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ADP = adenosine diphosphate.

AMPPNP = adenosine 5′ -(β,γ-imido)triphosphate.

ARE = AU-rich elements.

ATP = adenosine triphosphate.

ATPase = ATP hydrolase.
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CUT = cryptic unstable transcript.
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nt = nucleotides.

Pab1 = poly(A)-binding protein.

PAP = poly(A) polymerase.

PCR = polymerase chain reaction.

PIN = PiLT protein N-terminus.

PNPase = polynucleotide phosphorylase.

poly(A) = polyadenylate.

r.m.s.d. = root mean square deviation.

RISC = RNAi-induced silencing complex.
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RNA = ribonucleic acid.

RNAi = RNA interference.

RNase = ribonuclease.

RNP = ribonucleoprotein.

rRNA = ribosomal RNA.

SAD = single wavelength anomalous diffraction.

SF2 = superfamily II.

SKI = Superkiller.

snoRNA = small nucleolar RNA.

snRNA = small nuclear RNA.

topo VI-A = subunit A from archaeal topoisomerase VI.
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TRAMP = Trf4/5-Air1/2-Mtr4 polyadenylation complex.

tRNA = transfer RNA.

WD40 = Trp-Asp 40.
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Summary

The Ski2-Ski3-Ski8 (SKI) complex is a conserved multi-protein assembly required for the

cytoplasmic functions of the exosome, including messenger RNA (mRNA) turnover, surveil-

lance and interference. The helicase Ski2, the tetratricopeptide repeat (TPR) protein Ski3

and the β-propeller Ski8 assemble in a heterotetramer with 1:1:2 stoichiometry. While the

function of the Ski2-Ski3-Ski8 complex as a general cofactor of the cytoplasmic exosome has

been well established, it remains largely unclear how it contributes to the regulation of the

exosome. The PhD thesis at hand addresses this question by investigating the structural

and biochemical properties of the Ski2-Ski3-Ski8 complex.

Solving the crystal structure of the 113 kDa helicase region of S. cerevisiae Ski2 by

experimental phasing revealed the presence of a canonical DExH core and an atypical

accessory domain that is inserted in the helicase core. This insertion domain binds ribonu-

cleic acid (RNA) unspecifically and is located at the RNA entry site of the helicase core.

The overall architecture of Ski2 including the presence of an accessory domain is similar to

the structure of the related helicase Mtr4, but the structural and biochemical properties

of the accessory domains from both proteins are different.

The Ski2 insertion domain is not required for formation of the Ski2-Ski3-Ski8 complex.

Its removal allowed to crystallize a Ski2∆insert-Ski3-Ski8 complex from S. cerevisiae, and the

crystal structure of this 370 kDa core complex was determined experimentally. It shows

that Ski3 forms an array of 33 TPR motifs, creating a scaffold for the other subunits. Ski3

and the two Ski8 subunits bind the helicase core of Ski2 and position it centrally within the

complex. This creates an extended internal RNA channel and modulates the enzymatic

properties of the Ski2 helicase. Both Ski8 subunits are bound through a structurally

conserved motif. A similar motif is present and functional in yeast Spo11, a protein that

initiates deoxyribonucleic acid (DNA) double strand breaks during meiotic recombination.

Association of Ski8 to either complex is mutually exclusive, rationalizing how Ski8 can

perform its two distinct roles in mRNA metabolism and meiotic recombination.



xiv Summary

Biochemical studies suggest that the SKI complex can thread RNAs directly to the exo-

some, coupling the helicase and the exoribonuclease through a continuous channel of 43-44

nucleotides length. Finally, an internal regulatory mechanism in the Ski2-Ski3-Ski8 com-

plex was identified. Both the Ski2-insertion domain and the Ski3 N-terminus cooperate

to inhibit ATPase and helicase activity of Ski2 when bound in the SKI complex. Thus,

the SKI complex regulates exosome activity in two ways. First by a direct substrate chan-

neling mechanism to the exosome that connects helicase and nuclease activities of both

complexes which may activate the exosome towards certain substrates. Second, by an

inhibitory mechanism that regulates substrate access to the helicase complex, which is a

prerequisite for controlling the exosome’s substrate specificity.

This doctoral thesis provides the first structural description of the entire yeast SKI

complex and identifies two mechanisms that may contribute to regulation of the activity

of the cytoplasmic exosome.



1 Preface

My doctoral work led to publication of two research articles1 2. Since both manuscripts

are coherent and represent the main body of work undertaken in the course of my Ph.D.

project, this thesis is written in cumulative style. The first chapter contains an introduction

to the biological background and the current state of the research. The second chapter

includes the classical “Results” and “Material and methods” sections in form of the original

manuscripts. A third and last chapter features a comprehensive discussion that integrates

the main aspects from both publications.

1The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions
of the exosome. F. Halbach, M. Rode and E. Conti RNA, 2012, 18(1), 124-34

2The yeast Ski complex: crystal structure and substrate channeling to the RNA exosome. F. Halbach,
P. Reichelt, M. Rode, E. Conti Cell, 2013, 154, 814-26



2 1. Preface



2 Introduction

2.1 mRNA degradation in eukaryotes

The balance between constructive and destructive events is a crucial concept found in many

biological systems at any level. In the metabolism of RNA, transcription and degradation

are the competing key events that determine the cellular level of a given transcript. Thus,

adjusting the turnover rate for a given transcript allows the cell to regulate the activity

of its gene product. Other means exist to control gene expression, among these post-

translational mechanisms. Nevertheless, degradation of mRNA provides the conceptually

simplest and most direct way to regulate the expression level of a particular gene since it

counteracts directly on transcription.

Degradation of mRNA is not only a means for the regulation of gene expression but

also helps to ensure the fidelity of transcription. For instance, cellular quality control

mechanisms identify improperly matured or otherwise erroneous transcripts and destine

them for degradation. Finally, degradation is the last step in chemical recycling of RNA,

a process that replenishes the cellular pools of nucleotides. Examples for this process

include breakdown of splicing by-products or cleaved, inactive transcripts produced by

RNA interference (RNAi) or other regulatory RNA mechanisms.

Most enzymes involved in the processes of RNA catabolism (e.g. nucleases, helicases

or RNA-binding proteins) are found in all domains of life. However, the specific pathways

of degradation and particularly their regulation can vary substantially. Nevertheless, in

eukaryotes two conserved canonical mRNA decay routes have evolved through which the

vast majority of all transcripts are degraded.



4 2. Introduction

2.1.1 Canonical mRNA decay is initiated by the deadenylation

machinery and driven by exonucleases

As soon as a given gene is transcribed in the nucleus, its mRNA is being processed and

spliced. During these processes, various protein factors are deposited on the nucleic acid

and the resulting protein-RNA complex is termed ribonucleoprotein (RNP). While these

factors can be part of the processing machinery, they also facilitate the export of the RNP

from the nucleus as well as cytoplasmic quality control mechanisms. Once the transcript

arrives in the cytoplasm, it faces two fundamental fates: translation or decay. From the

body of research conducted during the past decades it has now become clear that the ends

of an RNA molecule hold the two key determinants that govern the translation-vs-decay

decision: the 7-methylguanosine cap on the 5′ end and the polyadenylate (poly(A)) tail on

the 3′ end (Fig. 2.1).

Both molecular features have their cognate receptors. In the nucleus, the cap structure

of pre-mRNAs is bound by the cap-binding complex (CBC) that is formed by Cbp80 and

Cbp20 (Izaurralde et al., 1994). After export to the nucleus, the cytoplasmic eIF4F complex

binds to the cap of error-proofed mRNAs and thus replaces the CBC. eIF4F consists of

the cap-binding protein eIF4E, the scaffold protein eIF4G and the RNA helicase eIF4A

(reviewed in Richter and Sonenberg, 2005). Formation of the eIF4F complex enhances the

affinity of eIF4E for the 7-methylguanosine cap and forms a scaffold for other translational

factors (see below).

In yeast1 , the poly(A) tail comprises about 70 nucleotides (nt) (Manley and Takagaki,

1996; Keller and Minvielle-Sebastia, 1997) that are decorated by the poly(A)-binding pro-

tein (Pab1) (Kühn and Wahle, 2004). The 5′ cap and the 3′ poly(A) tail act as protective

features and control translation and decay differentially. They promote translation, mainly

by recruitment of the eIF4E to the 40S pre-initiation complex (Kessler and Sachs, 1998;

Tarun and Sachs, 1995; Wells et al., 1998; Tarun and Sachs, 1996; Tarun et al., 1997). Con-

versely, they inhibit degradation by blocking access of exonucleases to the 5′ and 3′ ends

(Hsu and Stevens, 1993; Mühlrad et al., 1994, 1995; Anderson and Parker, 1998), and this

effect is apparently potentiated by circularization of the transcript through interaction of

Pab1 and eIF4G (Kessler and Sachs, 1998; Tarun and Sachs, 1995, 1996; Wells et al., 1998).

1The yeast S. cerevisiae is the to-date best studied model system for mRNA degradation. This PhD
project has thus focused on the S. cerevisiae proteins, and the introduction at hand is limited to the yeast
system.
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Figure 2.1 | The two canonical pathways of mRNA degradation in eukaryotes. After nuclear
export, the 5 ′ cap of error-proofed mRNAs is bound to eIF4F complex while the poly(A) tail
is decorated with Pab1. Bulk mRNA decay requires prior deadenylation by the Pan2/3 and the
CCR4-Not complexes. RNA is then degraded either via the 5 ′ to 3 ′ path (Xrn1, requires prior
decapping) or via the 3 ′ to 5 ′ pathway (exosome, Ski7 and Ski2-Ski3-Ski8, independent of decap-
ping). Figure adapted from Garneau et al., 2007.

As a consequence, mRNA decay is initiated by removal of the protective features (for

review see Wiederhold and Passmore, 2010; Garneau et al., 2007; Parker, 2012; Houseley

and Tollervey, 2009). There are two canonical RNA decay routes: the 5′ to 3′ and 3′ to

5′ decay (see Fig. 2.1). Both pathways require prior deadenylation of the transcript.

In yeast, deadenylation is a two-step process that is initiated by the Pan2-Pan3 dead-

enylase complex. Pan2-Pan3 trims the poly(A) tail to about 65 nt (Brown and Sachs,

1998) and this process is stimulated by Pab1. Deadenylation is then continued by the

Ccr4/Not complex until the poly(A) tail reaches approximately 10 nt (Fig. 2.1) (Daugeron

et al., 2001; Tucker et al., 2001). At this point, the interaction of Pab1 with the 3′ end

is presumably lost, opening the way for 3′ to 5′ decay. In eukaryotes, the exosome is the

major 3′ to 5′ exonuclease complex. The exosome, together with its cytoplasmic cofactors

Ski7 and the Ski2-Ski3-Ski8 complex, processively degrades the free 3′ end of the mRNA.
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The remaining 5′ cap structure is then degraded by the scavenger decapping enzyme DcpS

(Liu et al., 2002). The second decay pathway operates from the 5′ end of the transcript and

thus requires prior decapping in addition to deadenylation (Fig. 2.1). Decapping is effected

by the Dcp1-Dcp2 complex which is regulated by a host of factors including the activators

Lsm1-7 complex and Edc3 (reviewed in Franks and Lykke-Andersen, 2008; Simon et al.,

2006). Removal of the 7-methylguanosine cap leaves the mRNA with a 5′ phosphate which

is the preferred substrate of Xrn1, the major cytoplasmic 5′ to 3′ exonuclease (Larimer and

Stevens, 1990).

2.1.2 Alternative decay pathways

Specialized pathways exist that lead to degradation but bypass prior deadenylation and/or

decapping of the transcript. For instance, certain classes of transcripts recruit decap-

ping enhancers (e.g. the Rpb28/Dcp3 system, (Kshirsagar and Parker, 2004; Badis et al.,

2004)). These proteins promote decapping even though the poly(A) tail has not been

shortened. This enables the Xrn1 pathway to degrade the transcript via the free 5′ end.

Other examples include the endonucleolytic cleavage of capped and polyadenylated mR-

NAs, for instance through the RNAi machinery. The 5′ and 3′ ends of the resulting 3′ and

5′ fragments, respectively, are are not protected and thus accessible to the the Xrn1 or

exosome/Ski7/Ski2-Ski3-Ski8 pathways. Such bypass-mechanisms are also employed by

certain mRNA quality control pathways like no-go decay and nonstop decay (see section

2.4.1).

2.1.3 Relative contributions of 5′ and 3′ decay routes

The Xrn1 (5′ to 3′) and exosome/Ski7/Ski2-Ski3-Ski8 (3′ to 5′) decay routes are not es-

sential in yeast. Synthetic lethality only results when components of both pathways are

deleted (Johnson and Kolodner, 1995; Anderson and Parker, 1998; van Hoof et al., 2000b),

indicating that the two pathways operate redundantly. Currently it is still a matter of de-

bate which pathway constitutes the major route for mRNA decay. Yeast strains deleted for

either of the two pathways show a slow-growing phenotype only when the decapping/Xrn1

route is targeted (Beelman et al., 1996; Dunckley and Parker, 1999; Giaever et al., 2002;

Anderson and Parker, 1998), suggesting that the 5′ to 3′ route prevails. On the other

hand, more recent transcriptome-wide RNA profiling studies suggest that the impact of

these deletions is less pronounced as thought in the first place (Houalla et al., 2006; He
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et al., 2003). Ultimately, the decay route for a given transcript may depend on many

factors like growth phase, nature of the studied transcripts etc., making it difficult (and

possibly unnecessary) to discriminate major and minor pathways in a general fashion.

While both pathways may be similar in terms of quantitative contribution to overall decay,

from a conceptual point of view the exosome-mediated 3′ to 5′ decay is set apart: the

exosome is not only involved in degradation but also functions in processing and matura-

tion of certain RNA precursors. This means that, depending on the given substrate, the

exosome can either totally degrade an RNA substrate or partially trim it an apparently

very controlled fashion (see also section 2.2.1).

2.2 The exosome is the major eukaryotic 3′ to 5′ ribo-

nuclease complex

The exosome is a multi-subunit ribonuclease complex that was first identified from tandem

affinity-purification experiments in budding yeast (Mitchell et al., 1997). It is a processive

3′ exonuclease, i.e. it removes nucleotides one after the other from the 3′ end of the RNA

without dissociating from the substrate (Dziembowski et al., 2007; Liu et al., 2006). Sub-

sequent work identified homologous complexes in other eukaryotes (including plants) and

in archaea, highlighting its universally conserved role in RNA catabolism. Since then, bio-

chemical and structural work has shaped our understanding of the molecular architecture

of exosome complexes and their enzymatic function. Genetic experiments delineated many

of the pathways and protein factors that deliver substrates to the exosome. In parallel,

an ever-growing number of substrates for the exosome is being identified, particularly by

systems-wide approaches.

2.2.1 Functions of the eukaryotic exosome: From maturation to

degradation

The exosome operates both in the cytoplasm and the nucleus of eukaryotic cells. It pro-

cesses a set of substrates that is remarkably broad, including RNAs produced by each of

the three major RNA polymerases. Nonetheless, the exosome displays differential activity

towards these substrates: first, it can fully degrade a given substrate to remove it com-

pletely from the cellular pool. Second, it can partially trim the 3′ end, a process important

for maturation of certain RNA precursors.
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Figure 2.2 | The many functions of the RNA exosome in the eukaryotic cell. Pathways that feed
into the exosome in the nucleus (left panel) and in the cytoplasm (right panel) are indicated along
with the required general and specific cofactors and reported substrates. Functions are grouped in
the four categories Processing, Degradation, mRNA Turnover and mRNA Quality control (adapted
from Lykke-Andersen et al., 2009).

The exosome’s role as a maturation factor seems to be limited to the nucleus (Fig. 2.2).

Here, it participates in 3′ end processing of small nuclear RNAs (snRNAs) and small nu-

cleolar RNAs (snoRNAs) (Allmang et al., 1999; Mitchell and Tollervey, 2003; van Hoof

et al., 2000a; Egecioglu et al., 2006; Kim et al., 2006) as well as ribosomal RNAs (rRNAs)

(Dez et al., 2006; Allmang et al., 1999; Kadaba et al., 2006). Moreover, the nuclear exo-

some has been involved in quality control and surveillance of snoRNAs, snRNAs, transfer

RNAs (tRNAs) and pre-mRNAs, where it targets erroneous transcripts for degradation

(Allmang et al., 1999; Torchet et al., 2002; Bousquet-Antonelli et al., 2000; Dez et al.,

2006; Hilleren et al., 2001). More recently, evidence accumulated that the exosome clears

promoter-associated transcriptional byproducts that are non-coding but may have regula-

tory functions, for instance cryptic unstable transcripts (CUTs) (Wyers et al., 2005; Davis

and Ares, 2006).

To date, the cytoplasmic exosome has not been linked to processing but rather ap-

pears confined to total degradation of substrate RNAs (Fig. 2.2). In the cytoplasm, the

exosome functions in general mRNA turnover, where it operates redundantly with the

5′ to 3′ degradation machinery (Anderson and Parker, 1998). It was also shown to elimi-
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nate 5′ fragments generated by the RNAi-induced silencing complex (RISC) during RNAi

(Orban and Izaurralde, 2005). In mammalian cells, mRNAs containing AU-rich elements

(ARE) are recruited to the exosome via dedicated ARE-binding proteins, resulting in rapid

decay of substrates (Chen et al., 2001).

Besides its role in mRNA turnover, the exosome serves as endpoint for several cyto-

plasmic quality control pathways. Transcripts containing a premature termination codon

are cotranslationally targeted by the nonsense-mediated decay (NMD) pathway and subse-

quently degraded by the cytoplasmic exosome (Mitchell and Tollervey, 2003). Transcripts

that lack a stop codon altogether were shown to be eliminated in an exosome-dependent

fashion (van Hoof et al., 2002). This pathway is referred to as non-stop decay (NSD).

Another quality control pathway termed no-go decay (NGD) has been described that tar-

gets mRNAs that are stalled on the translating ribosome. Stalled transcripts are cleaved

endonucleolytically which presumably releases them from the ribosome and generates free

5′ fragments that are cleared by the cytoplasmic exosome (Doma and Parker, 2006).

2.2.2 The architecture of the core exosome and its conservation

through all domains of life

Structure and activity of the archaeal exosome

The first insights into the molecular architecture of the exosome came from crystal struc-

tures of the archaeal complexes (Büttner et al., 2005; Lorentzen and Conti, 2005; Lorentzen

et al., 2007). The archaeal exosome is built from the three subunits Rrp41, Rrp42 and

Rrp4 (or Csl4) (Fig. 2.3B, central panel). Rrp41 and Rrp42 are homologous to bacterial ri-

bonuclease (RNase) PH, a phosphorolytic ribonuclease. Three Rrp41-Rrp42 hetero-dimers

assemble into a six-membered ring (termed the RNase PH ring). Rrp4 contains an N-

terminal S1-homology domain and a C-terminal K-homology (KH) domain. A trimeric

ring of Rrp4 (termed the S1/KH cap) assembles on top of the RNase PH ring, creating the

9-subunit archaeal exosome (Fig. 2.3A, central panel). Rrp4 can be substituted by Csl4

which contains an S1 domain and a zinc-knuckle domain. In vivo, the S1/KH cap is ho-

momeric for Rrp4 or Csl or contains a combination of both (Evguenieva-Hackenberg et al.,

2003), and in vitro Rrp4 and Csl4 confer different substrate specificities to the archaeal

exosome (Roppelt et al., 2010).

Biochemical studies showed that Rrp41 is the active subunit. It displays processive,

phosphorolytic ribonuclease activity towards single stranded RNA (Büttner et al., 2005;
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Lorentzen et al., 2005) but is unable to degrade through secondary structure elements like

hairpins (Lorentzen and Conti, 2005). Rrp42 contributes to RNA-binding and to formation

of the active site and it is required for nuclease activity of the complex (Lorentzen et al.,

2005; Büttner et al., 2005). The S1/KH cap has been shown provide additional RNA

binding sites to the complex that may help to regulate substrate access to the active sites.

The structures of the archaeal exosome revealed a surprisingly high similarity with

bacterial polynucleotide phosphorylase (PNPase), an phosphorolytic RNase complex that

forms part of the degradosome (Symmons et al., 2000). PNPase contains two RNase

PH cassettes and C-terminal S1/KH domain, and this polypeptide assembles into a ho-

Figure 2.3 | The molecular architecture of exosome-like complexes is conserved throughout evo-
lution. (A) Structures of bacterial PNPase (Symmons et al., 2000), archaeal 9-subunit exosome
(Lorentzen et al., 2007) and human 9-subunit exosome (Liu et al., 2006) are shown in the left,
middle and right panels, respectively. RNase PH (domain 1), Rrp41 and Rrp41-like proteins
are colored in red or shades thereof. RNase PH (domain 2), Rrp42 and Rrp42-like proteins in
yellow or shades of yellow. S1/ KH domains or S1/KH containing proteins in shades of blue.
(B) The domain structures of the proteins corresponding to the structure in each panel are shown
color-coded as above.
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motrimeric complex (Fig. 2.3, left panel). Similar to the archaeal 9-subunit exosome, six

RNase PH domains form a barrel-like structure that is topped by a ring containing three

S1/KH domains (Fig. 2.3A, compare left and central panels). Thus, during evolution from

of the archaeal complex, the RNase PH and S1/KH domains have become singled out into

individual polypeptides.

Structure of the human exosome

Subsequently, the crystal structure of the human exosome (Liu et al., 2006) showed that

the 9-membered ring architecture of bacterial PNPase and archaeal exosome has been

conserved during evolution of higher eukaryotes, too. In humans, the RNase PH ring

of the exosome is now formed by a set of six different proteins, and the S1/KH ring

by a group of three distinct polypeptides. All six RNase PH subunits are homologous

to bacterial RNase PH. However two subsets can be distinguished according to sequence

similarity with the two archaeal RNase PH subunits: human Rrp41, Mtr3 and Rrp46 are

more similar to archaeal Rrp41 while human Rrp45, Rrp42 and Rrp43 are related more

closely to archaeal Rrp42 (Fig. 2.3B). Again, three heterodimers of an Rrp41-like subunit

and a Rrp42-like subunit (Rrp41-Rrp45, Rrp43-Rrp42 and Rrp46-Mtr3) assemble into the

six-membered RNase PH ring of the human exosome (Fig. 2.3A, right panel). Finally, the

proteins Csl4, Rrp40 and Rrp4 form the S1/KH cap of the eukaryotic exosome, completing

the 9-subunit core exosome (designated Exo9). The eukaryotic S1/KH ring is structurally

similar to the archaeal Rrp4/Csl4 ring, and its three subunits contain an N-terminal S1

and a C-terminal KH homology domain and are homologs of the archaeal S1/KH proteins.

In the 9-subunit exosome, the S1/KH ring extend the axial cavity in the RNase PH ring,

creating a central channel that reaches from the top to the bottom of the complex.

2.2.3 Rrp44 and Rrp6 confer activity to the eukaryotic exosome

While bacterial PNPase and the archaeal and eukaryotic exosomes share a similar archi-

tecture, their activities are markedly different. In the eukaryotic exosome, key residues of

the three Rrp41-like subunits lack important catalytic residues (Liu et al., 2006). Con-

sistently, the human and yeast 9-subunit core exosomes were found to be catalytically

inactive as opposed to the phosphorolytic activity of their archaeal relative (Liu et al.,

2006; Dziembowski et al., 2007). In yeast, two additional subunits impart activity to the

9-subunit exosome core: Rrp44, which localizes to nucleus and cytoplasm, and Rrp6, which
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is exclusively found in the nucleus.

Rrp44 associates with the core exosome, resulting in the 10-subunit exosome (desig-

nated Exo10) that is identical in nucleus and cytoplasm. Rrp44 contains two distinct

hydrolytic RNase activities. In the N-terminus, a PiLT protein N-terminus (PIN) domain

confers endonuclease activity (Schneider et al., 2009; Schaeffer et al., 2009; Lebreton et al.,

2008). In the C-terminus, an RNase II domain confers processive 3′ to 5′ exonuclease

activity (Dziembowski et al., 2007; Liu et al., 2006). Structural studies have shown that

Rrp44 associates via its PIN domain to the Rrp41-Rrp45 dimer (Bonneau et al., 2009),

resulting in a location at the base of the RNase PH ring. In this conformation, both the

PIN domain and RNase II active sites are accessible from the central channel of the core

exosome.

