notes 
in Computer Science, Vol. 156, Springer, 1983. 

W. Pugh. Incremental Computation and the Incremental Evaluation of 
Functional Programming. Ph.D. Thesis, Cornell University, 1988. 

W. Pugh, and T. Teitelbaum. Incremental Computation via Function 
Caching. In Proc. 16th ACM POPL, 315-328, 1989. 

J. T. Schwartz. On Programming: An Interim Report on the SETL 
Project, Installments I and II. ClMS, New York University, 1974. 

[SBGLYY91] R.E. Strom, D.F. Bacon, A.P. Goldberg, A. Lowry, D.M. Yellin, and 

S. Yemini. Hermes: A Language for Distributed Computing. Prentice­
Hall, Englewood Cliffs, NJ, 1991. 

[ST90] 

[Yao85] 

[YeI90] 

[YeI92] 

R. Sundar, and R.E. Tarjan. Unique Binary Search Tree Representation 
and Equality-Testing of Sets and Sequences. In Proc. 22nd ACM STOC, 
18-25, 1990. 

A. C. Yao. On the Complexity of Maintaining Partial Sums. SIAM 

Journal on Computing, 14: 277-288, 1985. 

D. Yellin. Representing Sets with Constant Time Equality Testing. Jour­

nal of Algorithms, 13: 353-373, ~992. 

D. Yellin. Data Structures for Set Equality-Testing. In Proc. 3rd Annual 

ACM-SlAM SODA, 386-392,1992. 

Work of our group: 

[DMRU93] P. Dietz, K. Mehlhorn, R. Raman, and C. Uhrig. Lower Bounds for Set 

Intersection Queries. In Proc. 4th Annual ACM-SlAM SODA, 194-201, 

1993. To appear in Algorithmica. 

45 



3. llesearch Jrheznes Jrhe Algorithzns and Coznplexity Group 

[F92] 

[MSU93] 

R. Fleischer. A Simple Balanced Search Tree with 0(1) Worst-Case 

Update Time. Technical Report MPI-I-92-101, Max-Planck-Institut fiir 

Informatik, 66123 Saarbriicken, Germany, January 1992. To appear in 
ISAAC '93. 

K. Mehlhorn, R. Sundar, and C. Uhrig Maintaining Dynamic Sequences 
under Equality Tests in Polylogarithmic Time. Technical Report MPI-

1-93-128, July 1993. To appear in Proc. 5th Annual ACM-SIAM SODA, 

1994. 

3.3.4 Bottom-U p-Heapsort 

Investigators : Rudolf Fleischer, Christian Uhrig, Bhabani Sinha 

Bottom-Up-Heapsort is a variant of the classical Heapsort algorithm due to Williams 

([Wi]) and Floyd ([F64]). The input to both algorithms is an array a[l..n] of n elements 
from an ordered set S which are to be sorted. We will measure the complexity of the 

algorithms in terms of number of comparisons. 

First the elements will be arranged in form of a heap with the biggest element at the root. 

This means that the array is considered as a binary tree where node i has children 2i and 

2i + 1, and that a parent node contains a bigger element than- its children. This requires 

O(n) time ([Wi]). Then follows the Selection Phase which consists of n Rearrangement 

Steps. In each Rearrangeznent Step, the root element changes place with the last element 

in the array; then the heap is rearranged with respect to the remaining elements. So the 

size of the heap decreases by one in each Rearrangement Step. Since the root always 

contains the biggest heap element, the array will be filled step by step from the end with 

elements in decreasing order. 

The classical rearrangement procedure works as follows. At the beginning, the root 

contains a former leaf element (the last array element is always a leaf). This element 

is repeatedly swapped with the bigger one of its children until it is bigger than both of 

its children or it is a leaf. At each level two comparisons are made. Hence the total 

complexity of the Selection Phase might be as big as 2n log n . 

In Bottom-Up-Heapsort, the rearrangement procedure is changed in the following way. 

We first compute the special path ([We]) which is the path on which the leaf element 

would sink in the classical rearrangement procedure. This is the unique path with the 

property that any node on it (except the root) is bigger than its sibling, and costs only 

one cqmparison per level. Then we let our leaf element climb the special path up to its 

destination node at the additional cost of one comparison per level. 

This algorithm tries to make use of the intuitive idea that leaf elements are likely to 

sink back down almost to the bottom of the heap, so one can expect climbing up to 

46 



The Algorithms and Complexity Group 3. Research Themes 

be cheaper than sinking down. In fact, Wegener ([We)) showed an upper bound of 

~nlog n + O(n) for Bottom-Up-Heapsort. He also conjectured a tighter upper bound 

of n log n + o( n log n), but we could construct a heap with an asymptotic lower bound 

of ~nlog n - O(nlog log n) comparisons ([FSU)) and later even a heap with asymptotic 

~nlogn - O(nloglogn) comparisons, matching the upper bound ([F91)). This bound 

also implies an asymptotic upper bound of n log n + O( n log log n) for the best case of 

the classical Heapsort algorithm, as has been suspected for many years. This conjecture 

has been proven at the same time but independently by (SS] using very similar methods. 

References 

[F64] R.W. Floyd. Algorithm 245 : Treesort 3. Communications of the ACM 7 (1964), 
pp. 701. 

[SS] R. Schaffer, R. Sedgewick. The analysis of heapsort. Technical Report CS-TR-

330-91, Princeton University, January 1991. 

[We] I. Wegener. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beating 

on average QUICKSORT (if n is not very small). Proc. MFCS '90, Lecture 

Notes in Computer Science, Vol. 452, Springer 1990, pp. 516-522. 

[Wi] J.W.J. Williams. Algorithm 232 : Heapsort. Communications of the ACM 7 

(1964), pp. 347-348. 

Work of our group: 

[F91] R. Fleischer. A tight lower bound for the worst case of bottom-up-heapsort. 

Proc. 2nd International Symposium on Algorithms 1991, Lecture Notes in Com­
puter Science, Vol. 557, Springer 1991, pp. 251-262. 

[FSU] R. Fleischer, B. Sinha, C. Uhrig. A lower bound for the worst case of bottom-up­

heapsort. Information and Computation 102/2 (1993), pp. 263-279. 

3.4 Realization and the LEDA Project 

3.4.1 The LEDA Platform for Combinatorial and Geometric Computing 

Investigators: Kurt Mehlhorn and Stefan Naher 

One of the major differences between combinatorial or geometric computing and other 

areas of computing such as statistics, numerical analysis and linear programming is the 

47 



3. Research Themes The Algorithms and Complexity Group 

use of complex data types. Whilst the built-in types, such as integers, reals, vectors, 

and matrices, usually suffice in the other areas, combinatorial and geometric computing 

relies heavily on types like stacks, queues, dictionaries, sorted sequences, priority queues, 

graphs, points, segments, ... ; In the fall of 1988, we started a project (called LEDA 
for Library of Efficient Data types and Algorithms) to build a growing library of data 

types and algorithms. We hope that it will narrow the gap between algorithms research, 

teaching, and implementation. · The main features of LEDA are: 

• LEDA provides a sizable collection of data types and algorithms in a form which 
allows them to be used by non-experts. In the current version, this collection 

includes most of the data types and algorithms described in the text books of the 

area. 

• LEDA gives a precise and readable specification for each of the data types and 
algorithms mentioned above. The specifications are short (typically, not more 

than a page), general (so as to allow several implementations), and abstract (so as 

to hide all details of the implementation). For many efficient data structures access 

by position is important. In LEDA, we use an item concept to cast positions into 

an abstract form. Most of the specifications given in the LEDA manual [8] use this 

concept, i.e., the concept is adequate for the description of many data types. 

• LED A contains efficient implementations for each of the data types, e.g., Fibonacci 
heaps for priority queues, skip lists and dynamic perfect hashing for dictionaries, 

and a mechanism based on multiple inheritance and dynamic binding that allows 

users to choose easily among different implementations for the same data type. 

• LED A contains a comfortable data type graph. It offers the standard iterations 

such as "for all nodes v of a graph do" or "for all neighbor nodes of v do", it 

allows to add and delete nodes and edges and it offers arrays and matrices indexed 

by nodes and edges. The data type graph supports the implementation of graph 

algorithms in a form close to the typical text book presentation. 

LEDA is implemented as a C++ class library, is available by anonymous ftp ·and can 

be used freely for research and teaching. The main concepts and some implementation 

details of LEDA are described in [7] and [9]. The user manual ([8]) lists the specifications 

of all data types and algorithms contained in the current version (3.0) of the library and 

gives many example programs. 

LEDA is used as a basis for software construction world wide by several hundred sites 

including universities and industrial software companies. In particular, there is an in­

tensive cooperation with the Siemens AG([3]) . Other projects with similar goals are 

described in [1], [2], [4], and [5] . However, all of these projects settle for a considerably 

smaller collection of data types and algorithms than LED A does. 

48 



The Algorithms and Complexity Group 3. 'Research Themes 

Current and future work includes the incorporation of various new data structures and 
algorithms from the area of computational geometry into LEDA including 

• arbitrary precision integer and floating point data types 

• basic geometric data structures for higher-dimensional geometry ([10]) 

• robust algorithms for the construction of different kinds of Voronoi diagrams ([6]) 

• augmented tree data structures based on skip lists and randomized search trees 
([11]) 

References 

[1] G. Booch, Software Components with Ada, Benjamin/Cummings Pub!. Company, 
1987 

[2] K.E. Gorlen, S.M. Orlow, P.S. Plexico, Data Abstraction and Object-Oriented Pro­
gramming in C++ ,John Wiley and Sons Publishing Company, 1990 

[3] U. Lauther, A Fast Planning Tool for Routing and Scheduling of Cargo Trains, 
ALCOM Workshop "Algorithms: Implementation, Libraries, and Use", 1993. 

[4] C. Lins, The Modula-2 Software Component Library, Springer Publishing Company, 
1989 

[5] J. Soukup, Orgailized C, Typescript, 1988 

Work of our group: 

[6] C. Burnikel, K. Mehlhorn, S. Schirra, On Degeneracy in Geometric Computations, 

Technical Report, Max-Planck-Institut fUr Informatik, Saarbriicken, 1993 

[7] K. Mehlhorn, S. Naher, LEDA, a Library of Efficient Data Types and Algorithms, 

Communications of the ACM, to appear 

[8] S. Naber, LEDA User Manual Version 3.0, Technical Report, Max-Planck Institut 
fiir Informatik, Saarbriicken, 1992 

[9] S. Naber, Parameterized Data Types in LEDA, in preparation 

[10] M. Neukirch, Grundlegende geometrische Datenstrukturen und Algorithmen fiir 

LEDA, Diplomarbeit, Max-Planck-Institut fUr Informatik, Saarbriicken, 1993 

49 

l 



3. Research Themes The Algorithms and Complexity Group 

[11] M. Paul, Augmented Tree Data Structures based on Skiplists and Randomized 
Search Trees, Ph.D. Thesis (in preparation), Max-Planck-Institut fUr Jnformatik, 

Saarbriicken, 1993. 

3.4.2 Precision and Degeneracy in Geometric Computations 

Investigators: Christoph Burnikel, Kurt Mehlhorn, Stefan Meiser (till Aug 1993), Stefan 

Naher, Stefan Schirra, Erik Schwarzenecker 

The implementation of geometric algorithms is a notoriously difficult task. The collec­

tion of available correct implementations is still smail, where correct means that they 

come with a precise description of the class of inputs for which they work. Why is 

the implementation so difficult? Most of the difficulties can be traced to the following 

sentence that appears in nearly every paper on computational geometry: 

Throughout this paper we assume exact real arithmetic and the input to be 

in general position (no three points on a line, no four points on a circle, ... ). 

In general, however, geometric algorithms which are provably correct for the model of 

real numbers with real arithmetic will fail when executed with floating point arithmetic. 

In practice, such non-robustness of algorithms is frequently corrected using some ad­

hoc method like "epsilon tweaking". An epsilon parameter is added to the code, such 

that, for example, two objects that have "distance" less than epsilon are considered to 

be incident. This principle of "if it's close to zero then it is zero" is agci.in a common 

source of failure, because it gives rise to inconsistent decisions. For example, consider 

Fig. 2. We might detect that PI and P2 are both incident to lines £1 and £2 and hence 

Pl 

Figure 2: Inconsistent decisions 

conclude that these lines are equal. Testing PI and P3 , we would conclude that the lines 

are different. At best, these ad-hoc approaches reduce failure probability. Therefore 

exact arithmetic should be used. 

We have been mainly interested in the computation ofVoronoi-diagrams for line segments 

and have implemented Yap's algorithm [6] and the randomized incremental algorithm 

50 



Tbe Algorithms and Complexity Group 3. Research Tbemes 

for abstract Voronoi-diagrams [10]. For Voronoi-diagrams of points some work has been 

done with respect to robustness, see e.g. [4], and robust implementations exist [5]. 

For line segments, however, the situation is different. While in a Voronoi-diagram for 
point sets all Voronoi-vertices have rational coordinates, they might have non-rational 

algebraic coordinates in a Voronoi-diagram for line segments. So exact rational arith­

metic is not sufficient. Fortunately, computer algebra shows a way to compute exactly 

with algebraic numbers. The general theory, however, gives quite weak bounds. For the 

Voronoi diagram of line segments, we can show that if the coordinates of the endpoints 

of the segments are k bit integers, then precision 48k suffices in the computations. More­

over we do not need to resort to general techniques for dealing with algebraic numbers 

but only need repeated squaring. The general theorems of computer algebra give only 

about 1000k. 

It is folklore that degeneracies are a curse in the implementation of geometric algorithms, 

"because" they require many case distinctions and therefore result in lengthy error prone 

code. Fortunately, there is a general technique for coping with degeneracies: the per­

turbation technique [2, 7, 3]. In this technique, the input is perturbed symbolically and 

the computation which has to be carried out exactly, is carried out on the perturbed 

input. It can be shown that the perturbation schemes remove geometric degeneracies, 
e.g., collinearity of three points, at only a constant factor increase in running time. So 

perturbation seems to be the perfect solution for the problem of degeneracy. As Yap [7] 

puts it: the perturbation technique is "the theoretical paradise in which degeneracies are 

abolished". 

In [8] we argue against this belief and put forward the claim that it is simpler (in 

terms of programming effort) and more efficient (in terms of running time) to avoid the 

. perturbation technique and to deal directly with degenerate inputs. Our argument rests 

on the observations that on degenerate inputs the perturbation schemes may incur an 

arbitrary overhead in running time, that the complexity of the postprocessing required to 

retrieve the answer for a degenerate input z from the answer to the perturbed input z( e ) 

is significant, and that for many geometric problems algorithms handling degeneracies 

directly are only moderately more complex than algorithms assuming non-degenerate 

inputs. In [8] we substantiate these claims on two basic problems in computational 

geometry, the line segment intersection problem and the convex hull problem. 

For concreteness, let us substantiate the first claim for the line segment intersection 

problem. The input are n line segments in the plane and the output is the planar 

graph whose vertices are the endpoints and the crossings of the segments and whose 

edges are the subsegments induced by the vertices. We use m to denote the number 

of vertices of this planar graph and s to denote the number of pairs of intersecting 

segments. Note" that s might be as large as m 2, e.g., if all segments pass through the 

ongm. The perturbation technique yields running time 0« n + s) log n) when combined 

51 



3. Research Themes The Algorithms and Complexity Group 

with Bentley-Ottmann plane-sweep, and time O( s + n log n) when combined with the 
optimal deterministic algorithm of Chazelle and Edelsbrunner [1]. We give a variant 

of the optimal deterministic algorithm of Chazelle and Edelsbrunner, that runs in time 

O(m + nlog n). 
In [9] we describe an algorithm for intersecting a polyhedron with a convex polyhedron, 
that handles all degenerate cases directly. 

We can also offer some experimental evidence. The LEDA-implementation [12] of the 

plane sweep algorithm for line segment intersection has 581 lines of code out of which 

about 100 deal with degeneracies (vertical segments and high-degree intersections). The 

LED A-implementation [11] of our convex hull algorithm (without deletion) has 1124 

lines of code. Out of this 134 lines deal with degeneracies. 

References 

[1] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line seg­

ments in the plane. Journal of the ACM, 39:1-54, 1992. 

[2] H. Edelsbrunner and E.P. Miicke. Simulation of simplicity: A technique to cope 

with degenerate cases in geometric algorithms. ACM Trans. Graphics, 9(1):67-104, 

1990. 

[3] Ionnais Emiris and John Canny. An efficient approach to removing geometric de­

generaCIes. In Proc. o/the 8th Symp. on Computational Geometry, pages 74-82, 
1992. 

[4] S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations and 

Voronoi diagrams. In Proc. of the 8th ACM Symp. on Computational Geometry, 
pages 83-92, 1992. 

[5] A. Okabe, B. Boots, and K. Sugihara. Spatial tessellations: concepts and applica­
tions of Voronoi diagrams. Wiley, New York, 1992. 

[6] C. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve 

segments. Discrete and Computational Geometry, 2:365-393, 1987. 

[7] C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput. , 

10:349-370, 1990. 

52 



The Algorithms and Complexity Group 3. Research Themes 

Work of our group: 

[8] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. 
to appear in SODA94. 

[9] K. Dobrindt, K. Mehlhorn, and M. Yvinec. A complete and efficient algorithm for 
the intersection of a general and a convex polyhedron. In WADS'93, pages 314-324, 

1993. 

[10] K. Mehlhorn, St. Meiser, and C. O'Dunlaing. On the construction of abstract 
Voronoi diagrams. Discrete Comput. Geom., 6:211-224, 1991. 

[11] M. Miill'erand J. Ziegler. An implementation of a convex hull algorithm. manuscript, 
1993. 

[12] St. Naher. LEDA Manual. Max-Planck-Institut fiir Informatik, 1993. 

3.5 Complexity Theory 

3.5.1 Circuit Complexity 

Investigator: Vince Grolmusz 

The class ACC consists of those languages which are accepted by sequences of bounded­

depth, polynomial circuits of AND, OR, NOT and MOD m gates, where a MOD m gate 
outputs 1 if the sum of its inputs is divisible by m, and 0 otherwise. Considerable efforts 

were done to prove that some restricted versions of ACC do not contain several "natural" 
languages. Razborov [4] proved that the MAJORITY function .needs exponential size if 

it is computed by bounded-depth circuits with AND, OR, NOT and MOD 2 gates. 

Smolensky [Sm] generalized this result to circuits with MOD p gates instead of MOD 

2 ones, where p is a prime or prime-power. The case, where p is a non-prime-power 
composite number, remained widely open. 

Smolensky posed the problem to prove a lower bound for depth-2 circuits with two levels 

of MOD 6 gates. This problem was solved by Krause and Waack [2], who proved that 

any depth-2 circuit with a MOD m gate at the top, and symmetric gates at the bottom 

needs exponential size to compute the ID(x,y) function. Since the MOD m gates are 
also symmetric gates, this answered the question of Smolensky. 

In [6] we attacked the class of depth-3 circuits with a threshold gate at the top, symmetric 
gates at the next, and MOD m gates at the bottom. With a multi-party communication 

technique, we proved an exponential lower bound to the size of these circuits, if they 

53 



3. Research Themes The Algorithms and Complexity Group 

compute the k-wise inner product function of [1]. We also used the assumption that the 
lower fan-in is at most k. 

In [7] we proved that the communication properties of the two-level MOD m and the 

two-level MOD p circuits are dramatically different: the first needs linearly many bits of 

communication, while the second can be computed by communicating a constant number 

of bits. 

In [8] we gave a weight-size trade-off for depth-3 circuits computing the inner product 

of two vectors oflength n, with a weighted threshold gate at the top, AND gates on ,the 

next, and MOD m gates of arbitrary fan-in on the lowest level. We have proved that 

log w log M ~ n( n log n), 

where M is the maximum fan-in on the second level of the circuit, and w is the sum of 

the absolute values of the weights in the threshold gate at the top. When every weight 

is 1, then it gives a trade-off between the maximum fan-in on the second and on the 

top level. The proof of this result uses the known exponential gap between the deter­

ministic communication complexity of the inner product function and the probabilistic 

communication complexity of the ID function [9, 3]. 

References 

[IJ 1. Babai, N. Nisan, M. Szegedy: Multiparty Protocols and Pseudorandom Sequences, 
Proc. 21st ACM STOC, 1989, pp. 1-11. 

[2] M. Krause, S. Waack: Variation ranks of communication matrices and lower bounds 

for depth two circuits having symmetric 'gates with unbounded fan-in, Proc. 32nd 

IEEE FOCS, 1991. 

[3] Rabin, M. unpublished. 

[4] A. A. Razborov: Lower Bounds on the Size of Bounded Depth Networks Over a 

Complete Basis with Logical Addition, (in Russian), Mat. Zametki, 41 (1987), 598-

607. 

[5] R. Smolensky, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit 

Complexity, Proc. 19th ACM STOC, pp. 77-82, (1987). 

54 



The Algorithms and Complexity Group 3. Reseaxch Themes 

Work of our group: 

[6] V. Grolmusz: Circuits and Multi-Party Protocols, Technical Report No. MPII-1992-

104, Max Planck Institute for Computer Science, Saarbruecken, Germany, 199.2 

[7] V. Grolmusz: Separating the communication complexities of MOD m and MOD p 

circuits, Proc. 33rd IEEE FOCS, 1992, pp. 278-287. 

[8] V. Grolmusz: Mod m Gates do not Help on the Ground Floor, Technical Report No. 

MPII-1993-142, Max Planck Institute for Computer Science, Saarbruecken, Germany, 

199.3 

[9] Mehlhorn, K., Schmidt, E. M.: Las Vegas is better than determinism in VLSI and 

distributive computing, Proc. 14th ACM STOC, 1982, pp. 330-337. 

3.5.2 Communication Complexity 

Investigator: Vince Grolmusz 

The multi-paxty communication game, defined by Chandra, Furst and Lipton [2], is an 

interesting generalization of the 2-party communication game. In this game, k players 

PI, P2· .. , Pie intend to compute a Boolean function g(Zl' Z2, .•. , zn) : {O, 1}n -+ {0,1f On 
set S = {Xl, X2, ... , Xn} of variables there is a fixed partition into k classes AI, A2, ... , Ale, 

and player Pi knows every variable, except those in Ai, for i = 1,2, ... , k. The players 

have unlimited computational power and they communicate with the help of a blackboard 

visible to all players. The goal is to compute g(X1' X2, ... , xn),such that at the end of the 
computation every player knows this value. The cost of the computation is the number of 

bits written on the blackboard for the given X = (Zl' Z2, ... , xn) and A = (A11 A2, ... , Ale). 

The theory of the 2-party communication games is well developed. The 2-party commu­

nication complexity of a function is known to be between the rank and the logarithm of 

the rank of a 2n x 2n matrix, containing the values of f for all possible input allocations. 

Better upper bounds were given for special classes of functions by Lovasz and Saks [4], 

using extensively lattice-theory and Moebius functions. For more than two players, no 

analogue results were known. 

In the k-party case we have proved that the BNS-Iower bound [1] is almost optimal, 

developing a protocol for a. specific function [6). 

For general Boolean functions, we succeeded to establish a close relationship between 

the L1 norm of a Boolean function and its multiparty communication complexity [7]. 

One application of this result: If f is an arbitrary Boolean function with L1 norm L1 (I), 

55 



3. Research Themes The Algorithms and Complexity Group 

then there exists a O(log L1 (1) )-party protocol which computes f with O(log3 L1 (1)) 
communication. This is a fundamental upper bound in the multiparty communication 

complexity theory. 

Moreover, we have shown the surprising result that the existence of a real function that 

approximates f with small error implies the existence of an efficient discrete multiparty 

protocol for f. More exactly, suppose that 9 : {-I, l}n --t ~ satisfies 

1 
If(z) - g(z)1 < 5 

for all z E {-I, l}n. (It is allowed that 9 has irrational or even transcendent values.) 

Then there exists a O(log L1 (g) )-party protocol which computes f with O(log3 L1 (g)) 
bits of communication [8]. Note that the parameters of the communication protocol 

depends only on the L1 norm of the approximating real-valued function. 

In [8] we have also proved that if the distribution of the Fourier-coefficients of a Boolean 

function f is uneven, more exactly, if they can be divided into two groups: one with 

small L1 norm (say, L), and the other with small L2 norm (say, e), then there exists a 
O(log L )-party protocol which computes f with O(log3 L) communication on an (1 - e) 
fraction of all inputs. 

In [9] we have shown that almost all Boolean functions have very high k-party commu­

nication complexity. This and the previous result show an interesting spectral property 

of Boolean functions: almost all Boolean functions do not have real approximating func­

tions of small L1 norm, or: almost all Boolean functions have exponential L1 norm, 

or: almost all Boolean functions have their Fourier-coefficients evenly distributed: they 

cannot be divided into two classes one with small L1 , the other with small L2 norms. 

This results show the importance of the L1 norm "measure" of the hardness of Boolean 

functions, versus the well-studied "degree" measure [5]. 

References 

[1] L. Babai, N. Nisan, M. Szegedy: Multiparty Protocols and Pseudorandom Sequences, 

Proc. 21st ACM STOC, 1989, pp. 1-11. 

[2] A. K. Chandra, M. L. Furst, R. J . Lipton: Multi-party Protocols, Proc. 15th ACM 

STOC, 1983, pp. 94-99. 

[3] L. Lovasz: Communication Complexity: A Survey, Technical Report, CS-TR-204-

89, Princeton University, 1989. 

[4] L. Lovasz, M. Saks: Lattices, Moebius functions and communication complexity, 

Proc. 29th IEEE FOCS, pp. 81-90. 

56 



The Algorithms and Complexity Group 3. Research Themes 

[5] N. Nisan, M. Szegedy: On the degree of Boolean functions as real polynomials, Proc. 

24th ACM STOC, 1992, pp. 462-467. 

Work of our group: 

[6] V. Grolmusz: The BNS Lower Bound.for Multi-Party Protocols is Nearly Optimal, 

to appear in "Information and Computation". 

[7] V. Grolmusz: Multiparty Protocols and Spectral Norms, Technical Report No. MPII-

1993-132, Max Planck Institute for Computer Science, Saarbruecken, Germany, 1993. 

[8] V. Grolmusz: Harmonic Analysis, Real Approximation and the Communication Com­

plexity of Boolean Functions, submitted, November 1993. 

[9] V. Grolmusz: On Multi-Party Communication Complexity of Random Functions, 

manuscript, October 1993. 

3.5.3 Symbolic Algebra 

Investigator: Devdatt Dubhashi 

Progress related to symbolic algebra in p-adic field originating from my Ph.D. disserta­

tion at Cornell was reported in the two conferences, [3, 2] and a comprehensive survey 

appeared in the special issue of the Computer Journal, [1], devoted to quantifier elimi­

nation. 

References 

[1] D.P. Dubhashi : Quantifier Elimination and Decision Procedures in P-adic Fields, 

The Computer Journal, Special Issue on Computational Quantifier Elimination, 

36:5, September 1993. 

[2] D.P. Dubhashi : Quantifier Elimination and Decision Procedures in P-adic Fields, 

Symposium on Quantifier Elimination in honour of Prof. George E. Collins, Linz, 

Austria, October 6-9, 1993. 

[3] D.P. Dubhashi : Quantifier Elimination and Decision Procedures for Linear Sen­

tences in P-adic Fields, 19th Latin American Conference on Informatics, 22nd 

JAIIO, Buenos-Aires, Argentina, Aug 2-6 1993. 

57 



4. Dissertations The Algorithms and Complexity Group 

4 Dissertations 

completed: 

Gao, Sh.: Algorithmen iiber VLSI-Layout. 1991 

Stefan Schirra: Approximative Bewegungsplanungsverfahren 1992 

Albers S.: The Influence of Lookahead in Competitive On-Line Algorithms. 1993 

Fleischer R.: Genaue Analyse einiger kombinatorischer Algorithmen. 1993 

Lenhof H.-P.: Distanz-' und Suchprobleme in der algorithmischen Geometrie und An­

wendungen in der Bioinformatik. 1993 1 

Meiser St.: Zur Konstruktion abstrakter Voronoi-Diagramme. 1993 

Miiller M.: Entwurf eines Chips fUr ausloschungsfreie Summation von Gleitkommazahlen. 

1993 

Schwarz Ch.: Data Structures and Algorithms for the Dynamic Closest Pair PIoblem. 
1993 1 

Teia B.: Ein Beitrag zum k-Server Problem. 1993 1 

Uhrig Ch.: Lower and Upper Bounds for Operations on Sets. 1993 1 

. ongomg: 

Burnikel Ch.: Precision and Degeneracy in Geometric Computations. June 1994 2 

Klar G.: Verdrahtungsprobleme auf planaren Graphen. Dec 1993 2 

Lauer Th.: Dynamische Lastbalancierung. Mai 1994 2 

Paul M.: Augmented Tree Data: Structures Based on Skiplists and Randomized Search 

Trees. June 1994. 2 

IThesis already completed, but degree not yet awarded. 
2Expected completion date 

58 



Tbe Algorithms and Complexity Group 4. Dissertations 

Priebe v.: Analysis of randomized combinatorial algorithms. Dec 1994 2 

Rasch R.: Abstrakte inverse Voronoi-Diagramme. Jan 1994 2 

Schilz T.: Verteilte Algorithmen fUr den Design-Rule-Check von VLSI-Layouts. June 
1995 2 

Schwarzenecker E.: Ein NP-vollstandiges Problem aus der Kartographie. Oct 94 2 

Thiel Ch.: Schnitt von Polyedern in hoheren Dimensionen. Sept 1994 2 

2Expected completion date 

59 



5. Visitors The Algorithms and Complexity Group 

5 Visitors 

1991 
Dr. J. Katajainen 02.04.91 - 07.04.91 University of Lund, Sweden 
Prof. Juraj Hromkovic 26.04.91 Gesamthochschule Paderborn 
Dr. Frank Dehne 16.05.91 Carleton University, Ottawa, Candad 
Prof. Jack Snoeyink 21.05.91 - 25.05.91 University of Utrecht, The Netherlands 
Prof. Gaston Gonnet · 23.05.91 - 24.05.91 Ziirich, Swiss 

Prof. R. Seidel 06.06.91 - 09.06.91 University of California, Berkeley, USA 
Dr. Amet Henri 10.06.91 France 
Dr. Alain Filbois 11.06.91 - 12.06.91 France 
Prof. Paul Dietz 29.07.91 - 04.08.91 University of Rochester, USA 
Dr. O. Devillers 01.07.91 - 31.07.91 INRIA Valbonne, France 
Dr. M. Devillers 01.07.91 -31.07.91 INRIA Valbonne, France 
Jop Sibeyn 31.07.91 - 06.09.91 University of Utrecht, The Netherlands 
Prof. Leo Guibas 21.08.91 - 24.08.91 DEC SRC Palo Alto, USA 
Dr Stephen Omohundro 28.10.91 lCSl Berkeley, USA 
Dr. Simon Kahan 01.10.91.- 30.06.92 University of Seattle, Washington, USA 
Prof. Ian Munro 28.10.91 - 03.11.91 Princeton University, Princeton, USA 
Dr. Wolf Zimmermann 14.11.91 GMD Karlsruhe 
Prof. Gritzmann 05.12.91 Universitat Trier 
Monika Rauch 19.12.91 Princeton University, USA 

60 



The Algorithms and Complexity Group 5. Visitors 

1992 
Prof. Asano, Tetsuo 17.08;92 - 12~09.92 Osaka Electro-Communication 

U niv., N eyagawa, Osaka, Japan 
Dietz, Paul 13.07.92 - 14.08.92 University of Rochester, 

Rochester, USA 
Dr. Flammini, M. 27.04.92 - 03.05.92 Universitat Rom, 

Rom, Italien 
Dr. Golin, M. 01.06.92 - 31.07.92 INRIA, 

Le Chesnay, Frankreich 
Dr. Kant, Goos 16.06.92 - 17.06.92 Universitat Utrecht, 

Utrecht, Niederlande 
Prof. Katoh, N aoki 05.06.92 - 06.06.92 Kobe University of 

Commerce, Kobe, Japan 
Prof. Krithivasan, K. 01.05.92 - 30.06.92 Indian Institute of 

Technology, Madras, Indien 
Dr. Joan Lawry 18.05.92 - 13.06.92 University of Washington, 

Seattle, Washington, USA 
Dr. Matsumoto, T. 01.09.92 - 30.09.92 University of Tokyo, 

Tokyo, Japan 
Prof. Munro, Ian 21.06.92 - 16.08.92 University of Waterloo, 

Waterloo, Ontario, Canada 
Prof. Papadimitriou,C. 08.10.92 - 23.10.92 University of California, 

La Jolla, Californien, USA 
Dr ~ Papakostas, A. 15.05.92 - 30.07.92 University of Massachusetts 

Amherst, Massachussetts, USA 
Rabinovich, Juri 09.06.92 - 14.06.92 Hebrew University, 

Jerusalem, Israel 
Dr. Ranade, A. 03.08.92 - 15.08.92 Thinking Machines Corp. 

Cambridge, Massachussetts, USA 
Dr. Roos, Thomas 01.09.92 - 30.09.92 ETH Zentrum, 

Zurich, Schweiz 
Prof. Sack, Jorg 01.11.92 - 30.11.92 Carleton University, 

Ottawa, Ontario, Canada 
Prof. Tokuyama, T. 15.06.92 - 17.06.92 IBM - Watson Res. C., 

Yorktown, New York, USA 
Dr. Zelikovsky, A. 15.05.92 - 15.07.92 Institute of 

Mathematics, Kishinev, USSR 

61 



5. Visitors The Algorithms and Complexity Group 

1993 

Prof. Bilardi, G. 21.02.93 - 06.03.93 Universitat Padua, 

Padua, Italien 

Chlebus, Bogdan 31.05.93 - 29.06.93 Universitat Warschau, 

Warschau, Polen 
Dr. Fekete, S. 11.01.93 - 12.01.93 Suny Stony Brook, 

Stony Brook, New York, USA 

Prof. Golin, M. 12.07.93 - 29.07.93 The Hong Kong Univ. of Science 
and Technology, Hong Kong 

Prof. GUibas, L. 28.09.93 - 29.09.93 Stanford University, 
Stanford, California, USA 

Prof. Hartmanis, J . 01.10.93 - 31.05.94 Cornell University, 
Ithaca, New York, USA 

Ivkovic, Zoran 07.06.93 - 25.06.93 University of Delaware, 
Newark, Delaware, USA 

Prof. Janardan, Ravi 17.07.93 - 28.07.93 University of Minnesota, 

Minneapolis, Minnesota, USA 
·Prof. Kapoor, Sanjiv 07.06.93 - 15.07.93 Indian Institute of 

Technology, New Delhi, Indien 
Prof. Kedem, Klara 05.07.93 - 25.07.93 Ben-Gurion University 

Beer-Sheva, Israel 
Prof. Kucera, Ludek 05.07.93 - 11.07.93 Charles University 

Prag, Tschechische Republik 
Prof. Leiseron, Ch. 31.08.93 - 03.09.93 Massachussetts Institute of T. 

Cambridge, Massachussetts, USA 

Mackenzie, Phil 28.06.93 - 29.06.93 University of Texas, 
Texas, USA 

Prof. Maheshwari, A. 11.02.93 - 13.03.93 Tata Institute of 

Fund. Res., Bombay, Indien 

Prof. Mannila, Heikki 27.05.93 - 28.05.93 University of Helsinki, 

Helsinki, Finland 

Dr. Matousek, Jirka 06.09.93 - 28.09.93 Charles University, 

Prag, Tschechische Republik 

Dr. Panconesi, A. 06.09.93 - 20.09.93 Universitat Rom, 

Rom, Italien 

Dr. C. Pandurangan 01.06.93 - 31.08.93 Indian Institute of 
Technology, Madras, Indien 

Radhakrishnan, J. 12.07.93 - 25.07.93 Japan Adv. Inst. of S. and T., 

Tatsuuokuchi, Japan 

62 



The Algorithms and Complexity Group 

Dr. Raman, Rajeev 05.07.93 - 15.07.93 

Rosen, Adi 08;09.93 - 08.09.93 

Dr. Salowe, Jeffrey 03.06.93 - 30.07.93 

Schieber, Baruch 05.07.93 - 08.07.93 

Dr. Schuster, Assaf 05.04.93 - 08.04.93 

Dr. Schuster, Assaf 08.08.93 - 28.08.93 

Prof. Sen, Sandeep 15.05.93 - 15.07.93 

Prof. Snoeyink, Jack 29.04.93 - 30.04.93 

63 

University of Maryland, 

Maryland, USA 
Tel-A viv University, 

Tel": Aviv, Israel 
University of Virginia, 

Charlottesville, Virginia, USA 
IBM - Watson Res. Center, 
Yorktown, New York, USA 

Technion, 
Haifa, Israel 
Technion, 

Haifa, Israel 
Indian Institute of T. 

N ew D~lhi, Indien 
The Univ. of British Col., 

Vancouver, Canada 

5. Visitors 



7. Organization The Algorithms and Complexity Group 

6 Teaching Activities 

The group contributes intensively to the Computer Science Curriculum of the Univer-

. sitat des Saarlandes. The core courses "Praxis des Programmierens", "Datenstrukturen 

und Algorithme~" and "Optimierung" are always taught by members of the group. In 
addition we teach some specialized courses. Here comes the list of courses taught in the 

winter term 1993/94: 

Course: Praxis des Programmierens 

Course: Datenstrukturen und Algorithmen II 

Course: Ausgewiihlte Kapitel aus Effizienten Algorithmen 

Course: Algorithmen zurBewegungsplanung 

Course: Parallele Algorithmen mit sublogarithmischer Laufzeit 

Course: Grundlagen der linear en Programmierung 

Seminar: Parallele Algorithmen 

Seminar: Genetische Algorithmen 

. Advanced Practical Course: Softwarekonstruktion. 

The group advises a number of masters students. Within the last three years 35 master 

students wrote their masters thesis under our supervision. 

7 Organization 

The group meets two to four times a week at 1.30 pm. 

On Monday and Wednesday (1.30 - 2.15) we have our noon seminar. It lasts about 45 

minutes and is reserved for presentations of new results and ongoing research. We also 

ask our guests to give presentations in the noon seminar. 

On Tuesday and Thursday (1.30 - 3.00) we run the "Selected Topics in Algorithms" 

course. This course is reserved for two to four week intensive treatments of subjects of 

current interest . Topics treated in recent months were: Approximation Algorithms, A v­

erage Case Analysis of Graph Algorithms and Degeneracy in Geometric Computations. 

We have elected an executive committee (K. Mehlhorn, T. Hagerup, V. Priebe, G. 

Barnes, A. Esser, K. Reinert) which makes the day to day decisions concerning the 

group. 

64 



The Algorithms and Complexity Group 8. Cooperations 

8 Cooperations 

\ 

With Ganzinger's group we cooperate on two problems: specification of abstract data 
types and identification of partial orders. In the computer science department our main 
contacts are Prof. Hotz (on VLSI-design) , Prof. Paul (on parallel algorithms), Prof. 
Buchmann (on computer algebra), and Prof. Wilhelm (on parallel programming lan­
guages). 

We are involved in seven research projects: BMFT-projects PAKAP and SOFTI, SFB 
124 VLSI-Entwurfsmethoden und Parallelitat, ESPRIT-project ALCOM, EC Cooper­
ative Action IC-1000-project ALTEC, EC-project HC & M, GIF research project: Ar­
rangements in Computational Geometry. 

8.1 BMFT-projects 

The Bundesministerium fiir Forschung und Technologie (BMFT) supports our work 
through projects PAKAP and SOFT!. PAKAP supports all of our applied and some 
of our theoretical work in parallel algorithms, and SOFTI supports our work on imple­
mentation of algorithms and computational geometry. 

8.2 SFB 124 VLSI-Entwurfsmethoden und Parallelitat 

The Sonderforschungsbereich (SFB) 124 is a special research eifort, sponsored by the 
DFG (Deutsche Forschungsgemeinschaft) and located at the University of the Saarland 
(now also at the MPI) and the University of Kaiserslautern. The 10 participating groups 
work on topics from the areas VLSI design methods and parallelism. The SFB 124 was 
founded in 1983. 

8.3 ALCOM 

ALCOM (Algorithms and Complexity) is an Esprit basic research action. It involves 13 
partners in 9 EC countries, namely Universitadi Roma (Italy), Universitat Politecnica 
de Catalunya (Spain), University of Utrecht (Netherlands), Universitat-GH Paderborn 
(Germany), University of Warwick (Great Britain), Computer Technology Institute 
of Patras (Greece), INRIA Sophia-Antipolis (France), INRIA Rocquencourt (France), 
Aarhus University (Denmark), University of Dublin (Irish Republic), EHESS Paris 
(France), FU Berlin (Germany), Max-Planck-Institut Saarbriicken (Germany). Kurt 
Mehlhorn and Christoph Storb coordinate the action, Torben Hagerup is the person in 
charge locally. 

65 

.. 



8. Cooperations The Algorithms a.nd Complexity Group 

8.4 ALTEC 

ALTEC (Basic Algorithms for Future Technologies) is the extension of ALCOM to East­
ern Europe. It is chaired by Jan van Leeuwen, the former ALCOM coordinator. The 
partners of ALTEC are Utrecht, Bordeaux, Prague, Bratislava, Budapest, Warsaw, and 
Saarbriicken. 
The purpose of ALCOM and ALTEC is to foster algorithms research within Europe 
and to stimulate the cooperation within Europe. In its four years of existence ALCOM 
has been very successful in reaching these goals. It has given the European algorithms 
community an identity and its own conference ESA and it has led to close collaboration 
within it. We work mainly with Berlin, Sophia-Antipolis, Paderborn, Dublin, Patras, 
and Aarhus. ALTEC, which has existed for 12 months, tries to extend this cooperation 
to Eastern Europe. 

8.5 HC&M 

Human Capital and Mobility (HC & M) is the post-doc program of the European Com­
munity. Starting 1994 we will have one post-doc position for 3 years paid by HC & M. 

8.6 GIF 

The German-Israeli Foundation for Scientific Research and Development (GIF) is a bi­
national science foundation. It was created by the two governments in order to promote 
and fund joint civil research and development projects in basic and applied research. 
We have been successfully working with our Israeli partner Micha Sharir from Tel Aviv 
University and our German partner Emo Welzl from Free University in Berlin on random­
ized techniques and related studies concerning arrangements in computational geometry. 
Our work benefited from mutual visits. 

8.7 Industry 

Our main industrial partner is Siemens AG, Munich. Dr. Hammer from Siemens and 
T. Hagerup and T. Lauer cooperate on load balancing algorithms for parallel machines 
(cf. section 3.1.3), ,and Dr. Lauther from Siemens and St. Naher, K. Mehlhorn, and 
Ch. Uhrig cooperate on efficient graph algorithms and a planning tool for scheduling 
cargo trains (cf. section 3.4.1). Ch. Uhrig will spend three months with Lauther's group 
starting November 15th, 1993, and T. Lauer holds a Siemens Ph.D. scholarship. Kurt 
Mehlhorn serves on the scientific advisory board of Siemens corporate research. 
With the Dillinger Hiitte AG we cooperate on a planning tool for cutting steel plates. 

Through the LEDA project we have loose contacts to several other companies. These 

relations are of the producer-consumer type, i.e. we receive bug reports and sometimes 

enthusiastic comments. 

66 



The Algoritlims and Complexity Group . 9. Tec1mical Reports 

9 Technical Reports 

1991 

• MPI-I-91-101, to appear in Information and Computation 

Dynamic rectangular point location, with an application to the closest 
pair problem 

Author: Michiel Smid 

• MPI-I-91-102, Algorithms Review (Newsletter of the ESPRIT II AL­
COM project) 2, 1991, pp. 77-87 

Range trees with slack parameter 

Author: Michiel Smid 

• MPI-I-91-103, Discrete and Computational Geometry, 7, 1992, pp. 415-
431 

Maintaining the minimal distance of a point set in polylogarithmic time 
(revised version) 

Author: Michiel Smid 

• MPI-I-91-104, Proc. 2nd Intern. Symp. on Algorithms, 1991, LNCS, 
Springer-Verlag, Vol. 557, pp. 251-262 

A Tight Lower Bound for the Worst Case of Bottom-Up-Heapsort 

Author: Rudolf Fleischer 

• MPI-I-91-105, Proc. 6th Ann. ACM Symp. on Computational Geom­
etry, 1990, pp. 216-224 and Algorithmica 8, 1992, pp. 391- 406 

Simultaneous Inner and Outer Approximation of Shapes 

Authors: R. Fleischer, K. Meblborn, G. Rote, E. We1zl, C. Yap 

• MPI-I-91-106 

Fast Parallel Space Allocation, Estimation an Integer Sorting 

Author: Torben Hagerup 

67 

*'9 
I 



9. Technical Reports The Algorithms and Complexity Group 

• MPI-I-91-107, Proc. 3rd Ann. ACM-SIAM Symp. on Discrete Algo­
rithms (SODA), 1992, pp. 280-285 

An D( n log n log log n) algorithm for the on-line closest pair problem (This 
work was supported by the ESPRIT II Basic Research Actions Program, 
under contract No. 3075 (project ALCOM).) 

Author: Christian Schwarz 

• MPI-I-91-110, Proc. 8th ACM Symp. on Computational Geometry, 
1992, pp. 93-101 

Approximate Decision Algorithms for Point Set Congruence 

Authors: Paul J. Heffernan, Stefan Scbirra 

• MPI-I-91-112, Proc. 2nd Ann. Intern. Symp. on Algorithms, Lecture 
Notes in Compo Sci., Vol. 557, Springer-Verlag 1991, pp. 349-363 

An Optimal Construction Method for Generalized Convex Layers 

Authors: Hans-Peter Lenhof, Michiel Smid 

• MPI-I-91-113, Algorithmica, 1992 

Tail Estimates for the Space Complexity of Randomized Incremental 
Algorithms 

Authors: K. Meblborn, M. Sharir, E. Welzl 

• MPI-I-91-114 

Algorithms for Dense Graphs and Networks 

Authors: Joseph Cheriyan, Kurt Meblborn 

• MPI-I-91-115, IPL 42, 1992, pp. 25-27 

A Lower Bound for the Nondeterministic Space Complexity of Con­
text free Recognition 

Authors: Helmut Alt 

Viliam Geffert 

Kurt Meblborn 

68 



The Algorithms and Complexity Group 9 . . Technical Reports 

. • MPI-I-91-120, Proc. 17th Intern. CoIl. on Automata, Languages and 
Programming (ICALP) 1990, ' Lect. Notes in Compo Sci., Springer­
Verlag, Vol. 443, pp. 235-248 

An O( n3 )-Time Maximum-Flow Algorithm 

Authors: Joseph Cheriyan, Torben Hagerup, Kurt Meblborn 

• MPI-I-'91-121, IPL 43, 1992, pp. 335-340 

On a Compaction Theorem of Ragde 

Author: Torben Hagerup 

• MPI-I-91-122 

On Embeddings In Cycles 

Juraj Hromkovi; Vladi.m1r Miiller, Ondrej Sykora and Imrich Vrto 

• MPI-I-91-123, Proc. 8th Ann. ACM Symp. on Computational Geom­
etry, 1992, pp. 330-336 and to appear in Algorithmica 

An optimal algorithm for the on-line closest-pair problem 

Christian Schwarz, Michiel Smid and Jack Snoeyink 

• MPI-I-91-124 

On Crossing Numbers of Hypercubes and Cube Connected Cycles 

Ondrej Sykora and Imrich Vrto 

• MPI-I-91-125 

Edge Separators for Graphs of Bounded Genus with. Applications 

Ondrej Sykora and Imrich Vrto 

• MPI-I-91-126 

Optimal Embedding of a Toroidal Mesh in a Path 

Michael S. Paterson, Heiko Schroder, Ondrej Sykora and Imrich Vrto 

69 



9. Technical Reports The Algorithms and Complexity Group 

1992 

• MPI-I-92-101 

A simple balanced search tree with 0(1) worst-case update time 

Author: Rudolf Fleischer 

• MPI-I-92-102, Proc. SWAT'92, Lect. Notes in Compo Sci., Vol. 621, 
Springer-Verlag, 1992, pp. 388-398 

Maintaining the Visibility Map of Spheres while Moving the Viewpoint 
on a Circle at Infinity 

Authors: Hans-Peter Lenhof, Michiel Smid 

• MPI-I-92-104,· Proc. 28th Ann. Symposium on Foundations of Com­
puter Science, 1992, pp. 278-287 

Circuits and Multi-Party Protocols 

Author: Vince Grolmusz 

• MPI-I-92-108, Proc. 4th Canadian Conf. on Computational Geometry, 
1992, pp. 115-120 

Computing Intersections and Arrangements for Red-Blue Curve Seg­
ments in Parallel 

Author: Christine R"ub 

• MPI-I-92-110 

A Method for Obtaining Randomized Algorithms with Small Tail 
Probalities 

Authors: H. Alt, L. Guibas, K. Mehlhorn, R. Karp, 
A. Widgerson 

• MPI-I-92":'112, STACS 1992 

Four Results on Randomized Incremental Constructions 

Authors: K. L. Clarkson, K. Mehlhorn, R. Seidel 

• MPI-I-92-115, Proc. 19th Intern. ColI. on Automata, Languages and 
Programming, 1992, Lect. Notes in Compo Sci., Springer-Verlag, Vol. 

623, pp. 318-329 

Fast Integer Merging on the EREW PRAM 

Authors: Torben Hagerup, M. Kutylowski 

70 

1 
1 
-l 

1 
i 



The Algorithms and Complexity Group 9. Technical Reports 

• MPI-I-92-118, Proc. 33rd Ann. IEEE Symp. on Foundations of Compo 
Sci. (FOCS), 1992, pp. 380-386 

Enumerating the k closest pairs optimally 

Authors: Michiel Smid, Hans-Peter Lenhof 

• MPI-I-92-120 

. Separating the Communication Complexities of MOD m and MOD p 
circuits 

Author: Vince Grolmusz 

• MPI-I-92-121 

Minimum Base of Weighted k Polymatroid and Steiner Tree Problem 

Author: Alexander Zelikovsky 

• MPI-I-92-122 

A Faster 11/6-Approximation Algorithm for the Steiner Tree Problem 
in Graphs 

Author: Alexander Zelikovsky 

• MPI-I-92-123 

The Largest Hyper-Rectangle in a Three Dimensional Orthogonal Poly­
hedron 

Author: Kamala Kritbivasan 

• MPI-I-92-125 

ANew Lower Bound Technique for Decision Trees 

Author: Rudolf Fleischer 

• MPI-I-92-126, SODA 1992 

Dynamic Point Location in General Subdivisions 

Authors: Hanna Baumgarten, Hermann Jung, Kurt Meblborn 

• MPI-I-92-127, SODA 93 

A Lower Bound for Set Intersection Queries 

Authors: Kurt Meblborn, Christian Uhrig und Rajeev Raman 

71 

l 



9. Technical Reports The Algorithms and Complexity Group 

• MPI-I-92-134 

Sequential and parallel algorithms for the 
k closest pairs problem 

Authors: Hans-Peter Lenhof, Michiel Smid 

• MPI-I-92-135 

Furthest Site Abstract Voronoi Diagrams 

Authors: Kurt Mehlhorn, Stefan Meiser, Ronald Rasch 

• MPI-I-92-141, Proc. 33rd Ann. Symp. on Foundations of Computer 
Science (FOCS) 1992, pp. 628-637 

Waste Makes Haste: Tight Bounds for Loose Parallel Sorting 

Authors: Torben Hagerup, Rajeev Raman 

• MPI-I-92-143 

The Influence of Lookahead in Competitive On-Line Algorithms 

Author: Susanne Albers 

• MPI-I-92-145 

Optimal Generation of Dynamic Random · Variables 

Authors: Torben Hagerup, Kurt Mehlhorn, Ian Munro 

• MPI-I-92-149, Proc. 4th Ann. ACM-SIAM Symp. on Discrete Algo­
rithms, 1993, to appear 

Fast Deterministic Processor Allocation 

Author: Torben Hagerup 

• MPI-I-92-152 

Finding k points with a smallest enclosing square 

Author: Michiel Smid 

• MPI-I-92-153 

Christian Schwarz: Semi-dynamic Maintenance of the Width of a Planar Point 

Set3 

• MPI-I-92-154 

Michiel Smid, Prosenjit Gupta, Ravi J anardan: Further results on general­

ized intersection searching problems: counting, reporting, and dynamization 

72 



/ 

The Algorithms and Complexity Group 9. Technical Reports 

• MPI-I-92-155 

1993 

M. Golin, R. Raman, C. Schwarz, M. Smid: Simple Randomized Algorithms 
for Closest Pair Problems 

• MPI-I-93-101 

Abstract and Report not yet published. 