In the yeast nucleus, Exo10 associates with another RNase, Rrp6, to create the 11-

subunit exosome (Exo11). Rrp6 belongs to the RNase D family and degrades ribonucleic

acids in a distributive, hydrolytic fashion from the 3′ to the 5′ end (Midtgaard et al.,

2006; Zuo and Deutscher, 2001; Phillips and Butler, 2003). Rrp6 contains an N-terminal

PMC2NT domain that mediates binding to Rrp47, followed by the RNase D catalytic

core and two helicase RNase D C-terminal domains (HRDCs) (Midtgaard et al., 2006).

The last HRDC domain mediates binding to Exo10 in vivo (Callahan and Butler, 2008).

While Rrp6 remains attached to Exo10, recent experiments suggest that it can also operate

independently of the Exo10 core (Callahan and Butler, 2008).

2.2.4 The inactive eukaryotic exosome core retains functionality

Even though the eukaryotic core exosome lost its activity during evolution, it retained an

architecture remarkably similar to the archaeal exosome and bacterial PNPase. Moreover,

in yeast all nine subunits of the exosome core are essential (Mitchell et al., 1997). This

suggests that the exosome core kept certain functions distinct from nuclease activity. These

functions must be closely linked to structural features that were conserved during evolution.

The most striking of these features is the central pore that leads from the 3-membered

S1/KH ring to the 6-membered RNase PH ring (Fig. 2.4B). The diameter of this channel

is about 7 Å at its narrowest constriction and thus would allow accommodation of single

stranded RNA. In case of the archaeal exosome, structural studies provide direct evidence

that RNA is indeed conducted through the central pore to reach the active site of the Rrp41

subunits (Lorentzen et al., 2007; Hartung et al., 2010; Navarro et al., 2008; Lorentzen and

Conti, 2005).
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Figure 2.4 | RNA channeling by the exosome. (A) Cut-open representation of the archaeal 9-
subunit exosome bound to RNA (Lorentzen et al., 2007). Subunits are colored as in Fig. 2.3, RNA
is shown in black. A central channel leads from the S1/KH ring down to the Rrp41 active sites.
Electron density was observed at the entrance (top) and the active site (bottom). (B) Topology of
the central channel found in the human Exo9 complex (Liu et al., 2006). The average diameter
and depth (in Å) of the channel are plotted on an axial slice through the structure.

Similar results have been obtained for the yeast exosome. Electron microscopy data of

Exo10 complexes bound to RNA reveal density for the nucleic acid at the S1/KH entry site

and within the RNase PH ring (Malet et al., 2010). RNase protection assays demonstrated

that the central pore accommodates about 31-33 nt of single stranded RNA, spanning from

the S1/KH cap to the exoribonuclease site in Rrp44 (Bonneau et al., 2009). Moreover,

reverse charge point mutations in conserved basic residues lining the channel decreased

the activity of Rrp44 in vitro (Bonneau et al., 2009). Consistent with these observations,

degradation of certain RNAs that contain structured regions is inhibited when Rrp44 is

bound to Exo9 (Bonneau et al., 2009; Liu et al., 2006). More recently, degradation of

many substrates by Exo10 in vivo was observed to depend on the central channel, too

(Wasmuth and Lima, 2012). Taken together, these data suggest that the central cavity of

the core exosome provides a transfer route for substrates to the Rrp44 active sites. Such a

channeling mechanism also provides a tool to regulate access of RNA to the acive sites, and

this is a pre-requisite for the highly regulated functioning of the exosome in eukaryotes.
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Another role for the exosome core has been proposed according to which it forms a plat-

form for cofactor recruitment (see also section 2.1). Due to its location at the top of the

RNA entry site, the S1/KH ring appears particularly suited to recruit upstream factors.

Consistently, mutations in Csl4 have been shown to stabilize reporter mRNAs in vivo in

a similar fashion as deletion of Ski7 does (Schaeffer et al., 2009). This suggests that Csl4

plays a pivotal role in cytoplasmic mRNA decay, possibly by providing a binding platform

for Ski7 and the Ski2-Ski3-Ski8 complex.

The diverse substrate landscape of the exosome and its capability of differential pro-

cessing (decay vs. maturation) raises the question of how exosome activity is regulated to

ensure that each class of substrate is processed or degraded properly. For example, what

factors discriminate an mRNA molecule that has exceeded its lifespan and is doomed to

total dedgradation from an mRNA precursor that needs to be trimmed at the 3′ end to

fully mature? Since both the nuclear and the cytoplasmic exosome cores share an identical

subunit composition, such factors are likely to reside outside of the core exosome complex.

2.3 Exosome cofactors

In fact, most functions of the exosome require a subset of helper proteins in addition to

the Exo10 core complex. These proteins can be grouped into general and specific cofactors

(See Fig. 2.2 and Tab. 2.1). General cofactors interact directly or indirectly with the

core exosome and are required for several (sometimes unrelated) functions of the exosome.

They appear to form an inner shell of regulation on the exosome.

Specific cofactors are more numerous and are only required for a small subset of sub-

strates. Their function frequently depends on the presence of a general cofactor. Specific

cofactors form an outer shell for the regulation of exosome functions.

2.3.1 General cofactors of the exosome

The two general cofactors of the yeast exosome are the Trf4/5-Air1/2-Mtr4 polyadenylation

complex (TRAMP) and the Ski2-Ski3-Ski8 superkiller (SKI) complex which are conserved

in higher eukaryotes. TRAMP and SKI localize to different cellular compartments and are

required for different subsets of exosome functions (Fig. 2.2, Tab. 2.1). These differences

are also reflected by differences in the subunit composition of both cofactors. While both

complexes contain a homologous DExH box RNA helicase (Mtr4 in the TRAMP complex,

Ski2 in the SKI complex), the remaining subunits are unrelated.
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Protein Activity Localization Function

Exosome-
associated

Ski7 Similar to
translational
GTPases like
eRF3.

Cytoplasm Binds the Ski2-Ski3-Ski8 and exo-
some complexes. Required for all
functions of the cytoplasmic exo-
some, e.g. mRNA turnover and
quality control.

Rrp6 Belongs to
RNase D family
and has dis-
tributive 3′ to
5′ exonuclease
activity.

Nucleus Binds to the exosome and to
Rrp47. Required for exosome-
mediated processing of snRNAs,
snoRNAs and rRNAs. In-
volved in pre-mRNA surveillance.
Exosome-independent roles have
been described.

General co-
factors

Ski2-Ski3-
Ski8 (SKI)

Contains the
Ski2 DExH box
helicase.

Cytoplasm Required for all known functions
of the cytoplasmic exosome. In-
teracts with the exosome via Ski7
N-terminus.

Trf4/5-
Air1/2-Mtr4
(TRAMP)

Contains poly-
adenylation
(Trf4/5) and
helicase actvi-
ties (Mtr4).

Nucleus Required for most functions of the
nuclear exosome. Mtr4 can also
operate independently. Physical
interaction with the exosome un-
clear.

Specific
cofactors

Rrp47 RNA-binding
protein

Nucleus Interacts genetically and physi-
cally with Rrp6. Preferably binds
structured RNAs and is required
for degradation of certain stable
RNAs by Rrp6.

Mpp6 RNA-binding
protein

Nucleus Involved in rRNA maturation.
Knockout is synthetic lethal in
∆Rrp47, ∆Rrp6 strains. Binds
pyrimidine-rich sequences.

Nrd1-Nab3-
Sen1

RNA-binding
proteins (Nrd1,
Nab3), RNA
helicase (Sen1)

Nucleus Promotes termination of noncod-
ing genes and CUTs. Required
with TRAMP and the exosome for
degradation of CUTs.

Table 2.1 | Cofactors of the S. cerevisiae exosome. The proteins are grouped into exosome-
associated, general or specific cofactors.



16 2. Introduction

RNA helicases as cofactors for exosome-like complexes

Ski2 and Mtr4 are paralogs and share 29 % sequence identity and 45 % similarity. Both

enzymes belong to the superfamily II (SF2) of helicases and utilize energy from adenosine

triphosphate (ATP)-hydrolysis to unwind RNA duplexes (for review see Pyle, 2008; Sin-

gleton et al., 2007; Jankowsky and Fairman, 2007; Lohman et al., 2008). While to date

no helicase has been associated with the function of the archaeal exosome, such a link has

been found for the bacterial degradosome. The degradosome is a major prokaryotic RNase

complex that is formed by PNPase, the archetype of the exosome, as well as RNase E and

enolase (Carpousis, 2007). A fourth subunit was found to be RhlB, an ATP-dependent SF2

RNA helicase (Py et al., 1996). Degradation of certain structured RNA substrates requires

ATP in vitro (Py et al., 1996), and several studies showed that degradosome-mediated RNA

decay depends on RhlB in vivo (Bernstein et al., 2002, 2004; Khemici et al., 2005; Khemici

and Carpousis, 2004).

These observations suggest that RhlB locally unwinds secondary structure elements in

substrate RNAs to facilitate their degradation by the bacterial degradosome. The presence

of an ATP-dependent RNA helicase in each of the general cofactor complexes of the eu-

karyotic exosome led to the extrapolation of this working hypothesis to the function of the

TRAMP and SKI complexes in concert with the eukaryotic exosome. It is thought that

both general cofactors harness the helicase activity (Ski2 or Mtr4) to assist degradation of

challenging substrates.

The Trf4/5-Air1/2-Mtr4 polyadenylation complex (TRAMP)

The yeast TRAMP complex is formed by a poly(A)-polymerase (Trf4 or Trf5), a DExH

box RNA helicase (Mtr4) and a zinc knuckle-containing RNA-binding protein (Air1 or

Air2) (LaCava et al., 2005). TRAMP was shown to stimulate the nuclear exosome in vitro

and in vivo (Vanacova et al., 2005; LaCava et al., 2005). Remarkably, this stimulation

depends on the poly(A) polymerase (PAP)-activity of TRAMP (Vanacova et al., 2005;

Kadaba et al., 2006). Similarly, the Mtr4 helicase activity is essential in vivo to degrade

structured substrates like initiator tRNA (tRNAMet
i ) (Wang et al., 2008). Based on these

observations, a model emerged according to which Trf4/5 adds poly(A) tails to the 3′ end

of a given substrate. This creates a “landing platform” that allows the helicase Mtr4 to

efficiently bind and unwind secondary structure elements of a given substrate (e.g. tRNA).

Unwinding of otherwise structured RNAs renders them accessible for degradation by the

exosome.
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Efforts to pin down the mechanism of TRAMP-mediated exosome activation on the molec-

ular level are still ongoing. Recent advances include the crystal structure of the Trf5 cat-

alytic domain bound to Air2, which suggests that the C-terminal zinc knuckles of Air2p

mediate binding to the polymerase rather than being RNA-binding motifs (Hamill et al.,

2010). Structural and biochemical studies on Mtr4 have confirmed its identity and activity

as a DExH box helicase (Bernstein et al., 2008; Weir et al., 2010). Mtr4 was also found to

contain an usual accessory domain that emerges from the helicase core. It has structural

similarity to ribosomal KOW domains that are known to bind structured RNAs. Con-

sistently, the Mtr4 KOW domain exhibits affinity towards structured RNAs (Weir et al.,

2010) and is required for rRNA processing in vivo (Jackson et al., 2010).

The Ski2-Ski3-Ski8 complex (SKI)

In the yeast cytoplasm, the proteins Ski2, Ski3, Ski8 as well as Ski7 have been found to be

general cofactors for the exosome. Ski2 is a putative DExH box type RNA helicase that was

shown to form a complex with Ski3 and Ski8 in vivo (Brown et al., 2000). This Ski2-Ski3-

Ski8 was further shown to interact with the exosome via the eRF3-homolog Ski7 (Araki

et al., 2001; Wang et al., 2005). The Ski2-Ski3-Ski8 complex is required for all cytoplasmic

functions of the exosome. Because Ski2 is closely related to Mtr4, its helicase activity

is assumed to contribute to exosome activation similarly to Mtr4 within the TRAMP

complex. However, experimental evidence for such a mechanism is still lacking. A detailed

introduction to the Ski2-Ski3-Ski8 complex is given in the section 2.4.

2.3.2 Specific exosome cofactors

Several specific exosome cofactors have been described (Tab. 2.1). Frequently, these factors

are nuclear-specific RNA-binding proteins that operate in concert with other cofactors.

For instance, the nuclear Rrp47 is a partner protein of Rrp6 with apparent specificity for

structured RNAs (Stead et al., 2007; Mitchell et al., 2003). It is indispensable for certain

aspects of Rrp6/exosome-mediated processing of stable RNAs like snRNAs and snoRNAs

(Mitchell et al., 2003; Costello et al., 2011). Rrp47 has been proposed to act as a chaperone

that stabilizes interactions of Rrp6 with its cognate substrates, thus enhancing substrate

specificity and efficacy of degradation (Stead et al., 2007).

Another nuclear exosome cofactor, Mpp6, appears somewhat similar to Rrp47 in that

it is an RNA-binding protein that is synthetic lethal in an Rrp6 deletion background
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(Milligan et al., 2008). In contrast to Rrp47, Mpp6 preferentially binds pyrimidine-rich

sequences (Milligan et al., 2008). Mpp6 co-purifies with exosome-containing complexes

(Krogan et al., 2006) and plays a role in exosome-mediated decay of noncoding RNAs

(Milligan et al., 2008), but additional data are needed to define its role more precisely.

Yet another annotated exosome cofactor is the nuclear Nrd1-Nab3-Sen1 complex, which

is recruited by RNA polymerase II C-terminal domain to terminate CUTs (Carroll et al.,

2007; Vasiljeva et al., 2008). CUTs are then degraded by the nuclear exosome in a TRAMP-

dependent fashion that also requires Nrd1-Nab3-Sen1 (Arigo et al., 2006; Thiebaut et al.,

2006), suggesting that this cofactor complex orchestrates transcription termination and

degradation for certain transcript classes.

2.4 The SKI complex is a general cofactor of the cy-

toplasmic exosome

The SKI genes were originally identified from mutations in S. cerevisiae strains that were

infected by the double-stranded Killer virus. These mutations raised the levels of viral

RNA species which exacerbated the killer phenotype of infected cells (hence the name Su-

perkiller) (Toh et al., 1978; Ridley et al., 1984). The phenotypes could later be mapped

to a set of seven genes which were identified as Ski2, Ski3 and Ski8 (Widner and Wick-

ner, 1993; Rhee et al., 1989; Matsumoto et al., 1993) as well as Ski7 (Benard et al., 1999),

Ski1/Xrn1 (Larimer and Stevens, 1990), Ski4/Csl4 (van Hoof et al., 2000b) and Ski6/Rrp41

(Benard et al., 1998). Subsequent studies suggested that those proteins acted by repressing

expression of viral poly(A) RNA (Widner and Wickner, 1993). Eventually, translational re-

pression was found to be independent of the presence of viral RNA (Johnson and Kolodner,

1995), indicating a general role of the Ski proteins in mRNA catabolism.

2.4.1 Functions of the Ski2-Ski3-Ski8 complex

Cytoplasmic 3′ to 5′ mRNA turnover requires the Ski proteins and the exosome

Deletion of either of the SKI2, SKI3, SKI7 or SKI8 genes was found to block 3′ to

5′ degradation (Anderson and Parker, 1998; van Hoof et al., 2000b), and conditional knock-

outs of SKI6/RRP41 and RRP4 produced similar phenotypes, suggesting that these six

proteins operate along the same pathway. Since Rrp41 and Rrp4 had been previously re-

ported as subunits of the exosome complex (Mitchell et al., 1997), this results annotated
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the exosome as the catalytic component of the 3′ to 5′ degradation pathway and identified

the Ski proteins as required cofactors.

Ski2, Ski3 and Ski8 from a stable complex in vivo in the yeast cytoplasm (Brown et al.,

2000; Synowsky and Heck, 2008). SKI7, the last of the original Superkiller genes, encodes

a homolog of translational guanosine triphosphate hydrolases (GTPases) like eRF3 and

EF1-α (Benard et al., 1999; Atkinson et al., 2008). Its N-terminal region was shown to

co-immunoprecipitate with the Ski2-Ski3-Ski8 complex and with exosome subunits (pre-

sumably Rrp4 and Csl4) (Wang et al., 2005; Araki et al., 2001; van Hoof et al., 2002).

Deletion of the Ski7 N-terminus in vivo interferes with cytoplasmic 3′ to 5′ decay. In con-

trast, the C-terminal GTPase domain of Ski7 is dispensable for exosome-mediate mRNA

turnover (Araki et al., 2001; van Hoof et al., 2000b).

The Ski2-Ski3-Ski8 complex and Ski7 are essential for cytoplasmic mRNA qual-

ity control

Apart from its role in mRNA turnover, the Ski2-Ski3-Ski8 complex is required for at least

three distinct mRNA quality control pathways that feed into the cytoplasmic exosome

(Fig. 2.2). First, NMD targets transcripts with premature stop codons through concerted

action of the Upf1-2-3 complex and stalled ribosomes (reviewed in Chang et al., 2007;

Conti and Izaurralde, 2005). Recruitment of other surveillance factors eventually releases

the stalled mRNA which is subsequently degraded from the 5′ end (Xrn1) and the 3′ end

(exosome/Ski7/Ski2-Ski3-Ski8) (Takahashi et al., 2003; Mitchell et al., 2003).

Second, transcripts that cause the ribosome to stall, e.g. due to unresolvable secondary

structure, are eliminated by NGD. Two dedicated translation factors, Dom34 and Hbs1,

are crucial to this pathway. Dom34 (homologous to eRF1) mimicks tRNA (Lee et al., 2007)

and binds along with the translational GTPase Hbs1 in the A-site of the stalled ribosome

(Becker et al., 2011; Chen et al., 2010). While the endonuclease activity that releases the

stalled transcript remains elusive, the exosome and Ski proteins were found responsible for

the degradation of the resulting 5′ fragment and Xrn1 for elimination of the corresponding

3′ fragment (Doma and Parker, 2006).

Third, transcripts that lack a stop codon altogether are targeted by NSD. NSD sub-

strates are readily degraded by the exosome in a Ski2-Ski3-Ski8- and Ski7-dependent fash-

ion (Frischmeyer et al., 2002; van Hoof et al., 2002). This pathway depends on the Ski7

N-terminal region but also requires the C-terminal GTPase domain (Frischmeyer et al.,

2002). This prompted a model according to which ribosomes that are stalled on read-
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through messages recruit Ski7 (possibly together with an eRF1-homolog) and thus induce

exosome- and Ski2-Ski3-Ski8-dependent mRNA decay. In contrast to NMD and NGD, the

5′ to 3′ degradation machinery is dispensable for NSD (Frischmeyer et al., 2002). To date

all known exosome-mediated 3′ to 5′ decay routes in the cytoplasm require Ski7 as well as

the Ski2-Ski3-Ski8 complex.

Consistently with their cytoplasmic localization, mutations in the Ski proteins do no

affect functions of the nuclear exosome like rRNA processing (van Hoof et al., 2000b;

Anderson and Parker, 1998). Taken together, these observations prompted the concept

that Ski2-Ski3-Ski8 in concert with Ski7 is a general cofactor of the cytoplasmic exosome.

2.4.2 Towards the architecture of the S. cerevisiae Ski2-Ski3-

Ski8 complex

Ski2 is a putative ATP-dependent RNA helicase of the DExH-box family

Ski2 has eluded biochemical and structural characterization so far, and knowledge about its

function mainly comes from extrapolation of data concerning related helicases like yeast

Mtr4 or the archaeal Hel308. Ski2 is a SF2 helicase, hallmark of which are two RecA-

like domains that contain a set of at least seven conserved motifs that mediate binding

to nucleotides or RNA (Fig. 2.5, for review see Pyle, 2008; Jankowsky and Fairman,

2007). While all SF2 enzymes bind nucleic acids and hydrolyze ATP, their molecular

functionality can vary greatly in terms of processivity, directionality and unwinding activity

(translocation-dependent or not). Ski2 and Mtr4 are most closely related to each other,

and together with Hel308 they have traditionally been classified as members of the family

of DExH-box RNA helicases (Pyle, 2008), bearing the eponymous Asp-Glu-X-His motif (X

being any amino acid) within the first RecA domain.

X-ray structures of A. fulgidus Hel308 (Büttner et al., 2007) and of yeast Mtr4 (Jackson

et al., 2010; Weir et al., 2010) have revealed the common architecture of the DExH-box

family (Fig. 2.6). These structures confirmed the canonical RecA domains and identified

a C-terminal helical domain formed by a winged helix (WH) and the so-called ratchet

domain (Büttner et al., 2007). The helical domain packs against both RecA-like domains

opposite of their RNA-binding motifs. This arrangement creates a funnel through with

the nucleic acid is threaded during translocation (Fig. 2.6). A conserved β-hairpin wedges

between guide and passenger strand, and translocation on the guide strand presumably

induces unwinding of double stranded nucleic acids. ATP-dependent duplex unwinding
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Figure 2.5 | Domain structure of Ski2, Ski3, Ski8 and Ski7. Ski2 is colored in shades of yel-
low and orange, Ski3 in blue, Ski8 in green and Ski7 in gray (This color scheme is maintained
throughout the manuscript). The domain boundaries a extracted from the structral information
obtained in this study. Black bars and arrows indicate interacting domains.

with 3′ to 5′ directionality has been demonstrated for Mtr4 (Bernstein et al., 2008) and

can be expected for Ski2 as well.

Recently, a refinement to the classification of SF2 helicases was proposed (Fairman-

Williams et al., 2010), according to which the DExH-box family is split into the DEAH-

type and the Ski2-like groups with Ski2 and Mtr4 belonging to the latter. While this

new classification is based on phylogenetic and functional data, recent work has revealed

structural similarities between members of both groups, blurring the proposed borders. For

instance, the DEAH-type Rrp43 (Walbott et al., 2010; He et al., 2010) and the Ski2-like

Mtr4 (Jackson et al., 2010; Weir et al., 2010) both share the WH and ratchet domains as

well as the unwinding β-hairpin.

Apart from the well-conserved helicase domains, Ski2 contains two regions of unknown

function (Fig. 2.5). First, a poorly conserved N-terminal region (residues 1 - 299) that

is followed by the RecA domains. Second, a long insertion (residues 835 - 1085) within

the WH domain. Mtr4 contains an insertion at an equivalent position (Fig. 2.6, lower

panel), but this domain is not conserved with Ski2 in terms of primary sequence. In Mtr4,

this region was shown to fold in to a KOW domain that is connected to the helicase core

through a helical stalk. The domain, dubbed arch domain (Jackson et al., 2010), is located
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Figure 2.6 | The molecular architecture of DExH-box helicases. The upper panel shows the
crystal structure of A. fulgidus Hel308 bound to a partially unwound DNA duplex (shown in
black) (Büttner et al., 2007). Both RecA domains are colored in yellow, the WH domain in dark
yellow and the ratchet domain in orange. The WH and ratchet domains form a helical domain
that packs against both RecA domains. A C-terminally inserted helix-loop-helix (HLH) motif is
colored in red and an unwinding β-hairpin in magenta. The lower panel displays the crystal
structure of S. cerevisiae Mtr4 (Weir et al., 2010). The RecA, WH and ratchet domains are
conserved with A.f. Hel308 and are colored accordingly. The inserted KOW domain is shown in
red.

above the RNA entry site into the helicase core (Weir et al., 2010). It binds structured

RNAs in vitro (Weir et al., 2010) and is required for 5.8S rRNA processing in vivo (Jackson

et al., 2010). Given that the insertion in Ski2 and the KOW domain in Mtr4 occur are

well conserved positions in the protein, it can be speculated that Ski2 contains a similar

domain.
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Ski3 and Ski8 are predicted to be structural proteins

Ski3 is a large protein (1432 residues) that is predicted to contain several tetratricopeptide

(TPR) motifs (Fig. 2.5). However, number and position of the TPRs vary according to

the algorithms used for prediction. In general, a single TPR motif is formed by two helices

that pack against each other in an antiparallel fashion (Hirano et al., 1990; Sikorski et al.,

1990; Das et al., 1998). TPRs typically occur as arrays of several contiguous motifs. Since

the individual repeats within an array are rotated by about 60◦, the resulting solenoid

has a superhelical shape. TPRs are known as protein-protein interaction motifs, and to

date no other ligands than (poly-)peptides have been identified (for review see Zeytuni and

Zarivach, 2012). TPR proteins are thus thought of as typical scaffold proteins that organize

large protein complexes. Indeed, this role has been highlighted by several structures of

TPR-mediated protein assemblies (Zhang et al., 2010; Lapouge et al., 2000; Paczkowski

et al., 2012) and has been proposed for Ski3, too.

The previously determined crystal structure of Ski8 (Madrona and Wilson, 2004; Cheng

et al., 2004) shows that it contains seven Trp-Asp 40 (WD40) repeats that fold into a seven-

bladed β-propeller (Figs. 2.5 and 2.7). The seven blades form a disc-like structure with

top and bottom surfaces that are connected by a narrow constriction. While β-propeller

proteins sometimes display intrinsic enzymatic activities (e.g. as hydrolases or reductases),

they act more frequently as ligand-binding domains or mediators of protein-protein inter-

actions (reviewed in Chen et al., 2011). As no enzymatic activity had been demonstrated

for Ski8, a structural role for Ski8 has been proposed in the context of the Ski2-Ski3-Ski8

complex. In line with this hypothesis, mutations on a conserved hydrophobic cage at

the top surface of Ski8 have been shown to interfere with binding of Ski8 in vivo (Cheng

et al., 2004), pointing to a potential interface within the Ski2-Ski3-Ski8 complex. Mass-

spectrometry analysis of endogenous samples from yeast indicate a 1:1:2 stoichiometry for

Ski2-Ski3-Ski8 complex with two copies of the Ski8 subunit (Synowsky and Heck, 2008).

Nevertheless, the function of Ski8 within the complex as well as the necessity for two copies

of this subunit remain unclear.

Ski8 is also part of a meiotic DNA recombination complex

In yeast, Ski8 has a second role apart from its function in mRNA degradation. During

meiosis, DNA double-strand break (DSB) formation is the first step in crossing over of

homologous chromatids, a process that eventually leads to genetic diversification. The

catalytic activity of DSB initiation has been pinned down to the protein Spo11, a relative
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of subunit A from archaeal topoisomerase VI (topo VI-A) that is well conserved in higher

eukaryotes (Keeney et al., 1997; Bergerat et al., 1997; Nichols et al., 1999). Spo11 does not

exert its activity alone but functions in a large protein complex (for review see Cole et al.,

2010). During meiosis, yeast Ski8 localizes to the nucleus where it directly associates with

Spo11, which is required for the cleavage activity of Spo11 (Arora et al., 2004; Tesse et al.,

2003). Other subunits are then recruited to the Spo11-Ski8 dimer, but the exact order and

architecture of this DSB-initiation complex is unknown. In a transesterification reaction,

a conserved catalytic tyrosine residue in Spo11 covalently attaches to the target DNA

strand, and this process eventually establishs the DSB. After removal of Spo11 from the

DNA, the 5′ ends are resected and single stranded overhangs recruit the canonical DSB

repair machinery, leading to a productive crossover. Alternatively, synthesis-dependent

strand annealing restores the initial chromatid configuration (non-crossover) (reviewed in

Cole et al., 2010).

How and why Ski8 has to interact with Spo11 for initiation of this process remains

largely unknown because detailed biochemical and structural information are missing.

However, residues in the C-terminus of Spo11 (Arora et al., 2004) and on the top sur-

face of Ski8 (Cheng et al., 2004) have been linked with the formation of the Spo11-Ski8

complex. Interestingly, a similar “moonlighting” function of Ski8 has been reported in hu-

Figure 2.7 | The crystal structure of S. cerevisiae Ski8 (1S4U, Cheng et al., 2004). The structure
is shown in top and side views that are related as indicated. One of the seven blades of the β-
propeller is indicated, as well as the location of top and bottom surfaces.
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mans. Here, the Ski8 homolog Wdr61 was shown to also participate in the Paf1 complex

that links transcription elongation with histone modification (Zhu et al., 2005).

Domain interactions within the Ski2-Ski3-Ski8 complex and with Ski7

While structural and biochemical characterization of the Ski2-Ski3-Ski8 complex is limited

to the crystal structure of Ski8, some information concerning the complex architecture

is available from yeast-two-hybrid and co-immunoprecipitation experiments (see also Fig.

2.5) (Wang et al., 2005; Brown et al., 2000). First, the interaction of Ski2 and Ski8 depends

on the presence of Ski3, consistent with the notion of Ski3 as a scaffold for the complex.

Second, the N-terminus of Ski2 (residues 1 - 279) is required and sufficient for interaction

with Ski3 in vivo (Wang et al., 2005). Third, the C-terminus of Ski3 (residues 1206 - 1432)

mediates binding to Ski8 (Wang et al., 2005). This agrees well with the observation that a

conserved hydrophobic patch on the top surface of Ski8 (Fig. 2.7) is required for interaction

with Ski3 in vivo (Cheng et al., 2004). Co-immuniprecipitation experiments indicate that

Ski7 interacts directly with Ski3 but not with Ski2 (Wang et al., 2005). The interaction

site resides in the Ski7 N-terminus (residues 1 - 96), while the Ski7 sub-N-terminus (80 -

264) mediates binding to the exosome (Araki et al., 2001).

2.4.3 Conservation of the Ski2-Ski3-Ski8 complex and Ski7 in

higher eukaryotes

The Ski2-Ski3-Ski8 complex subunits are conserved in higher eukaryotes. For instance, ho-

mologs of the yeast genes SKI2 (twister/SKI2), SKI3 (CG8777 / SKI3) and SKI8 (CG3909)

are present in flies (Seago et al., 2001; Orban and Izaurralde, 2005). These homologs ap-

pear to be functional, too. For example, the 5′ fragments generated by the RNAi silencing

mechanism in D. melanogaster are degraded by the exosome, and this pathways requries

the SKI2, SKI3 and SKI8 gene products (Orban and Izaurralde, 2005). These results in-

dicate that Drosophila SKI2, SKI3 and SKI8 are in fact orthologs of their yeast relatives,

and that the function of the Ski2-Ski3-Ski8 complex in mRNA decay may be conserved in

higher eukaryotes.

In humans, homologs of SKI2 (SKI2W), SKI3 (TTC37) and SKI8 (WDR61) exist

(Dangel et al., 1995; Lee et al., 1995), and recombinant Ski2w protein shows ATP hydrolase

(ATPase) activity in an RNA-dependent manner (Dangel et al., 1995). Another study

shows that Ski2w, Ttc37, and Wdr61 proteins form a stable complex (designated the
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“hSki” complex) in vivo in the cytoplasm and nucleus of human cells, and that the human

Ski8 homolog Wdr61 also forms part of the Paf1 complex (Zhu et al., 2005), a multi-

subunit assembly that orchestrates histone modification with transcription elongation (for

review see Tomson and Arndt, 2012). The same study also speculates that the Paf1

complex physically interacts with the hSki complex and thus links transcription elongation

to mRNA surveillance (Zhu et al., 2005).

In contrast to the core Ski complex proteins, a Ski7 homolog has not been identified

to date in higher eukaryotes. In fact, phylogenetic studies have identified Ski7 only in

the genus Saccharomyces where it appears to have emerged by a gene duplication event

from the eRF3/Hbs1 family (Atkinson et al., 2008). How the Ski2-Ski3-Ski8 complex is

recruited to the exosome in species lacking Ski7 remains unclear.

Collectively, these results from fly and human show that the Ski2-Ski3-Ski8 complex has

been conserved in higher eukaryotes. They further suggest that, despite the loss of Ski7,

the Ski2-Ski3-Ski8 complex most likely has maintained its function in mRNA turnover and

quality control during evolution and possibly gained functional plasticity.

2.5 Scope of this work

The requirement of the Ski proteins for exosome-mediated degradation of mRNAs in the

cytoplasm has been demonstrated. However, a thorough molecular understanding of the

Ski2-Ski3-Ski8 complex as well as its mode of activation of the exosome remain elusive.

No biochemical and structural information is available except for the crystal structure of

Ski8 (Cheng et al., 2004; Madrona and Wilson, 2004). The notion that Ski2 activates the

exosome by ATP-dependent remodeling of structured RNAs or RNPs lacks experimental

support and remains a hypothesis.

Thus, the present work aims to contribute to the understanding of the molecular biology

of the Ski2-Ski3-Ski8 complex in exosome-mediated mRNA decay, using a structural and

biochemical approach. Particular questions to be addressed are: What is the role of the

individual subunits within the complex? Is the helicase activity of Ski2 regulated through

its partner proteins? Can we gain mechanistic insights into interactions of RNA with the

Ski2-Ski3-Ski8 complex, Ski7 and the exosome, and can these insights help to understand

how the Ski proteins activate the cytoplasmic exosome?



3 Results

3.1 Crystal Structure of the S. cerevisiae Ski2 heli-

case

This article was published in 2012 in RNA (Issue 18(1), pages 124-134). The supple-

mental material is attached at the end of the article (pages 39-40). Figures and tables

of the manuscript are referred to by “3.1.X”, where X follows the numbering within the

manuscript.
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The crystal structure of S. cerevisiae Ski2, a DExH helicase
associated with the cytoplasmic functions of the exosome

FELIX HALBACH, MICHAELA RODE, and ELENA CONTI1

Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany

ABSTRACT

Ski2 is a cytoplasmic RNA helicase that functions together with the exosome in the turnover and quality control of mRNAs. Ski2
is conserved in eukaryotes and is related to the helicase Mtr4, a cofactor of the nuclear exosome involved in the processing and
quality control of a variety of structured RNAs. We have determined the 2.4 Å resolution crystal structure of the 113 kDa
helicase region of Saccharomyces cerevisiae Ski2. The structure shows that Ski2 has an overall architecture similar to that of
Mtr4, with a core DExH region and an extended insertion domain. The insertion is not required for the formation of the Ski2–
Ski3–Ski8 complex, but is instead an RNA-binding domain. While this is reminiscent of the Mtr4 insertion, there are specific
structural and biochemical differences between the two helicases. The insertion of yeast Mtr4 consists of a b-barrel domain that
is flexibly attached to a helical stalk, contains a KOW signature motif, and binds in vitro-transcribed tRNAi

Met, but not single-
stranded RNA. The b-barrel domain of yeast Ski2 does not contain a KOW motif and is tightly packed against the helical stalk,
forming a single structural unit maintained by a zinc-binding site. Biochemically, the Ski2 insertion has broad substrate
specificity, binding both single-stranded and double-stranded RNAs. We speculate that the Ski2 and Mtr4 insertion domains
have evolved with different properties tailored to the type of transcripts that are the substrates of the cytoplasmic and nuclear
exosome.

Keywords: RNA degradation; exosome; helicase; structure

INTRODUCTION

The exosome is a conserved and essential macromolecular
complex that degrades RNA substrates processively from
the 39 end (Mitchell et al. 1997). In the eukaryotic nucleus,
the exosome is involved in the maturation of ribosomal
RNAs, small nuclear RNAs, and small nucleolar RNAs
(Allmang et al. 1999; van Hoof et al. 2000a; Houalla et al.
2006). It functions in the turnover of pre-mRNAs and
cryptic unstable transcripts (Bousquet-Antonelli et al. 2000;
Hilleren et al. 2001; Wyers et al. 2005). It is also required in
quality-control mechanisms that target aberrant nuclear
RNAs such as hypomodified tRNAi

Met (Kadaba et al. 2004;
Vanacova et al. 2005). In the cytoplasm, the exosome is
involved in bulk mRNA turnover (Anderson and Parker
1998; van Hoof et al. 2000b) and also participates in
surveillance pathways for the degradation of aberrant
mRNAs that contain a premature stop codon (Lejeune

et al. 2003; Mitchell and Tollervey 2003; Takahashi et al.
2003; Gatfield and Izaurralde 2004) or lack one altogether
(van Hoof et al. 2002).

The 10-subunit core of the eukaryotic exosome is identical
in the nuclear and cytoplasmic compartments (for review,
see Lorentzen et al. 2008a; Lykke-Andersen et al. 2009). Nine
subunits form a barrel-like structure (Exo-9) with a prom-
inent central channel (Liu et al. 2006). The structure of Exo-
9 is similar to that of the archaeal exosome and bacterial
PNPase, but lacks the catalytic activity that is characteristic
of these prokaryotic complexes (Büttner et al. 2005;
Lorentzen et al. 2005, 2007). The nuclease activity of the
core exosome complex is conferred by the tenth subunit,
Rrp44 (Liu et al. 2006; Dziembowski et al. 2007; Lebreton
et al. 2008; Schaeffer et al. 2009; Schneider et al. 2009). Both
Rrp44 and the catalytically inactive Exo-9 subunits are
essential in yeast. The Exo-9 subcomplex modulates the
activity of Rrp44 (Liu et al. 2006; Dziembowski et al.
2007; Lorentzen et al. 2008b) and binds RNA substrates,
guiding them through the central channel to reach the
exoribonuclease active site (Bonneau et al. 2009). The Exo-9
structure is also thought to recruit peripheral factors, such as
the nuclear ribonuclease Rrp6 (Liu et al. 2006; Cristodero
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et al. 2008) and the cytoplasmic protein Ski7 in yeast (Araki
et al. 2001; Dziembowski et al. 2007).

These peripheral factors associate with the core exosome
to form an outer shell that is compartment specific (for
review, see Lebreton and Seraphin 2008). In the nucleus,
the exosome functions together with the helicase Mtr4,
which associates with a poly(A) polymerase (Trf4/Trf5)
and a zinc finger protein (Air1/Air2) to form the TRAMP
complex (LaCava et al. 2005). In the cytoplasm, the exosome
functions together with the Ski complex (Anderson and
Parker 1998). The Ski (Superkiller) proteins were originally
identified from recessive mutations that exacerbated the
‘‘killer’’ phenotype, that is, the ability of yeast strains
containing a dsRNA virus to produce a toxin that kills
other strains (Toh-E and Wickner 1979; Ridley et al. 1984;
Johnson and Kolodner 1995). These studies showed that
the Superkiller mutations resided in a helicase (Ski2), a tetra-
tricopeptide-repeat (TPR) protein (Ski3), and a WD40 pro-
tein (Ski8) in addition to the cytoplasmic 59–39 exoribonu-
clease (Xrn1). The Ski2, Ski3, and Ski8 proteins were later
found to associate in a complex in vivo (Brown et al. 2000).
The Ski complex has been implicated in many 39–59
cytoplasmic degradation pathways mediated by the exo-
some, including normal RNA turnover (Anderson and
Parker 1998; van Hoof et al. 2000b; Araki et al. 2001),
nonsense-mediated decay (Mitchell and Tollervey 2003),
nonstop decay (van Hoof et al. 2002), and RNA interfer-
ence (Orban and Izaurralde 2005). The Ski and exosome
complexes interact not only genetically, but also physically
via the yeast Ski7 protein (Araki et al. 2001).

The presence of a helicase in both the Ski and TRAMP
complexes is intriguing. These exosome-associated heli-
cases are thought to contribute to substrate recognition, to
unwind secondary structure elements in the nucleic acids,
or to remove bound proteins, and eventually to present
favorable single-stranded RNA substrates to the exosome
(Lebreton and Seraphin 2008; Houseley and Tollervey
2009). The parallel between the nuclear and cytoplasmic
regulators of the exosome is further compounded by the
fact that Ski2 and Mtr4 share significant sequence similarity
(z35% sequence identity in the predicted helicase region).
Previous structural work has shown that Mtr4 has a helicase
core similar to that found in other members of the DExH
family (Jackson et al. 2010; Weir et al. 2010), including the
archaeal DNA helicase Hel308 (Büttner et al. 2007) and the
splicing helicase Prp43 (He et al. 2010; Walbott et al. 2010).
In addition, Mtr4 features a 200 aa insertion that contains
a helical stalk and a b-barrel domain. The latter is structur-
ally and functionally similar to KOW domains, which were
shown to bind structured RNAs in ribosomal proteins
(Kyrpides et al. 1996; Selmer et al. 2006; Zhang et al.
2009). Consistently, the KOW domain of yeast Mtr4 is
required for 5.8S rRNA processing in vivo (Jackson et al.
2010) and binds transcribed tRNAi

Met in vitro (Weir
et al. 2010). Thus, the specific structural features of Mtr4

are in line with its biological functions in ribosomal RNA
processing and quality control (de la Cruz et al. 1998; van
Hoof et al. 2000a). Sequence alignments and secondary
structure predictions suggest that Ski2 has a helicase and
an insertion domain similar to those in Mtr4. However,
the potential RNA substrates that Ski2 encounters in the
cytoplasm are different from those that are recognized by
Mtr4 in the nucleus. This raises the question as to whether
Ski2 has specific features as compared with Mtr4. To address
this question, we have analyzed the structural and bio-
chemical properties of Ski2 from Saccharomyces cerevisiae.

RESULTS AND DISCUSSION

Structure determination of the 113 kDa helicase
region of yeast Ski2

To initiate the biochemical and structural characterization
of Ski2, we expressed and purified the full-length (f.l.) S.
cerevisiae ortholog (residues 1–1287) from insect cells. Ski2
is predicted to have a low-complexity N-terminal region
that has previously been shown to interact with Ski3 by
yeast two-hybrid and coimmunoprecipitation analyses
(Wang et al. 2005). Limited proteolysis of f.l. Ski2 in
combination with N-terminal sequencing and mass spec-
trometry indicated the presence of a protease-resistant frag-
ment of z113 kDa that lacked the N-terminal 295 residues
and included the predicted helicase region (data not shown).
We therefore engineered a construct of yeast Ski2 encom-
passing residues 296–1287 (designated Ski2-DN) (Fig. 1A).
Yeast Ski2-DN was obtained from expression in insect
cells and crystallized in the presence of adenosine 59-
(b,g-imido)triphosphate (AMPPNP), a nonhydrolyzable
ATP analog.

The crystal structure of Ski2-DN was solved to 2.4 Å
resolution by the multiwavelength anomalous diffraction
(MAD) method using a gold derivative (see Table 1 for data
collection and refinement statistics). The DExH helicase
core of Ski2-DN could be built and refined almost in its
entirety (with the exception of a disordered region between
residues 542 and 606) and included electron density for an
AMPPNP molecule. An additional domain could be iden-
tified that was inserted between residues 830 and 1086,
consisting of a helical part and a globular region. However,
the electron density for the globular domain, in particular,
was weak and did not allow us to trace the polypeptide
chain with an unambiguous amino acid register. The
structure of Ski2-DN bound to AMPPNP was refined to 2.4
Å resolution, with Rwork of 23.8%, Rfree of 27.5%, and good
stereochemistry (Table 1). We proceeded by engineering
and crystallizing the region corresponding to the inserted
domain (residues 835–1085, designated Ski2-insert). The
structure of Ski2-insert was determined de novo by the
single anomalous diffraction (SAD) method using a crystal
derivatized with gold. Crystals of Ski2-insert contained five

Ski2 crystal structure
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independent molecules in the asymmetric unit. After density
modification procedures, the electron density of Ski2-insert
was continuous and allowed unambiguous model building.
The structure of Ski2-insert was refined at 3.25 Å resolution,
with Rwork of 23.6% and Rfree of 25.7% (Table 1). The model
of Ski2-insert was then placed into the electron density of
Ski2-DN with relatively minor rigid-body adjustments to
give a composite model as is discussed below.

Ski2 contains a conserved DExH core

Ski2-DN contains two distinct structural features: a com-
pact DExH helicase core and an elongated insertion (Fig.
1B). The helicase core of Ski2 is similar to that previously
described for other DExH proteins, including the DNA
helicase Hel308 (Büttner et al. 2007), the splicing helicase
Prp43 (He et al. 2010; Walbott et al. 2010), and the
exosome helicase Mtr4 (Jackson et al. 2010; Weir et al.
2010). Briefly, the core consists of a circular arrangement of
two RecA domains (RecA1 and RecA2) and a helical bundle
(Fig. 1B, left). The two RecA domains contain the charac-
teristic helicase signature motifs that mediate substrate
binding and ATP hydrolysis (for review, see Pyle 2008).
Also conserved is the unwinding b-hairpin in the RecA2

domain (residues 741–752, in red in Fig. 1B). This
b-hairpin is characteristic of DExH-box helicases and
has been shown in the Hel308 structure to wedge between
the two strands of a DNA duplex that is being unwound at
the 59 end as it approaches the DExH core (Supplemental
Fig. 1A; Büttner et al. 2007).

In the AMPPNP-bound structure of Ski2-DN, the two
RecA domains face each other in a closed conformation
(Fig. 1B, left). The conformation is similar to that of other
DExH proteins determined in the presence of nucleic acids.
For instance, both RecA domains of Ski2 superpose to
those of the Mtr4–ADP–RNA structure (Weir et al. 2010),
with a root mean square deviation (RMSD) of 1.3 Å over
373 Ca atoms. The overall orientation of the two RecA
domains in Ski2 and other DExH proteins is restrained by
the interaction with the helical bundle. AMPPNP binds
between the two RecA domains with the adenosine base
sandwiched by Phe328 of RecA1 and Arg767 of RecA2
(Supplemental Fig. 1B). The phosphates of AMPPNP are
arranged around motif I in a canonical conformation, but
electron density for the g-phosphate is weak. This may
be caused by the absence of magnesium, which would be
required to properly coordinate the phosphate groups, but
was not present in the crystallization condition of Ski2-DN.

FIGURE 1. Ski2 consists of a DExH helicase core and a protruding insertion domain. (A) Schematic representation of the domain organization
of Ski2. The N-terminal low-complexity region not included in the crystal structure is indicated by a dashed box (residues 1–295 in S. cerevisiae),
and the helicase region is shown with the domains in different colors as in the crystal structure below. (B) The S. cerevisiae Ski2-DN crystal
structure (lacking the N-terminal 295 residues). This composite model was generated from the Ski2-DN and the Ski2-insert crystal structures (see
text). The two views are related by a 90° rotation as indicated. In the DExH core, the RecA domains are colored in cyan and the helical bundle
domain in light pink. The unwinding b-hairpin is highlighted in red, and AMPPNP (black) is depicted in stick representation. The stalk helices
and the b-barrel in the insertion domain are shown in blue and green, respectively. A zinc ion present in the stalk region is shown as a gray sphere.
A close-up shows the CCCH-type coordination of the zinc ion.
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An insertion domain protrudes from the Ski2
DExH core

The DExH core of Ski2 has an insertion of about 250
residues that occurs in the middle of the helical bundle
domain (Fig. 1A). The insertion forms an elongated struc-
ture that protrudes from the core, extending byz50 Å from
the unwinding b-hairpin that marks the position of the 59
end of RNA bound to the DExH core (Fig. 1B, right;
Supplemental Fig. 1A). The insertion folds into two pairs of
antiparallel helices (a1–a4 and a2–a3), which connect to
a distal b-barrel domain (Fig. 2A). The insertion is a rather
flexible feature of the structure. First, the crystallographic
temperature factors increase significantly as compared
with the core (60 Å2 for the DExH core, 120 Å2 for helices
a1–a4, 145 Å2 for helices a2–a3, and 130 Å2 for the
barrel). Second, we observe domain movements when
comparing the insertion domain in the two structures that

we determined: Superposition of the helices a1–a4 in the
Ski2-DN and Ski2-insert structures results in a rotation of
z15° in the position of helices a2–a3 and the b-barrel
(Supplemental Fig. 1C). Despite the flexibility, the elec-
tron density is well defined in the structure of Ski2-insert
(Supplemental Fig. 1D).