• MPI-I-93-102 

Randomized data structures for the dynamic closest-pair problem 

Authors: Mordecai Golin, Rajeev Raman, Christian Schwarz, Michiel Smid 

• MPI-I-93-103 

Tail estimates for the efficiency of randomized incremental algorithms 

for line segment intersection 

Authors: Kurt Meblborn, Micha Sharrr, Emo We1zl 

• MPI-I-93-105 

Randomized incremental construction of abstract Voronoi diagrams 

Authors: Rolf Klein, Kurt Mehlhorn, Stefan Meiser 

• MPI-I-93-106 

Broadcasting through a noisy one-dimensional network 

Author: Ludek Kucera 

• MPI-I-93-107 

Expected complexity of graph partinioning problems 

Author: Ludek Kucera 

• MPI-I-93-108 

Static and dynamic algorithms for k-point clustering problems 

Authors: Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, Michiel Smid 

• MPI-I-93-109 

LEDA manual version 3.0 

Author: Stefan Naber 

73 



9. Technical Reports The Algorithms and Complexity Group 

• MPI-I-93--110 

Coloring k-colorable graphs in constant expected parallel time 

Author: Ludek Kucera 

• MPI-I-93-116 

An O(nlog n) algorithm for finding a k-point subset with minimal Loo­
diameter 

Author: Michiel Smid 

• MPI-I-93-118 

Approximate and exact deterministic parallel selection 

. Authors: Shiva Chaudhuri, Torben Hagerup, Rajeev Raman 

• MPI-I-93-119 

Generalized topological sorting in linear time 

Author: Torben Hagerup 

• MPI-I-93-121 

The circuit subfunction relations are :E~-complete 

Authors: Bernd Borchert, Desh Ranjan 

• MPI-I-93-123 

Fast parallel space allocation, estimation and integer sorting (revised) 

Authors: Holger Bast, Torben Hagerup 

• MPI-I-93-124 

On intersection searching problems involving curved objects 

Authors: Prosenjit Gupta, Ravi Janardan, Michie1 Smid 

• MPI-I-93-128 

Maintaining dynamic sequences under equality-tests in polylogarithmic 
time 

Authors: K. Mehlhorn, R. Sundar, C. Uhrig 

• MPI-I-93-129 

Tights bounds for some problems in computational geometry: the com­
plete sub-logarithmic parallel time range 

Author: San deep Sen 

74 

, , 
j 
1 
] 
.J 

1 , 
1 

I 
I 



The Algorithms and Complexity Group 

• MPI-I-93-132 

Spectral norms and multi-party protocols 

Author: Vince Grolmusz 

• MPI-I-93-138 

Routing and Sorting on Circular Arrays 

Author: Jop 8ibeyn 

• MPI-I-93-140 

9. Technical Reports 

A Complete and Efficient Algorithm for the Intersection of a General 
and a Convex Polyhedron 

Authors: Katrin Dobrindt, Kurt Mehlhorn, Mariette Yvinec 

• MPI-I-93-142 

Mod m gates do not help on the ground floor 

Author: Vince Grolmusz 

• MPI-I-93"':144 

A Lower Bound for Area-Universal Graphs 

Authors: Gianfranco Bilardi, 8hiva Chaudhuri, Devdatt Dubhashi, Kurt Mehlhorn 

• MPI-I-93-145 

Sensitive Functions and Approximate Problems 

Author: 8hiva Chaudhuri 

• MPI-I:-93-146 

A Lower Bound for Linear Approximate Compaction 

Author: 8hiva Chaudhuri 

• MPI-I-93-147 

The Complexity of Parallel Prefix Problems on Small Domains 

Authors: 8hiva P. Chaudhuri, Jaikumar Radhakrishnan 

75 





1 

Part II 

The Programming Logics Group 

77 





The Programming Logics Group 1. Members of the working group 

1 Members of the working group 

Director 

Prof. Dr. Harald Ganzinger 

Research staff 

Andreas N onnengart David Ba~in, PhD. 
Hubert Baumeister 
Dr. Alexander Bockmayr 

Detlef Fehrer 

Dr. Hans Jiirgen Ohlbach 
Renate Schmidt 

Dr. Rolf Socher 

Prof. Dr. Harald Ganzinger Jiirgen Stuber 
Peter Graf 
Dr. Michael Hanus 

Jorn Hopf 

Ullrich Hustadt 

PhD. Students 

Peter Barth 

Manfred Jager 

Frank Zartmann 

Post-doctoral fellows 

Andreas Tonne 
Uwe Waldmann 

Christoph Weidenbach 

Dr. Yong Fei Han (July 1992 - July 1993) 

Yannis Dimopoulos (July 1992-June 1994) 

University of Athens 

Viktor Kistlerov (January 1992-December 1993) 

Academy of Science, Moscow 

Rao Krishna (January 1994-December 1994) 
Tata Institute, Bombay 

Peter Madden (November 1993-0ctober 1995) 

University of Edinburgh 
Sean Matthews (March 1992-February 1994) 

University of Edinburgh 

Emil Weydert (April 1993-August 1994) 

IMS Stuttgart 

79 



1. Members of the working group 

Secretaries 

Ellen Fries 
Ellen Schreck 

Guests 

Leo Bachmair (Summer 1991; Summer 1992; 
July 1993-July 1994) 

SUNY at Stony Brook 
Philippe Balbiani (March 1993-May 1993) 

IRIT Toulouse 
Witold Charatonik (June 1993-August 1993; 

October 1993-December 1993) 
University of Wroclaw 

Evelyne Contejean (November 1992-0ctober 1993) 
Universite de Paris Sud 

Dragan Cvetkovic (Summer 1992-December 1993) 
University of Yugoslavia 

Dov Gabbay (July 1991-June 1995) 
Imperial College, London 

Darek Litwinienko (June 1993-August 1993) 
University of Wroclaw 

Pilar Nivela (March 1992-August 1992) 
University of Barcelona 

Robert Nieuwenhuis (March 1992-August 1992) 
University of Barcelona 

Frank Pfenning (Summer 1991) 
Carnegie Mellon University, Pittsburgh 

David Plaisted (July 1992; August 1993-August 1994) 
University of North Carolina 

Ian Pratt (October 1992-December 1992) 
University of Manchester 

Rosa Ruggeri (July 1992-December 1993) 
University of Catania 

Andrzej Szalas (August 1991-May 1992) 
University of Warsaw 

Jerzy Witkowski (July 1993-September 1993) 
University of Wroclaw 

Jan Zatopianski (May 1993-August 1993) 
University of Wroclaw 

80 

The Programming Logics Group 



The Programming Logics Group 2. Research programme and results 

2 Research programme and results 

2.1 Introduction 

Computer science is about how to solve abstract . problems with machines. Faced with 

some problem, a computer scientist uses tools taken from mathematics to formalize it, 

and then, using that formalization, to derive a correct and efficient algorithm. This work 

of problem solving is difficult, so we would like to enlist computers to help us. And if 

mathematics is the means to solve a particular problem, then the metamathematics, 

i.e. mathematical logic, is the general theory of how problems are solved, and is what we 

use to investigate how computers might be used as general tools for problem solving. 

In the programming logics group we are looking at the following areas of logic in computer 

science, listed in increasing order of abstractness: 

• Logic Programming 

• Automated Deduction 

• Program Synthesis 

• Non-monotonic Reasoning and Knowledge Representation 

• Logical Frameworks and the Compilation of Logics 

In logic programming we study efficient techniques for compiling logic programs and 

for extending logic programming languages with functions, or constraint domains and 
solvers. 

By automated deduction we mean refutational theorem proving for predicate logic. Given 

the significance of predicate logic, improving the state of the art in this area is of great 

importance. Even more so, since we believe that it is possible to compile many non­

standard logics 'efficiently' into predicate logic. Despite 25 years of intensive research, 

the problem of automated theorem proving for predicate logic is still far from solved. 

While automated deduction deals with finding solutions to goals in first-order logics, pro­

gram synthesis attempts to :find (semi-automatically) functions, i.e. second-order objects, 

that satisfy given properties. We follow theproofs-as-programs paradigm and envisage 

programs constructed as instantiations of unknowns in proofs of equivalence between 

a specification and an unknown program. Our idea is to apply logical frameworks to 

develop, and experiment with, various program development calculi. 

Classical predicate logic is often not enough for modelling situations in a real and chang­

ing world, since we have to be able to treat incomplete knowledge and rely on assumptions 

that may turn out not to be true. Thus we are studying implementation techniques for 

well-established such (non-monotonic) logics, and are developing new, and more power­

ful, formalisms. 

81 



2. Research programme and results The Programming Logics Group 

Research in computer science has produced a vast range of logics, from classical to 

intuitionistic to modal, from equational to first-order to high~r-order, from monotonic 

to non-monotonic. Systematic methods for implementing languages on a computer, 

i.e. compiler construction and compiler-compilers, was an important research topic in 

the sixties and seventies, and in the same way we now try to find the basic principles 

needed to implement logics on a computer. Like for programming languages, we have two 

major approaches to the problem: interpretation and transformation. The first proposes 

the idea of a framework theory to formalize, execute, and reason about, logics, while 

the second explores ways to compile different source logics into a target logic like Horn, 

or predicate, logic efficiently. Both ideas are being pursued in the programming logics 

group. 

2.2 Integrating functional and logic languages 

Functional and logic programming are the most important declarative programming 

paradigms, and interest in combining them has grown over the last 15 years. Such inte­

grated languages have advantages from both points of view: functional logic languages 

extend functional languages with facilities like function inversion, partial data structures 

and logical variables and, since functions evaluate deterministically, provide logic pro­

gramming languages with more efficient operational behavior. Further, logic program­

ming can avoid some of the impure control features of Prolog, like 'cut', if functions are 

available. Early research concentrated on the definition and improvement of execution 

. principles for functional logic languages, wlrile more recently efficient implementations 

of these execution principles have been developed, making the languages more practical 

to use. 

A common way to integrate functions into logic programming languages is to define 

functions equationally, and in order to do this, resolution has to be extended with some 

form of equational (or E-) unification. IT the equational theory enjoys certain properties 

(e.g. confluence and termination), then narrowing is a universal E-unification procedure. 

A narrowing step instantiates variables in a subterm by unification, so that the instanti­

ated subterm can be reduced. In its original form, this is extremely inefficient, but many 

optimizations have been proposed. In [3] we present narrowing strategies for arbitrary 

confluent and terminating systems and introduce LSE narrowing; this is complete and 

improves all other strategies that are complete for arbitrary confluent and terminating 

systems. It is also optimal in the sense that two different LSE narrowing derivations 

cannot generate the same narrowing substitution. 

Another optimal narrowing strategy for constructor-based, but not necessarily termi­

nating, systems is needed narrowing [1] , influenced by the lazy evaluation principle of 

functional programming. Needed narrowing extends the Huet and Levy notion of needed 

reductions, is optimal for the number of distinct steps of a derivation, computes only 

82 



The Programming Logics Group 2. Research. programme and results 

independent unifiers, and is efficiently implemented by pattern matching. 

Another way to obtain an efficient execution principle for functional logic programs is 

to simplify goals to normal form between narrowing steps. In [4] we show that such 

a normalizing narrowing strategy improves the operational behavior of logic programs 

by translating pure logic programs into functional logic programs. In [5] we present 

a method for implementing the simplification process between narrowing steps in an 

incremental manner. In [7] we show that the idea of simplification can also be combined 

with the lazy evaluation principle for narrowing. This .can yield a fur~her reduction of 

the search space. 

In [2] we introduce conditional narrowing modulo a set of conditional equations, and 

give a full proof of its correctness and completeness under general circumstances. This 

result can be seen as the theoretical foundation of a special form of constraint functional 

logic programming. 

As functional logic languages becoming more efficient and, thus, practical, debugging 

facilities are needed. We propose, in [8], a debugging model for functional logic programs 

which combines features of debuggers for pure logic and pure functional programs. 

Another way to execute functional logic programs is Residuation. Residuation tries to 

avoid nondeterministic steps when functions are being evaluated by delaying the eval­

uation of functions until the arguments are sufficiently instantiated. This retains the 

deterministic nature of functions, but is incomplete: if the variables in a delayed func­

tion call are not instantiated by the logic program, the function will never be evaluated 

and some logical consequences of the program are lost. In order to detect such situa­

tions at compile time, we have developed an abstract interpretation algorithm [6] that 

approximates the possible residuations and instantiation states of variables during pro­

gram execution. If the algorithm computes an empty residuation set for a goal, a run 
of the program will not finish with residuations that cannot be evaluated due to insuffi­

cient instantiation of argument variables, and can be used to combine the advantages of 

narrowing (completeness) with residuation (efficiency). 

References 

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st 

ACM Symp. Principles of Programming Languages, 1994. (To appear). 

[2] A. Bockmayr. Conditional narrowing modulo a set of equations. Applicable Algebra 

in Engineering, Communication and Computing, 4:147-168, 1993. 

[3] A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary canon­

ical systems. "MPI-I-93-233", 1993. 

83 



2. Research programme and results Tbe Programming Logics Group 

[4] M. Hanus. Improving control of logic programs by using functional logic languages. 
In Proc. 4th Int. Symp. Programming Language Implementation and Logic Program­

ming, 1992. 

[5] M. Hanus. Incremental rewriting in narrowing derivations. In Proc. 3rd Int. Conf. 

Algebraic and Logic Programming, 1992. 

[6] M. Hanus. On the completeness of residuation. In Proc. 1992 Joint Int. Conf. and 

Symp. on Logic Programming, 1992. Also available, in an extended version, as MPI-

1-92-217. 

[7] M. Hanus. Lazy unification with inductive simplification, MPI-I-93-215, 1993. 

[8] M. Hanus and B. Josephs. A debugging model for functional logic programs. In 

Proc. 5th Int. Symp. Programming Language Implementation and Logic Program­

ming, 1993. Also available as MPI-I-93-222. 

2.3 Constraint logic programming and combinatorial optimization 

Constraint logic programming is one of the major recent developments in declarative pro­

gramming. The idea is to combine a logic programming language similar to Prolog with 

a constraint solver for some area of computation, such as linear arithmetic, Boolean 

algebra, finite domains or lists. In [4] we have proposed a new constraint logic pro­

gramming language, CLP(PB), for logic programming with pseudo-Boolean constraints. 

Pseudo-Boolean constraints combine Boolean algebra with arithmetic: a pseudo-Boolean 

function is an integer-valued function of 0-1 variables and a pseudo-Boolean constraint 

is an equation or inequality between pseudo-Boolean functions. 

With this language we can use constraint logic programming for combinatorial optimiza­

tion problems [3]. Consider, for example, a knapsack problem: suppose there is a vessel 

with capacity wand goods 9i with weight Wi and value Vi for i = 1, ... , n. We intro­

duce 0-1 variables Xi indicating whether 9i is loaded on the vessel. The cargos that do 

not exceed the capacity can be determined by a constraint rule using a pseudo-Boolean 

constraint: 
cargo(Xl, ... ,Xn) ~ 

WI * Xl + ... + Wn * Xn :5 w. 

If we want to find a most valuable cargo, we can use a metapredicate max which optimizes 

a pseudo-Boolean function by maximizing it, subject to some constraints: 

most-valuable-cargo(Xl!"" Xn) ~ 

max(vI * Xl + ... + Vn * X n, cargo(XI"" ,Xn))' 

Constraint logic programming in its original form does not support optimizations like 

this, but the problem has received a lot of attention recently. 

84 



/ 

The Programming Logics Group 2. Research programme and results 

We are looking at two approaches to handling pseudo-Boolean constra.ints. In the first, 

we are developing a symbolic constraint solver for the language CLP(PB) [1]. The basic 

formulae of this solver are extended clauses L1 + ... + Ln ~ d expressing that at least d 

out of n literals have to be true. We have developed a method for transforming arbitrary 

linear 0-1 inequalities into equivalent sets of extended clauses . [2]. The solved form of a 

set of extended clauses is an equivalent set of prime extended clauses. Prime extended 

clauses are similar to prime implicants for classical clauses. Given this solved form, 
logical entailment and satisfiability can be easily decided. 

Our second approach is based on cutting plane techniques from polyhedral combinatorics 

[5]. A constra.int set is simplified by computing strong cutting planes for its linear 
relaxation. The ideal solved form is a description of the convex hull of the 0-1 solution 

set by a system of facet-defining inequalities. An interesting feature of this approach 

is that it can be extended to the case of mixed 0-1 constra.ints. Thus it provides the 

basis for a full integration of two of the most important doma.ins in constra.int logic 

programming: linear arithmetic and Boolean algebra. 

References 

[1] P. Barth. A complete symbolic 0-1 constra.int solver. In 3rd Workshop on Constraint 

Logic Programming, 1993. 

[2] P. Barth. Linear 0-1 inequalities and extended clauses. In Logic Programming and 

Automated Reasoning '93, 1993. 

[3] P. Barth and A. Bockmayr. Solving 0-1 problems in CLP(PB). In Proc. 9th Conf 

Artificial Intelligence for Applications, 1993. 

[4] A. Bockmayr. Logic programming with pseudo-Boolean constra.ints. In F. Benhamou 

and A. Colmerauer, editors, Constraint Logic Programming-Selected Research. MIT 

Press, 1993. Also available as MPII-91-227. 

[5] A. Bockmayr. Using strong cutting planes in constra.int logic programming. In 

Operations Research '93, 1993. (To appear). 

2.4 Analysis of declarative programs 

The advantage of functional and logic (i.e. declarative) programming languages is that 

we can state solutions to problems in a very abstract way. But efficient implementations 

need sophisticated compilation techniques. 

Although various new compilation techniques based on abstract machines have been de­

veloped, high-performance implementations need knowledge about what the language is 

85 



2. Research programme and results The Programming Logics Group 

being used for, which is why global analysis at compile time, and abstract interpretation, 

are widely believed to be important for them. 

Abstract interpretation was originally developed as a formal analysis technique for im­

perative languages, but has been · adopted for functional and logic programming. The 

basic idea is to guess the run-time behavior of the program by executing it with abstract 
values. If there are only finitely many abstract values, then we can be sure that the ab­

stract execution terminates, and if the abstract values have a clearly defined relationship 
to the concrete values, the result of the abstract interpretation correctly approximates 

the real behavior. Therefore the results of abstract interpretation can be used to improve 

the compiled code. 

We have used abstract interpretation to analyze the behavior of logic programs with 

certain extensions. In [1] we use abstract interpretation to analyze the completeness 

of the residuation principle for executing functional logic programs (see Section 2.2 for 

more details) . In [2] we use abstract interpretation to analyze logic programs with 

nonlinear arithmetic constraints. In the constraint logic programming language CLP('R.) 

only linear constraints are solved as programs are run - nonlinear ones are delayed 

until they become linear. This method has the disadvantage that sometimes computed 
answers are unsatisfiable, or infinite loops occur because delayed nonlinear constraints are 

not satisfiable. These problems can be solved by using a more powerful constraint solver 

which can deal with nonlinear constraints like in RISC-CLP(Real) . Since such powerful 

constraint solvers are not very efficient, we propose a compromise: we characterize a 

class of CLP('R.) programs for which all delayed nonlinear constraints become linear at 

run time. Programs belonging to this class can be safely executed with CLP('R.) while 

the remaining programs use a more powerful system. Currently, we are trying to develop 

general abstract interpretation techniques for analyzing functional logic programs. We 

have shown the usefulness of run-time information for the efficient implementation of 

functional logic programs in [3]. 

Along with abstract interpretation we are also looking at how type systems can be 

used to analyze the dynamics of declarative programs at compile time. Classical type­

systems are weak this way: they have no way to analyze patterns of access to variables 

- information that could be used, for instance, to predict the life-time of values (and 

therefore to optimize 'garbage collection'). We are exploring how Girard's linear logic can 

make such details explicit. In 14] we present two complementary linearly typed .A-calculi 

and a typing algorithm, and discuss how 'linear' types capture the runtime behavior of 

declarative programs. We show that programs can have different linear types (in fact , 

exponentially many), depending on the evaluation strategy, lazy or eager. We plan to 

implement our calculi and examine the advantages of our approach in practice. 

86 



The Programming Logics Group 2. Research programme and results 

References 

. [1] M. Hanus. On the completeness of residuation. In Proc. 1992 Joint Int. Conf. and 

Symp. on Logic Programming, 1992. Also available, in an extended version, as MPI-

1-92-217. 

[2] M. Hanus. Analysis of nonlinear constraints in CLP('R.). In Proc. 10th Int. Coni. 

Logic Programming, 1993. Also ~vailable as MPI-I-92-251. 

[3] M. Hanus. Towards the global optimization of functional logic programs. In Proc. 

Workshop on Global Compilation, Int. Logic Programming Symp., Vancouver, 1993. 

[4] A. Tonne. Linear logic meets the lambda calculus. MPI-I-93-258, 1993. (To appear). 

2.5 Automated deduction 

2.5.1 Background 

By automated deduction here we mean refutational theorem proving for predicate logic, 

especially using saturation methods. That is, we look at methods that start out from a 

theory and a negated hypothesis and derive inferences until a contradiction is produced; 

if this happens we can infer that the hypothesis is a theorem of the theory. Resolution is 

the classical instance of saturation-based refutational theorem proving. The particular 

problems we are looking at are as follows. 

Local search space reduction. We want to improve inference systems so that fewer 

consequences can be derived from the same premises without loosing completeness. A 

common problem is that such reductions only come at the expense of a large, sometimes 

unbearable, increase in complexity for single inferences. 

Global search space reduction. In saturation-based refutational theorem proving 

inferences are calculated by forward chaining from the axioms and the negated hypoth­

esis. This approach has the advantage that we are able to generate and reuse lemmas 

as we build the proof, but the problem that it is not goal-oriented: we can waste huge 

amounts of time computing redundant proofs that we do not need. We are trying to 

reduce the number of these useless proofs. Unfortunately, this is a hard problem: we 

can only see that proofs are redundant by looking at the state of the theorem prover as 

a whole, not locally. 

Rewrite techniques supply tools for dealing with the problem, such as term orderings 

and simplification techniques. For instance, Knuth/Bendix-completion usually does not 

generate the complete equational theory of a set of identities, but a convergent set 

of rewrite rules, so that forward computation is under better controL An important 

87 



2. Research programme and results The Programming Logics Group 

question is how we can extend these ideas to the more general case of first-order logic 

and devise similar rewrite techniques for theories other than equality. 

Structured theories. Theories from which we want to prove theorems are usually not 
fiat, but structured into modules, like a large piece of software. Some of these modules 

are for ordinary mathematical theories like the n~bers, or set theory, but others have 

been defined for a particular computing application. An ideal theorem prover might 

collect together the tools of computer algebra, geometry, unification theory etc., inside 
the general, but inefficient, methods of saturation-based theorem proving. Combinations 

that have been studied include resolution with E-unification, provers that call computer 

algebra systems for simplifying complex algebraic formulae, and the introduction of sorts. 

A lot still needs to be done here: how can computer algebra techniques, such as Grobner 

basis computation be combined with superposition-based calculi for equational logic? 

How can algebraic properties of relational structures be compiled into inference rules 

based on rewriting? How can constraint techniques be used to delay difficult subprob­

lems, and for representing global information about proofs? 

Efficient datastructures and algorithms. The most impressive tool for resolution­

based refutational theorem proving available at the moment is the OTTER system, 

which uses a 'brute force' approach, using efficient datastructures and speed, instead of 

'intelligence' . 

We are looking for a different compromise between, onb the one hand, efficiency on 

the level of single inferences, and, on the other, global redundancy reduction, so that 

fewer useless inferences are computed. Unfortunately such local and global restrictions 

of the search space are often hard to compute, e.g. AC-unification is double-exponential, 

subsumption is NP-complete. We need algorithms that perform well in practice, that 

work well with the existing techniques for storing large sets of formulae, and don't try 

to solve hard problems exactly, since approximative solutions are often enough. 

Integration with higher-order logic. Effective, automatic theorem proving is, as 

far as we can see, a fantasy; but systems like Isabelle, and Nuprl allow real theorems to 

be proved interactively. In such systems, normally: the logic is designed to be usable by 

people rather than machines; proofs are checked, not automatically constructed; large 

and extensible collections of tactics automate parts of the work of building proofs. 

We would like to find ways of integrating automatic first-order techniques into such an 

environment. As yet not much is known about even whether this is possible in principle, 

never mind how to do it. 

88 



The Programming Logics Group 2. Research programme and results 

2.5.2 Our results 

First-Order Theorem Proving 

Saturation methods. In [2] we present refutationally complete calculi for predicate 

logic in which equality is dealt with by ordered term rewriting. These calculi are 

parametrized by term orderings, selection functions and simplification techniques. The 

main result of this work is an abst:ract notion of redundancy that captures global re­

dundancy of formulas and inferences for the current state of the saturation process. In 
particular, it allows simplification techniques to be easily tested for admissibility, so that 

they can be switched on or off as necessary. 

These techniques are refined in [3], where we show that rewriting in substitutions that 

have been generated in previous inferences is not needed. In such 'basic' calculi the 

notion of redundancy is much more involved [3]. Many of these calculi, together with 

useful simplification techniques, have been implemented in the SATURATE system, 

developed by Nivela and Nieuwenhuis from Barcelona while they were visiting. We also 

have extended these methods, to the case of hierarchic theories such that an arbitrary 

theorem prover (constraint solver) for the base theory can be utilized for the proof of 

base formulas [4]. There is a close relationship between consistent extensions of theories 

and second-order quantification, so these techniques, can also, in certain circumstances, 
be used to eliminate such quantifiers. 

In [6] we show that these general purpose methods perform well on decidable fragments 

of predicate logic, and, in particular, can be turned into a decision procedure for the 

monadic class with equality if an appropriate setting of the three parameters is chosen. 

Recently we have started to look at applying similar rewrite techniques to transitive 

relations other than equality, e.g. orderings. 'W.e have identified commutation between 

two rewrite systems as the appropriate generalization of the notion of confiuence which is 

the basis of the rewrite techniques for equational case [1]. A prototypical implementation 

of these ideas in the SATURATE system has provided us with promising experimental 

results. 

Efficient Datastructures and Algorithms The performance of a theorem prover 

depends on the speed of the basic retrievcil operations like finding unifiable terms. 

Among the known methods for term retrieval in deduction systems Path-Indexing shows 

good performance in general. In [8], we describe an implementation of this method; 

The software is currently being used in various deduction systems such as STOP (here) 

and SETHEO (Technische Universitat Miinchen). Path-Indexing is not, however, a 

perfect filter; we still have to check, by unification, the candidates it finds, and thus 

Discrimination trees and abstraction trees, which are perfect filters, manage sometimes 

to outperform it. In [9], we describe an improved version of Path-Indexing that provides 

89 



2.' Research. programme and results The Programming Logics Group 

, query trees and the path-index with clash and occur-check information, so that many 

more terms than with the standard method can be dismissed immediately. 

Unification and Constraint Solving 

Unification Recently there has been a lot of interest in equational (or E-) unification; 

both unification algorithms for special equational theories, such as those with associativ­

ity and commutativity, and more general methods like narrowing, that apply to whole 

classes of theories, have been developed. We have been looking at both aspects; partic­

ularly at narrowing, a general method for the class of equational theories defined by a 

convergent rewrite system. (There is a detailed account of this work in Section 2.2.) 

Gen,eral E-unification, which is not confined to theories with convergent rewrite systems, 

is investigated in [11]; we show that Gallier and Snyder's Lazy Paramodulation, and 

Dougherty and Johann's Relaxed Paramodulation systems can be improved by a stronger 

restriction on the applicability of Lazy Paramodulation. 

In [12], we have investigated unification in the theory of terms with exponents; these al­

low certain infinite sets of terms to be finitely represented. Possible applications include 

logic programming and equational logic, where they can be used to avoid certain types 

of nontermination or divergence. Most inference systems for unification of terms with 
exponents, such as the algorithms of Comon or Salzer suffer from high technical com­

plexity. In [12], a syntactic generalization of Comon's notion of terms with exponents is 

introduced together with a comparatively simple inference system for unification. 

Constraints Constraint based approaches to automated theorem proving have become 

increasingly popular. Beside the development of constraint solving procedures for differ­

ent applications, we have looked at the question of how to integrate constraint solving 

with logical inference rules such as resolution or superposition [3]. 

An interesting application of constraints is to orderings, which can be interpreted as 

recursive or lexicographic path orderings (RPO and LPO), arbitrary simplification or­

derings, subterm relations, or embedding relations. The known decision procedures for 

LPO and RPO have at least exponential complexity and it seems likely that the con­

straint satisfaction problem is NP-complete. In contrast, simplification orderings have a 

polynomial constraint satisfaction problem; [10] gives a constraint satisfaction procedure 

based on work by Plaisted, for simplification ordering constraints with complexity O(n3
), 

and shows some modifications of the problem to be NP-complete. 

Set constraints describe relations between sets of terms over some vocabulary, and arise 

naturally when, for instance, the concrete values of program variables, or type infer­

ence algorithms, are abstracted. We show in [5] that set constraints are equivalent to 

the monadic class. From this equivalence it follows that the satisfiability problem for 

90 



The Programming Logics Group 2. Research programme and results 

set constraints is complete for NEXPTIME; in fact the problem has a lower bound of 
NTIME( cn/logn). The relationship between set constraints and the monadic class also 

provides de~idability and complexity results for certain practically useful extensions of 

set constraints, in particular 'negative' projections and subterm equality tests. 

Order-Sorted Logics Adding sorts to a clause set has proved to be a very effective 

way of restricting the search space, and so improving the performance, of an automated 

theorem prover. One-place predicate symbols can usually be transformed into sort sym­

bols subject to certain syntactic constraints. In [13, 7], we develop a system that allows 

one-place predicate symbols to be used as sort information in arbitrary clause sets. The 

system consists of an order sorted unification algorithm and a complete calculus for full 

first-order logic; as a corollary it provides an optimally efficient decision procedure for 

for propositional horn clauses. 