In contrast to the DExH core, the insertion is poorly
conserved even among yeast species (Supplemental Fig. 2).
Yet, it is a characteristic feature of exosome helicases: in
Mtr4 an insertion occurs at an equivalent position in the
sequence and with a comparable topology of secondary
structure elements (Fig. 2A,B). The structure of the helical
stalk of Ski2 is similar to that of Mtr4 in that it forms an
L-like shape with the a1–a4 and a2–a3 pairs of helices
roughly perpendicular to each other. In the case of yeast
Ski2, the two pairs of helices are connected by a zinc-
binding CCCH-type motif (Fig. 1B, right). Although no
zinc was present in the purification or crystallization

TABLE 1. Crystallographic data collection, phasing, and refinement statistics for the Ski2-DN and Ski2-insert structures

Ski2-DN (4A4Z) Ski2-insert (4A4K)

Crystal (Data set) Native Au (peak) Au (inflection) Au (remote) Native Au (peak)

Space group P212121 C2
Cell dimensions

a, b, c (Å) 82.8,118.6,
129.5

84.6, 119.8, 129.7 230.5, 123.1,
153.2

229.2, 124.9,
149.4

a, b, g (°) 90, 90, 90 90, 90, 90 90, 131.1, 90 90, 130.7, 90
Molecules/asymmetric
unit

1 5

Data collection
Wavelength (Å) 0.988 1.037 1.040 0.995 0.999 1.040
Resolution (Å) 119–2.40 120–2.80 130–2.80 130–2.80 96–3.25 96–4.2

(2.53–2.4) (2.95–2.8) (2.95–2.8) (2.95–2.8) (3.43–3.25) (4.43–4.20
Rsym 6.0 (60.0) 7.6 (58.6) 7.7 (68.8) 11.2 (102) 9.3 (66.1) 8.5 (76.9)
I/sI 17.0 (3.1) 16.5 (3.0) 16.7 (2.8) 19.2 (3.1) 8.4 (1.5) 14.8 (3.3)
Completeness (%) 99.9 (100) 100 (100) 100 (100) 100 (100) 99.6 (99.9) 99.9 (100)
Multiplicity 5.5 3.8 3.8 7.8 2.9 4.5

Phasing
Phasing Power 0.3 0.3 0.3 n.a
Mean figure of merit 0.37 0.29

Refinement
Resolution 39–2.40 57–3.25
No. unique reflection 50,434 50,773
Rwork/Rfree (%) 23.8/27.5 23.6/25.7
Real space correlation
coefficient

0.73 0.76

B-factors
Protein 66.5 113.1
Solvent 48.3 89.7

Stereochemistry
RMSD bond lengths (Å) 0.003 0.002
RMSD bond angles (°) 0.64 0.36
Ramachandran outliers (%) 0.2 0.0
Ramachandran favored (%) 96.1 97.0

The highest resolution shell is shown in parenthesis. The figure of merit numbers are given as a mean value over all resolution shells. The real-
space correlation coefficient was calculated for the final refined model against a simulated annealing composite omit map, and the
stereochemistry of the refined models was analyzed with the MolProbity webserver (Chen et al. 2010).
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FIGURE 2. The exosome helicases Ski2 and Mtr4 have a similar architecture. (A) The structure of yeast Ski2-DN as shown in Figure 1B, with the
same color scheme as in Figure 1. The close-up view shows the insertion domain with the secondary structure elements labeled. The b1–b2 loop is
highlighted in magenta. (B) The structure of yeast Mtr4-DN (pdb code 2xgj) is shown in the same orientation as Ski2-DN in A, after optimal
superposition of the DExH core. The domains in the DExH core are colored as in Ski2-DN, the stalk is shown in orange, and the b-barrel in red.
For the close-up view, the insertion domain has been reoriented as indicated so that the b-barrel is in the same orientation as the Ski2 b-barrel in
A. The b1–b2 loop in the b-barrel containing the KOW signature motif is depicted in black. (C) A structure-based sequence alignment of the
b-barrel domains of S. cerevisiae (S.c.) Ski2 and Mtr4. The secondary structure elements of Ski2 are indicated. The alignment includes Ski2
sequences from Homo sapiens (H.s.) and Drosophila melanogaster (D.m.). Conservation is indicated in shades of gray and the KOW motif of Mtr4
is indicated by a black box. Sequence conservation between Ski2 and Mtr4 is low in the insertion region and mostly restricted to structural
residues that define the b-barrel. A comprehensive sequence alignment is shown in Supplemental Figure 2.
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3.1 Crystal Structure of the S. cerevisiae Ski2 helicase 33

buffers, additional electron density is present at the center
of a coordination sphere formed by Cys861, Cys864,
Cys1054, and His1060. The density is consistent with a zinc
ion, the presence of which was confirmed by X-ray fluo-
rescence (data not shown). This zinc-binding site has
a structural role in forming the hinge region that connects
the stalk and the b!barrel domain. The four residues that
coordinate the zinc ion are conserved in Ski2 orthologs in
fungi, but not, for example, in metazoans (Supplemental
Fig. 2), where other intramolecular interactions might serve
a similar structural role.

The core structure of the b-barrel domain of Ski2 is also
similar to that of Mtr4. The corresponding b-strands
superpose with an RMSD of 2.6 Å, while the connecting
loops vary in sequence, length, and conformation. The
evolutionarily conserved residues are mostly restricted to
positions on the b-strands pointing into the hydrophobic
core (Fig. 2C). A key difference between the Ski2 and Mtr4
b-barrels is located in the loop connecting strands b1 and
b2. The b1–b2 loop of yeast Mtr4 contains a KOW-
domain signature motif (Gly686 and Lys687), a surface
feature that is characteristic of domains involved in binding
structured RNAs in ribosomal proteins such as bacterial
L24 and eukaryotic L26 (Kyrpides et al. 1996; Selmer et al.
2006; Zhang et al. 2009). The KOW motif is not present in
the corresponding b1–b2 loop of Ski2. In addition, this
loop is not accessible to solvent (Fig. 2A). The barrel and
the stalk of Ski2 interact via an extensive intramolecular
interface (Fig. 2A; Supplemental Fig. 1D), suggesting that
they form a single structural unit. These structural differ-
ences are also reflected in the biochemical properties of the
two domains: while the b-barrel of Mtr4 is stable when
expressed and purified in isolation (Weir et al. 2010), we
could only obtain expression of a soluble b-barrel-contain-
ing fragment of Ski2 when including the a2–a3 helices and
the zinc-binding site (data not shown).

The Ski2 insertion contributes to RNA binding

The overall structural similarity between the two exosome
helicases suggests that the insertion of Ski2 functions
analogously to that of Mtr4 in terms of contributing
a second RNA-binding site in addition to the one expected
in the DExH core. To experimentally test whether the Ski2
insertion participates in RNA binding, we used electropho-
retic mobility shift assays (EMSA) and compared the RNA-
binding properties of Ski2 in the presence and absence
of the insertion domain (Ski2-DN and Ski2-DN-Dinsert)
(Fig. 3A). The Ski2-DN-Dinsert mutant was engineered by
replacing residues 835–1085 with a linker sequence (Gly–
Ser–Arg–Gly) and behaved like Ski2-DN in biochemical
purifications. A single-stranded poly(A) 40-mer RNA
(ssA40) bound strongly to Ski2-DN, but markedly less well
to Ski2-DN-Dinsert (Fig. 3A, left). A similar pattern was
detected when using a double-stranded 27-mer (ds27) as

substrate (Fig. 3A, right). We conclude that the insertion
domain increases the affinity of Ski2 for RNA. Consistently,
the insertion alone (Ski2-insert, residues 835–1085) showed
robust binding to single-stranded and double-stranded
RNAs (ss40 and ds27) (Fig. 3B). The Ski2 insertion was
also able to bind unmodified tRNAi

Met in vitro (Fig. 3C),
pointing to the broad substrate-binding properties of this
domain. This contrasts to the specialized KOW domain of
Mtr4, which binds unmodified tRNAi

Met (Weir et al. 2010),
but does not show significant binding to single-stranded
RNA (Fig. 3B).

As discussed above, the KOW sequence motif is not
present in the equivalent b1–b2 loop in the Ski2-insertion.
We thus asked which surface features of the Ski2 insert are
involved in the interaction with RNA. Calculation of an
electrostatic surface potential revealed a prominent posi-
tively charged patch on the opposite side of the b1–b2
loop, stretching from the hinge region to the tip of the
domain (Fig. 3D, top). This surface patch is partly
organized by hydrogen bonds between the conserved
Arg903 and the carbonyl groups of two adjacent loops,
which are characterized by several positively charged
residues (Fig. 3D, bottom). The central arginine residue is
also present in yeast Mtr4 (Arg678), while the specific
features of the loops diverge between Ski2 and Mtr4 (Fig.
2C). To perturb the positively charged surface patch of the
Ski2 insertion, we mutated Arg903 to a glutamic acid. We
purified the Ski2-insert R903E mutant with a similar pro-
tocol as the wild-type Ski2-insert and compared their
binding properties using EMSA assays (Fig. 3E). We found
that binding to single-stranded RNA was impaired in the
Ski2-insert R903E mutant, while binding to double-
stranded RNA was not affected. These results indicate that
the charged surface patch on the Ski2 b-barrel domain is
the major binding site for single-stranded RNA. They also
suggest the presence of a different or more complex
binding site for the recognition of double-stranded RNAs.
We conclude that the insertion domain of Ski2 binds both
single-stranded and structured RNA substrates. It increases
the RNA-binding capabilities of the helicase by providing
a second interaction site in addition to that of the DExH
core.

The Ski2 insertion is not required
to form the Ski complex

We next tested whether the insertion of Ski2 is required to
mediate protein–protein interactions with the other sub-
units of the Ski complex. The core of the Ski complex is
formed by the interaction of Ski2 with a large TPR protein
(Ski3) and a small WD40 protein (Ski8). Yeast two-hybrid
and coimmunoprecipitation data suggest that the N-ter-
minal region of Ski2 mediates binding to Ski3, which in
turn interacts with Ski8 (Wang et al. 2005). In line with
these data, coexpression of f.l. Ski2, Ski3, and Ski8 in insect
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cells resulted in a stable ternary complex that eluted as
a single peak in size-exclusion chromatography (Fig. 4A).
Removal of the insertion in Ski2 did not affect complex
formation: Ski2-Dinsert comigrated with Ski3 and Ski8 in
size-exclusion chromatography (Fig. 4A). We next tested
whether the insertion of Ski2 is required to bind Ski7, an
outer-layer protein of the Ski complex that mediates the

interaction with the exosome (Araki et al. 2001; Wang et al.
2005). In in-vitro pull-down experiments with purified
proteins, f.l. GST–Ski7 efficiently precipitated both the
Ski2–Ski3–Ski8 and the Ski2Dinsert–Ski3–Ski8 complexes,
but not Ski2-insert alone (Fig. 4B). We conclude that the
Ski2 insertion domain is not required for the formation of
the Ski complex.

FIGURE 3. The insertion domain of Ski2 binds single- and double-stranded RNA substrates. (A) RNA binding to fragments of Ski2 that contain the
DExH core with and without the insertion domain (Ski2-DN and Ski2-DN-Dinsert, respectively). Electrophoretic mobility shift assays (EMSA) were
carried out with a single-stranded poly(A) 40-mer (left) or double-stranded 27-mer (right) that were labeled at the 59 end with [32P]phosphate.
Identical concentrations (0.25 mM, 0.75 mM, 2.25 mM, 6.75 mM) were used for both Ski2-DN and Ski2-DN-Dinsert and all other proteins in this
figure. (Bottom) A Coomassie-stained SDS-PAGE of the protein sample used in the corresponding lanes of the gel-shift assay. Deletion of the
insertion domain significantly decreases the affinity for single-stranded and double-stranded RNA. (B) EMSAs as described above with single-
stranded (ssA40) and double-stranded RNA (ds27) using the Ski2 insertion domain (residues 835–1085). As compared with the Mtr4 KOW domain
(residues 667–818), which fails to bind single-stranded RNA at this condition, the Ski2 insertion binds single- and double-stranded RNA with
comparable affinity. (C) EMSAs show that the Ski2 insertion binds in vitro-transcribed tRNAi

Met with an apparently comparable affinity to that for
single- or double-stranded RNA. (D) An electrostatic surface potential analysis reveals a prominent positively charged patch on the surface of the
Ski2 b-barrel. The domain is shown in a similar orientation to that used in Figure 2A, but without the a1 and a4 helices (which have been omitted
for clarity). Positive electrostatic potential is shown in blue, negative potential in red. The close-up view at bottom shows how the conserved Arg903
organizes the positively charged surface by coordinating two loops with several basic residues (indicated). The side-chains of Lys985 and Lys987 are
disordered. Hydrogen bonds are indicated by dashed lines together with distances. (E) EMSAs suggest that mutation of Arg903 to glutamic acid
impairs binding of the Ski2-insert to single-stranded RNA (A40) but does not affect interaction with double-stranded RNA (ds27).
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CONCLUSIONS

The two main regulators of exosome activity, the cytosolic
Ski and the nuclear TRAMP complexes, contain related
RNA helicases. The Ski2 and Mtr4 helicases have a similar
architecture with two distinct structural modules: a helicase
core and an insertion region. The helicase core is typical of
the DExH family of helicases, and is expected to mediate
ATP-dependent RNA unwinding and remodeling activities.
The insertion contains a long stalk and a b-barrel domain.
Removal of the insertion in Ski2 and Mtr4 does not com-
promise the formation of the respective complexes with Ski3
and Ski8 and with Trf4–Air2 (Weir et al. 2010), but sig-
nificantly reduces the RNA-binding properties of the two
helicases. The insertion domains of both Ski2 and Mtr4 bind
RNA in vitro. Their position above the entry site of the

RNA-binding channel in the helicase core suggests that they
contribute to recruiting RNA substrates to the unwinding site.

Despite these overarching similarities, the b-barrel do-
mains of Mtr4 and Ski2 have specific structural and func-
tional differences. In yeast Mtr4, the b-barrel domain has
a KOW signature motif, is involved in 5.8S rRNA maturation
in vivo (Jackson et al. 2010), binds unmodified tRNAi

Met

(Weir et al. 2010), and discriminates against single-stranded
RNA in vitro. In Ski2, the b-barrel domain does not exhibit
a preference for binding structured RNAs, but is rather
promiscuous in its RNA-binding properties. The b-barrel
of Ski2 does not contain a KOW motif in the corresponding
loop (b1–b2). Mutagenesis studies suggest that binding of
the Ski2 b-barrel to single-stranded RNA is mediated by the
opposite surface, which features several positively charged
residues. We speculate that the b-barrel domains of Ski2

FIGURE 4. The Ski2 insertion domain is not required for the protein–protein interactions of the Ski complex. (A) Analytical gel-filtration of f.l.
Ski2–Ski3–Ski8 and Ski2Dinsert–Ski3–Ski8 complexes. Both complexes were copurified and then injected on an analytical size-exclusion
chromatography column (top). Peak fractions were analyzed by SDS-PAGE (bottom). All three components comigrated in the case of both
complexes, indicating that deletion of the insertion domain of Ski2 does not impair Ski complex formation. (B) Pull-down experiments with
GST-tagged f.l. Ski7 (residues 1–747) and untagged f.l. Ski2–Ski3–Ski8 and Ski2Dinsert–Ski3–Ski8 complexes. Input samples (top) and samples
precipitated on glutathione–Sepharose beads (bottom) were analyzed by SDS-PAGE. The proteins corresponding to the bands are indicated on the
right side of both panels. Both complexes were efficiently precipitated by GST–Ski7, while the insertion alone (Ski2-insert) did not bind to the
bait. (*) A contamination in the GST–Ski7 sample.
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and Mtr4 have specialized to reflect the type of transcripts
that are presented to the exosome by the two helicases.
This specialization contributes to the differential processing
of substrates by the cytoplasmic and nuclear exosome.

MATERIALS AND METHODS

Protein purification

Ski2 full length (1–1287) and Ski2-DN (296–1287) were expressed in
Hi5 insect cells from recombinant baculoviruses. Coding sequences
including an N-terminal 6xHis-tag, followed by a 3C protease site,
were subcloned into a pFastBac1 vector (Invitrogen). Generation of
bacmids and viruses as well as protein expression was done according
to standard procedures. Cells were lysed osmomechanically after
resuspending the pellet in a buffer containing 10 mM Tris-Cl (pH
7.4), 10 mM sodium chloride, 2 mMmagnesium chloride, and 1 mM
b-mercaptoethanol. The cleared lysate was supplemented with 250
mM sodium chloride and 20 mM imidazole, and loaded on a Ni-
NTA-sepharose column. The protein was eluted by an imidazole
gradient to 300 mM, and the eluate was further purified on a heparin–
Sepharose column. The His-tag was cleaved using 3C protease. The
cleaved protein was collected as flow-through from a second Ni-NTA
column and subjected to a final size-exclusion step in 10 mM HEPES
(pH 7.4), 200 mM sodium chloride, and 1 mM b-mercaptoethanol.
Full-length Ski2–Ski3–Ski8 and Ski2Dinsert–Ski3–Ski8 complexes
were obtained by coexpression of corresponding Ski2 constructs
with full-length Ski3 and Ski8 in insect cells. Purification of com-
plexes was essentially carried out as described above.

Wild-type Ski2-insert (residues 835–1085) was cloned in a mod-
ified pBR322 vector containing an N-teminal 6xHis tag, followed by
a 3C protease site. Proteins were expressed in E. coli BL21 (DE3)
Gold pLysS at 18°C after induction with 0.1 mM IPTG. Cells were
resuspended in a buffer containing 20 mM Tris-Cl (pH 7.5), 500 mM
sodium chloride, 20 mM imidazole, and 1 mM b-mercaptoethanol,
and lysed by sonication. The soluble fraction was loaded on a Ni-
NTA column and His-tagged protein was eluted with buffer
supplemented with 300 mM imidazole and dialyzed in a low-salt
buffer for cleavage of the His-tag with 3C protease. The cleaved
protein was further purified with a Q–Sepharose column and
a final size-exclusion column in 10 mM HEPES (pH 7.5), 200 mM
sodium chloride, and 1 mM b-mercaptoethanol. The Ski2-insert
mutant R903E was purified in the same manner.

Full-length Ski7 (residues 1–747) was expressed in E. coli BL21
(DE3) Gold pLysS at 18°C from a construct containing an
N-terminal GST-tag. Cells were resuspended in a buffer containing
20 mM Tris-Cl (pH 7.4), 500 mM sodium chloride, 2 mM magne-
sium chloride, and 1 mM b-mercaptoethanol. After sonication, the
soluble lysate was bound to GSH–Sepharose beads (GE Healthcare),
washed, and eluted with loading buffer supplemented with 20 mM
glutathione. The protein was dialyzed in loading buffer containing 5
mM EDTA and subjected to size-exclusion chromatography in 20
mM Tris-Cl (pH 7.4), 200 mM sodium chloride, 2 mM magnesium
chloride, and 1 mM b-mercaptoethanol.

Crystallization

Ski2-DN was concentrated to 15 mg/mL, and AMPPNP was
added to a final concentration of 0.5 mM. Initial hits were typically

obtained in 15% (w/v) PEG 3350 and 0.1 M HEPES (pH 7.0)
by vapor diffusion experiments in sitting drops at 4°C. Iterative
microseeding in 3% (w/v) PEG 3350, 5% (v/v) ethylene glycol, and
0.1 M HEPES (pH 7.0) at a protein concentration of 20 mg/mL
improved crystal size and diffraction quality. Gold-derivatized Ski2-
DN crystals were obtained by soaking native crystals for 6 h
in mother liquor containing 10 mM gold cyanide. Prior to flash
freezing in liquid nitrogen, crystals were briefly soaked in mother
liquor that was stepwise supplemented with ethylene glycol to
a final concentration of 25% (v/v).

Crystals of Ski2-insert were grown by vapor-diffusion at 4°C in
two different conditions, resulting in the same crystal form. The
protein was concentrated to 40 mg/mL and mixed 1:1 (v/v) with
3.5 M sodium formate and 0.1 M MES (pH 6.5) (condition 1,
native data set) or with 16% (w/v) PEG 3350, and 0.14 M sodium
iodide (condition 2, derivative data set) (Table 1). Gold-derivati-
zation was carried out as described above. Prior to flash freezing in
liquid nitrogen, the crystals were briefly soaked in mother liquor
containing 25% (v/v) glycerol.

Structure solution

Data were collected at 100 K at Swiss Light Source and processed
using XDS (Kabsch 2010) and SCALA (Evans 2006). The Ski2-DN
crystals contain one molecule per asymmetric unit. Phases were
obtained with a three-wavelength multiple-anomalous disper-
sion experiment on gold-derivatized crystals. The PHENIX suite
(Adams et al. 2010) was used for substructure solution, phasing,
and density modification. An initial model was built automat-
ically with BUCCANEER (Cowtan 2006) and extended manually
in COOT (Emsley et al. 2010). Structure refinement against
native data was carried out with phenix.refine (Adams et al.
2010).

For the structure of Ski2-insert, phases were determined from
a single wavelength anomalous dispersion experiment and essen-
tially calculated as described above. Five gold-derivatization sites
were found, corresponding to five molecules in the asymmetric
unit. Density modification was carried out using fivefold non-
crystallographic symmetry averaging. The backbone was built
manually in the experimental electron density. The initial model
was extended by subsequent rounds of manual building and
refinement against the native data. The structures of Ski2-DN and
Ski2-insert were combined to a final model as outlined in the
results section. Maximum likelihood coordinate error estimates of
the final refined models were 0.76 Å for Ski2-DN and 0.94 Å for
Ski2-insert.

Electrophoretic mobility shift assays (EMSA)

Single-stranded RNA oligos were purchased (biomers.net) and
tRNAi

Met was in vitro transcribed and purified as described (Weir
et al. 2010). RNA substrates were 59-labeled with [32P]phosphate by
polynucleotide kinase treatment. Double-stranded 27-mer RNA
oligos were generated by adding a 1.2-fold molar excess of unlabeled
complementary strand to the labeled RNA oligo (59-CCCCAC
CACCAUCACUUAAAAAAAAAA-39), followed by incubation at
95°C for 5 min and annealing by slow cooling. For a typical EMSA
reaction, 0.5 pmol of substrate was mixed with the indicated
amounts of protein and 1 U of RiboLock RNase inhibitor
(Fermentas). 10x buffer was added to final concentrations of 20
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mMHEPES (pH 7.5), 50 mM potassium acetate, 5 mMmagnesium
acetate, 0.1% (v/v) NP-40, and 2 mM dithiothreitol. Reactions were
carried out in a volume of 10 mL with a final salt concentration of
75 mM sodium chloride and 50 mM potassium chloride in all
samples. Samples were incubated at 4°C for 30 min and separated
on a native 6% (w/v) polyacrylamide gel. Gels were analyzed by
phosphorimaging.

Pull-down assays

GST-tagged prey protein (4 mg) was mixed with equal molar
amounts of bait protein. Buffer was added to a volume of 200
mL and final concentrations of 10 mM HEPES (pH 7.5), 75 mM
sodium chloride, 2 mM magnesium acetate, 0.1% (v/v) NP-40, 1
mM dithiothreitol, and 12.5% (v/v) glycerol (buffer A). A total
of 40 mL of a 50% (v/v) suspension of GSH–Sepharose beads
(GE Healthcare) were added, and the reaction was incubated
for 30 min at 4°C. Beads were washed three times with buffer
A before eluting the precipitated protein. Samples were ana-
lyzed on a 4%–12% (w/v) Bis-Tris polyacrylamide gradient gel
(Invitrogen).

DATA DEPOSITION

The coordinates and the structure factors have been deposited in
the Protein Data Bank with accession codes 4a4z (Ski2-DN) and
4a4k for (Ski2-insert).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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We thank Jérôme Basquin, Karina Valer-Saldaña, and Sabine
Pleyer at the MPI-Martinsried crystallization facility, and the
staff of the PX beamlines at the Swiss Light Source (Villigen) for
assistance during data collection. We also thank Peter Brick and
members of our laboratory for suggestions and critical reading
of the manuscript. This study was supported by the Boehringer
Ingelheim Fonds to F.H.; by the Max Planck Gesellschaft, the
Sonderforschungsbereich SFB646, the Gottfried Wilhelm Leib-
niz Program of the Deutsche Forschungsgemeinschaft (DFG),
and the Center for Integrated Protein Science Munich (CIPSM)
to E.C.

Received July 27, 2011; accepted October 25, 2011.

REFERENCES
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SUMMARY

The Ski complex is a conserved multiprotein assem-
bly required for the cytoplasmic functions of the
exosome, including RNA turnover, surveillance, and
interference. Ski2, Ski3, and Ski8 assemble in a
tetramer with 1:1:2 stoichiometry. The crystal struc-
ture of an S. cerevisiae 370 kDa core complex shows
that Ski3 forms an array of 33 TPRmotifs organized in
N-terminal and C-terminal arms. The C-terminal arm
of Ski3 and the two Ski8 subunits position the heli-
case core of Ski2 centrally within the complex,
enhancing RNA binding. The Ski3 N-terminal arm
and the Ski2 insertion domain allosterically modulate
the ATPase and helicase activities of the complex.
Biochemical data suggest that the Ski complex can
thread RNAs directly to the exosome, coupling the
helicase and the exoribonuclease through a contin-
uous RNA channel. Finally, we identify a Ski8-binding
motif common to Ski3 and Spo11, rationalizing the
moonlighting properties of Ski8 in mRNA decay and
meiosis.