In [7], we present several results on unification in order-sorted logic. For quasi-linear 

signatures we show that unification is decidable, and that the empty-sort problem is 

undecidable. We also show that the problems of sort intersection, and whether a term 

has a given sort are, independently, undecidable. Finally we develop a sorted unification 

procedure that terminatesfor elementary, semi-linear, quasi-linear, and linear signatures. 

References 

[1] L. Bachmair and H. Ganzinger. Rewriting techniques for transitive relations. MPI-
1-93-249. 

[2] 1. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with 

selection and simplification. Journal of Logic and Computation, 1993. (To appear). 

Revised version of MPI-I-91-208. 

[3] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and 

superposition. Information & Computation. (To appear). Also available as MPI-I-

93-236; an earlier version appeared in Proc. CADE'll. 

[4] 1. Bachmair, H. Ganzinger, and U. Waldmann. Theorem proving for hierarchic 

first-order theories. In H. Kirchner and G. Levi, editors, Algebraic and Logic Pro­

gramming, Springer, LNCS, 1992. 

[5] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic 

class. In Proc. LICS'B, 1993. Revised version of MPI-I-92-240. 

[6] L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification 

as a decision procedure for the monadic class with equality. In Proc. 3rd Kurt Godel 

Colloquium, 1993. Previous version available as MPI-I-93-204. 

91 



2. Research programme and results The Programming Logics Group 

[7] C.Weidenbach. Unification in sort theories and its applications. MPI-I-93-211 , 
1993. 

[8J P. Graf. Path indexing for term retrieval. MPI-I-92-237, 1992. 

[9] P. Graf. Extended path-indexing. MPI-I-93-253, 1993. 

[10] P. Johann and R. Socher. Solving ordering constraints in polynomial time. MPI-I-

93-256, 1993. 

[11] R. Socher-Ambrosius. A refined transformation system for general E-unification. 

MPI-I-93-237, 1993. 

[12] R. Socher-Ambrosius. Unification of terms with exponents. MPI-I-93-217, 1993. 

[13] C. Weidenbach. A sorted logic using dynamic sorts. MPI-I-91-218, 1991. 

2.6 Program synthesis 

An important application of logic and theorem proving is program correctness or program 
synthesis from specification, and many logics have been developed and proposed for 

it. Implementing these logics is hard work; so is ensuring that they are correct and 

automating derivations in them. We are looking for a framework in which to address 

these problems; a way both to implement proposed calculi and to develop new ones. 

We have shown how logical frameworks can be used to formalize program synthesis 

calculi. In our approach we treat a logic, like first-order logic or type theory, as a 

foundation on which we derive a calculus of rules for program development. We use a 

logical framework style proof development system that. allows us to state and manipulate 

proof rules without having to worry about whether the logic we use is strong enough, 

itself, to formalize such concepts. 

Normally we show that a program is correct by specifying in the programming logic 

the relationship between the program and its specification, then building a proof in 

the logic showing that the program and the specification are, in some sense, the same. 

However, we can also synthesize a program from a specification in a similar way: if at 

the start we have only a higher-order metavariable standing in for the program, rather 

than a complete program, then we can force this to be incrementally instantiated, using 

resolution, as we apply proof rules to build a complete proof. The resulting derivation 

provides a program as a solution for the metavariable that makes what we have built a 

proper proof. 

This can be understood by analogy with Prolog, which proves a predicate like r( t) by 

building a proof in a Horn clause theory. Alternatively, if we pose a query r(X) the 

same proof will be built through unification, with t as the satisfying term. The first 

92 



The Programming Logics Group 2. Research programme and results 

is verification, the · second synthesis. Our setting is a bit more complex since we use 
not horn clauses but arbitrary derived rules in a programming logic, and proofs are 
constructed not automatically by SLD resolution, like in Prolog? but interactively by a 
more complicated form of resolution. The problems we tackle are also complicated by 
the fact that we are trying to build recursive programs. 

Our use of logical frameworks to formalize and derive programming calculi is new. So 

is the use of higher-order resolution as a means of recasting and simplifying previously 
proposed calculi. We have used Paulson's Isabelle framework to derived calculi for logic 

program synthesis (based on Wiggin's Whelk Calculus) and combinational circuit synthe­
sis (based on Hanna's Formal Synthesis calculus) [1,2). In both cases, the formalization 
not only resulted in a machine checked account of the correctness of the calculus but 

also to simplifications and extensions. We have used 'these calculi to synthesize formally 
verified logic programs and circuit descriptions. 

Our work has also addressed automation of proof this way. In particutar, we have been 
able to incorporate strategies from inductive theorem proving (Bundy's rippling calculus) 

to automate induction and simplification during program synthesis [4, 5, 3). 

References 

[1) D. Basin. IsaWhelk: Whelk interpreted in Isabelle. Submitted, 1993. 

(2) D. Basin, A. Bundy, I. Kraan, and S. Matthews. A framework for program develop­
ment based on schematic proof. In Proc. 7th Int. Workshop on Software Specification 
and Design, 1993. Also available as MPI-I-93-231. 

[3] D. Basin and T. Walsh. Difference unification. In Proc. I1CA1'13, 1993. Also 
available as MPI-I-92-247. 

[4) I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning. In 
K.K. Lau and T. Clement, editors, Logic Program Synthesis and Transformation. 

Springer, 1993. Also available as MPI-I-92-244. 

[5] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthesis. 

In 10th Int. Con/. Logic Programming, 1993. Also available as MPI-93-231. 

2.7 Transformation of Logical Systems 

It is sometimes easier to prove a conjecture after it is transformed into the language 

of another system; but to do this we need to be sure that if the transformed version 

is true, then so is the original. We are interested in understanding the nature of such 
transformations, and in finding general methods, recipes and algorithms for supporting 

their development. Our main area of investigation is nonclassical logics; particularly 

93 



2. Reseaxch programme and results The Programmlng Logics Group 

variants of modal logic, but we also look at others, such as intuitionistic and relevance 
logic. And, since we use predicate logic as a metalogic, the methods we are developing 

can be applied to problems of pure predicate logic as well. 

Consider an example of the kind of transformations we are investigating: given the 

aXlOms 

P(i(i(i(p, q), r), i(i(r,p), i(s,p)))) 

P(r) /\ P(i(r,p)) ~ P(p) 

it follows that i( x, x), but the proof is quite complicated. But Lukasiewicz has shown that 

these two axioms axiomatize the implicational fragment of propositional logic. Once we 

can see this, the conjecture P( i( x, x)) can be transformed into the predicate logic formula 

x ~ x, which is obviously true. 

We have developed a procedure that, given the two axioms as input, is able to generate a 

model theoretic semantics for the function i, which, in this case, is precisely the semantics 

of propositional implication. All of the algorithm, apart one step, has been verified; this 

open step is syntactically trivial, but theoretically it has turned out to be central. 

A number of powerful methods and partial results have been developed in the course of 

this investigation: 

• A transformation method in the above sense, for eliminating unwanted properties; 

the method applied, for example, to a formula axiomatizing a reflexive and transi­

tive relation, transforms it into an axiomatization ,of a relation which is no longer 

reflexive or transitive. (Applied to Prolog programs, this might help in eliminating 
loops caused by the transitivity axiom.) 

• A method for eliminating second order quantifiers over predicate variables, to pro­
duce an equivalent first-order formula (provided there is one) [1]. Applications of 

this are, for instance, the automation of correspondence theory in modal logic, or 

the optimization of circumscription. 

• Further transformation methods for binary relations as they occur, for example, in 

the translation of normal modal systems into predicate logic [3]. These methods are 

applied, in the MOTEL knowledge representation system, to transform epistemic 

and taxonomic information into Prolog programs. 

One of the transformations we have developed [2] is of particular interest in practice, as . 

well as in theory. Unlike the others, it results in pure predicate logic, and, afterwards, 

it is easy to see that certain axioms, for example irreflexivity of the binary relation, are 

redundant. This provides a simple proof that these properties cannot be axiomatized 

in a modal logic, and is a striking example of the use of the transformation of a logical 

94 



The Programming Logics Group 2. Research programme and results 

system to simplify proofs of metatheoretic properties; the technique is not restricted to 

(first-order multi-) modal logics. It is also useful in areas such as taxonomic reasoning 

and sorted logic. 

We plan to integrate all these techniques into a workbench for supporting the develop­
ment of transformations of logical systems. A prototype implementation of one of its 

parts, the quantifier elimination procedure, is already available. 

References 

[1] D. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate logic. 

South African Computer Journal, 7, 1992. Also available as MPI-I-92-213. 

[2] A. Nonnengart. First-order modal logic theorem proving and functional simulation. 

In Proc. IJCAI'13, 1993. Also available, in an extended version, as MPI-I-92-228. 

[3] H. J. Ohlbach. Translation methods for non-classical logics-an overview. Bulle~in of 

the Interest Group in Propositional and Predicate Logic, 1:69-90, 1993. Also available 
as MPI-I-92-225. 

2.8 Nonmonotonic reasoning 

We usually have only incomplete, speculative information about the world, but must, 

nevertheless, make reasonable decisions about how to act, often to a time limit. To do 

this, we have to use default knowledge, i.e. reasonable assumptions about relationships in 

the world (birds can fly), in a rational way to draw plausible but preliminary conclusions 

(Tweety is a bird, thus he can fly) that can turn out, in the light of new evidence, to be 

wrong (Tweety is a penguin). Formally modeling such defaults, and the defeasible style of 

!easoning that goes with them, where conclusions do not necessarily grow monotonically 

with premises, is the task of nonmonotonic logic. 

Many default formalisms, with different strengths and weaknesses, have been proposed. 

We can distinguish, roughly, between consistency Irule-based approaches like default log­

ics or nonmonotonic inheritance networks, and model-preference-based approaches like 

circumscription or conditional logic. A lot of work has been done to compare, classify 

and evaluate the differences among them, and it turns out that most approaches have 

one or more of the following problems. 

• Lack of expressive power: In natural language processing and user modeling rea­

soning about action and time, there is a need for nested default expressions in 

first-order contexts [5]. But classical accounts often have a propositional charac­

ter, and do not even allow boolean combinations of defaults. 

95 



2. Research programme and results The Programming Logics Group 

• Implausibility: Much work has been done on what reasonable rationality postulates 
for object-level default conditionals, or metalevel plausible inference, should look 

like, but proposed formalisms rarely satisfy them, especially not on both levels. 

• Lack of robustness: Semantic-based approaches are the most appropriate, but, 

often, very sensitive to the addition of irrelevant information. 

• Inefficiency: Until recently, the design, and analysis of the properties, of efficient 

algorithms had not received much attention. 

We are looking at two complementary areas: efficient procedures that we can find, using 

links with other areas, and new semantic-based formalisms tha combine, for particular 

applications, the strong points of previous approaches. 

We have looked at the role of graph theory in nonmonotonic reasoning [1,3,2] . The idea 

here is to represent interactions among rules by means 9f a graph, a method applicable 
to logic programs with negation, disjunction-free default theories, and reason mainte­

nance systems. The main advantage of this is that results from pure and algorithmic 

graph theory can be exploited. It also opens the way to the use of classical methods 

(e.g. satisfiability algorithms or linear optimization methods). 
Gabbay's labelled deductive systems are a possible effective method for capturing the 

semantics of a reason maintenance system, which we are looking at [4]. This approach 

works for both justification and assumption based methods, providing the two with uni­

fying semantics, that allows us to characterize systems as a whole, while still maintaining 

a distinction between the basic logic and the supporting machinery. 

Another promising research area is the relationship between logic programming and non­

monotonic reasoning, and possible exchanges of techniques. It is, for instance, interesting 

to see what the various semantics for logic programs with negation can give us when ap­

plied to default theories. We have used these connections to implement some forms of 

defeasible reasoning in the knowledge representation system MOTEL (see Section 2.10). 
By analogy with the Davis-Putnam procedure for checking 'satisfiability, we have devel­

oped a procedure for computing stable models of propositional normal disjunctive logic 

programs, using simplification and case analysis [6]. The procedure is presented as a 

set of rules that progressively transform a program, while preserving the meaning, until 

a set of solved forms is reached. This has been used with great success for unification 

problems and there is some hope that it can be extended to autoepistemic reasoning and 

to other semantics of logic programs like well-founded semantics. 

Finally, we have proposed an ' extension to first-order logic with a default quantifier N, 

where Nx(A(x, .. . ), B(x, ... )) should be read as saying that any x verifying A(:z:, . .. ) nor­

mally verifies B(:z:, .. . ). This allows us to express nested first-order default knowledge. 

Our semantics is based on qualitative measures, offering a potential interface to prob­

abilistic reasoning, and has a sound and complete proof theory [7]. Based on previous 

96 



The Programming Logics Group 2. Research programme and results 

research about nonmonotonic entailment for conditional, theories [8], we have proposed 

a semantic-based plausible inference relation suitable for first-order contexts. Among its 

features are specificity reasoning, defeasible chaining and a defeasible deduction princi­

ple that links the object-level default conditional to the defeasible metalevel inference 

relation. This approach is more powerful than the traditional accounts described in the 

literature. 

References 

[1] Y. Dimopoulos. The computational value of joint consistency. 

Dutch/German Workshop on Nonmonotonic Reasoning Techniques 

plications, 1993. (To appear). 

In Proc. 1st 

and their Ap-

[2] Y. Dimopoulos and V. Magirou. A graph theoretic approach to default logic. Infor­
mation & Computation. (To appear). 

[3] Y. Dimopoulos, V,. Magirou, and C. Papadimitriou. On kernels, defaults and even 
graphs. MPI-I-93-226, 1993. 

[4] D. Fehrer. A unifying framework for reason maintenance. In Proc. ECSQARU '93, 
1993. 

[5] U. Hustadt. A multi modal logic for user modeling. (To appear). 

[6] J. Stuber. Computing stable models by program transformation. MPI-I-93-257, 

1993. (To appear). 

[7] E. Weydert. Default quantifier logic: About plausible reasoning in first-order con­

texts. In Proc. 1st Dutch/German Workshop on Nonmonotonic Reasoning Tech­

niques and Applications. (To appear). 

[8] E. Weydert. Default quantifier logic: Plausible inference for default conditionals. In 

Proc. ECSQARU'93, 1993. 

2.9 Logical frameworks 

Many logics, from classical to intuitionistic to modal, from algebraic to first-order to 

higher-order, have been proposed as tools for computer science. But their range raises 

a problem even before it solves any: how are we to implement them all? This is why 

the idea of a logical framework was invented, starting with the thought that 'if there are 

logics for reasoning about parallelism, time and knowledge, why can there not be a logic 

for reasoning about logics?' 

97 



2. Research programme and results The ProgramIning Logics Group 

Several logical frameworks have been proposed and implemented, and with most it is an 

easy matter to implement and use a particular logic (or object-logic) in the implemented 

framework (or metalqgic). An implementation of an object logic in a framework theory 

is, essentially, a formal description of the logic itself (or metatheory), and we can reason 

about it in the same way we can reason about objects in other formalized theories. We 

have been looking at ways to exploit this. 

One of the problems we have explored is how to add to a logic, safely. Logic implementors 

often would like to extend their systems with extra rules that, while theoretically unnec­

essary, simplify the work of building proofs, but complicated extensions, like rewriting 
and decision procedures, risk introducing errors, i.e. inconsistency. Our work looks at 

how metatheoretic extensions to a logic can be made, using the formalized metatheory 
to check their correctness. We have su~cessfully done this in two different frameworks. 

We implemented first-order logic in the framework logic F So and proved, as a metathe­

orem, an equivalence between two classes of formulae (for this experiment we had to 

formalize reasoning about bound variables and operations on them) [5]. We have also 

explored" a different approach, taking a framework as a class of abstract data types, and 

looked at how to do proof theory over such a representation [1], and taking advantage 

of constructive logic to synthesize new proof construction procedures. 

Not all the frameworks that have been proposed are suitable for this sort of work, though. 

Currently we are exploring one in particular, F So, which is explicitly designed for doing 
general proof theory. For instance we show how to prove a cut elimination theorem for 

an object theory in [3J. We are implementing this logic, and, inside it, formalizing a 

general binding and substitution mechanism that we expect to work well both at the 

object and the framework levels. Further work here involves looking at how effectively 

we can develop tools that can be used generally for reasoning in met at heory, instead of 

being restricted to some particular object theory. Also, if we think of using a logical 

framework as a metatheory, however, the most obvious candidate to be reasoned about 

is the framework itself, since this is theory we are always, in one way or another, working 

with. We plan to address the practical problems of doing this for F So sometime in the 

future, and have already looked at some of the theoretical questions [2, 4). 

References 

[IJ D. Basin and R. Constable. Metalogical frameworks. In G. Huet and G. Plotkin, 

editors, Logical Environments. Cambridge University Press, 1993. Also available as 

MPI-I-92-205. 

[2] S. Matthews. Reflection in logical systems. In Proc. IMSA '92: Reflection and Meta­

level Architecture, 1992. Also available as MPI-I-92-250. 

98 



The Programming Logics Group 2. Research programme and results 

[3] S. ''Matthews. A theory and its metatheory in F So. In D. Gabbay and F. Guenthner, 

editors, What is a Logical System'? Oxford University Press, 1993. Also available as 

MPI-I-93-227. 

[4] S. Matthews and A. Simpson. Reflection using the derivability conditions. (forth­

coming). 

[5] S. Matthews, A. Smaill, and D. Basin. Experience with FSo as a framework theory. 

In G. Huet and G. Plotkin, editors, Logical Environments. Cambridge University 

Press, 1993. Also available as MPI-I-92-244. 

2.10 Knowledge representation using non-classical logics 

Since the mid-seventies a variety of knowledge representation systems in the tradition of 

semantic networks and terminological logics have been proposed, the most famous being 

KL-ONE. All these systems are intended to represent general conceptual information, 

and they are typically used in the construction of the knowledge base of a single reasoning 

entity. The language they use is some subset of first-order logic with equality. Beside 

soundness and completeness, decidability of inferential operations in these systems is a 
commonly demanded feature. 

Developments in natural language processing and planning very soon made it cleat that 

classical knowledge representation systems are not expressive enough for such applica­

tions. As a result, various extensions of the traditional systems have been proposed, 

e.g. terminological logics that are able to represent the knowledge or the beliefs of mul­

tiple agents in one knowledge base, defaults, and dynamical changes of the knowledge 

base. All these extensions have been investigated independently, but no coherent theory 

for a terminological logic, that is able to provide all the representational and inferential 

facilities we have mentioned, has been developed. 

We have been developing such a coherent that allows not only the knowledge or beliefs 

of a single agent, but a huge variety of modal operators for multiple agents, and defaults 

and dymanic changes of the knowledge base to be represented. 

Our approach to multi-modal logics [5] is already well developed. We follow Ohlbach's 

suggestion [8]: to eliminate modal operators in a way that we get standard predicate 

logic formulae that still represent the modal semantics, using functional simulation to 

describe accessibility relations and roles. 

An advantage of this way of doing things, beyond that we can use a first-order theorem 

prover to implement a modal logic theorem prover, is that it is independent of the frame 

axioms (i.e. the axioms describing the properties of the modal operators). However 

we do have to provide a tool able to translate frame axioms into the corresponding 

properties of the accessibility relation. SCAN [3] is an algorithm which offers a method 

99 



2. Research programme and results The Programming Logics Group 

for computing these correspondences fully automatically (this'work is described in more 

detail in Section 2.7). 

The MOTEL system [6] is a prototypical implementation of our approach to knowledge 

. representation for multiple agents. MOTEL translates modal terminological logic the­

ories into Prolog logic programs or theories for the theorem prover SETHEO. As yet, 
SCAN is not integrated, but is an independent module. 

For the target language, Prolog, it has been easy to implement inference facilities: 

• In [4], we described a goal-oriented method for abduction in disjunctive logic pro­
grams. The results have been used to provide abduction for terminological logics 

in MOTEL. 

• Using the revision operators of Prolog, belief revision has been implemented at the 

level of axioms . 

• Using the correspondence between default theories and general logic programs at 
the semantic level, we have been able to integrate default reasoning in MOTEL. 

As a result, MOTEL is, in terms of the expressiveness of the language, and the variety 

of inferential operations available for knowledge representation for multiple agents, one 

of the most advanced systems available, and we plan ,to extend it further; for instance, 

we are currently also investigating probabilistic reasoning in terminological logics [7] and 
this should result in an additional component of the system that can deal with uncertain 

knowledge. The system is currently used in the SFB-Project PRACMA ('Processing 

Arguments between Controversially Minded Actors'). The topic of PRACMA is the field 

of pragmatic dialogue processing, including a deep modeling the underlying concepts of 

intentions, attitudes, and argumentative behaviour. MOTEL has been developed to be 

well-suited for this purpose. 

In the work above we exploit the link between KL-ONE-type knowledge representation 

and modal logic. But KL-ONE-type knowledge representation can also be linked to al­

gebra. In [9, 2, 1] we show that terminological representation languages have evolved 

a semantics effectively described in algebras of sets and relations interacting with each 

other. In particular we use Boolean modules to accomodate a KL-ONE-type termino­

logical language [2] and introduce a new class of algebras, called Peirce algebras, able to 

treat even more expressive languages in [9, 1]. 
A Peirce algebra is a two-sorted combination of a Boolean and a relation algebra, supple­

mented with operations (the Peirce product of Boolean modules and a cylindrification 

operation) through which they interact. Peirce algebras can also usefully formalise other 

fields in Computer Science beside knowledge representation; they can, for instance, be 

used in computational linguistics and program semantics. where they can provide elegant 

and expressive equational axiomatisations. In [10] we relate terminological representation 

100 



· The Programming Logics Group 2. Research. programme and results 

to the work of P. Suppes in computational linguistics who used Peirce algebras (under . 
a different name) for his semantic analysis ofa certain fragment of the English lan­
guage. The work of Suppes and others provides a formal basis for finding (linguistically) 
adequate terminological representations for domain knowledge formulated in English, 
and is now directly accessible (via Peirce algbra) to users and developers working with 

KL-ONFrbased systems. 

References 

[1] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Com­

puting, 1994. Also available as MPI-I-92-229. 

[2] C. Brink and R. A. Schmidt. Subsumption computed algebraically. Computers 

and Mathematics with Applications, 1992. Also in Lehmann, F., editor, Semantic 

Networks in Artificial Intelligence. Pergamon Press, 1992. 

[3] D. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate 
logic. South African .computer Journal, 7, 1992. Also available as MPI-I-92-213. 

[4] U. Hustadt. Abductive disjunctive logic programming. In ICLP'93, Postconf. Work­

shop on Abductive Reasoning, 1993. 

[5] U. Hustadt and A. Nonnengart. Modalities in knowledge representation. In Proc. 

6th Australian Joint Conf. AI, 1993. 

[6] U. Hustadt, A. Nonnengart, R. Schmidt, and J. Timm. MOTEL user manual. 
MPI-I-92-236, 1992. , 

[7] M. Jaeger. Probabilistic reasoning in terminological logics (extended abstract). 
Submitted to KR'94, 1993. 

[8] H. J. Ohlbach. A Resolution Calculus for Modal Logics. PhD thesis, Universitat 
Kaiserslautern, 1988. 

[9] R. A. Schmidt. Algebraic terminological representation. Master's thesis, Depart­

ment of Mathematics, University of Cape Town, South Africa, 1991. Also available 
as MPI-I-91-216 . . 

[10] R. A. Schmidt. Terminological representation, natural language & relation algebra. 
In Proc. GWAI-92, 1993. Also available as MPI-I-92-246. 

101 



3. Journal and conference activities The Programming Logics Group 

3 Journal and conference activities 

3.1 Editorial positions 

Prof. Harald Ganzinger has been an editor of Information Processing Letters since 

November 1990, and an editor of Mathematical Systems Theory since June 1992. 

Dr. Michael Hanus became an editor of the Electronic Journal on Functional and Logic 

Programming this year. 

Dr. Hans Jiirgen Ohlbach became an editor of the Bulletin of the Interest Group for 

Propositional and Predicate Logic this year. 

3.2 Conference positions 

3.2.1 Memberships in Organizing Committees 

D. Basin Workshop on Theorem Proving with Analytic Tableaux and Related Meth­

ods, Marseille, France, Apr 1993 

A. Bockmayr Workshop on Artificial Intelligence and Operations Research at the 

17th German Conference on Artificial Intelligence, Berlin, Germany, Sep 1993 

M. Hanus Workshop Logische Programmierung, Hagen, October 1993 

H.J. Ohlbach German Workshop on Artificial Intelligence, Bonn, Germany, Aug 1992 

First international conference on Temporal Logic, Bonn, Germany, 1994 

3.2.2 Memberships in Program Committees 

D. Basin Workshop on Theorem Proving with Analytic Tableaux and Related Meth­

ods, Marseille, France, 1993 

Third Workshop on Theorem Proving with Analytic Tableaux and Related Methods, 

Abingdon, UK, 1994 

Fifth International Conference on Logic Programming and Automated Reasoning, 

Crimea, Ukraine, 1994 

Twelfth International Conference on Automated Deduction, Nancy, France, 1994 

H. Ganzinger Twelfth International Conference on Automated Deduction, Nancy, 

France, 1994 

Third Conference on Rewriting Techniques and Applications, Como, Italy, 1991 

Fourth international conference on Logic Programming and Automated Reasoning, St. 

Petersburg, Russia, 1993 

102 



The Programming Logics Group 3. Journal. and conference activities 

Fifth international conference on Rewriting Techniques and Applications, .. Montreal, 

Canada, 1993 
Fourth International Conference on the Theory and Practice of Software Development, . 

Orsay, France, 1993 

Tenth Annual IEEE Symposium, Logic in Computer Science, Paris, 1994 

International Conference on Algebraic and Logic Programming, 1994 

M. Hanus International Logic Programming Symposium, Ithaca, NY, 1994 

Fifth International Conference on Logic Programming and Automated Reasoning, 

Crimea, Ukraine, 1994 

H.J. Ohlbach Fourth International Conference on Logic Programming and Auto­

mated Reasoning, St. Petersburg, Russia, 1993 

Twelfth International Conference on Automated Deduction, Nancy, France, 1994 

Friihjahrsschule fUr Kiinstliche Intelligenz, 1992 

Eleventh International Conference on Automated Deduction, Albany, USA, 1992 

Second Conference on Principles of Knowledge Representation and Reasoning, Boston, 

USA, 1992 

Gefman Workshop on Artificial Intelligence, Bonn, Germany, 1992 

European Conference on Artificial Intelligence, Amsterdam, 1994 

First International Conference on Temporal Logic, Bonn, Germany, 1994 

Fourth . Conference on Principles of Knowledge Representation and Reasoning, 1994 

103 

'1 



4. Teaching activities The Programming Logics Group 

4 Teaching activities 

4.1 Lectures and Seminars 

If not specified, then at the University of Saarbriicken. 

Key: L - Lectures, LE - Lectures and exercises, S - Seminar, 

FoPra - Project class. 