INTRODUCTION

RNA degradation is involved in the processing, turnover, and
surveillance of virtually all RNAs in eukaryotic cells and is thus
a central process for gene expression (reviewed in Houseley
and Tollervey, 2009). A conserved multiprotein complex, the
exosome, is the main nuclease that degrades RNAs in the
30-to-50 direction (reviewed in Lebreton and Séraphin, 2008;
Lykke-Andersen et al., 2009). The 400 kDa core complex of the
eukaryotic exosome is formed by ten subunits (Exo-10) (Mitchell
et al., 1997). Nine subunits are catalytically inert (Dziembowski
et al., 2007; Liu et al., 2006) but form a conserved channel that
threads single-stranded RNA substrates to the processive
exoribonuclease in the complex, Rrp44 (Bonneau et al., 2009;
Makino et al., 2013; Wasmuth and Lima, 2012). All Exo-10
subunits are essential in yeast and form a stable assembly
present in both the nucleus and the cytoplasm (Allmang et al.,
1999; Mitchell et al., 1997).

Auxiliary factors have been identified that bind and regulate
the exosome in a compartment-specific manner (reviewed in
Houseley et al., 2006; Lebreton and Séraphin, 2008; Lykke-
Andersen et al., 2009; Vanacova and Stefl, 2007). Among these,
important exosome regulators are RNA helicases that are
specifically localized either to the cytoplasm (Ski2) (Anderson
and Parker, 1998; Brown et al., 2000) or to the nucleus (Mtr4)
(de la Cruz et al., 1998). Ski2 and Mtr4 share a similar overall
fold (Halbach et al., 2012; Jackson et al., 2010; Weir et al.,
2010) and are also similar in that they participate in protein
complexes. Mtr4 functions both in isolation and in the context
of the TRAMP complex (LaCava et al., 2005; van Hoof et al.,
2000a; Vanácová et al., 2005; Wyers et al., 2005). Ski2 asso-
ciates with Ski3 and Ski8 to form the so-called Ski complex
(Anderson and Parker, 1998; Brown et al., 2000).
The Ski complex is evolutionarily conserved and has been

shown to participate in many cytoplasmic pathways of the exo-
some in both yeast and metazoan cells, including 30-to-50 mRNA
turnover (Anderson and Parker, 1998; Araki et al., 2001; van Hoof
et al., 2000b), nonstop decay (van Hoof et al., 2002), nonsense-
mediated decay (Mitchell and Tollervey, 2003), and RNAi (Orban
and Izaurralde, 2005). In S. cerevisiae, SKI2, SKI3, and SKI8
mutants are synthetically lethal with a deletion of SKI1/XRN1
(Anderson and Parker, 1998; Johnson and Kolodner, 1995), the
50-to-30 exoribonuclease that operates redundantly with the
exosome (Garneau et al., 2007). An additional protein, Ski7,
physically links the Ski and exosome complexes (Araki et al.,
2001). Interestingly, genetic data indicate that Ski8 is unique
among all Ski proteins in that it also moonlights in a separate
process: meiotic DNA recombination (Arora et al., 2004).
The Ski complex is predicted to harbor a single enzymatic

activity embedded in the helicase core of Ski2. Ski3 and Ski8
contain tetratricopeptide repeats (TPRs) and WD40 repeats,
respectively. These structural motifs typically mediate protein-
protein interactions (D’Andrea and Regan, 2003; Stirnimann
et al., 2010). Native mass spectrometry analysis has revealed
that the endogenous complex from yeast contains one copy of
Ski2 and Ski3 and two copies of Ski8 (Synowsky and Heck,
2008). How and why the Ski complex is organized in a 1:1:2 stoi-
chiometry and why Ski2 interacts with Ski3 and Ski8 to perform
its functions are unknown. In addition, it remains unclear how the
Ski complex cooperates with the exosome. In this manuscript,
we report a combination of biochemical and structural studies
that address these questions.
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RESULTS AND DISCUSSION

Ski3 and Ski8 Modulate the Biochemical Properties
of Ski2
S. cerevisiae Ski2 is a 146 kDamultidomain protein. The N-termi-
nal region is required and sufficient for the interaction with Ski3
and Ski8 in vivo (Wang et al., 2005). The C-terminal helicase
region contains the catalytic core typical of the DExH family of
RNA-dependent ATPases as well as an insertion domain with
RNA-binding properties (Halbach et al., 2012) (Figure 1A). Ski3
is a 164 kDa protein with 24 predicted TPRs, as estimated by
profile-based sequence analysis (Karpenahalli et al., 2007).

Ski8 folds into a b propeller protein of 44 kDa formed by seven
WD40 repeats (Cheng et al., 2004; Madrona and Wilson, 2004).
To investigate whether the enzymatic properties of Ski2 are
modulated by binding to Ski3 and Ski8, we purified recombinant
S. cerevisiae Ski2 and Ski2-Ski3-Ski8 (hereafter referred to as
Ski2-3-8) from baculovirus-infected insect cells. Notably, the
Ski complex could only be purified by coexpression because
Ski3 proved to be insoluble when expressed in isolation.
We characterized the ATPase activity of Ski2 using a spectro-

photometric enzyme-coupled assay (Bradley and De La Cruz,
2012). As expected for an RNA-dependent ATPase, Ski2 was
inactive in the absence of RNA (kcat < 0.007 s!1) but showed

Figure 1. Ski3 and Ski8 Modulate the RNA-Binding and ATPase Properties of Ski2
(A) Domain structure of the subunits of the S. cerevisiae Ski complex is presented. The N-terminal region of Ski2 is shown in orange, the helicase region in yellow,

and the insertion domain in yellow dashes. Ski3 is in bluewith the individual TPRmotifs indicated as boxes. Ski8 is colored green, and rounded rectangles indicate

the WD40 motifs. Residue numbers and domain boundaries are derived from the structural analysis reported here.

(B) ATPase activity of the indicated samples was measured using a coupled enzyme assay. Initial ATPase rates (mole of ADP produced per second and per mole

of Ski2) are plotted against the ATP concentration (top). Protein and U25 RNA concentrations were 30 nM and 0.5 mM, respectively. Data were fitted according to

Michaelis-Menten kinetics, and the derived kinetic parameters are shown in the table in the lower panel. Error bars represent ± 1 SD from three independent

experiments. n.a., not applicable.

(C) RNase protection patterns of Ski2 and Ski2-3-8 are shown. A single-stranded C(*UC)28 RNA internally labeled with 32P at the uridine a-phosphate was

incubatedwith proteins and nucleotides as indicated and treatedwith RNase A/T1, and the reaction products were analyzed by denaturing PAGE. RNA fragments

of 9 to 10 nt length accumulated in the presence of ADP-beryllium fluoride with the Ski2-3-8 complex but not with Ski2 in isolation. The human Upf1 helicase was

included as a control (Chakrabarti et al., 2011). MW, molecular weight.
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ATPase activity in the presence of a U25 RNA oligo (kcat !3 s"1)
(Figure 1B). These values are comparable to those previously
reported for the Mtr4 helicase using a similar assay (Bernstein
et al., 2010). When in complex with Ski3 and Ski8, the ATPase
rate of Ski2 decreased 5-fold, whereas the KM for ATP remained
essentially unchanged (Figure 1B). The ATPase activity of the
Ski2-3-8 complex was abolished by a single-point mutation in
the Ski2 DExH core (Glu445 to Gln), confirming that the catalytic
site resides exclusively in Ski2 (Figure 1B). We conclude that
Ski2 is a less efficient ATPase when bound to Ski3 and Ski8.

We next employed RNase protection assays to investigate the
extent of RNA-protein interactions. Protein samples incubated
with an internally labeled single-stranded C(*UC)28 RNA oligo
were treated with RNase A/T1, and the protected RNA fragments
were analyzed by denaturing PAGE. No RNase protection was
observed with Ski2 in isolation, neither in the presence nor in
the absence of ATP analogs (Figure 1C, lanes 4 and 5). In the
case of Ski2-3-8, fragments of 9 to 10 nt accumulated in the
presence of nucleotide analogs that mimic the ground state
of the ATPase reaction (ADP-beryllium fluoride, Figure 1C,
compare lanes 6 and 7). We conclude that the association with
Ski3 and Ski8 stabilizes RNA binding to Ski2. The finding that
Ski3 and Ski8 increase RNA binding and decrease the ATPase
activity of Ski2 suggests that, in addition to theN-terminal region,

the helicase core of Ski2 is also involved in and/or regulated
by the association with Ski3 and Ski8. To understand the under-
lying mechanisms, we determined the crystal structure of a core
Ski complex.

Overall Structure of the Yeast Ski2Dinsert-3-8 Complex
Attempts to crystallize the full-length yeast Ski complex were
not successful. We had previously reported that the flexible
insertion domain of Ski2 is dispensable for formation of Ski2-3-
8 (Halbach et al., 2012). Removal of this domain (residues
835–1,085 replaced by a Gly-Ser-Arg-Gly linker, designated
Ski2Dinsert) enabled us to obtain crystals of the complex suitable
for structure determination. The structure of Ski2Dinsert-3-8
was determined at 3.7 Å resolution using selenomethionine-
based single-wavelength anomalous diffraction (SAD) com-
bined with molecular replacement (using the coordinates of
Ski2DN-Dinsert [Halbach et al., 2012] and of Ski8 [Cheng et al.,
2004]). Despite the moderate resolution, we could build and
refine the structure to an Rfree of 26.5% and an Rwork of 23.1%,
with good stereochemistry (Table 1). The accurate tracing of
the polypeptide chains was aided by a combination of factors:
the quality of the electron density map after averaging and B fac-
tor sharpening (DeLaBarre and Brunger, 2006), the position of
the labeled methionines as sequence markers, and the regular
topology of TPRs (Figure S1A available online). The atomic
models of the two Ski2Dinsert-3-8 complexes present in the
asymmetric unit of the crystals include essentially the complete
polypeptides. Notable exceptions are two long (and poorly
conserved) loops in Ski3 and Ski2 (residues 340–398 and
residues 542–606, respectively) and the linker between the
N-terminal and helicase regions of Ski2 (residues 207–300),
which were either disordered or partially built as a polyalanine
model (Figure S1B).
The crystal structure of Ski2Dinsert-3-8 reveals a tetrameric

assembly, with one molecule of Ski2 and two molecules of
Ski8 arranged around Ski3 (Figure 2A). Ski3 forms a TPR
solenoid consisting of two arms of similar length (!140 Å) and
roughly perpendicular to each other, resulting in an L-shaped
molecule. The N-terminal region of Ski2 wraps around the
C-terminal arm of Ski3. The helicase region of Ski2 docks to a
central surface of Ski3 and contacts both molecules of Ski8.
One Ski8 subunit has an outer, peripheral position in the complex
(hereby referred to as Ski8OUT), whereas the other Ski8 subunit
is located more centrally within the complex (referred to as
Ski8IN) (Figure 2A).

Ski3 Is a Solenoid of 33 TPR Motifs and Forms
the Scaffold of the Ski Complex
Canonical TPR motifs consist of 34 residues with a character-
istic pattern of small and large hydrophobic side chains
(Hirano et al., 1990; Sikorski et al., 1990). TPRs fold into two
antiparallel a helices (termed A and B) and usually occur in
arrays of up to 16 repeats (Das et al., 1998). Consecutive
repeats typically pack side-by-side with an !50# rotation,
giving rise to superhelical solenoids with a concave and a
convex surface. The Ski2Dinsert-3-8 crystal structure reveals
that the entire polypeptide chain of Ski3 forms an array of
33 contiguous TPR motifs. Nevertheless, the N-terminal and

Table 1. Data Collection and Refinement Statistics for Native and
Selenomethionine-Substituted Ski2Dinsert-3-8 Crystals

Data Set Native SeMet (Peak)

Space group P212121 P212121

Cell dimension a (Å) 183.4 184.0

Cell dimension b (Å) 200.4 200.0

Cell dimension c (Å) 340.2 341.2

Molecules/asymmetric unit 2 2

Data Collection

Wavelength (Å) 0.9788 0.9788

Resolution (Å) 3.7 (3.9–3.7) 4.6 (4.85–4.6)

Rmerge 0.14 (0.91) 0.21 (1.27)

I/sI 5.8 (1.4) 19.6 (4.5)

Completeness (%) 99.1 (99.2) 100 (100)

Multiplicity 3.3 26.0

CC1/2 0.99 (0.46) 1.0 (0.92)

Refinement

Number of unique reflections 132,408

Rwork/Rfree (%) 23.1/26.5

Average B factors (Å2) 116.8

Number of atoms (nonhydrogen) 43,020

Stereochemistry

Rmsd bond lengths (Å) 0.005

Rmsd bond angles (#) 0.81

Ramachandran outliers (%) 0.3

Ramachandran favored (%) 95.5

Values for the highest-resolution shell are given in parentheses. Structure

validation was carried out using MolProbity (Chen et al., 2010). See also
Figure S1.
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C-terminal arms of this solenoid have different structural and
functional characteristics.
The N-terminal arm of Ski3 encompasses TPRs 1–10 and

points into solution (Figures 2A and 2B, left). This part of the
molecule contains noncanonical repeats, featuring a split B helix
(TPRs 4 to 5) or large interrepeat angles (TPRs 6 to 7) (Figure 2C).

TPRs 4–7 disrupt the regular stacking of the flanking canonical
repeats (TPRs 1–3 and 8–10). This arrangement generates
an overall extended structure with significant flexibility. Super-
position of the two independent copies of the complex in the
asymmetric unit of the crystals shows movements of the
N-terminal arm of up to 20 Å (Figure S2A), whereas the rest of

Figure 2. The Ski Complex Is a Tetramer Organized around the TPR Protein Ski3
(A) The crystal structure of the S. cerevisiae Ski2Dinsert-3-8 complex is shown in side, front, and back views. The N-terminal and helicase regions of Ski2 are

colored in orange and yellow, respectively. Ski3 is depicted in blue and the two Ski8 subunits in green (Ski8OUT is in dark green; Ski8IN is in light green). The N- and

C-terminal arms of Ski3 are indicated. Structures in this and all other figures were generated using the program PyMOL (Schrödinger, 2010).

(B) Ski3 contains 33 TPRs and can be subdivided into an N-terminal arm (TPRs 1–10, left) and a C-terminal arm (TPRs 11–33, right). Individual TPR motifs are

numbered from the N to theC terminus, and the A andB helices of each repeat are colored in blue and cyan, respectively. Elements other than TPRs (the four-helix

insertion in TPR 20 and the C-terminal-capping helix) are shown in gray.

(C) A schematic shows the topology of the secondary structure elements in Ski3 (colored as in B). Interfaces to other subunits are mapped to the individual TPRs

by half-circles that are colored as established above.

See also Figure S2.
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Figure 3. Interactions of the N-Terminal and Helicase Regions of Ski2 with Ski3 and Ski8
(A) A cartoon of the domain organization in the Ski2 N-terminal region is illustrated. Four separate segments (anchor, inner, RG, and outer segments) have been

identified from the structure. Secondary structure elements are indicated as cylinders (a helices) or arrows (b strands).

(B–E) Close-up views of the four segments in the N-terminal region of Ski2 and their interactions with Ski3, Ski8IN/Ski8OUT, and the helicase core of Ski2 are

shown. The central panel shows the position of the individual close-up viewswithin the complex. For clarity, only the directly involved regions of themolecules are

(legend continued on next page)
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the complex remains rigid. The N-terminal arm of Ski3 is not
involved in interactions with Ski2Dinsert or Ski8 (Figure 2A). Never-
theless, TPRs 1–3 feature a prominent cluster of conserved
positively charged surface residues (Figure S2B), pointing to a
potential functional site.
The C-terminal arm of Ski3 consists of TPRs 11–33 and a

single C-terminal capping helix that stacks against TPR 33
(Figure 2B, right panel, and Figure 2C). The C-terminal arm is
built exclusively from canonical TPR motifs and adopts a super-
coiled conformation with three and a half superhelical turns.
An atypical structural feature is a yeast-specific intrarepeat
insertion at TPR 20 (residues 871–913), which folds into four
helices that pack against the outer surface of the solenoid. The
C-terminal arm of Ski3 provides the binding sites for Ski2Dinsert,
Ski8IN, and Ski8OUT (Figure 2A).

The N-Terminal Region of Ski2 Winds into and around
the C-Terminal Arm of Ski3
The N-terminal region of Ski2 (residues 1–300) interacts with
TPRs 12–33 of Ski3, stretching over a distance of about 130 Å
and burying a surface of about 6,200 Å2 (Figures 2A and 2C).
This region contains four Ski3-interacting segments that we
refer to as the Ski2 ‘‘anchor,’’ ‘‘inner,’’ ‘‘RG,’’ and ‘‘outer’’ seg-
ments (Figure 3A). The anchor segment of Ski2 (residues 1–40)
forms an a helix (H1) that complements the single C-terminal
capping helix of Ski3, creating a pseudo-TPR motif (Figure 3B).
The anchor segment also contacts the Ski8IN subunit, mainly
via polar interactions. Next, the inner segment of Ski2 (residues
41–128) binds at the concave surface of Ski3, spanning three
superhelical turns with extensive interactions (Figure 3C). The
inner segment is mostly inaccessible to solvent and forms an
integral part of the hydrophobic core of Ski3. Within this
segment, helices H2 and H3 dock to the groove of TPRs
26–31, helix H4 binds in the groove of the adjacent TPRs 20–
25, and the b hairpin winds through TPRs 15–19. Consistently
with the important role of the last superhelical turn of Ski3 in
binding the anchor and inner segments of Ski2 in the structure,
deletion of a region of Ski3 that with hindsight corresponds
to TPRs 28–33 was shown to cause lethality in a yeast strain
lacking XRN1 (Wang et al., 2005).
The following RG segment of Ski2 (residues 129–164) lacks

secondary structure elements but adopts a globular fold (Fig-
ure 3D). In contrast to the rest of the N-terminal region of Ski2,
the RG segment is well conserved, particularly at an Arg-Gly
sequence motif (residues 149–150, see below). This segment
wedges in the groove between TPRs 17 to 18 and 22–23 of
Ski3 and also contacts the helicase region of Ski2. The RG
segment is thus sandwiched between Ski3 and the Ski2 helicase
core. Finally, the outer segment of Ski2 (residues 165–300) folds
into four helices (H5–H8) that bind the convex surface of the
Ski3 superhelix, traversing the superhelical groove between
TPRs 15 and 21 (Figure 3E). This segment is exposed to solvent
and was generally poorly defined in the electron density (Fig-

ure S1B). Although the outer segment is variable in sequence,
the corresponding binding surface of Ski3 is well conserved (Fig-
ures 3E and S3A). Other conserved hot spots on the C-terminal
arm of Ski3 mediate binding to the helicase region of Ski2 (Fig-
ures S3A and S3B).

The Ski2 Helicase Core Is Centrally Positioned by
Extensive Contacts to Ski3 and Ski8
In the structure, the last residue of the Ski2 N-terminal region is
about 60 Å apart from the first residue of the Ski2 helicase region,
separated by a disordered linker. The helicase region of Ski2
contains two RecA domains and a helical domain (Figures 1A
and 2A) that are characteristic of the DExH family of helicases.
Briefly, the RecA1 and RecA2 domains face each other, juxta-
posing the motifs that mediate RNA binding and ATP hydrolysis
(Figure S3C) (Pyle, 2008). The helical domain flanks RecA1 and
RecA2, creating an overall globular structure with a central
RNA channel. The global conformation of the domains and the
local conformation of the active site motifs are essentially the
same in comparison to the other DExH structures (Halbach
et al., 2012; Jackson et al., 2010; Weir et al., 2010), superposing
with a root-mean-square deviation (rmsd) of less than 1.6 Å over
more than 80% of the Ca atoms (Figure S3C).
The helicase region of Ski2 makes extensive contacts with

Ski3 and Ski8 via the RecA1 and helical domains, whereas the
RecA2 domain is mostly exposed to solvent (Figure 2A, left,
and Figure 2C). RecA1 binds the Ski8IN subunit and TPRs 16
to 17 of Ski3 (Figures 2C and 3D). The helical domain of Ski2
binds Ski8IN, Ski8OUT, and TPRs 23 to 24 of Ski3. Both the
RecA1 and the helical domains pack against the RG segment
of Ski2. Thus, the helicase region of Ski2 is positioned centrally
in the complex by contacts with the N-terminal region of Ski2,
with Ski3 and the two Ski8 subunits. Ski8IN and Ski8OUT

contribute more than 60% of the buried surface area of the
DExH core (!2,400 Å2 in total).

The Two Ski8 Subunits Recognize Two Separate
Q-R-x-x-F Motifs in Ski3
The structures of Ski8IN and Ski8OUT in the complex and of Ski8
in isolation (Cheng et al., 2004; Madrona and Wilson, 2004) are
nearly identical, with the exception of an acidic loop (residues
332–356) that adopts different conformations. The Ski8 b propel-
ler has the characteristic top, side, and bottom surfaces ofWD40
domains (Stirnimann et al., 2010). Ski8IN interacts at the top with
Ski3 TPR 33 and the Ski2 N-terminal region and at the side with
the Ski2 helicase region and TPRs 19 and 26 of Ski3 (burying
!1,000 Å2 of surface area) (Figures 2A and 2C). Ski8OUT interacts
at the top with TPR 31 of Ski3 and at the side with the Ski2
helicase region (!400 Å2 buried surface). Remarkably, the
A helices of TPRs 31 and 33 both contain a Q-R-x-x-F motif
(x being any amino acid and F being an aromatic residue) that
binds the top surfaces of Ski8OUT and Ski8IN with similar inter-
actions (Figures 4A and 4B). The glutamine and arginine residues

shown in each panel, and only selected elements are labeled. In (D), the helicase core of Ski2 is shown in surface representation, with the light and dark green

colors representing the areas of Ski2 that interact with the inner and outer Ski8 subunits. In (E), Ski3 is shown as a surface representation colored according to

sequence conservation (dark blue indicates conserved residues; light blue represents variable residues).

See also Figure S3.
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Figure 4. The Two Ski8 Subunits Bind to Two Separate Q-R-x-x-F Motifs in Ski3
(A) Superposition of Ski8IN (light green) and Ski8OUT (dark green) with their respective binding regions in Ski3 (TPRs 32 and 33 indicated in light blue, and TPRs 30

and 31 in dark blue) is shown. The top and bottom surfaces of the b propeller are indicated. The close-up view in the right panel shows how each Ski3 Q-R-x-x-F

motif is recognized by Ski8.

(B) Alignment of Q-R-x-x-F motifs (boxed in magenta) from representative Ski3 sequences is shown. Residue numbers are indicated, and conservation is

given in shades of gray (black indicates conserved; white represents variable). The alignment includes the Q-R-x-x-F motif present in the Ski8-binding protein

Spo11.

(C) RNase protection assay with complexes containing structure-based mutants in Ski3 (Ski3DOUT) or Ski2 (Ski2Dinsert) as described in the text. The assays were

carried out as described in Figure 1C. Lane 5 shows a molecular weight marker. See also Figure S4.

(legend continued on next page)
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of the motifs form polar and electrostatic contacts with specific
loops of Ski8. The aromatic residue of the motif inserts into the
central hydrophobic cavity at the top of Ski8. Consistent with
the structure, mutation of nonpolar amino acids that line the
central cavity in Ski8 has previously been shown to abolish the
interaction with Ski3 in vivo (Cheng et al., 2004).
Site-directed mutagenesis has shown that the hydrophobic

top surface of Ski8 mediates binding not only to Ski3 but
also to Spo11 (Cheng et al., 2004). Spo11 is a nuclear topoisom-
erase-like protein and interacts with Ski8 to initiate double-
strand breaks during meiotic recombination (Arora et al., 2004).
Mutations in Spo11 have been identified that impair the interac-
tion with Ski8 in vivo (Gln376 or Arg377/Glu378) (Arora et al.,
2004). Strikingly, these residues map to a Q-R-x-x-F motif in
the C terminus of Spo11 (residues 376–380) (Figure 4B). Homol-
ogy modeling of yeast Spo11 based on the similarity with an
archaeal topoisomerase of known structure (Bergerat et al.,
1997; Nichols et al., 1999) predicts that the Q-R-x-x-F motif is
part of an a helix that aligns remarkably well to the corresponding
Ski8-bindingmotifs of Ski3 (Figure S4A). Ski8 is therefore likely to
recognize Ski3 and Spo11 by a similar mechanism.

The Ski8 Subunits Contribute Differently to the
Structure and Activity of the Ski Complex
To assess the relative contributions of the inner and outer Ski8
subunits in the Ski complex, we engineered mutations in the
two Q-R-x-x-F motifs of Ski3. These mutants are predicted to
impair the binding to either Ski8IN (Ski3 Q1412A/R1413D/
F1416D mutant, referred to as Ski3DIN) or to Ski8OUT (Ski3
Q1361A/R1362D/Y1365D mutant, Ski3DOUT). Coexpression of
Ski2, Ski3DIN, and Ski8 resulted in an insoluble sample, reflecting
an important role of the inner subunit for the structural integrity of
the complex. In contrast, coexpression of Ski2, Ski3DOUT, and
Ski8 yielded a soluble complex that lacked a significant amount
of Ski8 as compared to wild-type Ski2-3-8 (Figure S4B), con-
sistent with the dissociation of Ski8OUT. In RNase protection
experiments, Ski2-3DOUT-8 impaired the accumulation of the
9 to 10 nt RNA fragments characteristic of the wild-type com-
plex (Figure 4C). We conclude that the outer Ski8 subunit is not
essential for the structural integrity of the complex but plays an
important role in vitro in modulating the RNA-binding properties
of Ski2.
To analyze the effect of the Ski3DOUT mutation in vivo, we inte-

grated wild-type SKI3 or ski3DOUT as C-terminal EGFP fusions
at the endogenous locus in a W303 diploid yeast strain in which
one of the chromosomal copies of SKI3 had been deleted. To
assess growth defects in the absence of XRN1, we also gener-
ated an XRN1/xrn1D diploid strain. After sporulation and tetrad
dissection, haploids were mated accordingly to generate ski3D/
xrn1D, ski3DOUTEGFP/xrn1D, and SKI3-EGFP/xrn1D strains
(Figures 4D, S4C, and S4D). Consistent with previous reports,
deletion of XRN1 resulted in a slow growth phenotype (SKI3/

xrn1D, Figure 4D), and disruption ofSKI3 and XRN1was synthet-
ically lethal (ski3D/xrn1D, Figure 4D) (Johnson and Kolodner,
1995; Larimer and Stevens, 1990). In the ski3DOUT-EGFP/xrn1D
strain, the mutant protein was expressed at levels comparable
to wild-type Ski3-EGFP as judged by western blot (Figure 4E),
but cells showed a synthetic growth defect (Figure 4D). We
conclude that Ski8OUT has an important physiological function.
In the structure, Ski8OUT contacts the helical domain of Ski2.
We tested the effect of disrupting another contact to the helical
domain of Ski2 by engineering a mutation in Ski3 at TPRs 23
to 24 (P1050R, Q1046A, H1078A, Ski3DExH). A ski3DExH/xrn1D
strain generated as described above had a severe growth
defect, similar to ski3DOUT-EGFP/xrn1D and to ski3D/xrn1D (Fig-
ures 4D and S4C). These results suggest that the interaction
and/or position of the ATPase core of Ski2 on the Ski3-Ski8
scaffold is important for function.

Ski8 and the Ski3 C-Terminal Arm Extend the
RNA-Binding Path of Ski2
To understand the contribution of the Ski proteins to RNA bind-
ing, we extrapolated the RNA-binding path of the helicase in the
complex using the available structural information. The structure
of Ski2Dinsert-3-8 was superposed with those of Ski2DN bound to
AMPPNP (Halbach et al., 2012) andMtr4DN bound to ADP and an
A5 RNA oligo (Weir et al., 2010), resulting in a compositemodel of
the full-length Ski complex (Figure 5A). As in Mtr4, RNA is ex-
pected to enter the helicase at the top of the DExH core (near
the insertion domain, Figure 5A, panel 1), to span the internal
channel between the RecA and helical domains (Figure 5A, panel
2), and to exit with the 30 end at the bottom of the DExH core (Fig-
ure 5A, panel 3). The composite model shows that the 50 end of
the RNA is accessible to solvent, whereas the 30 end is buried
(Figure 5A, panels 1 and 3). The RG segment of Ski2 packs below
RecA1 (Figure 5A, panel 2), with the RG motif pointing into the
RNA exit channel. The conserved RG loop is positioned adjacent
to the canonical motifs that line the RNA path in the helicase
region (Figures 5A, panel 2, and Figure S5A). Ski3 and Ski8IN
are placed below Ski2, effectively extending the internal channel
(Figure 5A, panel 3). Thus, the RG segment of Ski2, Ski3, and
Ski8IN appears to cooperatively form an exit site for the RNA 30

end that emerges from the DExH core of Ski2, rationalizing the
stabilization of RNA binding upon complex formation (Figure 1C).
In contrast, Ski8OUT is far from the RNA-binding path, suggesting
that its contribution to RNA binding is indirect.

The Ski2 Insertion and the Ski3 N-Terminal Arm
Allosterically Regulate Ski2 Helicase Activity
Upon assaying the biochemical properties of the Ski complex,
we found that removal of the insertion domain of Ski2 resulted
in a significant increase of both ATPase and helicase activities
as compared to the wild-type Ski2-3-8 complex (Figures 5B,
5C, and S5B). In the case of Ski2 in isolation, however, the

(D) Growth assay of wild-type and mutant yeast strains is shown. Endogenous SKI3 was replaced by wild-type or mutant SKI3-EGFP fusions in a strain where

endogenous XRN1 was present (top) or deleted (bottom). All strains (except wild-type) also carried an XRN1-URA3 plasmid. For the growth assay, cells were

grown to early exponential phase and spotted in serial dilutions onto 5-fluoroorotic acid (5-FOA) medium or control plates. Medium containing 5-FOA selects for

cells that have lost the URA3-XRN1 plasmid. For controls and yeast strains, see Figures S4C and S4D. SC, synthetic complete medium; URA, uracil.

(E) EGFP-tagged proteins were enriched by immunoprecipitation from soluble lysate of the yeast strains shown in (D) and analyzed by anti-GFP western blotting.
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insertion domain did not significantly alter the rate of ATP hydro-
lysis (Figures 5B and S5B). These data suggest that binding of
Ski3 and/or Ski8 modulates the effect of the insertion domain
on Ski2. The model of the full-length Ski complex suggests
that the insertion domain of Ski2 is juxtaposed to the N-terminal
arm of Ski3 (Figure 5A, panel 1). These two domains are
predicted to reside above the RNA entry site of the DExH core
and would thus be in a favorable position to modulate the
helicase. To test a possible effect of the N-terminal arm of
Ski3 on helicase activity, we purified a Ski complex containing
the Ski2 insertion domain but lacking the ten N-terminal TPRs
(residues 1–487) (Figure S5C). Although the Ski3 N terminus
is not required to bind to Ski7 nor for complex formation,
its removal resulted in a significant increase in the helicase and
ATPase activities of the Ski complex, comparably to the effect
observed with the Ski2Dinsert-3-8 complex (Figures 5B, 5C,
and S5B).

The insertion domain of Ski2 is essential for exosome-medi-
ated functions in yeast (Klauer and vanHoof, 2013).We therefore
assessed the importance of the N-terminal arm of Ski3 in vivo.
Reasoning that the first three TPR motifs of Ski3 contain a
conserved surface patch (Figure S2B) and are predicted from
the composite model to approach the globular domain of the
Ski2 insertion (Figure 5A, panel 1), we deleted a small region of
the N-terminal arm encompassing residues 1–160 (Ski3D160). A
ski3D160/xrn1D strain generated as described above impaired

growth (Figures 4D and S4C). The effect was not as severe as
in the case of mutations in the C-terminal arm but appears to
be specific because the mutant protein was present at a level
comparable to the Ski3-EGFP knockin (Figure 4E). We conclude
that the N-terminal arm of Ski3 cooperates with the insertion
domain of Ski2 to allosterically regulate the helicase activity of
the complex. Notably, the insertion domain of the related nuclear
helicaseMtr4 has similar properties as compared to the insertion
of Ski2: it has a comparable architecture and position, it is not
required for the assembly of the TRAMP complex (Weir et al.,
2010), and it is important in vivo (Jackson et al., 2010). Whether
its insertion domain also regulates Mtr4 allosterically in the
context of the TRAMP or higher-order complexes is currently
unknown.

RNA Channeling from the Ski Complex to the Exosome
Next, we evaluated the RNA-binding path of the Ski complex
bound to the exosome. Coimmunoprecipitation studies have
shown that in S. cerevisiae, the Ski2-3-8 complex interacts
with the exosome via the protein Ski7 (Araki et al., 2001; Wang
et al., 2005). In GST pull-down assays with purified recombinant
proteins, Ski7 interacted directly with Ski2-3-8 (or Ski2Dinsert-3-
8), with the exosome and concomitantly with both (Figure S6A).
Notably, Ski7 did not interact with Ski2 or Ski8 in isolation (Fig-
ure S6A). Having established the physical association of both
complexes, we next asked how this interaction impacts on

Figure 5. RNA-Binding Path and Regulation in the Ski Complex
(A) Model of the full-length Ski complex based on the superposition of the Ski2Dinsert-3-8 structure with Ski2DN-AMPPNP (4A4Z) and of Mtr4DN-ADP-A5 (2XGJ) is

shown. The three close-up views (panels 1–3) show important features in the RNA-binding path: the ‘‘lid’’ formed by the Ski insertion and the Ski3 N-terminal arm

above the RNA 50 end (panel 1), the RG segment of Ski2 extending the RNA-binding motifs in the DExH core (numbered, panel 2), and Ski3 and Ski8IN forming an

exit channel for the RNA 30 end (panel 3).

(B) ATPase activities of wild-type andmutant Ski2 and Ski2-3-8 samples are given in terms of kcat/KM (normalized to full-length Ski2-3-8). Removal of the insertion

domain of Ski2 or of the N-terminal arm of Ski3 derepresses the ATPase activity of Ski2 when bound in the Ski complex. Removal of the insertion domain has no

effect on Ski2 in isolation (see Figures 1C and S5B for raw data). Error bars represent ± 1 SD from three independent experiments.

(C) Unwinding activity of wild-type and mutant Ski complexes is shown. RNA duplexes with a 30 overhang were incubated with the indicated amounts of protein

and separated by native PAGE. Removal of the Ski2 insertion domain or the Ski3 N terminus stimulates the helicase activity of the complex. See also Figure S5.
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the RNA-binding path of the Ski complex. We have previously
shown that RNase A/T1 protection assays with Exo-10 reveal
an accumulation of fragments of 10 to 11 and 31–33 nt (Bonneau
et al., 2009). The latter correspond to the path of the RNA through
the central channel of the exosome (Makino et al., 2013). When
carrying out RNase A/T1 protection assays of Exo-10 in the
presence of full-length Ski7 and Ski2Dinsert-3-8 complex, we
observed an additional band corresponding to RNA fragments
of about 43 to 44 nt (Figure 6A, compare lanes 2 and 7). The
presence of a 43 to 44 nt fragment is remarkable because it
roughly corresponds to the sum of the individual path lengths
of the exosome (31–33 nt) and the Ski2-3-8 complex (9 to
10 nt), suggesting that a continuous channel is formed between
the Ski and exosome complexes (Figure 6B). Such a continuous
channel also predicts that the ATPase base of the Ski complex is
in close proximity to the entrance of the exosome channel.
Consistently, the interaction of Ski7 with the exosome is known
to involve Csl4, a subunit that lines the top of Exo-10 (Schaeffer
et al., 2009; van Hoof et al., 2002).
To corroborate these findings, we carried out protection

assays using a 50-to-30 exoribonuclease instead of the endonu-
cleases RNase A/T1. In the 50-to-30 exoribonuclease assay,
Exo-10 protected!28 nt fragments (Figure S6B), corresponding
almost exactly to the path estimated from the RNA-bound Exo-
10 structure (Makino et al., 2013). We did not observe accumu-

lation of the 10 to 11 nt fragments typical of the RNase A/T1
assays (Bonneau et al., 2009), suggesting that these short
species form by endonucleolytic cleavage at an exposed part
of the substrate in Rrp44. This implies that, in Exo-10, there
might not be a short, channel-independent RNA path but only
the long, channel-dependent path. Addition of Ski2Dinsert-3-8
resulted in longer (!46 nt) fragments in a Ski7-dependent
manner (Figure S6B). These fragments reflect protection of the
50 end beyond the DExH core, suggesting a possible involve-
ment of the N-terminal arm of Ski3. Notably, the intensity of
fragments protected by the Ski-exosome assembly decreased
when incubating Exo-10 and Ski7 with full-length Ski2-3-8
instead of Ski2Dinsert-3-8 both in the RNase A/T1 protection
assays (Figure 6A, compare lanes 5 and 7) and in the 50-to-30

exoribonuclease protection assays (Figure S6B). Altogether,
the biochemical data suggest that the insertion domain of
Ski2 and the N-terminal arm of Ski3 are involved in gating the
entrance of the helicase-nuclease assembly.

Conclusions
All subunits of the Ski complex are required for exosome-
mediated mRNA degradation (Anderson and Parker, 1998).
Yet, the enzymatic activity of the complex arises from a single
subunit, Ski2, raising the question as to how Ski3 and Ski8
contribute to the function of this assembly. The structural and

Figure 6. RNA Channeling in the Exosome-Ski Assembly
(A) RNase A/T1 protection assays were carried out as described for Figure 1C. The size of the RNA fragments is indicated on the left. Lane 10 shows a molecular

weight marker. RNA fragments of 31–33 nt accumulated with Exo-10 (Bonneau et al., 2009). Fragments of 43 to 44 nt accumulated when incubating Exo-10 and

Ski2Dinsert-3-8 in the presence of Ski7. The intensity of the 43 to 44 nucleotide fragments decreased when using the full-length Ski complex. See Figure S6B for a

similar assay using a 50-to-30 exoribonuclease instead. Rrp44-DM indicates the Rrp44 D551N/D171N double mutant.

(B) A model for the substrate channeling in the cytoplasmic exosome-Ski assembly. The exosome is shown with the catalytically inactive core (Exo-9) in gray and

the active subunit Rrp44 in pink. The drawing of the Ski complex (Ski2 in yellow, Ski3 in blue and Ski8 in green) is based on the structure reported here. The Ski

complex can be described as formed by an ATPase base and a regulatory lid (the N-terminal arm of Ski3 and the insertion domain of Ski2). No structural data for

Ski7 (shown in gray) are currently available. The model is based on known interaction data (Figures S5C and S6A). The path of the RNA is shown as a black line,

according to individual structures of the exosome (Makino et al., 2013) and of known DExH box proteins (Büttner et al., 2007; Weir et al., 2010). The overall path is

consistent with the results from the RNase protection assays (A and Figure S6B) and with the synergistic effect of the lid domains in gating the entrance of the

assembly. See also Figure S6.
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biochemical data reported here reveal intricate interaction
networks that engage the catalytic and noncatalytic subunits
and sophisticated mechanisms that control the ATPase activity
of the complex.

Overall, the Ski complex can be thought of as formed by an
ATPase base and a regulatory lid (Figure 6B). In the ATPase
base, the DExH core of Ski2 is located in a central position,
surrounded by the C-terminal arm of Ski3, two Ski8 subunits,
and the N-terminal region of Ski2. With the exception of the outer
Ski8 subunit, all other nonenzymatic constituents of the base
appear to directly extend the RNA channel of Ski2, forming an
exit tunnel where the unwound RNA 30 end is expected to
emerge. Despite adopting the most peripheral position in the
complex and being dispensable for Ski2-Ski3 interaction, the
outer Ski8 subunit is important for function in vivo and for
RNA binding in vitro, possibly by restraining the ATPase core in
a productive conformation. Most of the DExH core of Ski2 is
embedded in protein-protein interactions within the base. How-
ever, the RecA2 domain of the helicase is exposed to solvent,
rationalizing how the required conformational plasticity of the
DExH core in the course of the ATPase cycle can be maintained
without disrupting the complex. The regulatory lid that sur-
mounts the ATPase base is the most dynamic part of the com-
plex. The lid is formed by the insertion domain of Ski2 and the
N-terminal arm of Ski3. Neither domain is required to assemble
the ATPase base, but together they regulate ATPase activity,
possibly by gating substrate access to the ATPase base. Binding
to Ski3 and Ski8 also allows Ski2 to connect to Ski7 and hence
to the exosome complex. Our biochemical results suggest that
the Ski complex directly channels single-stranded RNA into the
exosome (Figure 6B). This mechanismwould couple the helicase
and nuclease activities of the complexes, resulting in a direct
pipeline for mRNP remodeling and degradation.

The RNA-degrading exosome complex has conceptual simi-
larities to the proteasome, a cellular machinery that breaks
down polypeptides (Lorentzen and Conti, 2006; van Hoof and
Parker, 1999). The exosome core and the 20S proteasome
both possess cylindrical chambers where unfolded substrates
are sequestered and degraded. The 20S proteasome associates
with a major regulatory complex: the 19S complex (Kish-Trier
and Hill, 2013). The 19S complex contains an ATPase base
that unfolds polypeptides and injects them into the 20S complex
for degradation. It also contains a dynamic lid that recognizes the
substrates and transfers them to the ATPase base. In the context
of our structural and biochemical data on the Ski complex, the
emerging picture is that the conceptual similarities in the degra-
dation mechanisms of exosome and proteasome are likely to
extend to their regulatory complexes.

EXPERIMENTAL PROCEDURES

See also the Extended Experimental Procedures.

Protein Purification
Recombinant S. cerevisiae Ski2 and Ski2-3-8 complexes (wild-type and

mutants) were purified from insect cells as previously described (Halbach

et al., 2012). Ski7 was expressed in E. coli and purified as reported earlier

(Halbach et al., 2012). The exosome (nine or ten subunit complexes) was

reconstituted as published by Makino et al. (2013). Details on constructs,

expression systems, and purification procedures are available in the Extended

Experimental Procedures.

Crystallization and Structure Solution
Crystallization and structure solution are described in detail in the Extended

Experimental Procedures. Briefly, a combination of molecular replacement

(using the Ski2 helicase core [4A4Z] and Ski8 [1S4U] as search models) and

selenomethionine SAD phases yielded an experimental electron density map

that was improved by solvent flattening and phase extension. Manual model

building and refinement allowed completion of the model.

Biochemical Assays
Steady-state ATPase activity was analyzed using an assay that couples oxida-

tion of NADH to regeneration of ATP (Bradley and De La Cruz, 2012). KM and

kcat were derived by fitting the data according to Michaelis-Menten kinetics.

Single turnover unwinding assays were carried out essentially as described

in Lucius et al. (2003). As substrate, a 17-mer single-strandedRNAwas labeled

at the 50 end with 32P and annealed with a 1.5 molar excess of a 27-mer RNA

(consisting of a complementary sequence and a 30 extension of 10 nt). RNase

protection assays have been described in Bonneau et al. (2009). See the

Extended Experimental Procedures for details.

Yeast Strains
See the Extended Experimental Procedures for generation of yeast strains.

ACCESSION NUMBERS

The coordinates and structure factors have been deposited in the Protein Data

Bank with ID code 4BUJ.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2013.07.017.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Protein Purification
Full-length Ski2 and Ski2Dinsert (residues 835 - 1085 replaced by a Gly-Ser-Arg-Gly linker) were cloned with an N-terminal hexahis-
tidine tag followed by a 3C protease site and subcloned into pFastBac1 vectors (Invitrogen). Proteins were expressed in baculovirus-
infected Hi-Five insect cells (Invitrogen) at 26!C for 70 hr. Protein purification was carried out at 4!C or on ice and all buffers were
supplemented with 1 mM b-mercaptoethanol. Cells were homogenized in low salt buffer (10 mM Tris-Cl pH 7.4, 10 mM NaCl,
2 mMMgCl2), supplemented with NaCl and imidazole to 250 mM and 20 mM, respectively, and lysate was cleared by centrifugation.
His-tagged protein was enriched on Ni2+-NTA resin (Clontech), eluted with lysis buffer containing 300 mM imidazole and directly
loaded on heparin sepharose resin (GE Healthcare). For elution, a gradient from 100 to 1,000 mM NaCl in 20 mM Tris-Cl pH 7.4
was used. The eluate wasmixed with 3C protease and dialyzed in 20mMTris-Cl pH 7.4, 200mMNaCl and 3mM b-mercaptoethanol
until complete removal of His-tags. Cleaved proteins were further purified by size-exclusion chromatography (SEC) in 10 mMHEPES
pH 7.4 and 200 mM NaCl.
For expression of Ski2Dinsert-3-8, a pFL vector (Fitzgerald et al., 2006) was generated containing full-length Ski8 and full-length Ski3

(with an N-terminal hexahistidine tag followed by a 3C protease site) in themultiple cloning site (MCS) 1 and 2, respectively. The com-
plex was then expressed fromHi-Five insect cells infected with two viruses encoding Ski2Dinsert (see above) and the dual Ski3His-Ski8
cassette. Purification was carried out as described for Ski2Dinsert (see above). Selenomethionine-labeled Ski2Dinsert-3-8 was
expressed in insect cells grown in methionine-free medium (Expression Systems, LLC). L-Selenomethionine (Acros Chemicals)
was added 8 hr postinfection to the medium at a final concentration of 100 mg/l. Cells were harvested 60 hr postinfection and
the complex was purified as described. Incorporation rates of selenomethionine were estimated by mass-spectrometry to range
from 66 to 75%.
Ski2-Ski3DN-Ski8 complex was expressed and purified as described above. Briefly, a pFL vector was cloned containing f.l. Ski8

and Ski3DN (residues 488-1432) fused to a 3C-cleavable N-terminal hexahistidine tag. The complex was then expressed in insect
cells coinfected with one virus expressing the Ski3DN-His-Ski8 cassette and one virus expressing f.l. Ski2. For expression of full-length
Ski2-3-8, a f.l. Ski2 expression cassette was subclonedwithout N-terminal hexahistidine tag into a pFL vector. The cassette was then
inserted into the Ski3His-Ski8 containing pFL vector via restriction / ligation using the BstZ17I and SpeI restriction sites (Fitzgerald
et al., 2006). Full-length Ski2-3-8 complex was then purified from Hi-Five insect cells infected with a single virus containing the
triple-expression cassette. Mutants used in this study were generated according to the Quikchange protocol (Stratagene) and
expressed as the wild-type Ski2-3-8 complex.
Full-length Ski8 was subcloned with a hexahistidine tag followed by a TEV protease site into a pET-MCN vector (Romier et al.,

2006). Protein was expressed in E. coli BL21 (DE3) Gold pLysS cells at 18!C for 16 hr after induction with 0.3 mM IPTG. Cells
were resuspended in buffer A (20 mM Tris-Cl pH 7.5, 100 mM NaCl, 10 mM imidazole and 1 mM b-mercaptoethanol) broken by
sonication and lysate was cleared by centrifugation. His-tagged protein was captured by Ni2+-NTA affinity chromatography and
eluted with buffer A containing 500 mM imidazole. Eluate was mixed with TEV protease and dialyzed in buffer A until complete
removal of the His-tag. The protein was the further purified on a monoQ anion-exchange column (GE Healthcare) and subjected
to SEC in 10 mM HEPES pH 7.5 and 200 mM NaCl. Ski7, GST-Ski7 (Halbach et al., 2012) and Exo-10 (Bonneau et al., 2009) were
purified as described earlier.