Winter Semester 1991/1992 

Programmieren In Logik A. Bockmayr - LE 

Lambda-Kalkiil H. Ganzinger - L 
Nichtklassische Logik H. J. Ohlbach - L 

Summer Semester 1992 

Logik Und Entscheidbarkeit A. Bockmayr - LE 

Implementierung Logischer Programmiersprachen M. Hanus - L 

Logische Grundlagen des Automatischen Beweisens 

R. Socher-Ambrosius - L (at Univ. Kaiserslautern) 

Lineare Logik H. Ganzinger, A. Bockmayr - S 

Winter Semester 1992/1993 

0-1 Optimierung A. Bockmayr - LE 

Ubersetzerbau H. Ganzinger, R. Wilhelm - LE 

Spezielle Verfahren des Automatischen Beweisens 

R. Socher-Ambrosius - L (at Univ. Kaiserslautern) 

Metatheory and Extensible Systems D. Basin, S. Matthews - S 

Summer Semester 1993 

Termersetzungssysteme A. Bockmayr - LE 

Lambda-Kalkiil und Typ-Theorie H. Ganzinger, D. Basin - LE 

Genetische Algorithmen und Simulated Annealing 

H. J. Ohlbach - L 

Nichtklassische Logiken R. Socher-Ambrosius - L 

(at Univ. Kaiserslautern) 

Logisch-Funktionale Programmiersprachen M. Hanus - S 

Effiziente Algorithmen for A ussagenlogische Erfollbarkeitsprobleme 

H. J. Ohlbach, D. Cvetkovic, P. Graf, C. Weidenbach - FoPra 

104 



The Programming Logics Group 

Winter Semester 1993/1994 

Foundations of Program Verification Calculi 
D. Basin, S. Matthews - LE 

Constraintlosungstechniken A. Bockmayr - LE 
Rechnergestiitztes Beweisen H. Ganzinger, D. Basin - LE 
Deduktion in klassischen und nichtklassischen Logiken 

H. J. Ohlbach - LE (at Univ. Darmstadt) 
Synthesis using Higher-Order Unification 

H. Ganzin-ger, D. Basin - FoPra 

4~2 Doctorates awarded 

None. 

4.3 Habilitations 

H. J. Ohlbach, 1993. 
M. Hanus (in progress). 

4.4 Masters theses in progress 

4. Teaching activities 

Ayari Abdelwaheb: Program Synthesis with Higher-Order Unification under D. Basin. 
Alexander Bach: Implementierung und Analyse einer lineargetypten funtionalen Pro­
grammiersprache under D. Basin and A. Tonne. 
Joachim Becker: Effiziente Subsumption in Deduktionssystemen under Peter Graf. 
Jorg Becker: Lernen von Grammatiken mit genetischen Algorithmen under H. J. Ohlbach 
Christoph Meyer: Verteilte Hyperresolution (begins in Dec. 1993) under Peter Graf 
Thomas Schane: Lernen von Spielstrategien mit genetischen Algorithmen under 
H. J. Ohlbach. 

105 



5. Grants The Programming Logics Group 

5 Grants 

5.1 CCL - Construction of Computational Logics 

Description 

The past two decades have seen a proliferation of different programming styles: func­

tional, logical, constraint-based, object-oriented, among others. More recently, it has 

been recognized that these styles complement rather than exclude each other by being 

suitable for particular problem domains. As a consequence, combining programming 

paradigms has emerged as a significant research direction of its own. Fortunately the 

modes of computation are in each case firmly based on logic. Computation means sim­

plifying or solving problems represented by logical formulae. Hence combination of 

programming paradigms means combinatio~ of logics in a common logical framework. 

Constraint logic programming has been the first entirely successful step towards this 

ambition of combining logics. Constraints are logical systems specifically tailored to 

particular theories, for example, numbers, trees, orderings. Constraints allow conve­

nient notations for particular problem domains, efficiency thanks to dedicated solvers, 

and modularity by isolating the solver from the purely logical part of the computation. 

Besides new ways of exploiting the above properties, we are also interested in new ap­

plications of constraints. Exploiting the structure of (large) constraint logic programs 
for automating proofs that would simply fail otherwise belongs to the first category. 

Investigating the use of new systems of constraints for type checking purposes or search 
guiding information belongs to the second. 

According to the above two basic lines, the aims of the CCL-project are the following: 

• to investigate specific instances of combination problems for logics and constraints 

of particular interest; 

• to investigate new constraints and to design algorithms for combining existing 
constraint systems; 

• to develop or improve theorem proving techniques for certain logics of special im­

portance for programming, by taking advantage of constraint systems; 

• to contribute to a coherent framework for combining programming paradigms and 

other logical theories, thus enabling the programmer to combine elements of each 

of them in a unified environment. 

106 



The Programming Logics Group 

Technical Data 

Starting date: 

Duration: 

Funding: 

July 24, 1992 

3 years 

ESPRIT Basic Research Action 

Staff at MPI £ Iniormatik: Peter Barth 

Alexander Bockmayr 

Harald Ganzinger 

Michael Hanus 

Uwe Waldmann 

Partners 

Cosytec, ~aris (contact: Helmut Simonis) 

DFKI, Saarbriicken (contact: Gert Smolka) 

INRIA-Lorraine, Nancy (contact: Claude Kirchner) 

TU Miinchen (contact: Tobias Nipkow) 

CIS, Univ. Miinchen (contact: Klaus U. Schulz) 

LRI, Univerite Paris-Sud (contact: Jean-Pierre Jouannaud) 

Universidad Complutense de Madrid (contact: Mario Rodriguez-Artalejo) 

Universitat Politecnica de Catalunya (contact: Fernando Orejas) 

5. Grants 

5.2 COMPASS - A Comprehensive Algebraic Approach to System SpeCi­
fication and Development 

Description 

In software technology, concepts, methods and development environments for the con­

struction of data-processing systems from self-contained, generic and reusable compo­

nents are becoming increasingly important, if not mandatory. The decomposition of 

systems supports a breakdown of the production process into feasible tasks. Generic 

and reusable components help to avoid duplications of effort, .to ease prototyping, test­

ing and verification and · to speed up production processes. The industrial production 

of generic and reusable software components, however, is only -possible under certain 

conditions: 

• The requirements on a component must be specifiable in a precise way. 

• The functional behaviour of a component must be determined in a precise way. 

• For each component, especially for a .critical one, the correctness (meaning that 

the behaviour satisfies the requirements) must be provable. 

107 



5. Grants The Programming Logics Group 

• The integration of components into large systems must be supported in such a way 

that the behaviour and the correctness of the components are preserved. 

The state of the art 'in software technology does not yet allow the systematic development 

of system components that meet the four demands above. In particular, tools are missing 

that support such a development with strong requirements on the correctness of the 

components properly and fully. The algebraic approach to system specification and 

development is most promising in this respect, but there is still a broad gap between the 

state of the art of the algebraic approach and the practical needs of the specification of 
system components. 

The main objective of the Basic Research Working Group compass is to bridge this gap 

by further development and consolidation of the algebraic approach in a comprehensive 

way. In spite of more than fifteen years of research in the algebraic approach, there 

is a considerable need of clarification, unification, extension and integration of other 

programming and specification paradigms. Most partners are involved in national and/or 

European-funded projects, and much of the work described in the objectives will be done 

in the context of these other projects. The purpose of compass is largely to provide 

opportunities for interaction between the members of these separate projects. 

The group at the MPI contributes to reaching the objectives in the area of modular 

combination of logics and constraint theorem proving. They try to extend the techniques 

they have developed in the past to modular presentations of first-order theories with 

respect to constrained inference systems for first-order logic with equality. This includes 

theoretical research on the combination of theorem provers for particular theories. 

Work on theorem proving also includes the extension of the first-order theorem proving 

methods to formulas with quantifiers without employing skolemization so as to not add 

junk to given algebras. That way, theorem proving will actually mean program synthesis. 

In addition the group works on the notion of observability, both on the conceptual and 

on the proof-theoretic side. 

Technical Data 

Starting date: 1992 
Duration: 3· years 

Funding: ESPRIT Basic Research Working Group 

Staff at MPI f Informatik: Harald Ganzinger 

Hubert Baumeister 

Partners 

Aarhus Universitet, Prof. Dr. Peter Mosses 

Universitat Politecnica de Catalunya, Barcelona, Prof. Dr. Fernando Orejas 

108 



The Programming Logics Group 

Technische Universitat Berlin, Prof. Dr. Hartmut Ehrig 
Technische U niversitat Braunschweig, Dr. Martin Gogolla 
Universitat Bremen, Prof. Dr. Bernd Krieg-Briickner 
Technische Universitat Dresden, Prof. Dr. Horst Reichel 
University of Edinburgh, Prof. Dr. Don Sannella 
Universita. di Genova, Prof. Dr. Egidio Astesiano 
Universita. degli Studi de L'Aquila, Prof. Dr. F. Parisi-Presicce 
INESC, Lisboa, Prof. Dr. Amilcar Sernadas 
Technische Universitat Munchen, Prof. Dr. Manfred Broy 
CRIN, Nancy, Dr. Helene Kirchner, Prof. Dr. Pierre Lescanne 
University of Nijmegen, Prof. Dr. Hartmut Partsch 
University of Oslo, Prof. Dr.Ole-Johan Dahl 
Oxford Universtiy, Prof. Dr. Joseph Amadee Goguen 
CNRS - Universite de Paris-Sud, Prof. Dr. Marie-Claude Gaudel 
Ecole Normale SuperieurejCNRS, Paris, Dr. Michel Bidoit 
Ludwig-Maximilians-Universitat, Munchen, Prof. Dr. Martin Wirsing 
MPI fur Informatik, Saarbriicken, Prof. Dr. Harald Ganzinger 

5. Grants 

5.3 MEDLAR II - MEchanizing Deduction in the Logics of prActical Rea­
soning 

Description 

MEDLAR II builds on the success of the original MEDLAR project in mechanizing logics 

of practical reasoning to handle time, action, belief, knowledge and intent . In MEDLAR 

II the con~ept of a practical reasoner will be developed, an agent capable of acting 
autonomously and interacting flexibly with its real world environment. Specific reasoning 
capabilities are being synthesised for combinations of logics within a general framework 

for knowledge representation, so that examples of reasoning in natural language dialogue 
and the planning of robots can be demonstrated. 

Technical Data 

Starting date: 

Duration: 

Funding: 

24 July 1992 
3 years (1.5 years approved so far) 

ESPRIT Basic Research Action 6471 

Staff at MPI f. Informatik: Hans Jurgen Ohlbach 
Christoph Weidenbach 

109 



5. Grants The Programming Logics Group 

Partners 

RISC-Linz, Austria (contact: Jochen. Pfalzgraph) 
Technische Hochschule Darmstadt, Germany (contact: Wolfgang Bibel) 

V niversitat Miinchen, Germany (contact: Bertram Fronhofer) 

Max-Planck-Institut fUr Informatik Saarbriicken, Germany (contact: Hans Jiirgen 

Ohlbach) 

ONERA-CERT, Toulouse, France (contact: Robert Demolombe) 

Institut Nationale Poly technique de Grenoble, France (contact: Ricardo Caferra) 

Universite Paul Sabatier, Toulouse, France (contact: Luis Fariiias del Cerro) 

Universita di Torino, Italy (contact: Alberto Martelli) 

University of .Oslo, Norway (contact: Andrew Jones) 

The Imperial College of Science Technology and Medicine, London, United Kingdom 
(contact: Dov Gabbay) 

ICL-International Computers LTD, London, United Kingdom (contact: Malcom Rigg). 

5.4 Detecting Redundancy of Clauses and Inferences 

Description 

Saturation transforms a set of first-order formulae (with equality) into a representation 

of the theory that makes further theorem proving much more efficient. Saturated sets of 

axioms may be used both in a purely goal-oriented way and with ordering restrictions, 

without losing completeness. However, saturation terminates only if the overwhelming 

majority of inferences can be proved to be redundant, such that they do not give rise 

to new formulae. It is the goal of this project to derive practically useful criteria for 

the redundance of clauses and inferences and to investigate the degree to which powerful 

redundancy criteria can turn ordered paramodulation into an efficient decision procedure. 

Technical Data 

Starting date: 1.7.1992 

Duration: 2 years (possibly 4 years more) 

Funding: DFG Schwerpunkt Deduktion 

Staff at MPI £ Informatik: Harald Ganzinger 

U we Waldmann 

Partners 

The project is a part of the 'Schwerpunktprogramm Deduktion' (Az. 322698). Partners 

in this program include: 

J. Avenhaus, K. Madlener (Universitat Kaiserslautern), 

110 



The Programming Logics Group 

w. Bibel (Technische Hochschule Darmstadt), 
M. Broy, T. Nipkow (Technische Universitiit Miinchen), 
U. Furbach (Universitiit Koblenz-Landau), 
H.Ganzinger (Max-Planck-Institut £iir Informatik, Saarbriicken), 
J. Gehne(Humboldt-Universitiit Berlin), 

S. Holldobler (Technische Hochschule Darmstadt), 
S. Jaehnichen (Technische Universitiit Berlin), , 
E. Jessen, B. Fronhofer, R. Letz (Technische Universitiit Miinchen), 

,H. Kleine Biining, B. Mowen (Universitiit-GH Paderborn), 
C. Kreitz (Technische Hochschule Darmstadt), 
W. Kiichlin, R. Biindgen (Universitiit Tiibingen), 
H. LeiB, J. Hudelmaier (Ludwigs-Maximilians-Universitat Miinchen), 
W. Menzel, W. Reif, W. Stephan (Universitat Karlsruhe), 
H. J. Ohlbach (Max-Planck-Institut £iir Informatik, Saarbriicken), 
U. Petermann (Universitat Leipzig), 
J. Siekmann (U niversitat Saarbriicken), 
G. Snelting (Technische Universitat Braunschweig), 
P. H. Schmitt (Universitiit Karlsruhe), 
P. Schroeder-Heister, S. Keronen (Universitiit Tiibingen), 
H. Schwichtenberg (Universitiit Miinchen), 
C. Walther (Technische Hochschule Darmstadt). 

5.5 LOGO - Logic Engineering 

Description 

5. Grants 

The subject of the Logo project is the development of techniques for developing, inves­
tigating and automating application oriented logics. 

There are several workpackages. In the first workpackage we develop methods for syn­

tesizing from a Hilbert claculus specification a model theoretic semantics, and from this 
semantics a translation method can be derived which translates formulae of the new logic 
into predicate logic. Certain optimizations of the semantics can be performed such that 

the resulting translation into predicate logic allows for the application of special theory 
resolution rules which represent the characteristics of the logic. 

In the second workpackage we investigate higher order type theory and higher order logics 
as meta systems for implementing 'object logics' as well as complex software systems. 

In another workpackage a hybrid System is to be developed which allows for the combi­
nation of various inference and control techniques. 

111 

1 



5. Grants 

Technical Data 

Starting date: 1. 9. 1991 

Duration: 3 years 

Funding: BMFT 

St.aff at MPI f. Informatik: David Basin 

Harald Ganzinger 
Ullrich Hustadt 

Hans Jiirgen Ohlbach 

Andreas Tonne 

The Programming Logics Group 

5.6 Automation of Proof by Mathematical Induction 

Description 

Mathematical induction is required for reasoning, about objects or events containing 

repetition, e.g. computer programs with recursion or iteration, electronic circuits with 

feedback loops or parameterised components. Thus mathematical induction is a key 

enabling technology for the use of formal methods in information technology. The goal 

of this collaboration is to permit an exchange of ideas and cross-fertilization between the 

leading research groups in this field. The collaboration takes the form of research visits 

between individuals working on similar or identical problems and more generally annual 

project seminars. The collaboration will address research topics including synthesis of 

induction rules, generalization, conjecturing of lemmata, strategic search guidance, and 

applications. 

Technical Data 

Starting date: August 1993 

Duration: 2 years (with possible 1 year extension) 

Grant: DAAD JBritish Council Academic Research Collaboration Grant 

Partners (group leaders) 

Dr. David Basin, MPI fUr Informatik, Saarbiicken 

Prof. Alan Bundy, University of Edinburgh 

Dr. Dieter Hutter, Universitat Saarbriicken 

Dr. Andrew Stevens, Oxford University 

Prof. Christoph Walther, University of Darmstadt 

112 



The Programming Logics Group 5. Grants 

5.7 ACCLAIM - Advanced Concurrent Constraint Languages: Application, 
Implementation, and Methodology 

Description 

The purpose of this project is to further the conceptual, mathematical and practical 

foundations for concurrent const~aint programming, and in so doing, provide a framework 

for, design and implement advanced computational tools for the development of complex, 

symbolic computational tasks. The objectives of the four work-packeges are: 

• To extend the foundations of concurrent constraint programming to account for a 
substantially richer class of computational phenomena, and to establish connections 

with graph-grammars. 

• To develop efficient constraint techniques to tackle new application areas and to 

produce extensible general-purpose constraint systems, reactive (incremental) con­

straint solving, and hypothetical reasoning. 

• To develop frameworks and techniques for compile-time analysis and optimization 
of concurrent constraint programs, to allow efficient execution of programs on a 

wide variety of target architedures. 

• To improve the implementation technology of concurrent constraint languages to be 
competitive with imperative languages, such as C, on single-processor architectures; 

and to achieve a high degree of parallel execution on a wide variety of multi­

processor architectures. 

The Max-Planck-Institute is involved in this project as a subcontractor of the University 

of Aix-Marseille (A. Colmerauer) and develops efficient techniques f0r handling pseudo­

Boolean constraints. 

Technical Data 

Starting date: 

Duration: 

Fun dation: 

1 September 1992 

3 years 

ESPRIT Basic Research Action 7195 

Staff at MPI f. Informatik: Peter Barth 

Alexander Bockmayr 

Partners 

Swedish Institute of Computer Science (SICS), S. Haridi 

DEC Paris Research Laboratory (PRL), H. Ait-Kaci 

Deutsches Forschungsinstitut fiir Kiinstliche Intelligenz (DFKI), G. Smolka 

113 



5. Grants The Programming Logics Group 

Institut National de Recherche en Informatique et en A utomatique (IN RIA ), P. Codognet 
KatholiekeUniversiteit Leuven (KUL), B. Demoen 
Universitat Politecnica de Madrid (UPM), M. Hermenegildo 
Universita. di Pisa, U. Montanari 
Universite d'Aix-Marseille II (UML), A. Colmerauer 

Research Institute for Symbolic Computation (RISC), H. Hong 

5.8 MInd IndUS Collaboration on Proof by Mathematical Induction 

Description 

Grant provided travel funds for participants to hold US/European workshops on induc­
tive theorem proving. 

Technical Data 

Starting date: 
Duration: 

1 June 1992 
1 year 

Fun dation: 

Staff at MPI f Informatik: 
Esprit /NSF Cooperative Grant 
David Basin 

Harald Ganzinger 
Sean Matthews 

Partners 

Partners and group leaders of the MInd Consortium 

University of Cambridge, M. Gordon 

Universitat Darmstadt, C. Walther 
DFKI Saarbriicken, J. Siekmann 

University of Edinburgh, A. Bundy 

Universitat Kaiserslautern, K. Madlener 

INRIA, Nancy, M. Rusinowitch 
Universitat Tiibingen, W. Kuechlin 
University of Oxford, J. Goguen 

Partners and group leaders of the IndUS Consortium 

University of Texas at Austin, B. Boyer 
University of Illinois, N. Dershowitz 

University of Rensselaer, NY, D. Musser 

SUNY at Albany, D. Kapur 

SUNY at Stony Brook, J. Hsiang 

114 



The Programming Logics Group 

Ohio State University, W. Kuechlin 

MIT, D. McAllester 
Stanford University, R. Waldinger 

Cornell University, R. L. Constable 
University of North Carolina, D. Plaisted 

University of Iowa, H. Zhang 

5.9 PROCOPE - Construction of Non-Classical Logics 

Description 

5. Grants 

In computer science and in particular in the area of artificial intelligence there is an 

increasing need for logics which allow to reason · with knowledge, time and in fact any 

kind of modality and conditional. 

The aim of this project is to develop logic engeneering systems which support the ex­

amination of such logics and which allow to find suitable and efficient corresponding 

calculi. 

Technical Data 

Starting date: 

Duration: 

Fun dation: 

January 1993 

3 years 

PROCOPE Programme, 

Deutscher Akademischer Austauschdienst 
Staff at MPI f Informatik: Hans Jiirgen Ohlbach 

Andreas N onnengart 

Ullrich Hustadt 

Christoph Weidenbach 

Renate Schmidt 

Emil Weydert 

Partners 

Universite Paul Sabatier, Toulouse 

Institut de Recherche CNRS (contact: Luis Fariiias del Cerro) 

5.10 EDDS - Efficient Data Structures for Deduction Systems 

Description 

All operations in deduction systems (inference rules, deletion rules, simplifications, and 

so on) are defined as operations on single objects. Therefore, the performance of a 

theorem prover crucially depends upon the speed of the basic retrieval operations, such 

115 



5. Grants 
\ 

The Progra.m.mi.D.g Logics Group 

as finding terms that are unifiable with (instances of, or more general than) some query 

term. In order to find resolution partners for a given literal, for example, a theorem 
prover has to find unifiable literals. Subsumption of clauses can be detected by the 
retrieval of generalizations or instances of literals of clauses. Even the retrieval of rewrite 
rules, demodulators, and paramodulants can be accelerated by indexing if the indexing 

mechanism also supports retrieval in the subterms of the indexed term set. 
The importance of the usage of indexing has been shown by the OTTER theorem prover. 

Due to the consequent usage of Path-Indexing and Discrimination Tree Indexing, this 

prover became one of the most powerful and fastest deduction systems. 
We are developing and implementing new methods such as extended Path-Indexing 

and Abstraction Tree Indexing in order to speed up term retrieval. Our software is cur­

rently being used in the deduction systems STOP (MPI Saarbriicken) and SETHEO (TU 
Miinchen). Very soon we will also embed it into the provers KEIM (Uni Saarbriicken) 
and DISCOUNT (Uni Kaiserslautern). 

Technical Data 

Starting date: 
Duration: 

Fun dation: 

1 June 1992 
3 years (possibly 1 year more) 
DFG Schwerpunkt Deduktion 

Staff at MPI f. Informatik: Hans Jiirgen Ohlbach 

Peter Graf 

Partners 

The project is a part of the 'Schwerpunktprogramm Deduktion' (Az. 322698). Partners 

in this program include: 
J. A venhaus und K. Madlener, U niversitat Kaiserslautern 

W. Bibel, Technische Hochschule Darmstadt 

M. Broy und T. Nipkow, Technische Universitat Miinchen 
U. Furbach, Universitat Koblenz-Landau 

H. Ganzinger, Max-Planck-Institut fiir Informatik, Saarbriicken 
J. Gehne, Humboldt-Universitat Berlin 

s. Holldobler, Technische Hochschule Darmstadt 

S. Jaehnichen, Technische Universitat Berlin 

E. Jessen, B. Fronhofer und R. Letz, Technische Universitat Miinchen 

H. Kleine Biining und B. Monien, Universitat Paderborn 

C. Kreitz, Technische Hochschule Darmstadt 
W. Kiichlin und R. Biindgen, Universitat Tiibingen 

H. Leif3 und J. Hudelmaier, Ludwig-Maximilians-Universitat Miinchen 

W. Menzel, W. Reif und W. Stephan, Universitat Karlsruhe 

116 



The Programming Logics Group 

U. Petermann, Universitat Leipzig 
J. Siekmann, Universitat des Saarlandes, Saarbriicken 

G. Snelting, Technische U niversitat Braunschweig 

P. H. Schmitt, Universitat Karlsruhe 

P. Schroeder-Heister und S. Keronen, Universitat Tiibingen 

H. Schwichtenberg, Universitat Miinchen 

c. Walther, Technische Hochschule Darmstadt 

5.11 SOFTI II - Logic of Programming 

Description 

5. Grants 

This project addresses the development of methods and techniques for the efficient con­

struction of reliable software, that is programs that meet their specifications. Reliability 
is difficult to ensure in practice, especially when large programs comprising different 

application areas are integrated. Our research investigates the modular combination of 

various logics and programming paradigms where problems and programs are abstractly 

stated. Modularity means that the complexity of large systems can be decomposed into 

manageable pieces and moreover these components may be reused in other domains. 

This task is especially complex as we do not wish to restrict the kinds of logics and 

programming languages that may be used. A high-level abstraction during the formal­

ization of functional specifications allows a better control over the 'logic complexity in 

the small' at the level of the individual system components. 

Technical Data 

Starting date: 

Duration: 

Funding: 

September 1, 1991 

3 years 

German Ministry for Research 

and Technology (BMFT) 

Staff at MPI f. Informatik: Hubert Baumeister 

Alexander Bockmayr 

Harald Ganzinger 

Michael Hanus 

Rolf Socher 

Jiirgen Stuber 

117 



6.- Recent Publications The Programming Logics Group 

6 Recent Publications 

s. ANTOY, R. ECHAHED AND M. HANUS, 1993. A Needed Narrowing Strategy. Tech­

nical Report MPI-I-93-243, Max-Planck-Institut fUr Informatik, Saarbriicken. Short 
version to appear in Proc. 21st ACM Symposium on Principles of Programming Lan­

guages. 

cf. section 11.2.2, page 82 

L. BACHMAIR AND H. GANZINGER, 1991. Completion of First-Order Clauses with 
Equality by Strict Superposition. In St. Kaplan, M. Okada, editors, Proc. 2nd Int'l 

Workshop on Conditional and Typed Rewriting, Montreal, Lecture Notes in Computer 

Science, vol. 516, pp. 162-180, Berlin. Springer-Verlag. 

Abstract 

We have previously shown that strict superposition together with merging 

paramodulation is refutationally complete for first-order clauses with equality. 

This paper improves these results by considering a more powerful framework 

for simplification and elimination of clauses. The framework gives general cri­

teria under which simplification and elimination do not destroy the refutation 

completeness of the superposition calculus. One application is a proof of the 

refutation completeness for alternative superposition strategies with arbitrary 

selection functions for negative literals. With these powerful simplification 

mechanisms it is often possible to compute the closure of nontrivial sets of 
clauses under superposition in a finite number of steps. Refutation or solving 

of goals for such closed or complete sets of clauses is simpler than for arbitrary 

sets of clauses. The results in this paper contain as special cases or general­

ize many known results about about ordered Knuth-Bendix-like completion 

of equations, of Horn clauses, of Horn clauses over built-in Booleans, about 

completion of first-order clauses by clausal rewriting, and inductive theorem 

proving for Horn clauses. 

L. BACHMAIR AND H. GANZINGER, 1991. Perfect Model Semantics for Logic Programs 

with Equality. In Proc. International Conference on Logic Programming '91, pp. 645-

659. MIT Press. 

Abstract 

We develop a perfect model semantics for logic programs with negation and 

equality. Our approach is based on ordered rewriting, a fundamental technique 

118 

1 
l 
j 



The Programmil]g Logics Group 6. Recent Publications 

used in equational programming. A logic program in our sense is a" set of first­

order clauses with equality together with a well-founded ordering on terms and 

atoms. We show that any consistent logic program has a unique perfect model, 

provided the ordering is total on ground expressions. The key to this result 

is a notion of saturation of a set of formulas (under certain inference rules) 

together with a related concept of redundancy. Our techniques can be applied 

to Prolog-programs (without equality), in which case a class of programs can 

be characterized via the notion of stratification up to redundancy for which 

unique perfect models exist. This extends previous results on (local and weak) 

stratification. 

L. BACHMAIR AND H. GANZINGER, 1991. Rewrite-Based Equational Theorem Proving 

with Selection and Simplification. Technical Report MPI-I-91-208, Max-Pianck-Institut 

fUr Informatik, Saarbriicken. Revised version to appear in the Journal of Logic and 
Computation. 

cr. section 11.2.5, page 89 

L. BACHMAIR AND H. GANZINGER, 1992. Non-Clausal Resolution and Superposition 

with Selection and Redundancy Criteria. In A. Voronkov, editor, Logic Programming 

and Automated Reasoning, Lecture Notes in Computer Science, vol. 624, pp. 273-284, 

Berlin. Springer-Verlag. 

Abstract 

We extend previous results about resolution and superposition with order­

ing constraints and selection functions to the case of general (quantifier-free) 

first-order formulas with equality. The refutation completeness of our calculi is 

compatible with a general and powerful redundancy criterion which includes 

most (if not all) techniques for simplifying and deleting formulas. The spec­

trum of first-order theorem proving techniques covered by our results includes 

ordered resolution, positive resolution, hyper-resolution, semantic resolution, 

set-of-support resolution, and Knuth/Bendix completion, as well as their ex­

tension to general 'first-order formulas. An additional feature in the latter case 

is our efficient handling of equivalences as equalities on the level of formulas. 

Furthermore, our approach applies to constraint theorem proving, including 

constrained resolution and theory resolution. 

L. BACHMAIR AND H. GANZINGER, 1993. Associative-Commutative Superposition. 

Technical Report MPI-I-93-250, Max-Planck-Institut £iir Informatik, Saarbriicken. To 

appear. 

119 



6. Recent Publications The Programming Logics Group 

L. BACHMAIR AND H. GANZINGER, 1993. Ordered Chaining for Total Orderings. 

Technical Report MPI-I-93-251, Max-Planck-Institut fiir Informatik, Saarbriicken. To 

appear. 

L. BACHMAIR AND H. GANZINGER, 1993. Rewrite~Based Equational Theorem Proving 

with Selection and Simplification. Journal of Logic and Computation. Revised version 

of Technical Report MPI-I-91-208. To appear. 

cf. section 11.2.5, page 89 

L. BACHMAIR AND H. GANZINGER, 1993. Rewriting Techniques for Transitive Rela­

tions. Technical Report MPI-I-93-249, Max-Planck-Institut fiir Informatik, Saarbriicken. 

cf. section 11.2.5, page 89 

1. BACHMAIR, H. GANZINGER, CHR. LYNCH AND W. SNYDER, 1992. Basic Paramod­
ulation and Superposition. In D. Kapur, editor, Automated Deduction - CADE'll, 

Lecture Notes in Computer Science, vol. 607, pp. 462-476, Berlin. Springer-Verlag. 

cf. section 11.2.5, page 89 

L. BACHMAIR, H. GANZINGER, CHR. LYNCH AND W. SNYDER, 1993. Basic 

Paramodulation. Technical Report MPI-I-93-236, Max-Planck-Institut fiir Informatik, 

Saarbriicken. To appear in Information and Computation. 

Abstract 

We introduce a class of restrictions for the ordered paramodulation and 

superposition calculi (inspired by the basic strategy for narrowing), in which 
paramodulation inferences are forbidden at terms introduced by substitutions 

from previous inference steps. In addition we introduce restrictions based on 

term selection rules and redex orderings, which are general criteria for delimit­

ing the terms which are available for inferences. These refinements are compat­

ible with standard ordering restrictions and are complete without paramodu­

lation into variables or using functional reflexivity axioms. We prove refuta­

tional completeness in the context of deletion rules, such as simplification by 

rewriting (demodulation) and subsumption, and of techniques for elimina.ting 

redundant inferences. 

L. BACHMAIR, H. GANZINGER AND U. WALDMANN, 1992. Theorem Proving for Hier­

archic First-Order Theories. In H. Kirchner, G. Levi, editors, Algebraic and Logic Pro­

gramming, Lecture Notes in Computer Science, vol. 632, pp. 420-445, Berlin. Springer­

Verlag. Revised version to a.ppear in AAECC. 

cf. section 11.2.5, page 89 

120 



The Programming Logics Group 6. Recent Publications 

L. BACHMAIR, H. GANZINGER AND U. WALDMANN, 1993. Set Constraints are the 

Monadic Class. In Proc. 8th IEEE Symposium on Logic in Computer Science, pp. 75-85. 

cf. section 11.2.5, page 90 

L. BACHMAIR, H. GANZINGER AND U. WALDMANN, 1993. Superposition with Sim­

plification as a Decision Procedure for the Monadic Class with Equality. In G. Gottlob, 

A. Leitsch, D. Mundici, editors, Proc. of Third Kurt Godel Colloquium, KGC'93, Lec­

ture Notes in Computer Science, vol. 713, pp. 83-96, Berlin. Springer-Verlag. Revised 

version of Technical Report MPI-I-93-204. 

cf. section 11.2.5, page 89 

R. BARNETT, D. A. BASIN AND J. HESKETH, 1992. A Recursion Planning Analysis of 

Inductive Completion. Technical Report MPI-I-92-230, Max-Planck-Institut fiir Infor­

matik, Saarbriicken. To appear in the Annals of Artificial Intelligence and Mathematics, 

no. 3-4, vol. 8, 1993. 

Abstract 

We use the AI proof planning techniques of recursion analysis and rippling 

as tools to analyze so called inductionless induction proof techniques. Recur­

sion analysis chooses induction schemas and variables and rippling controls 

rewriting in explicit induction proofs. They provide a basis for explaining the 

success and failure of inductionless induction both in deduction of critical pairs 

and in their simplification. Furthermore, these explicit induction techniques 

motivate and provide insight into advancements in inductive completion algo­

rithms and suggest directions for further improvements. Our study includes an 

experimental comparison of Clam, an explicit induction theorem prover, with 

an implementation of Huet and Hullot's inductionless induction. 

P. BARTH, 1992. CLP(PB): A Meta-Interpreter in CLP(R). Technical Report MPI-I-

92-233, Max-Planck-Institut fUr Informatik, Saarbriicken. 

Abstract 

Constraint logic programming is one of the most attractive research areas 

in logic programming. Due to (J. Jaffar, 1987) the theoretical foundation of a 

general constraint logic programming language scheme CLP( X) is available. 

Unfortunately, implementing a CLP(X) system for some domain X is a difficult 

task. The problematic points are providing a constraint solver and ensuring the 

incrementality of the constraint system. We propose here to use an existing 

CLP system as implementation environment for a new CLP language. We 

121 



6. Recent Publications The Programming Logics Group 

show that under certain conditions we can use the given constraint solver as 

constraint solver for the new CLP-Ianguage. We focus here on prototyping 

CLP(PB), where PB denotes the structure of pseudo-Boolean functions, in 

CLP('R.), where'R. denotes the structures of real numbers. 

P. BARTH, 1993. A Complete Symbolic 0-1 Constraint . Solver. In F. Benhamou, 

A. Colmerauer, G. Smolka, editors, 3rd Workshop on Constraint Logic Programming, 

WCLP '93. 

cr. section 11.2.3, page 85 

P. BARTH, 1993. Linear 0-1 Inequalities and Extended Clauses. In A. Voronkov, editor, 

Proc. 4th Intern. Conference on Logic Programming and Automated Reasoning LPAR 

'93, Lecture Notes in Computer Science, vol. 698, pp. 40- 51. Springer-Verlag. Extended 

version to appear in Operations Research '93, 18th Symposium on Operations Research. 

Abstract 

Extended clauses are the basic formulas of the 0-1 constraint solver used in 

the constraint logic programming language CLP(PB). We present a method for 

transforming an arbitrary linear 0-1 inequality into a set of extended clauses, 
such that the solution space remains invariant. The method relies on cutting 

planes techniques known from integer programming. We develop special redun­

dancy criteria and can so produce the minimal number of extended clauses. 

We show how the algorithm can be used to replace the resolution rule in the 

generalized resolution algorithm for extended clauses. Furthermore the method 

can be used to obtain all strongest extended cover inequalities of a knapsack 

inequality. 

P. BARTH AND A. BOCKMAYR, 1993. Solving 0-1 Problems in CLP(PB). In Proc. 9th 

Conference on Artificial Intelligence for Applications (CAIA), pp. 263-269. IEEE. 

cr. section 11.2.3, page 84 

D. A. BASIN, G. M. BROWN AND M. E. LEESER, 1991. Formally Verified Synthesis 

of Combinational CMOS Circuits. Integration: The Intern. Journal of VLSI Design, 

Vol. 11, pp. 235-250. 

Abstract 

We present a system for simultaneously synthesizing and prOVIng cor­

rect CMOS implementations of combinational circuits. Our system, developed 

within the N uprl proof development system, is based on a set of transformation 

122 



The Programming Logics Group 6. Recent Publications 

rules that generate CMOS implementations from their logical specifications. 
Our research differs from previous work in three important ways: our rules 

are rigorously proven with respect to a formal transistor model, our transfor­

mation rules admit the synthesis of both pass transistor and series / parallel 

networks, and our implementation produces a human readable proof along 

with each circuit it synthesizes. 

D. A. BASIN, A. BUNDY, I. KRAAN AND S. MATTHEWS, 1993. A Framework for 

Program Development Based on Schematic Proof. In 7th Intern. Workshop on Software 

Specification and Design. To appear. Also available as Technical Report MPI-I-93-231. 

cf. section 11.2.6, page 93 

D. A. BASIN AND R. CONSTABLE, 1993. Metalogical Frameworks. In G. Huet, 

G. Plotkin, editors, Logical Environments, pp. 1-29. Cambridge University Press. Also 
available as Technical Report MPI-I-92-205. 

cf. section 11.2.9, page 98 

D. A. BASIN, F. GIUNCHIGLIA AND P. TRAVERSO, 1991. Automating Meta-Theory 

Creation and System Extension. In AI*IA-91 (Italian Association for Artificial Intelli­

gence), pp. 48-57. Springer-Verlag. 

Abstract 

In this paper we describe a first experiment with a new approach for 

building theorem provers that can formalize themselves, reason about them­

selves, and safely extend themselves with new inference procedures. Within 

the GETFOL system we have built a pair of functions that operate between the 

system's implementation and a theory about this implementation. The first 

function lifts the actual inference rules to axioms that comprise a theory of 

GETFOL's inference capabilities. This allows us to turn the prover upon itself 

whereby we may formally reason about its inference rules and derive new rules. 

The second function flattens new rules back into the underlying system. This 

provides a novel means of safe system self-extension and an efficient way of 

executing derived rules. 

D. A. BASIN, R. HAHNLE, B. FRONHOFER, J. POSEGGA AND C. SCHWIND, 1993. 

Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Mar­

seille, France, 1993. Technical Report MPI-I-93-213, Max-Planck-Institut fUr Informatik, 

Saar briicken. 

123 



6. Recent Publications The Programming Logics Group 

D. A. BASIN AND D. HOWE, 1991. Some Normalization Properties of Martin-Lof's 

Type Theory, and Applications. In Theoretical Aspects of Computer Software, pp. 475-

494. Springer-Verlag. 

Abstract 

For certain kinds of applications of type theories, the faithfulness of for­

malization in the theory depends on intensional, or structural, properties of 

objects constructed in the theory. For type theories such as LF, such prop­

erties can be established via an analysis of normal forms and types. In type 

theories such as Nuprl or Martin-Lof's polymorphic type theory, which are 

much more expressive than LF, the underlying programming language is es­

sentially untyped, and terms proved to be in types do not necessarily have 

normal forms . Nevertheless, it is possible to show that for Martin-Lof's type 

theory, and a large class of extensions of it, a sufficient kind of normalization 

property does in fact hold in certain well-behaved subtheories. Applications 

of our results include the use of the type theory as a logical framework in the 

manner of LF, and an extension of the proofs-as-programs paradigm to the 

synthesis of verified computer hardware. For the latter application we point 

out some advantages to be gained by working in a more expressive type theory. 

D. A. BASIN AND S. MATTHEWS, 1993. A Conservative Extension of First-Order 

Logic and its Applications to Theorem Proving. In The 13th Conference on Theoretical 

Computer Science and Foundations of Software Technology, Lecture Notes in Computer 

Science. Springer-Verlag. To appear. Also available as Technical Report MPI-I-93-235. 

Abstract 

We define a weak second-order extension of first-order logic. We prove a 

second-order cut elimination theorem for this logic and use this to prove 'a 

conservativity and a realisability result. We give applications to formal pro­

gram development and theorem proving, in particular, in modeling techniques 

in formal metatheory. 

D. A. BASIN AND T. WALSH, 1992. Difference Matching. In D. Kapur, editor, 

Proc. 11th Intern. Conference on Automated Deduction (CADE-11), Lecture Notes in 

Computer Science, vol. 607, pp. 295~309. Springer-Verlag. 

Abstract 

Difference matching is a generalization of first-order matching where terms 

are made identical not only by variable instantiation but also by structure 

124 



Tbe Programming Logics Group 6. Recent Publications 

hiding. After matching, the hidden structure may be removed by a type of 

controlled rewriting, called rippling, that leaves the rest of the term unaltered. 

Rippling has proved highly successful in inductive theorem proving. Differ­

ence matching allows us to use rippling in other contexts, e.g., equational, 

inequational, .and propositional reasoning. We present a difference matching 

algorithm, its properties, several applications, and suggest extensions. 

D. A. BASIN AND T. WALSH, 1993. Difference Unification. In R. Bajcsy, editor, 

Proc. 13th Intern. Joint Conference on Artificial Intelligence (IJCAT '93), volume 1, pp. 

116-122. Morgan Kaufmann. Also available as Technical Report MPI-I-92-247. 

cf. section 11.2.6, page 93 

H. BAUMEISTER, 1991. Unifying Initial and Loose Semantics of Parameterized Spec­

ifications in an Arbitrary Institution. In S. Abramsky, T. S. E. Maibaum, editors, 

Proc. TAPSOFT '91-CAAP, Lecture Notes in Computer Science, vol. 493, pp. 103-

120. Springer-Verlag. 

Abstract 

In this paper we are going to present a theory of parameterized abstract 

datatypes as the model-theoretic level of parameterized specifications. We will 
show that parameterized abstract datatypes allow us to model the main ap­

proaches to the semantics of parameterized specifications, the loose approach 

and the free functor semantics, using the same formalism. As a consequence 

we obtain that, when using data constraints ina specification language, this 
language is able to cope with both the loose and the free functor semantics at 

the same time. To be independent of a specific logic this theory is developed 
in the context of an arbitrary institution. 

H. BAUMEISTER, 1992. Parameter Passing in the Typed A-Calculus Approach to Param­

eterized Specifications. Submitted for publication in Proc. 9th WADT/4th COMPASS 
Workshop. 

Abstract 

A problem with parameter passing in the typed A-calculus approach to pa­

rameterized specifications is that when applying a parameterized specification 

to an actual parameter the part of the signature that was not already present 

in the formal parameter is forgotten in the result. Thus if the parameterized 

specification "list of elements" is applied to the specification of the natural 

numbers it is not allowed to write head(h) + head(12) in. the result, since, al­

though + is an operation on the natural numbers, it is not an operation defined 

125 



6. Recent Publica.tions The Progra.mming Logics Group · 

by the formal parameter of the list specification. In this paper we are going to 

define a parameter passing mechanism for the typed >.-calculus approach that 

solves this problem. 

H. BERTLING, H. GANZINGER, R. SCHAFERS, R. NIEUWENHUIS AND F. OREJAS, 

1993. Completion Subsystem. In Program Development by Specification and Transfor­

mation, The PROSPECTRA Methodology, Language Family, and System, Lecture Notes 

in Computer Science, vol. 680, section 4.3, pp. 460-494. Springer-Verlag, Berlin. 

Abstract 

The paper describes the Knuth/Bendix-like completion subsystem of the 

PROSPECTRA programming environment. It consists of two independent 

completion procedures for conditional equations. The paper introduces some 

of the underlying theory and contains examples that illustrate the use of these 

procedures. 

A. BOCKMAYR, 1992. Algebraic and Logical Aspects of Unification. In K. U. Schulz, 

editor, Proc. 1st Workshop on Word Equations and Related Topics, Lecture Notes in 

Computer Science, vol. 572, pp. 171-180. Springer-Verlag. 

Abstract 

During the last years unification theory has become an important subfield 

of automated reasoning and logic programming. The aim of the present paper is 

to relate unification theory to classical work on equation solving in algebra and 

mathematical logic. We show that many problems in unification theory have 

their counterpart in classical mathematics and illustrate by various examples 

how classical results can be used to answer unification-theoretic questions. 

A. BOCKMAYR, 1992. Embedding OR Techniques in Constraint Logic Programming. 

In Operations Research '92. 17th Symposium on Operations Research. 

A. BOCKMAYR, 1992. Model-Theoretic Aspects of Unification. In K. U. Schulz, editor, 

Proc. 1st Workshop on Word Equations and Related Topics, Lecture Notes in Computer 

Science, vol. 572, pp. 181-196. Springer Verlag. 

Abstract 

Unification is a fundamental operation in various areas of computer'science, 

in particular in automated theorem proving and logic programming. In this 

paper we establish a relation between unification theory and classical model 

theory. We show how model-theoretic methods can be used to investigate a 

126 



The Programming Logics Group 6. ;Recent Publica.tions 

generalized form of unification, namely the problem whether, given an equa­

tional theory E and a system of equations S, there is an extension of the free 

algebra in E in which S is solvable. 

A. BOCKMAYR, 1992. A Theoretical Basis for Constraint Logic and Functional Program­
ming. In M. Tchuente, editor, Proc. 1st African Conference on Research in Computer 

Science, volume 2, pp. 793-804. INRIA. 

A. BOCKMAYR, 1993. 0-1 Constraints and 0-1 Optimization. In F. Benhamou, 

A. Colmerauer, G. Smolka, editors, 3rd Workshop on Constraint Logic Programming 

WCLP '93. 

A. BOCKMAYR, 1993. Conditional Narrowing Modulo a Set of Equations. Applicable 

Algebra in Engineering, Communication and Computing, Vol. 4, No.3, pp. 147-168. 

cr. section 11.2.2, page 83 

A. BOCKMAYR, 1993. Logic Programming with Pseudo-Boolean Constraints. In F. Ben­

hamou, A. Colmerauer, editors, Constraint Logic Programming-Selected Research, 

chapter 18, pp. 327-350. MIT Press. Also available as Technical Report MPI-I-91-227. 

cr. section 11.2.3, page 84 

A. BOCKMAYR, 1993. Using Strong Cutting Planes in Constraint Logic Programming. 
In Operations · Research '93, 18th Symposium on Operations Research. To appear. 

cr. section 11.2.3, page 85 

A. BOCKMAYR, C. BRZOSKA, P. DEUSSEN AND I. VARSEK, 1991. KA-Prolog: Er­

weiterungen einer logischen Programmiersprache und ihre effiziente Implementierung. 

Informatik-Forschung und Entwicklung, Vol. 6, pp. 128-140. 

Abstract 

Logic programming is one of the main paradigms in the area of declarative 

programming. Often it is identified with the programming language Prolog. In 

this paper we discuss a number of extensions of Prolog that have been investi­

gated in the Sonderforschungsbereich 314 "Artificial Intelligence - Knowledge­
Based Systems" at the University of Karlsruhe. On the level of unification 

we extend Prolog's syntactical unification to order-sorted and Boolean uni­

fication, on the level of resolution we generalize Prolog's Horn clauses and 

SLD-Resolution to conditional equations and conditional narrowing. In addi­

tion to language extensions themselves we present also methods and tools for 

their efficient implementation. 

127 



6. Recent Publications The Programming Logics Group 

A .. BOCKMAYR AND F. J. RADERMACHER (EDITORS), 1993. Kiinstliche Intelli­
genz und Operations Research (Workshop, Berlin, 13. - 14. September 1993) - Ex­

tended Abstracts. Technical Report MPI-I-93-234, Max-Planck-Institut fUr Informatik, 
Saarbriicken. 

Abstract 

Zwischen Kiinstlicher Intelligenz und Operations Research bestehen zahlre­

iche Querverbindungen, die bisher nicht die Beachtung gefunden haben, die sie 

eigentlich verdienen. Beide Disziplinen haben eineFiille von Fragestellungen 

und Anwendungsgebieten gemeinsam. Dazu zahlen zum Beispiel 

• logische Inferenz 

• Constraintlosungsverfahren 

• heuristische Suche 

• Entscheidungsunterstiitzung 

und vieles andere mehr. Ergebnisse und Methoden aus dem einen Bereich 

konnen oft sehr fruchtbar in dem anderen eingesetzt werden. Der Workshop 

auf der 17. Fachtagung fUr Kiinstliche Intelligenz KI '93 in Berlin soli dazu 

beitragen, von der KI aus eine Briicke zum Operations Research zu schlagen. 

Sein Ziel ist es, den Austausch zwischen beiden Gebieten zu fordern und Ein­

satzmoglichkeiten von Begriffen und Methoden der Kiinstlichen Intelligenz im 

Operations Research . und umgekehrt aufzuzeigen. 

A. BOCKMAYR, S. KRISCHER AND A. WERNER, 1993. Narrowing Strategies for Arbi­

trary Canonical Rewrite Systems. Technical Report MPI-I-93-233, Max-Planck-Institut 

fUr Informatik, Saarbriicken. Previous version in Proc. 3rd Intern. Workshop on Con­

ditional Term Rewriting Systems, CTRS-92, editors: M. Rusinowitch and J .-1. Remy, 

vol. 656 of Lecture Notes in Computer Science, pp. 483-497, Springe)::: Verlag. 

cr. section 11.2.2, page 82 

A. BOCKMAYR AND F. J. RADERMACHER, 1993. Kiinstliche Intelligenz und Operations 

Research. In Grundlagen und Anwendungen der Kiinstlichen Intelligenz. 17. Fachtagung 

for K iinstliche Intelligenz, Informatik Aktuell, pp. 249-254. Springer-Verlag. 

C. BRINK, K. BRITZ AND R. A. SCHMIDT, 1994. Peirce Algebras. Formal Aspects of 

Computing, Vol. 6, pp. 1-20. To appear. Also available as Technical Report MPI-I-92-

229 . An extended abstract will appear in Algebraic Methodology and Software Technol­

ogy (AMAST '93): Proc. 3rd Intern. Conference on Algebraic Methodology and Software 

Technology, editors: M. Nivat, C.Rattray, C. Rus, and G. Scollo, Workshops in Com­

puting Series, pp. 165-168, London. Springer-Verlag. 

128 



The Programming Logics Group , 6. Recent Publications 

cf. section 11.2.10, page 100 

C. BRINK, D. GABBAY AND H: J. OHLBACH, 1993. Towards Automating Duality. 

Journal of Computers and Mathematics with Applications, Special Issue on Automated 

Reasoning. To appear. Also available as Technical Report MPI-I-93-220. 

Abstract 

Dualities between different theories occur frequently in mathematics and 

logic - between syntax and semantics of a logic, between structures and power 

structures, between relations and relational algebras, to name just a few. In 
this paper we show for the case of structures and power structures how cor­

responding properties of the two related structures can be computed fully au­

tomatically by means of quantifier elimination algorithms ,and predicate logic 

theorem provers. We illustrate the method with a large number of examples 

and we give enough technical hints to enable the reader who has access to the 

OTTER theorem prover to experiment herself. 

C. BRINK, 1. M. REWITZKY AND R. A. SCHMIDT, 1991. Autodescriptivity: Beware! 

The Computer Journal, Vol. 34, No.4, pp. 380-381. 

Abstract 

Non-classical logics, and in particular many-valued logics, are increasingly 

used in the study of formal aspects of computing. For example, a recent paper 

by P. F. Gibbins in this Journal presents a 3-valued propositional logic for 

VDM. In the use of such logics one naturally relies on earlier work done by 

logicians, a case in point being Gibbin's use of the concept of autodescriptivity, 

introduced by N. Rescher. The purpose of this Note is to sound a warning that 

Rescher's exposition of autodescriptivity is seriously Hawed, and to clarify the 

autodescriptivity of the logic of VDM. 

C. BRINK AND R. A. SCHMIDT, 1992. Subsumption Computed Algebraically. Com­

puters and Mathematics with Applications, VoL 23, No. 2-5, pp. 329-342. Also available 

as Technical Report TR-ARP-3/90, Automated Reasoning Project, Research School of 

Social Sciences, Australian National, University, Canberra, Australia. 

cf. section 11.2.10, page 100 

J. CUNNINGHAM, D. M. GABBAY AND H. J. OHLBACH, 1991. Towards the MED­

LAR Framework. In ESPRIT '91 Conference Proc., pp. 822-841, Directorate-General 

Telecommunications, Information Industries and Innovation. Comission of the European 

Communities. 

129 

... 



6. Recent Publications , The Programming Logics Group 

Abstract 

This is an outline description of work seeking an integrated framework for 

, mechanising nonclassical logics. The particular logics and calculi we are con­

cerned with are structured from the point of view of applications. As a first 

example for testing our prototype of the general framework, a generalised in­

terpretation of modal logics is presented. Next, we introduce the methodology 

of Labelled Deductive Systems, demonstrating why this approach for a gen­

eral framework is adequate to integrate various logical systems via a unified 

methodology. Finally, the need for different operational methods of solving 

problems in formal logic are briefly discussed in the context of an ambitious 

example suggested' from MEDLAR case studies. 

Y. DIMOPOULOS, 1993. The Computational Value of Joint Consistency. In Proc. 1st 

Dutch/German Workshop on Nonmonotonic Reasoning Techniques and their Applica­

tions. To appear. 

cr. section 11.2.8, page 96 

Y. DIMOPOULOS, 1993. A Graph Theoretic Approach to Default Logic. Information & 

Computation. To appear. 

cr. section 11.2.8, page 96 

Y. DIMOPOULOS, V. MAGIROU AND C. PAPADIMITRIOU, 1993. On Kernels, Defaults 

and Even Graphs. Technical Report MPI-I-93-226, Max-Planck-Institut fUr Informatik, 

Saarbriicken. 

cr. section 11.2.8, page 96 

H. J. OHLBACH (EDITOR), 1992. Preprints of Proc. of GWAI-92. Technical Report 

MPI-I-92-232, Max-Planck-Institut fUr Informatik, Saarbriicken. 

N. EISINGER, A. NONNENGART AND A. PtiCKLEIN, 1992. Termersetzungssysteme. 

In K. H. BHi.sius, H.-J. Biirckert, editors, Deduktionssysteme, chapter IlIA, pp. 126-149. 

Verlag Oldenbourg, 2nd edition. 

Abstract 

Dieses Kapitel dient zur EinfUhrung in das Gebiet der Termersetzungssys­

teme. Besonderes Augenmerk ist dabei darauf gerichtet, Losungsverfahren 

von Gleichheitsproblmen mithilfe von Termersetzungss ystemen zu motivieren. 

Dabei wird nicht nur auf die klassische Vervollstandigungsmethode, sondern 

130 

/j 



The Programming Logic$ Group 6. Recent Publications 

auch auf erste Erweiterungen eingegangen, welche es erlauben, dasKnuth­
Bendix-Verfahren sowohl als Beweisprozedur fiir Klauselmengen als auch als 

Induktionsbeweiser zu verwenden. 

N. EISINGER AND H. J. OJiLBACH, 1993. Deduction.Systems Based on Resolution. In 

D. M. Gabbay, C. J. Hogger, J. A. Robinson, editors, Handbook of Logic in Artificial 

Intelligence and Logic Programming, volume I, Logical FoundatIons, pp. 184-271. Oxford 

University Press. Also available as Technical Report MPI-I-91-217. 

Abstract 

A general theory of deduction systems is presented. The theory is illus­

trated with deduction systems based on the resolution calculus, in particular 

with clause graphs. This theory distinguishes four constituents of a deduction 

system: 

.the logic, which establishes a notion of semantic entailment; 

.the calculus, whose rules of inference provide the syntactic counterpart of 
entailment; 

.the logical state transition system, which determines the representation 

of formulae or sets of formulae together with their interrelationships, and 

also may allow additional operations reducing the search space; 

.the control, which comprises the criteria used to choose the most promising 

from among all applicable inference steps. 

Much of the standard material on resolution is presented in this framework. 

For the last two levels many alternatives are discussed. Appropriately adjusted 

notions of soundness, completeness, confluence, and Noetherianness are intro­

duced in order to characterize the properties of particular deduction systems. 