Crystallization, Structure Determination, and Refinement
Ski2Dinsert-3-8 was concentrated to 13.5 mg/ml, supplemented with Tris(2-carboxyethyl)phosphine hydrochloride to 1 mM and
mixed 1:1 (v/v) with reservoir solution (1.88 M NH4SO4, 100 mM Bis-Tris pH 6.0). 1 ml drops were set up in the sitting drop format
and equilibrated against 500 ml reservoir solution at 4!C. For mounting, crystals were transferred to mother liquor stepwise supple-
mented with increasing amounts of glycerol. At the final glycerol concentration of 25% (v/v) the crystals were flash frozen in liquid
nitrogen. Selenomethionine-substituted crystals were produced and manipulated in the same way, except that the reservoir solution
contained 1.7 M NH4SO4 and 100 mM Bis-Tris pH 5.5. Data were collected at 100 K on the PX-II beamline at Swiss Light Source,
Paul-Scherrer Institute, Switzerland.
The data were processed using XDS (Kabsch, 2010) and SCALA (Evans, 2006). A high resolution cut-off for the data was chosen by

I/s(I) > 1, near 100% completeness and particularly by correlation between half-data sets (CC1/2) > 50% (Karplus and Diederichs,
2012). A partial solution could be obtained using molecular replacement (MR) with the Ski2 helicase core (residues 299 – 835 and
1,085 – 1,287, PDB code 4A4Z) and Ski8 (residues 1 – 397, 1S4U) and the program PHASER (McCoy et al., 2007). The partial MR
solution was combined with experimental phase information from a selenomethionine single anomalous diffraction (SAD) experiment
using PHASER. This gave an initial experimental electron density map and allowed location of 112 out of 126 methionine positions in
the asymmetric unit. Two copies of the Ski2Dinsert-3-8 complex were present in the asymmetric unit and related by a 2-fold noncrys-
tallographic symmetry (NCS) axis. Solvent flattening with 2-fold NCS-averaging was carried out using DM (Cowtan, 1994), and the
native data to 3.7 Å were included by phase extension using phenix.autobuild (Adams et al., 2010). Parts of the structure that were
previously unknown (Ski2 N-terminal segment, full-length Ski3) were then built manually in the resulting electron density map. Refine-
ment was carried out with phenix.refine (version 1.82, [Adams et al., 2010]). Initial rounds of rigid body refinement were followed
by positional refinement, TLS refinement (TLS groups determined using the TLSMD server [Painter and Merritt, 2006]) and group
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3.2 The Ski complex: Crystal structure and substrate channeling to the exosome 57

B-factor refinement (the moderate resolution and the size of the asymmetric unit suggested using B-factor instead of individual
B-factor refinement). The refinement additionally used secondary structure and NCS restraints (released during final stages of refine-
ment) while B-factors remained unrestrained. Model building was carried out in COOT (Emsley et al., 2010). For fitting of side-chains,
B-factor sharpened electron density maps were used (COOT) that allowed establishing a sequence register consistent with the
selenomethionine positions. Iterative cycles of building and refinement improvedmodel completeness and quality of electron density
map. The electron density for the Ski8OUT subunit in the second NCS copy was partially broken, probably due to lacking crystal
contacts. Nonetheless, four peaks in the anomalous difference density map allowed unambiguous placement of Ski8 as a rigid
body. In this manuscript we refer to the model as taken from the first NCS copy, which appeared to be generally better ordered.
The model-sequence coverage of the final model is indicated in Figure S1B. Data collection and refinement parameters as given
in Table 1 are defined as follows: Rmerge = ð

P
hkl

P
j

!!Ihkl;j " hIhkli
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hkl

P
jðIhkl;jÞÞ, where hIhkli is the average of symmetry-related
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hkl ÞÞ, where Rwork and Rfree are calculated from the work-

ing or the test set of reflections, respectively; I=sðIÞ is defined as the average intensity of a group of reflections belonging to a given
resolution shell divided by the average standard deviation (sigma) of the same group of reflections.

RNase Protection Assays
An internally labeled 57-mer single stranded RNA (50 - C(*UC)28 - 3

0) was generated by in vitro-transcription in presence of a-32P UTP
using the MEGAshortscript kit (Ambion) and purified by poly-acrylamide gel electrophoresis. In a typical RNase protection reaction,
10 pmol protein was mixed with 5 pmol internally labeled RNA to a final reaction volume of 20 ml (final buffer: 50 mM HEPES pH 7.5,
50mMNaCl, 5 mMmagnesium diacetate, 10% (w/v) glycerol, 0.1% (w/v) NP40, and 1mMdithiothreitol). Samples were incubated at
4$C for 1 hr and treatedwith 1 mgRNase A and 2.5 URNase T1 (Fermentas) or with 1 U Terminator 50-to-30 exoribonuclease (Epicenter
Biotechnologies) for 20 min at 20$C. Protected RNA fragments were then extracted twice with phenol:chloroform:isoamyl alcohol
(25:24:1, v/v, Invitrogen), precipitated with ethanol, separated on a 20% (w/v) denaturing poly-acrylamide gel and visualized by
phosphorimaging.

Pull-Down Assays
GST-tagged prey protein (4 mg) wasmixed with equal molar amounts of bait protein and input samples were taken. Buffer was added
to a volume of 200 ml and final concentrations of 10mMHEPES pH 7.5, 75mM sodium chloride, 2mMmagnesium acetate, 0.1% (v/v)
NP-40, 1 mM dithiothreitol and 12.5% (v/v) glycerol (buffer A). 40 ml of a 50% (v/v) suspension of GSH-sepharose beads (GE Health-
care) were added and the reaction was incubated for 30 min at 4$C. Beads were washed three times with buffer A before eluting the
precipitated protein. Samples were analyzed on a 8.5% (w/v) SDS-poly(acrylamide) gel.

Helicase Assay
RNA oligo Css17 (AAGUGAUGGUGGUGGGG) was labeled at the 50 position with 32P by standard polynucleotide kinase treatment
and mixed with a 1.5 molar excess of RNA oligo ss27 (CCCCACCACCAUCACUUAAAAAAAAAA). Annealing was induced by heating
to 95$C and slow cooling. For a typical unwinding reaction, 2 nM duplex were mixed with indicated amounts of proteins in a buffer
containing 100 mM KCl, 0.1 mM EDTA, 1 mM DTT and 20 mM MES pH 6.0. The reaction was started by adding a mix of ATP (final
concentration of 2 mM), MgCl2 (2 mM) and RNA trap-oligo (Css17, 500 nM). Samples were incubated at 30$C for 30 min and then
mixed with quenching buffer (150 mM NaAc, 10 mM EDTA, 0.5% (w/v) SDS, 25% (v/v) glycerol, 0.05% (w/v) xylene cyanol,
0.05% (w/v) bromophenol blue). Samples were separated by native PAGE at 4$C.

Yeast Strains
Initially, three working strains were created using the base strain W303 (MATa/MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1
his3-11,15, RAD5): a SKI3 deletion strain, a strain carrying a c-terminally EGFP-tagged SKI3 and an XRN1 deletion strain. The
SKI3 deletion strain (ski3D::klURA3) was obtained by transforming the diploid wild-type W303 with a klURA3 cassette (Gueldener
et al., 2002) targeted to the region upstream and downstream of SKI3. The knockout was confirmed by PCR. Diploid cells were
sporulated and tetrads were dissected to test for the nonessential nature of the SKI3 deletion. The EGFP c-terminally tagged strain
(SKI3-EGFP::kanMX4) was created by transforming a diploid wild-type with a PCR fragment generated from plasmid pym27 (PCR
Toolbox [Janke et al., 2004]). The obtained diploid strain was sporulated and tetrads were analyzed for any grave growth defects
due to the inserted tag. The XRN1 deletion strain (xrn1D::natNT2) was essentially constructed as described above, except that in
a second transformation the klURA3 cassette was exchangedwith a natNT2 selectionmarker generated from pFA6a-natNT2 bearing
homologies to the region upstream and downstream of xrn1D::klURA3. The marker switch was confirmed by PCR and testing for a
natR and ura" phenotype. Subsequently the diploid strain was sporulated and tetrad dissected.

For generation of SKI3 mutants, SKI3-EGFP including 500bp upstream and downstream of the ORF was subcloned from the
SKI3-EGFP strain into a Ycplac33 vector by SmaI linearization cotransformation followed by gap repair. The plasmid was then
mutagenized to obtain the SKI3 mutations as indicated in Figure S4D.

Mutant strains were created from the ski3D::klURA3 strain by gene replacement (Amberg et al., 2006; Gietz and Schiestl, 2007).
PCR products bearing the desired mutations were generated from the mutagenized Ycplac33-SKI3-EGFP::kanMX4 plasmids.
Cells were transformed and plated on YPD/G418 plates and subsequently replicated on SC-FOA plates. Cells having a G418R
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and ura! phenotype were sporulated and tetrads dissected. Candidate strains were further analyzed via sequencing to test for the
presence of the desired mutation. Generation of the double mutation strains was carried out by crossing the ski3mutant strains with
the xrn1D::natNT2 / Ycplac33-Xrn1 strain, followed by sporulation and tetrad dissection. Yeasts were grown in standard media sup-
plemented with the appropriate antibiotic or in standard synthetic media to select against auxotrophies.

Western Blot Analysis
Yeast strains were grown to midlog phase. Cells were lysed using the Yeast Buster kit (Novagen) and soluble lysate was prepared
by centrifugation. After normalizing levels of total protein input, EGFP-tagged protein was enriched by immunoprecipitation with
immobilized anti-GFP nanobodies. Samples were analyzed by western blot using a mouse anti-GFP primary antibody (Santa
Cruz Biotechnology) and an HRP-conjugated goat anti-mouse secondary antibody (Bio-Rad). Blots were visualized using ECL
Advance developer solution (GE Healthcare) and a LAS 4000 imaging system (GE Healthcare).
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3.2 The Ski complex: Crystal structure and substrate channeling to the exosome 59

Figure S1. Structure Determination and Final Model of Ski2Dinsert-3-8, Related to Table 1
(A) The left and right panels show two regions of the electron density map obtained from the Ski2Dinsert-3-8 crystals. The refined 2FO-FC electron density map

(contoured at 1.0s) with!20 Å2 B-factor sharpening is shown in gray. The anomalous difference density from selenomethionine-substituted crystals is contoured

at 10 s and colored in magenta.

(B) The secondary structure elements of the four complex subunits are shown along with their corresponding primary sequences. Secondary structure elements

were derived with the program DSSP (Kabsch and Sander, 1983) and colored according to the established color scheme (See Figure 1A). Secondary structure

elements shaded in broken colors represent regions that were modeled as polyalanine. Disordered residues are indicated with dotted lines. No secondary

structure elements are shown for the insertion domain of Ski2 as it was absent from the crystallization construct.

S4 Cell 154, 814–826, August 15, 2013 ª2013 Elsevier Inc.



60 3. Results

Figure S2. The N-Terminal Arm of Ski3 Is Flexible and Contains a Conserved Surface Patch, Related to Figure 2
(A) Superposition of the two copies of the Ski complex in the asymmetric unit of the crystals. One copy is shown in the same colors as in Figure 2A. The second

copy is shown in gray. While Ski2, the two Ski8 subunits and the C-terminal arm of Ski3 superpose with an rmsd less than 0.5 Å, the N-terminal arm has two

different conformations with a maximum displacement of 20 Å.

(B) In the N-terminal arm, the surface of TPRs 1 - 3 contains a set of conserved, positively-charged residues. The left panel shows the canonical TPR-fold of this

domain and the conserved residues are labeled. The central and right panels show the same portion of the molecule as a surface representation colored ac-

cording to sequence conservation and to electrostatic potential, respectively. An alignment of eukaryotic Ski3 sequences covering the first 1.5 TPR repeats is

shown in the lower panel. Conservation is indicated by shades of gray (black, conserved; white, variable), triangles denote surface residues and asterisks denote

structural residues.

Cell 154, 814–826, August 15, 2013 ª2013 Elsevier Inc. S5



3.2 The Ski complex: Crystal structure and substrate channeling to the exosome 61

Figure S3. Binding of the Ski2 Helicase Core to Conserved Sites in Ski3, Related to Figure 3
(A) Sequence alignments of regions in Ski3 that form the interfaces to the Ski2 helicase core, as indicated in (B). The interfaces are well conserved, suggesting that

Ski complex in higher eukaryotes may have a similar architecture.

(B) Ski3 is shown in surface representation colored according to sequence conservation (dark blue, conserved; light blue, variable). The orientation of themodel in

the left and middle panels corresponds to those in Figure 2A. The binding sites to the Ski2 core are denoted by dashed circles and the corresponding interacting

regions of Ski2 are indicated.

(C) A superposition of the Ski2DN-AMPPNP crystal structure (gray, AMPPNP in black) to the structure of the Ski2 helicase core as found in the Ski2Dinsert-3-8

complex (yellow).
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Figure S4. Mutation of the Q-R-x-x-F Motif in Ski3 or Spo11 Impairs Binding to Ski8, Related to Figure 4
(A) In the left panel, a homology model of yeast Spo11 was generated based on the structure of the related M. jannaschii topoisomerase VI-A (PDB code 1D3Y,

(Nichols et al., 1999)) using the PHYRE server (Kelley and Sternberg, 2009). The N-terminal 5YCAP domain is colored in gray and the C-terminal toprim domain in

beige. The Q-R-x-x-F motif in the C terminus of the toprim domain is highlighted in magenta. The right panel shows a close-up view of the Spo11 C terminus

including the Q-R-x-x-Fmotif. Additionally, the corresponding helices of Ski3 that bind to Ski8IN (TPRs 32/33 in light blue) and Ski8OUT (TPRs 30/31 in dark blue)

were superposed. The Spo11 homology model superposes well to the experimentally observed Ski8-binding surfaces in Ski3. Remarkably, modeling of Ski8 to

the Spo11 Q-R-x-x-F motif (not shown) results in a structural model of the Spo11-Ski8 complex without steric clashes.

(B) The upper panel shows an SDS-PAGE of wild-type and mutant Ski2-3-8 complexes used in the RNase protection assay in Figure 4C. The lower panel shows

the quantification of complex stoichiometry of the samples in (A). The density of the band corresponding to Ski8 was related to those corresponding to Ski2 and

Ski3. The ratios were normalized to the wild-type sample. Densities were measured using the program ImageJ (Schneider et al., 2012). Error bars represent +/! 1

standard deviation from three independent experiments. In the Ski2-3DOUT!8 mutant, the Ski8:(Ski2+Ski3) ratio drops to"60%, indicating that disruption of the

Q-R-x-x-F motif in TPR 31 of Ski3 indeed leads to loss of the Ski8OUT subunit.

(C) Spotting of the yeast strains shown in Figure 4D to YPD, YPD/G418 and YPD/NAT control plates. Here, in addition to the undiluted sample the dilutions omitted

in Figure 4 are shown. NAT, nourseothricin; YPD, yeast extract peptone dextrose.

(D) A table of the yeast strains generated in this study including the relevant genotype.
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Figure S5. Properties of the Ski2 RG-Loop Segment and the Ski3 N-Terminal Arm, Related to Figure 5
(A) Interactions of the RG-loop segment with the Ski2 helicase core. The upper left panel shows a surface representation of the Ski2 helicase core (yellow) and the

RG-loop segment in cartoon representation (orange). The upper right panel shows a close-up view as indicated. Relevant residues are highlighted. The side-chain

of Arg149 is shown as dashed line as no electron density was observed. In the lower panel, an alignment of RG-loop segment sequences from eukaryotic Ski2

species is given. Conservation is indicated in shades of gray (black, conserved; white, variable). Asterisks denote structural residues and triangles indicate

solvent-accessible side-chains.

(B) ATPase activity raw data corresponding to the graph shown in Figure 5B. The initial reaction velocity (mole ADP produced per mole of Ski2 and second) is

plotted versus the concentration of ATP (mM). Error bars represent standard deviation from three independent experiments. For data on Ski2, see Figure 1C.

(C) Pull-down assays indicate that the Ski3 N terminus is not involved in interactions within the Ski complex nor with Ski7 (Ski3-N, residues 1 - 521). Input samples

separated by SDS-PAGE are shown in the upper panel, samples precipitated with GST-Ski7 in the lower panel.
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Figure S6. Ski7 Mediates the Interaction between the Ski2-3-8 and Exosome Complexes In Vitro, Related to Figure 6
(A) A pull-down experiment was carried out with GST-tagged full-length Ski7 and untagged Exo10, Ski2, Ski8 or Ski2-3-8 proteins. Input samples are shown in the

upper panel and precipitated samples in the lower panel. A molecular weight marker was included and the identity of the proteins is indicated. Ski2-3-8 and Exo-

10 bind to Ski7 separately (lanes 6 and 9) and simultaneously (lane 10). Ski2 and Ski8 only bind to the Ski7-Exo-10 complex in presence of Ski3 (compare lanes 6

and 8). An asterisk indicates an impurity in the GST-Ski7 preparation.

(B) An RNase protection experiment as shown in Figure 6A except that a processive 50-to-30 exoribonuclease was used instead of RNase A/T1.
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4 Discussion

The major achievement of the PhD work at hand was to determine the crystal structures

of the Ski2 helicase region (Ski2∆N), the Ski2 insertion domain as well as the Ski2∆insert-

Ski3-Ski8 complex. The assembly of the individual structures yields the first comprehensive

structural description of the full-length yeast Ski2-Ski3-Ski8 complex (Fig. 4.1). Additional

functional characterization helped to understand the role of the individual subunits and

to identify two regulatory mechanisms that may contribute to the regulation of exosome

activity.

The following sections discuss the structure and function of the Ski2 helicase region

alone (section 4.1) as well as in the context of the Ski2-Ski3-Ski8 complex (section 4.2), the

role of the Ski3 TPR scaffold (section 4.3) and the structure and function of the two Ski8

subunits and the implications for the role of Ski8 in meiotic recombination (section 4.4).

A final section discusses the two regulatory mechanisms of the SKI complex in context of

the exosome (section 4.5).

4.1 Ski2 contains a conserved DExH box core and a

variable insertion domain

The helicase region of Ski2 was defined by limited proteolysis to encompass residues 296 -

1287 (Ski2∆N) and was crystallized in complex with adenosine 5′ -(β,γ-imido)triphosphate

(AMPPNP). The helicase core consists of a ring-like arrangement of the two RecA domains,

the ratchet and winged helix (WH) domains (Fig. 4.1). It is well conserved in sequence

and highly similar in structure to other DExH box helicases like Mtr4 and Hel308 which

have been structurally characterized in complex with RNA substrates (Büttner et al., 2007;

Weir et al., 2010). This suggests that in Ski2 RNA is bound along a similar path through

the helicase core. Consistently, Ski2 also contains a conserved β-hairpin at the presumable
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RNA entry site that has been shown to melt double stranded DNA in the structure of

archaeal Hel308 (Büttner et al., 2007). AMPPNP is bound through the canonical SF2

motifs in a conformation that is very similar to the Mtr4-ADP-RNA structure (Weir et al.,

2010). Thus, the overall architecture of the Ski2 helicase core is well conserved with other

enzymes of the DExH box family.
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Figure 4.1 | Stuctural description of the S. cerevisiae Ski2-Ski3-Ski8 complex. (A) Individual
crystal structures of Ski2∆N, Ski2 insertion domain and Ski2∆insert-Ski3-Ski8. The two Ski8
subunits in the complex are denoted Ski8IN and Ski8OUT according to their central or peripheral
position, respectively. Ski2 is colored in orange (N-terminal region), yellow (helicase core) or red
(insertion domain); Ski3 is in blue, Ski8IN in light green and Ski8OUT in dark green. PDB codes
are indicated in brackets where available. (B) A structural model for the full-length Ski2-Ski3-Ski8
complex is created by superposition of the Ski2 insertion domain to the Ski2∆N structure, which
in turn was aligned to the Ski2 helicase core of the Ski2∆insert-Ski3-Ski8 structure.
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From the globular helicase core of Ski2 the so-termed insertion domain emerges (residues

835 - 1085). It consists of a globular β-barrel that is connected to the helicase core through

a flexible α-helical stalk. A comparison with the Mtr4 insertion domain (also termed KOW

domain) shows that both domains share a similar architecture (consisting of a helical stalk

and a β-barrel). While the presence of the Ski2 insertion domain and the position where

it emerges from the enzyme core (within the WH domain above the RNA entry site) is

conserved with Mtr4, the domain itself is not conserved in sequence even among Ski2

proteins from other yeast species.

On the functional level, both domains differ, too. The Mtr4 KOW domain has been

shown to bind structured RNAs in vitro (Weir et al., 2010) and has been linked to rRNA

maturation in vivo (Jackson et al., 2010; Klauer and van Hoof, 2013). In contrast, elec-

trophoretic mobility shift assays (EMSAs) indicate that the Ski2 insertion domain binds

RNA unspecifically, consistent with the presence of a positively charged surface patch.

The promiscuous RNA-binding properties and the location above the RNA entry site in

the helicase core suggest that the Ski2 insertion domain plays a general role in substrate

loading.

4.2 The structure of the SKI complex: a framework

for Ski2 to function in concert with the exosome

The fact that the Ski2 insertion domain protrudes from the globular helicase core without

being required for formation of the Ski2-Ski3-Ski8 complex (Fig. 3.1.4) suggested its re-

moval for purposes of structure determination. The resulting Ski2∆insert-Ski3-Ski8 complex

could be readily crystallized and the structure was solved by a single wavelength anomalous

diffraction (SAD) experiment.

The crystal structure of the Ski2∆insert-Ski3-Ski8 complex revealed the architecture of

the yeast SKI complex (Fig. 4.1). Ski3 consists of 33 TPR motifs that form a long

superhelical solenoid with an N-terminal and a C-terminal arm. The C-terminal arm

binds both Ski8 subunits as well as the N-terminal and the helicase region of Ski2. The

two Ski8 subunits (Ski8IN , central position. Ski8OUT , peripheral position. See also Fig.

4.1) bind back to the helicase core. The helicase is thus centrally located within complex,

reflecting the presumably pivotal role of its activity for function of the SKI complex. In the

Ski2∆insert-Ski3-Ski8 complex structure (representing the apo state), the Ski2 DExH core

has a conformation that is nearly identical to Ski2∆N bound to AMPPNP (Fig. 3.2.4). It
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is possible that the other subunits induce this conformation in the helicase core, but more

experimental data (e.g. in the form of RNA- or nucleotide-bound structures) is needed

to clarify whether Ski3 and Ski8 actively trigger any conformational changes in the Ski2

helicase core.

Nevertheless, formation of the Ski2-Ski3-Ski8 complex leads to a series of structural

rearrangements in Ski2. First, the Ski2 insertion domain is positioned at the entry site

of the RNA to the helicase core. The insertion domain is not present in the Ski2∆insert-

Ski3-Ski8 structure, but modeling it in this position (Fig. 4.1) does not produce any

steric clashes, which makes it reasonable to assume a similar orientation as in the Ski2∆N

structure. Second, the RG-loop segment of the Ski2 N-terminal region is placed by Ski3

such that its conserved Arg-Gly dipeptide flanks the canonical RNA-interacting SF2 motifs

towards the 3′ end of the RNA (see Fig. 3.2.4). This extends the bona fide RNA-binding

path through the helicase core. Third, portions of Ski8IN and Ski3 are arranged around

the presumable exit site of the RNA 3′ end from the helicase core. Even though the

electrostatic potential and the conservation of involved surface patches do not show any

striking features, a cleft is created through which the RNA can leave the complex.

All three structural features cluster along the RNA-binding path of Ski2 and thus

highlight the importance of RNA-routing through the SKI complex. They point towards

a functional interplay with the exosome where a helicase would need to accept substrates

or control their access (via the insertion domain), unwind secondary structure elements

and transfer the substrate to the exosome (via the extension of the RNA-binding path by

the RG-loop and the formation of an RNA exit cleft). In agreement with such a model,

the Ski2-Ski3-Ski8 complex displays RNA-dependent ATPase activity and unwinds RNA

duplexes with 3′ overhang. The resulting single stranded RNA substrates could then be

readily degraded by the exosome (Bonneau et al., 2009).

It thus appears that formation of the Ski2-Ski3-Ski8 complex sets a structural frame-

work that primes the helicase core of Ski2 for assisting the exosome in substrate degra-

dation. Consistent with this model, direct substrate channeling between both complex is

observed and will be discussed in section 4.5.

4.3 The Ski3 TPR scaffold organizes the SKI complex

Mapping of domain interactions within the Ski2-Ski3-Ski8 complex in yeast in vivo sug-

gested that Ski3 is involved in all subunit interactions (Wang et al., 2005). The crystal
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structure of the Ski2∆insert-Ski3-Ski8 complex rationalizes this observation by revealing how

the TPR solenoid of Ski3 acts as scaffold for the entire complex.

Containing 33 TPRs, Ski3 can be divided in an N-terminal arm and a C-terminal arm.

The C-terminal arm binds the remaining subunits and thus organizes the architecture of

the complex (Fig. 4.1). It extensively interacts with a series of motifs in the Ski2 N-

terminus that but also binds to the helicase core of Ski2 (the RecA1 and ratchet domains).

Interestingly, the interfaces with the helicase core are conserved in higher eukaryotes, sug-

gesting a similar complex topology. The Ski3 C-terminal arm also binds both Ski8 subunits

(see section 4.4).