For more complex deduction systems, where logical and topological phenom­

ena interleave, such properties can be far from obvious. 

N. EISINGER, H. J. OHLBACH AND A. PRACKLEIN, 1991. Reduction Rules for Reso­

lution Based Systems. Artificial Intelligence, Vol. 50, pp. 141-181. 

Abstract 

Inference rules for resolution based systems can be classified into deduc­

tion rules, which add new objects, and reduction rules, which remove objects. 

Traditional reduction rules like subsumption do not actively contribute to a 

solution, but they help to avoid redundancies in the search space. We present 

a number of advanced reduction rules, which can cope with high degrees of 

131 



6. Recent Publications The Programming Logics Group 

redundancy and play a distinctly active part because they find trivial solu­
tions on their own and thus relieve the control component for the deduction 

rules from low level tasks. We describe how these reduction. rules can be im­

plemented with reasonable efficiency in a clause graph resolution system, but 

they are not restricted to this particular representation. 

D. FEHRER, 1993. A Unifying Framework for Reason Maintenance. In M . . Clarke, 

R. Kruse, S. Moral, editors, Symbolic and Quantitative Approaches to Reasoning and 

Uncertainty: Proe. Europ. Conference ECSQARU '93, Lecture Notes in Computer Sci­

ence, vol. 747, pp. 113-120. Springer-Verlag. 

cf. section 11.2.8, page 96 

1. FRANK, D. A. BASIN AND A. BUNDY, 1992. Finesse: An Adaptation of Proof­

Planning to Declarer Play in Bridge. In B. Neuman, editor, Proc. 10th Europ. Conference 
on Artificial Intelligence (ECAI-92), pp. 72-76. Wiley. 

Abstract 

We present FINESSE, a system that forms optimal plans for declarer play 

in the game of Bridge. FINESSE adapts the technique of proof-planning, devel­

oped at Edinburgh University in the context of mathematical theorem-proving, 

to deal with the disjunctive choice encountered when planning under uncer­

tainty, and the context-dependency of actions produced by the presence of an 

opposition. FINESSE not only demonstrated how the idea of proof-planning 

could be generalised, but also proved to be a very capable bridge system. In 

its domain of planning for individual suits, it correctly identified the proper 

lines of play found in many examples from the Bridge literature, supporting 

its decisions with probabilistic and qualitative information. Caes were even 

discovered in which FINESSE revealed errors in the analyses presented by 

recognized authorities. 

D. M. GABBAY, 1992. Temporal Logic: Mathematical Foundations. Technical Report 

MPI-I-92-213, Max-Planck-Institut fiir Informatik, Saarbriicken. 

Abstract 

Draft version of the first six chapters of a book which is attempting to sup­

ply a comprehensive coverage of the mathematical and computational aspects 

of temporal logic. The first chapter introduces temporal logic and gives a fairly 

detailed preview of the issues which will be covered in the rest of the whole 

book. These include expressive power, fixed point temporal languages and ap­

plications in computing. Chapter 2 develops the basic idea of a language built 

132 

j 

t 
1 



Tbe Programming Logics Group 6. Recent Publications 

from connectives whose semantics is appropriate to some class of underlying 

"models" of time: for example linear or branching time. Chapter 3 introduces 

Hilbert style axiomatizations of such logics and contains some simple com­

pleteness proofs. The incomplete chapter 4 considers the generally incomplete 

predicate temporal languages and gives examples of some of the variety of 

choices of language here. In Chapter 5 we debate the merits of using classical 

first order logic to talk about temporal structures from the "outside" instead 
of using temporal languages "inside" the structure. We also consider the possi­

bility of using temporal logic itself as a metalanguage. Finally, in chapter 6 we 

present a general theory ofaxiomatization of temporal logics. This examines 
and uses the irrefiexivity rule of Gabbay to provide very general techniques. 

D. M. GABBAY, 1993. Classical vs Non-Classical Logics, The Universality of Clas­

sical Logic. Technical Report MPI-I-93-230, Max-Planck-Institut fiir lnformatik, 
Saarbriicken. This paper will be published in vol. 2 of the Handbook of Logic in Artificial 

Intelligence and Logic Programming, Oxford University Press. 

Abstract 

This report investigates the question of the universality of classical logic. 

The approach is to show that an almost arbitrary logical system can be trans­

lated reasonably intuitively and almost automatically into classical logic. The 

path leading to this result goes through the analysis of what is a reasonable 

logic, how to find semantics for it, how to build a labelled deductive system 

(LDS) for it, how to translate a LDS into classical logic and how to automate 

the process using SCAN. 

D. M. GABBAY, I. M. HODKINSON AND M. A. REYNOLDS, 1992. Temporal 

Logic: Mathematical Foundations, Part 2. Technical Report MPI-I-92-242, Max-Planck­

Institut fiir Informatik, Saarbriicken. 

Abstract 

This is a preliminary version of chapters 7-13 of volume one of the book 

"Temporal Logic: Mathematical Foundations and Computational Aspects" 

which is an attempt to provide a comprehensive coverage of temporal logic as 

a topic which generates problems of general mathematical interest, which has 

many practical applications to computer science and linguistics and which is a 

source of various complex problems of computation and implementation. The 

report is the continuation of MPI Report MPI-I-92-213 which contains draft 

versions of chapters 1-6. Chapter 14 on temporalisation and 15 on decidability 

133 



6. Recent Publications The Programming Logics Group 

as well as perhaps volume two will appear in future reports. In Chapter 7, by 

looking at some specific examples of axiom at is at ion and expressive complete­

ness of two and threedimensionall~gics, we illustrate some of the technical 

issues involved with many-dimensional logics. Chapter 8 introduces the idea 

of propositional quantifiers in temporal logic and examines the properties of 

a very useful fixed point language. In chapter 9 we show how the property of 

separation is related to expressive completeness so that in chapter 10 we can 

infer the expressive completeness of languages with until and since over various 

classes of :flows of time. In chapter 11 we use separation to prove the expressive 

completeness of the Stavi connectives over the class of linear :flows. Chapter 

12 contains a direct proof of the same result and also considers languages ap­

propriate to :flows with "gaps" in them. Chapter 13 is a very comprehensive 

account of the concepts of H-dimension and the k-variable property which are 

both concerned with the number of bound variables needed by the monadic 

language to be fully expressive but have surprising connections with expressive 

completeness of temporal languages. 

D. M. GABBAY AND H. J. OHLBACH, 1992. From a Hilbert Calculus to its Model The­

oretic Semantics. In K. Broda, editor, Proc. 4th UK Conference on Logic Programming, 

pp. 218-252. Springer Workshops in Computing Series. 

Abstract 

There are different ways of constructing a logic. One possibility is to define 

a Hilbert calculus, i.e. a kind of grammar that produces all formulae to be con­

sidered true. A logic can also be defined by a model theoretic semantics for the 

logical connectives in the language. In this paper a general theory is presented 

for the transition from a Hilbert calculus to its model theoretic semantics such 

that soundness and completeness are automatically guaranteed . . For a given 

Hilbert calculus we start with a general neighbourhood semantics for n-place 

connectives. This semantics does not impose any built-in properties. A quan­

tifier elimination algorithm is used to translate Hilbert axioms and rules into 

corresponding semantic properties. By proving certain key lemmas from these 

semantic properties, neighbourhood semantics can be systematically strength­

ened up to a version of the semantics which has as many Hilbert axioms built 

in as possible. The work is still incomplete and will be continued. 

D. M. GABBAY AND H. J. OHLBACH, 1992. Quantifier Elimination in Second-Order 

Predicate Logic. South African Computer Journal, Vol. 7, pp. 35-43. Also appeared in 

Proc. 3rd Intern. Conference on Principles of Knowledge Representation and Reasoning, 

134 



6. Recent Publications The Programming Logics Group 

the term structure. As our method also allows to prove sufficient-completeness 

of function definitions in parallel with proving an inductive theorem we need 

not distinguish between constructors and defined functions . Our ' method is 
linear and refutationally complete with respect to the 'perfect model, it sup­

ports lemmas in a natural way, and it provides for powerful simplification and 

elimination techniques. 

H. GANZINGER AND U. WALDMANN, 1992. Termination Proofs of Well-Moded Logic 

Programs via Conditional Rewrite Systems. In M. Rusinowitch, J.-L. Remy, editors, 

Proc. Third International Workshop on Conditional Term Rewriting Systems '92, Lec­

ture Notes in Computer Science, vol. 656, pp. 430-437, Berlin. Springer-Verlag. 

Abstract 

In this paper, it is shown that a translation from logic programs to con­

ditional rewrite rules can be used in a straightforward way to check (semi­

automatically) whether a program is . terminating under the prolog selection 
rule. 

P. GRAF, 1992. Path Indexing for Term Retrieval. Technical Report MPI-I-92-237, 
Max-Planck-Institut fUr Informatik, Saarbriicken. 

cr. s~ction 11.2.5, page 89 

M. HANUS, 1991. Efficient Implementation of Narrowing and Rewriting. In Proc. Intern. 

Workshop on Processing Declarative Knowledge, Lecture Notes in Artificial Intelligence, 

vol. 567, pp. 344-365. Springer-Verlag. 

Abstract . 

We present an efficient implementation method for a language that amal­

gamates functional and logic programming styles. The operational -semantics 

of the language consists of resolution to solve predicates and narrowing and 

rewriting to evaluate functional expressions. The implementation is based on 

an extension of th~ Warren Abstract Machine (WAM). This extension causes 
no overhead for pure logic programs and allows the execution of functional 

programs by narrowing and rewriting with the same efficiency as their rela­

tional equivalents. Moreover, there are many cases where functional programs 

are more efficiently executed than their relational equivalents. 

M. HANUS, 1991. Horn Clause Programs with Polymorphic Types: Semantics and 

Resolution. Theoretical Computer Science, Vol. 89, pp. 63-106. 

136 



The Programming Logics Group 6. Recent Publica.tions 

editors: B. Nebel, C. Rich and W. Swartout, pp. 425-435, Morgan }5:aufmann, 1992. 

Also available as Technical Report MPI-I-92-213. 

d. section 11.2.7, page 94 

H. GANZINGER, 1991. A Completion Procedure for Conditional Equations. Journal of 

Symbolic Computation, Vol. 11, pp. 51-81. 

Abstract 

The paper presents a new completion procedure for conditional equations. 

The work is ba.sed on the notion qf reductive conditional rewriting and the 

procedure has been designed to in particular handle nonreductive equations 

that are generated during . completion. The paper also describes techniques for 

simplification of conditional equations and rules, so that the procedure termi­

nates on more specifications. The correctness proofs which form a substantial 

part of this paper employ recursive path orderings on the proof trees of condi­

tional equational logic, an extension of the ideas of Bachmair, Dershowitz and 

Hsiang to the conditional case. 

H. GANZINGER, 1991. Order-Sorted Completion: The Many-Sorted Way. Theoretical 
Computer Science, Vol. 89, pp. 3-32. 

Abstract 

Order-sorted specifications can be transformed into equivalent many-sorted 

ones by using injections to implement subsort relations. In this paper we im­

prove previous results and Meseguer about the relation between order-sorted 

and many-sorted rewriting. We then apply techniques for the completion of 

many-sorted conditional equations to systems obtained from translating order­

sorted conditional equations. Emphasis will be on ways to overcome some of 

the problems with non-sort-decreasing rules. 

H. GANZINGER AND J. STUBER, 1992. Inductive Theorem Proving by Consistency for 

First-Order Clauses. In J. Buchmann, H. Ganzinger, W.J. Paul, editors, Informatik -

Festschrift zum 60. Geburtstag von Gunter Hotz, pp. 441-462. Teubner-Verlag. Also in 

Proc. CTRS'92, LNCS 656, pp. 226-241. 

Abstract 

We show how the method of proof by consistency can be extended to prov­

ing properties of the perfect model of a set of first-order clauses with equality. 

Technically proofs by consistency will be similar to proofs by case analysis over 

135 



The Programming Logics Group 6. Recent Publications 

Abstract 

This paper presents a Horn clause logic where functions and predicates 

are declared with polymorphic types. Types are parameterized with type vari­

ables. This leads to an ML-like polymorphic type system. A type declaration 

of a function or predicate restricts the possible use of this function or predi­

cate so that only certain terms are allowed to be arguments for this function 

or predicate. The semantic models for polymorphic Horn clause programs are 

defined and a resolution method for this kind of logic programs is given. It 
will be shown that several optimizations in the resolution method are pos­

sible for specific kinds of programs. Moreover, it is shown that higher-order 

programming techniques can be applied in our framework. 

M. HANUS, 1991. Parametric Order-Sorted Types in Logic Programming. In Proc. In­

tern. Joint Conference on Theory and Practice of Software Development, TAPSOFT '91, 

Lecture Notes in Computer Science, vol. 494, pp. 181-200. Springer-Verlag. 

Abstract 

This paper proposes a type system for logic programnung where types 

are structured in two ways. Firstly, functions and predicates may be declared 

with types containing type parameters which are universally quantified over 

all types. In this case each instance of the type declaration can be used in the 

logic program. Secondly, types are related by subset inclusions. In this case 

a function or predicate can be applied to all subtypes of its declared type. 

While previous proposals for such type systems have strong restrictions on 

the subtype relation, we assume that the subtype order is specified by Horn 

clauses for the subtype relation ~. This allows the declaration of a lot of inter­

esting type structures, e.g., type constructors which are monotonic as well as 

anti-monotonic in their arguments. For instance, parametric order-sorted type 

structures for logic programs with higher-order predicates can be specified in 

our framework. This paper presents the declarative and operational semantics 

of the typed logic language. The operational semantics requires a unification 

procedure on well-typed terms. This unification procedure is described by a set 

of transformation rules which generate a set of type constraints from a given 

unification problem. The solvability of these type constraints is decidable for 

particular type structures. 

M. HANUS, 1992. Improving Control of Logic Programs by Using Functional Logic 

Languages. In M. Bruynooghe, M. Wirsing, editors, Proc. 4th Intern. Symposium on 

Programming Language Implementation and Logic Programming, Lecture Notes in Com­

puter Science, vol. 631, pp. 1-23. Springer-Verlag. 

137 

... 

",'f , 



6. Recent Publications The Programming Logics Group 

cf. section 11.2.2, page 83 

M. HANUS, 1992. Incremental Rewriting in Narrowing Derivations. In K Kirchner, 

G. Levi, editors, Proc. 3rd Intern. Conference on Algebraic and Logic Programming, 

Lectures Notes in Computer Science, vol. 632, pp. 228-243. Springer-Verlag. 

cf. section 11.2.2, page 83 

M. HANUS, 1992. Logic Programming with Type Specifications. In F. Pfenning, editor, 
Types in Logic Programming, chapter 3, pp. 91-140. MIT Press. 

Abstract 

In this chapter, we propose a framework for logic programming with differ­

ent type systems. In this framework a typed logic program consists of a type 

specification and a Horn clause program which is well-typed with respect to the 

type specification. The type specification defines all types which can be used 

in the logic program. Relations between types are expressed by equations on 

the level of types. This permits the specification of many-sorted, order-sorted, 

polymorphic and polymorphically order-sorted type systems. We present the 

declarative semantics of our framework and two proof procedures (deduction 

and resolution) for typed logic programs. An interesting application is a type 

system that combines parametric polymorphism with order-sorted typing and 

permits higher-order logic programming. Moreover, our framework sheds some 

new light on the role of types in logic programming. 

M. HANUS, 1992. On the Completeness of Residuation. In K. Apt, editor, Proc. 1992 

Joint Intern. Conference and Symposium on Logic Programming, pp. 192-206. MIT 

Press. Extended version: Technical Report MPI-I-92-217. 

cf. section 11.2.2, page 83 

M. HANUS, 1993. Analysis of Nonlinear Constraints in CLP(n). In Proc. 10th In­

. tern. Conference on Logic Programming (ICLP '93), pp. 83-99. MIT Press. Also avail­

able as Technical Report MPI-I-92-251. 

cf. section 11.2.4, page 86 

M. HANUS, 1993. Lazy Unification with Inductive Simplification. Technical Report 

MPI-I-93-215, Max-Planck-Institut fUr Informatik, Saarbriicken. 

cf. section 11.2.2, page 83 

138 

l 
I 



6. Recent Publications The Programming Logics Group 

So = {81 = t 2 , ••• , Sn = t n }, called a unification problem, finding a substitution 
q such that q(Si) and q(ti) are equivalent under the conversion rules of the 

calculus for all i, 1 ::; i ::; n. I present the method asa transformation system, 

i.e. as a set of schematic rules U => U' such that any unification problem 

8(U) can be transformed into 8(U') where 8 is an instantiation of the meta­

level variables in U and U'. By successive use of transformation rules one 

possibly obtains a solved unification problem with obvious unifier. I show that 

the transformation system is correct and complete, i.e. if 8(U) => 8(U') is 

an instance of a transformation rUle, then the set of all unifiers of 8(U') is a 

subset of the set of all unifiers of 8(U) and if U is the set of all unification 

problems that can be obtained from successive applications of transformation 

rules from an unification problem U, then the union of the set of all unifiers of 

all unification problems in U is the set of all unifiers of U. The transformation 

rules presented here are essentially different from those in Gallier and Snyder 

(1989) or Nipkow (1990). The correctness and completeness proofs are in lines 

with those of Gallier and Snyder (1989). 

U. HUSTADT, 1992. Unification and Matching in Church's Original Lambda Calculus. 
Technical Report MPI-I-92-219, Max-Planck-Institut fUr Informatik, Saarbriicken. 

Abstract 

In current implementations of higher-order logics higher-order unification is 

used to lift the resolution principle from the first-order case to the higher-order 

case. Higher-order matching is the core of implementations of higher-order 

rewriting systems and some systems for program transformation. In this paper 

I argue that Church's original lambda calculus, called non-forgetful lambda cal­

culus, is an appropriate basis for higher-order matching. I provide two correct 

and complete algorithms for unification in the non-forgetful lambda calculus. 

Finally, I show how these unification algorithms can be used for matching in 

the non-forgetful lambda calculus. 

U. HUSTADT, 1993. Abductive Disjunctive Logic Programming. In P. Codognet, P. M. 

Dung, A. C. Kakas, P. Mancarel1a, editors, ICLP '93 Postconference Workshop on Ab­

ductive Reasoning. 

cf. section II.2.10, page 100 

U. HUSTADT, 1993. Automated Support for the Development of Non-Classical Logics. 

In H.-J. Biirckert, W. Nutt, editors, Workshop: Modellierung epistemischer Propositio­

nen, KI '93, Berlin. To appear as Research Report of DFKI. 

140 



The Programming ·Logics Group 6. Recent Publications 

M. HANUS, 1993. Towards the Global Optimiza.tion of Functional Logic Programs. In 
Proc. Workshop on Global Compilation, International Logic Programming Symposium, 

pp.83-97. 

cf. section 11.2.4, page 86 

M. HANUS AND B. JOSEPHS, 1993. A Debugging Model for Functional Logic Programs. 
In Proc; 5th Intern. Symposium on Programming Language Implementation and Logic 

Programming, Lecture Notes in Computer Science, vol. 714, pp . . 28-43. Springer. Also 

available as Technical Report MPI-I-93-222. 

cf. section 11.2.2, page 83 

J. HOPF AND F. KLAWONN, 1993. Selbstlemende Fuzzy-Controller auf der Basis 

Genetischer Algorithmen. In Fuzzy-Systeme '93: Management unsicherer Informatio­

nen, pp. 21-27. Gesellschaft fUr Informatik. 

Abstract 

Up to now, with the design of Fuzzy-Controllers two main difficulties have 

occurred. On the one hand it is the tuning of the membership functions, on the 

other hand it is setting up an appropriate rule base. This paper deals with the 

problem of finding out the best possible rules - the basis of a Fuzzy-Controller. 

Consulting experts still is the usual but time-consuming and therefore rather 

expensive method. Besides, after having designed the controller, one cannot 

be sure that the rule base works at its approximative optimum. This paper 

shows how to reduce significantly the period of development (and the costs) 

of Fuzzy-Controllers with the help of Genetic Algorithms and, above all, how 

to engender a rule base which is very close to an optimum solution. By means 

of a classic controlling function of a Fuzzy-Controller the design of a Genetic 

Algorithm will be illustrated and the solution will then be described. So this 

paper does not deal with the tuning of an existing Fuzzy-Controller but with 

the genetic {re-)production of rules, even without the need for experts. 

U. HUSTADT, 1992. A Complete Transformation System for Polymorphic Higher-Order 

Unification. In Proc. 6th Intern. Workshop on Unification (BUCS Tech Report #93-004, 

Computer Science Department, Boston University), Schloss Dagstuhl, Germany. Also 

available as Technical Report MPI-I-91-228. 

Abstract 

Polymorphic higher-order unification is a method for unifying terms in 

the polymorphically typed 'x-calculus, that is, given a set of pairs of terms 

139 



r
' 

'.~: ' 
'.1. 

,'10.. .' ,";.. . 
, 
~, 

f 
F 

The Programming Logics Group 6. Recent Publications 

Abstract 

Themost natural means for specifying a non-classical logic is by means of 

a Hilbert calculus. Usually, the semantics of a non-classical logic is given in 

terms of possible worlds. Given an axiomatization of a non-classical logics, the 

correspondence problem in these logics is to find for every' given Hilbert ax­

iom an equivalent property of the accessibility relation (van Benthem (1984». 

For mechanizing deduction in non-classical logics it is very important to find 

these correspondences (Ohlbach (1991». So far the method for finding the 

correspondences was mostly by intuition and the verification required complex 

proofs (van Benthem (1984)). SCAN is an algorithm which offers a method 

for computing the correspondences fully automatically. Moreover, since SCAN 

preserves equivalences, the computed correspondence axioms are guaranteed 

to be complete in the sense that a formula is derivable in the Hilbert calcu­

lus if and only if it is valid in the frames which are models of the computed 

corresponden<;e axiom. In this paper we present the SCAN algorithm and an 

application of it to the problem of collapsing modalities in multi-modal logics: 

Given a Hilbert calculus for modalities Oml and Om2 we have to ensure that 

doesn't hold for all formulae P, because this is in general an unwanted conse­

quence of the given axiomatization. 

U. HUSTADT AND A. NONNENGART, 1993. Modalities in Knowledge Representation. 

In Proc. 6th Australian Joint Conference on Artificial Intelligence. To appear. 

cf. section 11.2.10, page 99 

U. HUSTADT, A. NONNENGART, R. SCHMIDT AND J. TIMM, 1992. MOTEL User 

Manual. Technical Report MPI-I-92-236, Max-Planck-Institut fUr Informatik. 

cf. section 11.2.10, page 100 

MANFRED JAEGER, 1993. Circumscription: Completeness Reviewed. Artificial Intelli­

gence, Vol. 60, pp. 293-301. 

Abstract 

In this paper we demonstrate that some results on the completeness of 

P-defining theories published earlier are incorrect. We point out that by re­

stricting the original propositions to well-founded theories results somewhat 

weaker than the original ones can be retained. We also present a theorem that 

141 



6. Recent Publications The Programming Logics Group 

provides some insight into the relation between completeness and reducibility 

and helps to identify the theories whose minimal models can be adequately 

handled with circumscription. 

P. JOHANN AND R. SOCHER, 1993. Solving Ordering Constraints in Polynomial Time. 

Technical Report MPI-I-93-256, Max-Planck-Institut fUr Informatik, Saarbriicken. 

cf. section 11.2.5, page 90 

1. KRAAN, D. BASIN AND A. BUNDY, 1993. Middle-Out Reasoning for Logic Program 

Synthesis. In Proc. 10th Intern. Conference on Logic Programing (ICLP '93), pp. 441-

455. MIT Press. Also available as Technical Report MPI-I-93-214. 

cr. section 11.2.6, page 93 

1. KRAAN, D. A. BASIN AND A. BUNDY, 1993. Logic Program Synthesis via Proof 
Planning. In K. K. Lau, T. Clement, editors, Logic Program Synthesis and Transforma­

tion, pp. 1-14. Springer-Verlag. Also available as Technical Report MPI-I-92-244. 

cr. section 11.2.6, page 93 

S. KRISCHER AND A. BOCKMAYR, 1991. Detecting Redundant Narrowing Derivations 

by the LSE-SL Reducibility Test . In Proc. Rewriting Techniques and Applications, Lec­

ture Notes in Computer Science, vol. 488, pp. 74-85. Springer-Verlag. 

Abstract 

Rewriting and narrowing provide a nice theoretical framework for the inte­

gration of logic and functional programming. For practical applications how­

ever, narrowing is still much too inefficient. In this paper we show how re­

ducibility tests can be used to detect redundant narrowing derivations. We 

introduce anew narrowing strategy, LSE-SL left-to-right basic normal nar­

rowing, prove its completeness for arbitrary canonical term rewriting systems, 

and demonstrate how it increases the efficiency of the narrowing process. 

S. MATTHEWS, 1992. Reflection in a Logical System. In A. Yonezawa, B. C. Smith, 

editors, Proc. IMSA '92 Workshop on Reflection and Meta-Level Architecture, pp. 178-

183. Also available as Technical Report MPI-I-92-250. 

cf. section 11.2.9, page 98 

S. MATTHEWS, 1992. A Theory and its Metatheory in FSo. In D. Gabbay, F . Guen­

thner, editors, What is a Logical System. Oxford University Press. To appear. Also 

available as Technical Report MPI-I-93-227. 

cr. section 11.2.9, page 98 

142 



~-

The Programming Logics Group 6. Recent Publications 

S. MATTHEWS, A. SMAILL AND D. A. BASIN, 1993. Experience with FSo as a Frame­

work Theory. In G. Huet, G. Plotkin, editors, Logical Environments, pp. 61-82. Cam­

bridge U~versity Press. Also available as Technical Report MPI-I-92-214. 

cr. section 11.2.9, page 98 

R. NIEUWENHUIS, 1992. A New Ordering Constraint Solving Method and its Applica­

tions. Technical Report MPI-I-92-238, Max-Planck-Institut £iir Informatik, Saarbriicken. 

Abstract 

We show that it is possible to transform any given LPO ordering constraint 

C into a finite equivalent set of constraints S for which a special kind of 

solutions can be obtained. This allows to compute the equalities that follow 

from ordering constraints, and to decide e.g. whether an ordering constrained 

equation is a tautology. Another application we develop here is a method to 

check ordered rewrite systems for (ground) confluence. 

A. NONNENGART, 1992. First-Order Modal Logic Theorem Proving and Standard PRO­

LOG. Technical Report MPI-I-92-228, Max-Planck-Institut £iir Informatik, Saarbriicken. 

Abstract 

Many attempts have been started to combine logic programming and modal 

logics. Most of them however, do not use classical PROLOG, but extend the 

PROLOG idea in order to cope with modal logic formulae directly. These ap­

proaches have the disadvantage that for each logic new logic programming 

systems are to be developed and the knowledge and experience gathered from 

PROLOG can hardly be utilized. Modal logics based on Kripke-style relational 

semantics, however, allow a direct translation from modal logic into first-order 

predicate logic by a straightforward translation of the given relational seman­

tics. Unfortunately such a translation turns out to be rather naive as the size 

of formulae increases exponentially during the translation. This paper now in­

troduces a translation method which avoids such a representational overhead. 

Its basic idea relies on the fact that any binary relation can be replaced by 

equations and inequations which (under certain circumstances) can be elim­

inated later on by some further transformation. The overall approach thus 

works essentially for any modal logic having a Kripke-style possible world se­

mantics and first-order describable frame properties. If at all, its application 

as a pre-processing for PROLOG is limited merely by the possibility of having 

frame properties which are not Horn or not even first-order describable. 

143 



6. Recent Publications The Programming Logics Group 

A. NONNENGART, 1993. First-Order Modal Logic Theorem Proving and Functional 

Simulation. In R. Bajcsy, editor, Proc. 13th Intern. Joint Conference on Artificial In­

telligence (IJCAI '93), volume 1, pp. 8D-85. Morgan Kaufmann. 

cf. section 11.2.7, page 94 

H. J. OHLBACH, 1991. Semantics Based Translation Methods for Modal Logics. Journal 

of Logic and Computation, Vol. 1, No.5, pp. ,691-746. 

Abstract 

A general framework for translating logical formulae from one logic into 

an<?ther logic is presented. The framework is instantiated with two different 

approaches to translating modal logic formulae into predicate logic. The first 

one, the well known relational translation makes the modal logic's possible 

worlds structure explicit by introducing a distinguished predicate symbol to 

represent the accessibility relation. In the second approach, the functional 

translation method, paths in the possible worlds structure are represented 

by compositions of functions which map worlds to accessible worlds. On the 

syntactic level this means that every flexible symbol is parametrized with par­

ticular terms denoting whole paths from the initial world to the actual world. 

The target logic for the translation is a first-order many-sorted logic with built 

in equality. Therefore the source logic may also be first-order many-sorted with 

built in equality. Furthermore flexible function symbols are allowed. The modal 

operators may be parametrized with arbitrary terms and particular properties 
of the accessibility relation may be specified within the logic itself. 

H. J. OHLBACH, 1992. Logic Engineering-Konstruktion von Logiken. KI, Vol. 3, pp. 

34-38. Special Issue on Logic. 

Abstract 

In dies em Beitrag wird gezeigt, wie man monotone zweiwertige Logiken 

mit Hilfe von Hilbertkalkiilen spezifizieren und diese Spezifikation automa­

tisch in einem Compiler transformieren kann, der Formeln dieser Logik in 

norm ale Pradikatenlogik iibersetzt. Es ist damit unnotig geworden, spezieile 

Kalkiile £iir diese Logken zu entwickeln. Aile fUr Pradikatenlogik entwickelten 

Methoden - Kalkiile, automatische Beweiser, logische Programmiersprachen, 

KL-ONE basierte Wissensreprastenationssprachen, Defaultmechanismen und 

so weiter - sind dann auch £iir die neu definierten Logiken anwendbar. Damit 

steht eine Methodik zur VerfUgung, um komplexe Logiken fUr Anwednungen 

in der KI maSzuschneidern, ohnedie notwendingen Inferenzverfahren wieder 

neu erfinden zu miissen. 

144 



The Programming Logics Group 6. Recent Publications 

H. J. OHLBACH, 1993. Ein kurzes Tutorial iiber funktionale Ubersetzung von Modal­

logik nach Pradikatenlogik. In Alfred Kobsa, editor, Bericht Nr. 15/93: Recommen­

dations for Extensions to BGP-MS, pp. 19-26. Univ. Konstanz, FB Informationswis­

senschaft. 

Abstract 

In diesem Bericht werden die wesentlichen Punkte geklart, die fiir Anwen­

der der funktionalen Ubersetzung von Modal- nach Pradikatenlogik wichtig 

sind. 

H. J. OHLBACH, 1993. Translation Methods for Non-Classical Logics-an Overview. 

Bulletin of the Interest Group in Propositional and Predicate Logics (IGPL) , Vol. 1, 

No.1, pp. 69-90. A short version appeared in Proc. LPAR '93, vol. 698 of Lecture Notes 

in Computer Science, pp. 253-264, Springer-Verlag. Also available as Technical Report 

MPI-I-93-225. 

cr. section 11.2.7, page 94 

H. J. OHLBACH AND F. BAADER, 1993. A Multi-Dimensional Terminological Knowl­

edge Representation Language, Preliminary Version. Technical Report MPI-I-93-212, 

Max-Planck-Institut fiir Informatik, Saarbriicken. A short version of this paper is pub­

lished in Proc. of IJCAI '93, volume 1, pp. 690-695, Morgan Kaufmann. 

Abstract 

An extension of the concept description language ACe used in KL-ONE-like 

terminological reasoning is presented. The extension includes multi-modal op­

erators that can either stand for the usual role quantifications or for modalities 

such as belief, time etc. The modal operators can be used at all levels of the 

concept terms, and they can be used to modify both concepts and roles. This 

is an instance of a new kind of combination of modal logics where the moda:! 

operators of one logic may operate directly on the operators of the other logic. 

H. J. OHLBACH AND A. HERZIG, 1991. Parameter Structures for Parametrized Modal 

Operators. In Proc. Intern. Conference on Artificial Intelligence '91, pp. 512-517. Mor­

gan Kaufmann. 

Abstract 

The parameters of the parametrized modal operators [P] and Op usually 

represent agents (in the epistemic interpretation) or actions (in the dynamic 

logic interpretation) or the like. In this paper the application of the idea of 

145 



6. Recent Publications The Programming Logics Group 

parametrized modal operators is extended in two ways: First of all a modified 
neighbourhood semantics is defined which permits among others the inter­

pretation of the parameters as probability values. A formula [.5]F may for 

example express the fact that in at least 50% ofall cases (worlds) F holds. 

These probability values can be numbers, qualitative descriptions and even ar­

bitrary terms. Secondly a general theory of the parameters and in particular of 

the characteristic operations on the parameters is developed which unifies for 

example the multiplication of numbers in the probabilistic interpretation of the 

parameters and the sequencing of act.ions in the dynamic logic interpretation. 

H. J. OHLBACH AND A. NONNENGART, 1992. Modal- und Temporallogik. In K. H. 
Blasius, H.-J. Biirckert, editors, Deduktionssysteme, chapter VII, pp. 239-285. Verlag 

Oldenbourg, 2nd edition. 

Abstract 

In dies em Kapitel wird Modal und Temporallogik eingefiihrt. Es wer­

den verschiedene Interpretationen wie epistemische Logik, doxasti sche Logik, 

Aktionslogik usw. beschrieben. Dariiberhinaus werden Ubersetzungstechniken 

vorgestellt, mit denen . man Formeln sowie Formelschemata dieser Logik in 

Pradikatenlogik iibersetzen kann. 

H. J. OHLBACH AND J. H. SIEKMANN, 1991. The Markgraf Karl Refutation Procedure. 

In J. L. Lassez, G. Plotkin, editors, Computational Logic, Essays in Honor of Alan 

Robinson, pp. 41-112. MIT Press. 

Abstract 

The goal of the MKRP project is the development of a theorem prover 

which can be used as an inference engine in various applications, in partic­

ular it should be capable of proving significant mathematical theorems. Our 

first implementation, the Markgraf Karl Refutation Procedure (MKRP) real­

izes some of the ideas we have developed to this end. It is a general purpose 

resolution based deduction system that exploits the representation of formulae 

as a graph (clause graph) . The main features are its well tailored selection com­

ponents, heuristics and control mechanisms for guiding the search for a proof. 

mechanisms for guiding the search for a proof. This paper gives an overview 

of the system. It summarizes and evaluates our experience with the system in 

particular, and the logics we use as well as the clause graph approach: as 1990 

marks the fifteenth birthday of the system, the time may have come to ask: 

"Was it worth the effort?" 

146 



The Programming Logics Group 6. Recent Publications 

R. A. SCHMIDT, 1991. Algebraic Terminological Representation. Technical Report 
MPI-I-91-216, Max-Planck-Institut fUr Informatik, Saarbriicken. Also available as 
Thesis-Reprints TR 011, Department of Mathematics, University of Cape Town, South 

Africa. 

cf. section 11.2.10, page 100 

R. A. SCHMIDT, 1992. Terminological Representation, Natural Language & Relation 
Algebra. In H. J. Ohlbach, editor, Proc. 16th German Workshop on Artificial Intelligence 

(GWAI-92), Lecture Notes in Artificial Intelligence, vol. 671, pp. 357-371. Springer­

Verlag. Also available as Technical Report MPI-I-92-246. 

cf. section 11.2.10, page 100 

R. SOCHER-AMBROSIUS, 1991. Boolean Algebra Admits no Convergent Term Rewriting 

System. In R. V. Book, editor, Proc. 4th Intern. Conference on Rewriting Techniques 

and Applications, Lectures Notes in Computer Science, vol. 488, pp. 264-274. Springer­

Verlag. 

Abstract 

Although there exists a normal form for the theory of Boolean Algebra 
w.r.t. associativity and commutativity, the so called set of prime implicants, 

there does not exist a convergent equational term reWriting system for the 

theory of Boolean Algebra modulo AC. The result seems well-known, but no 
formal proof exists as yet. In this paper a formal proof of this fact is given. 

R. SOCHER-AMBROSIUS, 1991. On the Church-Rosser Property in Left-Linear Systems. 

TR 91/17, SUNY at Stony Brook. 

Abstract 

In this paper three critical pair conditions are given that are sufficient for 
a finite, left-linear, but not necessarily terminating term rewriting system to 

have the Church-Rosser property. 

R . SOCHER-AMBROSIUS, 1991. On the Relation Between Completion Based and Reso­
lution Based Theorem Proving. Journal of Symbolic Computation, Vol. 11, No.1 & 2, 

pp. 129-148. 

Abstract 

147 



6. Recent Publications The Programming Logics Group 

Completion Theorem Proving, as proposed by Hsiang,' is based on the 

observation that proving a first-order formula is equivalent to solving an equa­

tional system over a boolean polynomial ring. The latter can be accomplished 
by completing the set of rewrite rules obtained from the equational system. 

This method's basic deduction rule is the generation of a new rule from a 

divergent critical pair obtained by superposition of two rules. This paper re­

lates superpositiexactly once-a result which was given by R. Shostak-but admit 

completion refutations with this property,. that is, such a completion refuta­

tion is shorter than any resolution refutation can be. Furthermore, we show 

by means of Shostak's theorem that the language of rings and ideals is well 

suited for short and elegant proofs of theorems about resolution deductions. 

R. SOCHER-AMBROSIUS, 1991. Optimizing the Clausal Normal Form Transformation. 
Journal of Automated Reasoning, Vol. 7, No.3, pp. 325-336. 

Abstract 

Resolution based theorem proving systems require the conversion of pred­

icate logic formulae into clausal normal form. The multiplication from dis­

junctive into conjunctive forms in general produces a lot of tautologous and 
subsumed clauses, which is relatively hard to recognize in later stages of the 

proof. In this paper an algorithm is presented that avoids the generation of 

redundant clauses. It is based on the generation of paths through a matrix and 

produces the set of prime implicants of the original formula. 

R. SOCHER-AMBROSIUS, 1992. Completeness of Resolution and Superposition Calculi. 

Technical Report MPI-I-92-224, Max-Planck-Institut fUr Informatik, Saarbriicken. 

Abstract 

We modify Bezem's (Bezem, M: Completeness of Resolution Revisited. 

Theoretical Computer Science 74 (1990) 227-237) completeness proof for 

ground resolution in order to deal with ordered resolution, redundancy, and 

equational reasoning in form of superposition. The resulting proof is completely 

independent of the cardinality of the set of clauses. 

R. SOCHER-AMBROSIUS, 1992. A Goal Oriented Strategy Based on Completion. In 

H. Kirchner, G. Levi, editors, Proc. 3rd Intern. Conference on Algebraic and Logic Pro­

gramming, Lecture Notes in Computer Science, vol. 632, pp. 435-445. Springer-Verlag. 

Also available as Technical Report MPI-I-92-206. 

Abstract 

148 



*,41* 

The Programming Logics Group 6. Recent Publications 

In this paper, a paramodulation calculus for equational reasoning is pre­

sented that combines the advantages of both Knuth-Bendix completion and 

goal directed strategies like the set of support strategy. Its soundness and 

completeness is proved, and finally the practical aspects of this method are 

discussed. 

R. SOCHER-AMBROSIUS, 1992. How to Avoid the Derivation of Redundant Clauses in 

Reasoning Systems. Journal of Automated Reasoning, Vol. 9, No.1, pp. 325-336. 

Abstract 

This paper addresses two problems concerning the issue of redundant in­

formation in resolution based reasoning systems. The first one deals with the 

question how the derivation of redundant clauses, such as duplicates or in­

stances of already retained clauses, can be substantially reduced. The second 

one asks for a criterion to decide, which clauses need not be tested for redun­

cancy. In this paper we consider a particular kind of reduncancy, which we 

call ancestor subsumption, that is the subsumption of a resolvent by one of 
its ancestors. We give a complete syntactic characterization of clause sets pro­

ducing ancestor subsumed clauses. This characterization partially answers the 

two questions. First, if a clause set is known to exclude ancestor subsumption, 

linear resolution turns out to be a preferable strategy in order to reduce the 

generation of subsumed clauses. Concerning the second question, this result 

allows a suitable restriction of the-usually very expensive-subsumption test. 

Finally, we show that in particular cases those clauses that account for the oc­

currence of ancestor subsumption can be excluded from the resolution process. 

SAM's lemma will serve as an example for demonstrating various possibilities 

to remove reduncancy-generating clauses. 

R. SOCHER-AMBROSIUS, 1992. Semi-Unification. Technical Report MPI-I-92-207, Max­

Planck-Institut £iir Informatik, Saarbriicken. 

Abstract 

Semi-unifiability is a generalization of both unification and matching. It 

is used to check nontermination of rewrite rules. In this paper an inference 

system is presented that decides semi- unifiability of two terms s and t and 

computes a semi-unifier. In contrast to an algorithm by Kapur, Musser et al, 

this inference system comes very close to the one for ordinary unification. 

R. SOCHER-AMBROSIUS, 1993. Unification in Order-Sorted Logic with Term Declara­

tions. In Proc. 4th Conference on Logic Programming and Automated Reasoning (LPAR 

'93), Lecture Notes in Computer Science, vol. 698, pp. 301-308. Springer-Verlag. 

149 



6. Recent Publications , The Programming Logics Group 

Abstract 

This paper provides two results concerning Order-Sorted Logic with Term 
Declarations. First, we show that linear term declarations can be 'transformed 

conservatively into function, declarations, thus yielding elementary signatures. 

This provides a simple proof of the well known fact that unification in linear 

signatures is decidable. A similar transformation exists for semi-linear term 

declarations, resulting in shallow term declarations. Secondly, we provide an 

inference system transforming sort constraints over an arbitrary signature into 

almost solved form. The step from almost solved forms to solved forms requires 

a procedure to decide emptiness of sort intersections, which is not possible in 

general. This shows that it is the sort intersection problem that accounts for 

the undecidability of unification in signatures with term declarations. 

R. SOCHER-AMBROSIUS, 1993. Unification of Terms with Exponents. Technical Report 

MPI-I-93-217, Max-Planck-Institut fUr Informatik, Saarbriicken. 

cf. section 11.2.5, page 90 

ROLF SOCHER-AMBROSIUS, 1993. A Refined Transformation System for General 

E-Unification. Technical Report MPI-I-93-237, Max-Planck-Institut fUr Informatik, 
Saarbriicken. 

cf. section 11.2.5, page 90 

A. SZALAS, 1992. On Correspondence Between Modal and Classical Logic: Auto­

mated Approach. Technical Report MPI-I-92-209, Max-Planck-Institut £iir Informatik, 

Saarbriicken. 

Abstract 

The current paper is devoted to automated techniques in correspondence 

theory. The theory we deal with concerns the problem of finding classical first­

order axioms corresponding to propositional modal schemas. Given a modal 

schema and a semantics based method of translating propositional modal for­

mulas into classical first-order ones, we try to derive automatically classical 

first-order formula characterizing precisely the class of frames validating the 

schema. The technique we consider can, in many cases, be easily applied even 

without any computer support. 

Although we mainly concentrate on Kripke semantics, the technique we apply 

is much more general, as it is based on elimination of second-order quantifiers 

from formulas. We show many examples of application of the method. Those 

can also serve as new, automated proofs of considered correspondences. 

150 



6. Recent Publications The Programming Logics Group 

The overloaded approach differs from the many-sorted and the non­

overloaded case, in that the overloaded term algebra is not necessarily initial. 

We give a decidable sufficient criterion for the initiality of the term algebra, 

which is less restrictive than GJM-regularity as proposed by Goguen, Jouan­

naud, and Meseguer. 

Sort decreasingness is an important property of rewrite system, . since it 

ensures that confluence and Church-Rosser property are equivalent, that the 

overloaded and non-overloaded rewrite relations agree, and that variable over­

laps do not yield critical pairs. We prove that it is decidable whether or not a 

rewrite rule is sort decreasing, even if the signature is not regular. 

Finally we demonstrate that every overloaded completion procedure may 
also be used in the non-overloaded world, but not conversely, and that specifi­

cations exist that can only be completed using the non-overloaded semantics. 

C. WEIDENBACH, 1991. A Sorted Logic Using Dynamic Sorts. Technical Report MPI-

1-91-218, Max-Planck-Institut fiir Informatik, Saarbriicken. 

cr. section 11.2.5, page 91 

C. WEIDENBACH, 1992. A New Sorted Logic. In H. J. o hlbach, editor, Proc. 16th 

German Workshop on Artificial Intelligence (GWAI-92), Lecture Notes in Artificial In­

telligence, vol. 671, pp. 43-54. Springer-Verlag. 

Abstract 

We present a sound and complete calculus for an expressive sorted first­

order logic. Sorts are extended to the semantic and pragmatic use of unary 

predicates. A sort may denote an empty set and the sort structure can be 

created by making use of the full first-order language. Technically spoken, we 
allow sort declarations to be used in the same way than ordinary atoms. There­

fore we can compile every first-order logic formula into our logic. 

The extended expressivity implies an extended sorted inference machine. We 

present a new unification algorithm and show that the declarations the unifica­

tion algorithm is built on have to be changed dynamically during the deduction 

process. Deductions in the resulting resolution calculus are very efficient com­

pared to deductions in the unsorted resolution calculus. The approach is a 

conservative extension of the known sorted approaches, as it simplifies to the 

known sorted calculi if we apply the calculus to the much more restricted input 

formulas of these calculi. 

C. WEIDENBACH, 1993. Extending the Resolution Method with Sorts. In R. Bajcsy, ed­

itor, Proc. 13th Intern. Joint Conference on Artificial Intelligence (IJCAI '93), volume 1, 

pp. 60-65. Morgan Kaufmann. 

152 



The Programming Logics Group 6. Recent Publications 

We essentially strengthen the considered elimination technique. Thus, as a 
side-effect of this paper we get a stronger elimination based method for prov­

ing a subset of second-order logic. 

A. SZALAS, 1992. On Natural Deduction in Fixpoint Logics. Technical Report MPI-I-

92-203, Max-Planck-Institut fiir Informatik, Saarbriicken. 

Abstract 

In the current paper we present a powerful technique of obtaining natural 

deduction (or, in other words, Gentzen-like) proof systems for first-order fix­

point logics. The term "fixpoint logics" refers collectively to a class of logics 

consisting of modal logics with modalities definable at meta-level by fixpoint 

equations on formulas. The class was found very interesting as it contains most 

logics of programs with e.g. dynamic logic, temporal logic and, of course, f.£ 

calculus among them. 

Fixpoint logics were intensively studied during the last decade. In this paper 
we are going to present some results concerning deductive systems for first­

order fixpoint logics. In particular we shall present some powerful and general 

technique for obtaining natural deduction (Gentzen-like) systems for fixpoint 

logics. As those logics are usually totally undecidable, we show how to obtain 

complete (but infinitary) proof systems as well as relatively complete (finitistic) 

ones. More precisely, given fixpoint equations on formulas defining nonclassical 

connectives of a logic, we automatically derive Gentzen-like' proof systems for 

the logic. The discussion of implementation problems is also provided. 

U. WALDMANN, 1992. Semantics of Order-Sorted Specifications. Theoretical Computer 

Science, Vol. 94, No.1, pp. 1-35. 

Abstract 

Order-sorted specifications (i.e., many-sorted specifications with subsort 

relations) have been proved to be a useful tool for the description of partially 

defined functions and error handling in abstract data types. 

Several definitions for order-sorted algebras have been proposed. In some 

papers an operator symbol, which may be multiply declared, is interpreted by 

a family of functions ("overloaded" algebras), in other papers it is always inter­

preted by a single function ("non-overloaded" algebras). On the one hand, we 

try to demonstrate the differences between these two approaches with respect 

to equality, rewriting, and completion; on the other hand, we prove that in 

fact both theories can be studied parallelly, provided that certain notions are 

suitably defined. 

151 



The Programming Logics Group 6. Recent Publications 

Abstract 

In this paper I extend the standard first-order resolution method with 

special reasoning mechanisms for sorts. Sorts are one place predicates. Literals 

built from one place predicates are called sort literals. Negative sort literals 

can be compiled into restrictions of the relevant variables to sorts or can be 

deleted if they fulfill special conditions. Positive sort literals define the sort 

structure for sorted unification. Sorted unification exploits the sort restrictions 

of variables. As the occurrence of sort literals is not restricted, it might be 

necessary to add additional literals to resolvents and factors and to dynamically 

change the set of positive sort literals used by sorted unification during the 

deduction process. The calculus I propose thus extends the standard resolution 

method by sorted unification, residue literals and a dynamic processing of the 

sort information. 1: show that this calculus generalizes and improves existing 

approaches to sorted reasoning. Finally I give some' applications to automated 

theorem proving and abduction. 

c. WEIDENBACH, 1993. Unification in Sort Theories and its Applications. MPI-Report 

MPI-I-93-211, Max-Planck-Institut fiir Informatik, Saarbriicken. 

cf. section 11.2.5, page 91 

A. WERNER~ A. BOCKMAYR AND S. KRISCHER, 1993. A Concept for the Imple­

mentation of LSE Narrowing. In 9. Workshop Logische Programmierung. FU Hagen, 

Informatik Bericht 146 - 10/1993. 

A. WERNER, A. BOCKMAYR AND S. KRISCHER, 1993. How to Realize LSE Narrow­

ing. In Proc. 2nd Intern. Workshop on Functional/Logic Programming. LMU Miinchen, 

Techn. Rep. 9311. 
, 

U. WERTZ, 1992. First-Order Theorem Proving Modulo Equations. Technical Report 

MPI-I-92-216, Max-Planck-Institut fiir Informatik, Saarbriicken. 

Abstract 

We present refutationally complete calculi for first-order clauses with equal­

ity. General paramodulation calculi cannot efficiently deal with equations 

such as associativity and commutativity axioms. Therefore we will separate 

a set of equations (called E-equations) from a specification and give them a 

special treatment, avoiding paramodulations with E-equations but using E­
unification for the calculi. Techniques for handling such E-equations known in 

the context of purely equational specifications (e.g. computing critical pairs 

153 



6. Recent Publications The Programriling Logics Group 

with E-equations or introducing extended rules) can be adopted for specifica­

tions with full first-order clauses. Methods for proving completeness results are 

based on the construction of equality Herbrand interpretations for consistent 

sets of clauses. These interpretations are presented as a set of ground rewrite 

rules and a set of ground instances of E-equations ,forming a Church-Rosser 

system. The construction of such Church-Rosser systems differs from construc­

tions without considering E-equations in a non-trivial way. E-equations influ­

ence the ordering involved. Methods for defining E-compatible orderings are 

discussed. All these aspects are considered especia.lly for the case that E is a 

set of associativity and commutativity axioms for some operator symbols (then 

ca.lled AC-operators). Some techniques and notions specific to specifications 

with AC -operators are included. 
./ 

E. WEYDERT, 1993. About Plausible Reasoning in First-Order Contexts. In Proc. 1st 

Dutch/German Workshop on Nonmonotonic Reasoning Techniques and their Applica­

tions. To appear. 

cf. section 11.2.8, page 96 

E. WEYDERT, 1993. Plausible Inference of Default Conditionals. In M. Clarke, R. Kruse, 

S. Moral, editors, Symbolic and Quantitative Approaches to Reasoning and Uncertainty: 

Proc. of Europ. C!onference ECSQARU '93, Lecture Notes in Computer Science, vol. 

747, pp. 356-363. Springer-Verlag. Also in Proc. IJCAI-Workshop: Conditionals in 
Knowledge Representation, 1993. 

cf. section 11.2.8, page 97 

154 


	pr_rep0001
	pr_rep0002
	pr_rep0003
	pr_rep0004
	pr_rep0005
	pr_rep0006
	pr_rep0007
	pr_rep0008
	pr_rep0009
	pr_rep0010
	pr_rep0011
	pr_rep0012
	pr_rep0013
	pr_rep0014
	pr_rep0015
	pr_rep0016
	pr_rep0017
	pr_rep0018
	pr_rep0019
	pr_rep0020
	pr_rep0021
	pr_rep0022
	pr_rep0023
	pr_rep0024
	pr_rep0025
	pr_rep0026
	pr_rep0027
	pr_rep0028
	pr_rep0029
	pr_rep0030
	pr_rep0031
	pr_rep0032
	pr_rep0033
	pr_rep0034
	pr_rep0035
	pr_rep0036
	pr_rep0037
	pr_rep0038
	pr_rep0039
	pr_rep0040
	pr_rep0041
	pr_rep0042
	pr_rep0043
	pr_rep0044
	pr_rep0045
	pr_rep0046
	pr_rep0047
	pr_rep0048
	pr_rep0049
	pr_rep0050
	pr_rep0051
	pr_rep0052
	pr_rep0053
	pr_rep0054
	pr_rep0055
	pr_rep0056
	pr_rep0057
	pr_rep0058
	pr_rep0059
	pr_rep0060
	pr_rep0061
	pr_rep0062
	pr_rep0063
	pr_rep0064
	pr_rep0065
	pr_rep0066
	pr_rep0067
	pr_rep0068
	pr_rep0069
	pr_rep0070
	pr_rep0071
	pr_rep0072
	pr_rep0073
	pr_rep0074
	pr_rep0075
	pr_rep0076
	pr_rep0077
	pr_rep0078
	pr_rep0079
	pr_rep0080
	pr_rep0081
	pr_rep0082
	pr_rep0083
	pr_rep0084
	pr_rep0085
	pr_rep0086
	pr_rep0087
	pr_rep0088
	pr_rep0089
	pr_rep0090
	pr_rep0091
	pr_rep0092
	pr_rep0093
	pr_rep0094
	pr_rep0095
	pr_rep0096
	pr_rep0097
	pr_rep0098
	pr_rep0099
	pr_rep0100
	pr_rep0101
	pr_rep0102
	pr_rep0103
	pr_rep0104
	pr_rep0105
	pr_rep0106
	pr_rep0107
	pr_rep0108
	pr_rep0109
	pr_rep0110
	pr_rep0111
	pr_rep0112
	pr_rep0113
	pr_rep0114
	pr_rep0115
	pr_rep0116
	pr_rep0117
	pr_rep0118
	pr_rep0119
	pr_rep0120
	pr_rep0121
	pr_rep0122
	pr_rep0123
	pr_rep0124
	pr_rep0125
	pr_rep0126
	pr_rep0127
	pr_rep0128
	pr_rep0129
	pr_rep0130
	pr_rep0131
	pr_rep0132
	pr_rep0133
	pr_rep0134
	pr_rep0135
	pr_rep0136
	pr_rep0137
	pr_rep0138
	pr_rep0139
	pr_rep0140
	pr_rep0141
	pr_rep0142
	pr_rep0143
	pr_rep0144
	pr_rep0145
	pr_rep0146
	pr_rep0147
	pr_rep0148
	pr_rep0149
	pr_rep0150
	pr_rep0151
	pr_rep0152
	pr_rep0153
	pr_rep0154
	pr_rep0155
	pr_rep0156
	pr_rep0157
	pr_rep0158
	pr_rep0159
	pr_rep0160