Size, versatility and flexibility predestine TPR proteins as molecular scaffolds

TPR proteins and particularly their complexes with peptides have been well characterized

in terms of structure and biochemistry (D’Andrea and Regan, 2003; Zeytuni and Zarivach,

2012). Their ability to engage in protein-protein interactions has earned them a repu-

tation as scaffold subunits in protein complexes, but structural characterization of such

entire assemblies remains scarce. The unusally large TPR array of Ski3 illustrates several

properties of TPR proteins that allow them to efficiently organize large complexes.

First, if a protein acts as central hub within a complex, i.e. it interacts with all or

most of the other subunits, a large surface must be dedicated to forming interfaces with

those proteins. Structures of TPR proteins with up to 14 consecutive repeats have been

reported, for instance those of O-linked glycosyl transferase (Jinek et al., 2004) or the

anaphase promoting complex subunit Cdc16 (Zhang et al., 2010). The finding that the

Ski3 C-terminus contains 23 consecutive canonical repeats (Fig. 3.2.2) illustrates that TPR

scaffolds can be considerably longer than assumed. It can be anticipated that uncharacter-

ized TPR-containing proteins may form even longer solenoids. The size creates sufficient

surface area that can be dedicated to interactions with partner proteins. Probably more

important than the mere molecular size is the surface-to-residue ratio. In TPR proteins,

the superhelical stacking leads to an extended solenoid shape of the molecule. Compared

to a globular protein of similar size, such a fold results in a considerably higher ratio of

surface area to residues. Thus, the combination of molecular size and its efficient trans-

formation into binding surfaces enables TPR proteins to form highly optimized protein

interaction platforms.

Second, TPR proteins are versatile binders. Typically, a ligand binds as an extended

polypeptide to the concave surface of the TPR superhelix, even though the convex surface
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regions have also been described as interfaces (D’Andrea and Regan, 2003; Zeytuni and

Zarivach, 2012). The Ski2∆insert-Ski3-Ski8 structure shows how in a single TPR protein

many different surface types can be used as a binding site. For instance, the Ski2 outer

segment binds to the convex surface of Ski3 (Fig. 4.2B). Similarly, loops that connect two

consecutive repeats or two helices within a repeat serve as binding sites (e.g. RG-loop

domain binding to TPRs 17 - 18 and TPRs 21 - 22, Fig. 4.2C). Yet another binding mode

is encountered at the Ski3 C-terminus where the capping helix engages the Ski2 anchor

segment, creating a pseudo-TPR motif (Fig. 4.2D). A comparable diversity is found in the

conformation of the bound ligands. They bind as an extended peptide (e.g. Ski2 inner

segment), an α-helix (e.g. Ski2 anchor segment), a β-hairpin (Ski2 inner segment) or a

folded protein (e.g. Ski8OUT/IN) (compare Figs. 4.2A-C).

Third, variations in the superhelical twist and pitch allow TPR proteins to fine-tune the

orientation of their binding sites. For instance, the axes of the two C-terminal superhelical

turns of Ski3 (TPRs 26 - 32 and 27 - 33) are oriented in a nearly perpendicular fashion on

to the other (Fig. 4.1). This allows the Ski8 subunits to bind back on the Ski2 core that

is located closer to the Ski3 N-terminus (TPRs 17 - 24). Such an arrangement would be

sterically impossible in the case of a strictly linear solenoid.
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Figure 4.2 | Variability in ligand conformation and binding surface types in the Ski3 TPR scaf-
fold. (A) A part of the Ski2 inner segment (residues 101 - 122) binds as a long β-hairpin to
the concave side of the Ski3 TPR solenoid. (B) A stretch of the Ski2 outer segment (residues
178 - 220) binds in α-helical conformation to the convex side of Ski3. (C) The Ski2 RG-loop
segment (residues 127 - 165) interacts with the inter- and intra-TPR loops of Ski3. (D) The Ski2
anchor segment (residues 1 - 39) creates a pseudo-TPR repeat by stacking against the C-terminal
capping helix of Ski3. Ski2 segments are colored in orange, Ski3 in blue and TPRs are numbered
as established in Fig. 3.2.2.
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These properties appear to be intrinsic to TPR proteins, but there may be a mutual

dependency between scaffold and binding target. For instance, the Ski2 N-terminal segment

threads through the C-terminal arm of Ski3, thereby stabilizing it (Fig. 3.2.3). This may

help to properly orient the remaining binding sites (e.g. of the Ski8 subunits).

In Ski3, conservation of the TPR fold correlates with binding site functionality

TPRs are ancient motifs that most likely have been present in the last common ancestor

since they are found in bacteria, archaea and eukaryotes. However, conservation of the

motif is poor in terms of sequence identity. Rather, classes of amino acids (small vs. large)

are conserved on a given position, in-line with the “hole-and-knobs” model for interaction

between the helices (Hirano et al., 1990). In contrast, the entire fold is well conserved,

and TPR blocks in unrelated proteins from distinct species are structurally very similar,

often with a root mean square deviation (r.m.s.d.) below 1.5 Å. Variations are usually only

found in the loops that connect the helices of a given motif or two entire motifs.

The structural information on Ski3 now offers the opportunity to analyze how the TPR

fold and presence of binding sites correlate within a single polypeptide. In Ski3, the C-

terminal arm forms the binding platform for Ski2 and both Ski8 subunits (Fig. 4.1) and

thus has been under evolutionary pressure to maintain its binding interfaces (see also Fig.

3.2.S3). The C-terminal arm is built from canonical TPRs that are structurally very similar

to other bona fide TPR proteins, e.g. O-linked glycosyl-transferase (Jinek et al., 2004)

(Fig. 3.2.S2). The N-terminal arm also contains a block of three canonical TPR motifs

that according to surface conservation presumably form a functional site (Fig. 3.2.S2).

Only the linker region between the two arms contains non-canonical TPRs that deviate

considerably from the typical fold in terms of geometry and length of the individual helices.

It thus appears that functionality as a binding interface correlates with conservation of the

TPR fold. Only in the linker region, which was not subjected to evolutionary pressure to

maintain interactions with partner proteins, atypical TPR motifs could evolve.

4.4 Ski8 is a versatile adapter protein with multiple

roles

The Ski2-Ski3-Ski8 complex contains two Ski8 subunits (Ski8IN and Ski8OUT , see Fig.

4.1), in line with previous mass-spectrometric data (Synowsky and Heck, 2008). Both Ski8
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polypeptides adopt a highly similar fold that is nearly invariant to the structure of Ski8 in

isolation (Cheng et al., 2004; Madrona and Wilson, 2004). The only exception is an acidic

loop (residues 335 - 356) that supports binding to Ski3 in two different conformations (Fig.

3.2.5). Both Ski8 subunits have a main interface to the Ski3 scaffold but also bind back

to the Ski2 helicase core. In both main interfaces, Ski3 binds the β-propeller through

a Q-R-x-x-F/Y motif that inserts into the hydrophobic top surface of Ski8 (Fig. 3.2.5),

rationalizing why a mutation at the top surface of Ski8 abrogates binding to Ski3 in vivo

(Cheng et al., 2004).

Ski8IN and Ski8OUT have distinct roles in stability and function of the Ski2-

Ski3-Ski8 complex

Both Q-R-x-x-F/Y motifs are well conserved in structure. However, the motif that interacts

with the Ski8IN subunit is only moderately conserved in sequence (and less well than for

instance most interface residues of Ski3 to the Ski2 helicase core) (Fig. 3.2.5). The motif

that binds to Ski8OUT is even less well conserved (Fig. 3.2.5), suggesting that the Ski8OUT

subunit may have been acquired during a later stage of evolution, possibly to fine-tune

complex functionality. Consistent with this idea is the finding that Ski8IN is an integral

structural component of the Ski2-Ski3-Ski8 complex. It buries a larger surface area than

Ski8OUT (1000 Å2 compared to 400 Å2), and a Ski2-Ski3-Ski8OUT complex with 1:1:1

stoichiometry (mutation of the Ski8IN -binding motif in Ski3) is not soluble.

Ski8OUT , on the other hand, can be removed without compromising the stability of the

complex. Such a Ski2-Ski3-Ski8IN complex shows weaker RNA-binding by the helicase core

in the presence adenosine diphosphate (ADP)-beryllium fluoride (Fig. 3.2.5) as compared

to the wild-type. Thus, RNA-binding not only depends on the nucleotide state but also

on the presence of Ski8OUT . It is possible that Ski8OUT achieves this effect by stabilizing

a certain conformation of the helicase core that has high affinity for RNA. The crystal

structure of the complex shows that both Ski8 subunits are anchored in the Ski3 scaffold

but bind back to the helicase core. This suggests that they act as a structural buffer system

that relays conformational restraints to the helicase in order to modify its function.

Mutually exclusive binding to Ski3 or Spo11 separates the two roles of Ski8 in

mRNA decay an meiotic recombination

Ski8 is unique among all exosome and SKI complex subunits in that it has a second role in

initiation of DSBs during meiotic recombination. The catalytic activity for DSB-formation
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resides in the topoisomerase-like protein Spo11 (Keeney et al., 1997) that needs to associate

with Ski8 to perform its function (Tesse et al., 2003; Arora et al., 2004). In the Ski2-

Ski3-Ski8 complex, both Ski8 subunits are recruited to Ski3 through the structurally well

conserved Q-R-x-x-F/Y motif. Such a motif (Q-R-E-I-F, residues 376 - 380) is also present

in the C-terminus of S. cerevisiae Spo11. Pull-down experiments indicate that this motif

is indeed responsible in vitro for the association of Spo11 with Ski8 (Fig. 3.2.5). These

results agree with in vivo experiments that annotated the C-terminal region of Spo11 as

the binding interface to Ski8 in general (Nag et al., 2006), and a set of residues (Q376,

R377/E378) in particular (Arora et al., 2004). The analogy to the Ski3-Ski8 interaction also

suggests that the top surface of Ski8 forms the interface to Spo11. Consistently, mutations

at the Ski8 top surface abrogate binding to Spo11 in vivo (Cheng et al., 2004).

Both Ski3 and Spo11 use a similar motif to bind to the same interface on Ski8, making

the formation of either complex (Ski2-Ski3-Ski8 or Spo11-Ski8) mutually exclusive of the

other. Mutually exclusive binding, in turn, explains how Ski8 can separate its two distinct

roles in mRNA degradation and meiotic recombination.

Towards a structural description of the Spo11-Ski8 complex

Spo11 is homologous to archaeal topo VI-A. The crystal structure of M. jannaschii topo VI-

A (Nichols et al., 1999) reveals an N-terminal 5Y-CAP domain and a C-terminal toprim

domain. The 5Y-CAP domain is found in other topoisomerases and bears a conserved

tyrosine residue that is believed to perform the transesterification reaction with the phos-

phodiester backbone of the DNA substrate. The homology with the archaeal topo VI-A

allows one to create a structural model of Spo11 using the program PHYRE (Kelley and

Sternberg, 2009).

The model (Fig. 4.3A) lacks 37 residues at the N-terminus (which are not conserved)

but contains a 5Y-CAP (residues 38 - 170) and a toprim domain (residues 171-398). Both

domains are connected by a linker and are arranged in a similar fashion as in the M.

jannaschii topo VI-A structure (Fig. 4.3A). Importantly, the Q-R-x-x-F motif of Spo11

(residues 376 - 380) is located on a helix in the toprim domain and is accessible to solvent.

The motif is structurally well conserved with the motifs found in Ski3 (Fig. 3.2.5). Using

the Ski3-Ski8 interaction as a template, Ski8 can be modeled to the Spo11 Q-R-x-x-F

motif. In the resulting dimer, no clashes are produced at the interface when using the

conformation of the acidic loop that is found in Ski8OUT . Thus, the model appears to be

structurally sound and agrees with biochemical and in vivo experiments that mapped the
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interface between both proteins (this study and Cheng et al., 2004; Arora et al., 2004; Nag

et al., 2006).

In the crystals of the M. jannaschii topo VI-A, a two-fold non-crystallographic sym-

metry axis is present. Homodimerization occurs at a primary interface between the toprim

domains of both protomers. A secondary interface is formed by the 5Y-CAP domain of one

protomer binding back in trans to the toprim domain of the other protomer (Nichols et al.,

1999). Experiments in yeast cells indicated that dimerization of Spo11 occurs in vivo con-

comitantly with the formation of DSBs (Sasanuma et al., 2007). Using the M. jannaschii

topo VI-A dimer as a template, a dimer of the Spo11-Ski8 complex was constructed (Fig.

4.3B).

The resulting tetramer (dimer of a dimer) produces only minor steric clashes in the

region of the primary interface at the toprim domain. A continuous, positively charged

cleft is formed by the toprim and 5Y-CAP domains (Fig. 4.3C), creating the putative

DNA-binding site. Both Ski8 subunits flank the binding cleft but do not contribute to

the basic surface. Obeying the two-fold symmetry restraints, a DNA duplex of 25 nt

length can be placed in the DNA-binding groove manually. The shortest distance between

a phosphodiester bond and the putative active-center residue Tyr-135 of Spo11 is about

12 Å. The active site is completed by a magnesium ion that is coordinated by a set of

conserved acidic residues (Fig. 4.3C).

Possible roles for Ski8 in the Spo11-Ski8 complex

Due to the lack of experimental data, the structural model of the Spo11-Ski8 complex has

to be interpreted cautiously. Nevertheless, it helps to discuss two possible roles of Ski8 in

the Spo11-Ski8 complex.

In the Spo11-Ski8 model, the active site appears in a state that is not competent

for catalysis (the reactive Tyr-135 is placed about 12 Å away from the DNA backbone).

It appears unlikely that Ski8 directly contacts or rearranges the DNA since it does not

contribute to the positively charged binding groove (Fig. 4.3C). However, binding of Ski8

may lead to a conformational change in Spo11 that renders the active site competent for

cleavage. Upon binding, Ski8 is positioned close to the putative active site of Spo11, which

is formed in trans by association of the 5Y-CAP and the toprim domains. Particularly one

loop of Ski8 (residues 278 - 286) is close enough to interact with the active site (Fig. 4.3B).

In the Ski2-Ski3-Ski8 complex, this loop binds back to the Ski2 helicase core in Ski8IN

but remains unstructured in Ski8OUT . It can be speculated that Ski8 induces a local
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Figure 4.3 | Towards a structural model for the Spo11-Ski8 subcomplex. (A) A PHYRE model of
S. cerevisiae Spo11∆N (residues 38 - 398) bound to Ski8. The Spo11 5Y-CAP domain is colored
in gray, the Spo11 toprim domain in beige and Ski8 in green. Three conserved acidic residues
that form a putative magnesium binding site (shown as gray sphere) are colored in red, and the
putative active site residue Y-135 is colored in magenta. (B) Model of the tetrameric Spo11-Ski8
assembly bound to a 25 nt DNA duplex (in black). Generation of the tetramer was guided by
the dimer axis observed in crystals of M. jannaschii topo VI-A (Nichols et al., 1999). The DNA
duplex was placed manually using symmetry constraints (e.g. equidistance of equivalent atoms to
the active sites). A zoom-in view shows that Ski8 binds close to the active site. (C) Electrostratic
surface potential of the tetrameric Spo11-Ski8 complex.
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rearrangement of the active site of Spo11 to render it competent for catalysis. Clearly, this

hypothesis needs to be validated by more reliable structural information and a thorough

biochemical characterization.

A second possible function of Ski8 is related to its role in the Ski2-Ski3-Ski8 complex.

Ski8 may act as an adapter protein that recruits other subunits of the DSB-initiation com-

plex, e.g. Rec102 and Rec104 (Kee et al., 2004). Consistent with this idea, the interfaces

through which Ski8 binds Ski2 and Ski3 are oriented into solution in the Spo11-Ski8 com-

plex and remain available for other binding partners. The position of Ski8 flanking the

DNA binding groove creates a deep pocket for the substrate, suggesting that other subunits

may bridge both Ski8 copies to fully enclose the nucleic acid.

4.5 The SKI complex regulates exosome function

The observation that Ski2, Ski3, Ski7 and Ski8 are required for all known functions of the

cytoplasmic exosome (Anderson and Parker, 1998; Araki et al., 2001) led to the proposal

that the Ski2-Ski3-Ski8 complex, together with Ski7, is a general activator of the exosome.

The presence of the RNA helicase Ski2 within the complex suggested that activation might

occur through remodeling of RNPs or by unwinding RNA secondary structures and thus

presenting a more favorable substrate to the exosome. In the nucleus, the TRAMP com-

plex is a general cofactor of the exosome. It contains an RNA helicase (Mtr4), the activity

of which has been shown to be required in vivo for degradation of certain substrates like

tRNAMet
i (Wang et al., 2008). In the case of Ski2, no experimental evidence links its heli-

case activity to exosome nuclease activity. Still, the presence of two (highly related) RNA

helicases in the two general exosome cofactors suggests that unwinding or translocation

activity may be a general mechanism of activation of the exosome.

The Ski2-Ski3-Ski8 complex remains constitutively associated to the exosome

Recruitment of the Ski2-Ski3-Ski8 complex to the exosome is best understood in budding

yeast, where the eRF3-homolog Ski7 has been shown to interact in vivo with both the

Ski2-Ski3-Ski8 complex and the exosome (Araki et al., 2001; Wang et al., 2005). The

N-terminal domain of S. cerevisiae Ski7 contains two separate regions that bind to the

Ski2-Ski3-Ski8 complex (residues 1 - 96) or to the exosome (residues 97 - 264) (Fig. 2.5,

Araki et al., 2001).

Pull-down experiments with purified recombinant proteins confirm these interactions
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(Fig. 3.2.S6) and also show that both complexes can simultaneously bind to Ski7, a

prerequisite for any functional interplay. Moreover, Ski2 and Ski8 require Ski3 to inter-

act with Ski7, and the N-terminal region of Ski3 is dispensable for binding to Ski7 (Fig.

3.2.S6). These results suggest that the C-terminus of Ski3 not only serves as scaffold for

the Ski2-Ski3-Ski8 complex but also as interaction platform for Ski7. In these in vitro

experiments, the SKI-exosome complex appeared to be stable at physiological salt concen-

trations, suggesting that the exosome remains constitutively associated with Ski7 and with

the Ski2-Ski3-Ski8 complex rather than being recruited at a given time or for a particular

incoming substrate.

Direct substrate channeling occurs between the Ski2-Ski3-Ski8 complex and

the exosome

As pointed out in section 4.2, the clustering of structural features along the RNA-binding

path of Ski2 together with its unwinding activity suggests that the helicase may resolve

secondary structures and transfer the substrate to the exosome. The channeling of RNA

through the Ski2-Ski3-Ski8 complex cannot directly observed in the crystal structure (which

corresponds to the apo state) but other structural data support this model. Crystal struc-

tures of the two closest relatives of Ski2 (yeast Mtr4 and archaeal Hel308) bound to nucleic

acid have been solved (Weir et al., 2010; Büttner et al., 2007). They show that the nucleic

acid is contacted by the canonical SF2 motifs and funnelled through a channel formed by

the ring-like assembly of RecA1, RecA2 and helical domains. Given the high similarity

of Ski2 and Mtr4 (or Hel308) in terms of structure and sequence, it seems reasonable to

assume that in Ski2 the RNA substrate takes a similar path.

Intriguingly, the physical interaction between the exosome and the Ski2-Ski3-Ski8 com-

plex changes the RNA-binding properties of both complexes. In a Ski7-dependent fashion,

a joint RNA binding channel of 41 - 43 nt length is created (Fig. 3.2.6). This joint channel

appears as an extension of the 31 - 33 nt RNA-binding path in the central cavity of the

exosome that has been characterized by structural (Malet et al., 2010), biochemical (Bon-

neau et al., 2009) and in vivo experiments (Wasmuth and Lima, 2012). The extension of 9

- 10 nt depends on all four Ski proteins and corresponds to the length of an RNA-binding

path in Ski2-Ski3-Ski8 in presence of an ATP-analog (Fig. 2.2.1).

It has to be noted that the joint 41 - 43 nt RNA channel of the SKI-exosome complex

is not the only possible mode of RNA-binding. In fact, the 31 - 33 nt exosome path is still

dominant in RNase protection experiments, suggesting that alternative RNA paths exist
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that may bypass the Ski2-Ski3-Ski8 complex when bound to the exosome. Furthermore,

the role of these pathways in vivo remains to be clarified.

The extension of the exosome’s RNA channel also points towards the S1/KH ring as

the interaction site with Ski7. Since the Rrp44D171N, D551N double mutant used in the

RNase protection experiments buries the 3′ end of the RNA (Lorentzen et al., 2008), any

additional factors must bind the nucleic acid at the 5′ end that emerges from the S1/KH

ring of the central channel, consistent with electron microscopy data using 5′ -labeled RNA

(Malet et al., 2010). In line with these observations, in vivo experiments identified the C-

terminus of the S1/K1 ring member Csl4 as a crucial component for the functions of the

cytoplasmic exosome. (Schaeffer et al., 2009; van Hoof et al., 2000b).

Together, these results suggest a model according to which Ski7 binds to the S1/KH ring

of the exosome (Fig. 3.4A). It then recruits the Ski2-Ski3-Ski8 complex most likely through

Ski3. In this way, the RNA 3′ exit site from the helicase complex is positioned very close to

the RNA entry site on the S1/KH ring. A joint substrate channel is formed that connects

the helicase activity of Ski2 to the nuclease activities of Rrp44. Thus, secondary structures

in RNA substrates could be effectively unwound by Ski2-Ski3-Ski8 and the single stranded

substrate could be funnelled through the joint substrate channel to reach the Rrp44 active

sites for degradation. Even though direct evidence (e.g. in form of structural data) is

still missing, these results represent the first indications of how the Ski2-Ski3-Ski8 complex

activates the exosome.

The Ski2 insertion domain and the Ski3 N-terminal arm cooperate to regulate

access of RNA to Ski2

Inspection of the structural model for the full-length Ski2-Ski3-Ski8 complex reveals two

domains that protrude from the core complex that is arranged around the C-terminal arm

of Ski3 (Fig. 4.1): the Ski2 insertion domain and the N-terminal arm of Ski3. Both

domains are flexible (Fig. 3.1.S1 and Fig. 3.2.S2) and dispensable for complex formation

or binding to Ski7 (Fig. 3.1.4 and Fig. 3.2.S6).

The Ski2 insertion domain is structurally and topologically related to the Mtr4 KOW

domain (Weir et al., 2010; Jackson et al., 2010) and binds RNA apparently unspecifically

(Fig. 3.1.3). Its location above the entry site of the RNA into the helicase core suggests

a role for substrate loading. Indeed, removal of the Ski2 insertion domain promotes the

formation of the 41 - 43 nt RNA channel as judged by RNase protection assays (Fig.

3.2.6). Similarly, its removal enhances unwinding activity of Ski2-Ski3-Ski8 and stimulates
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ATPase activity of the complex approximately 10-fold (Fig. 3.2.S6). In contrast, deletion

of the insertion domain does not affect ATPase activity of Ski2 in isolation, suggesting that

complex formation contributes an element that is required for the inhibitory effect of this

domain.

Consistent with this hypothesis, removal of the N-terminal arm of Ski3 (residues 1 - 487)

prompts a similar activation of helicase and ATPase activities of the Ski2-Ski3-Ski8 complex

(Fig. 3.2.S6). The flexibility of both domains as observed in the crystal structures and

in normal mode analyses suggests that both domains can potentially come into contact.

However, the Ski3 N-terminal arm (containing the conserved surface patch on TPRs 1

and 2) does not interact with the Ski2 insertion domain in size-exclusion chromatography

experiments (not shown), but transient interactions cannot be excluded.

Both inhibitory domains do not act redundantly since removal of any one is sufficient to

prompt the inhibitory effect. Additionally, the effects of removal of each domain are similar

in magnitude. Together, this suggests that both domains act cooperatively to exert their

function. Considering the flexibility, the location at the RNA entry site and particularly

the effect on formation of a joint substrate channel, the Ski2 insertion domain can be

Figure 4.4 | A model for activation of the cytoplasmic exosome by the Ski2-Ski3-Ski8 complex.
(A) A model of how Ski7 bridges the Ski2-Ski3-Ski8 and Exo10 complexes, leading to a joint
RNA channel between both assemblies. This connects the helicase and the nuclease activities of
Ski2-Ski3-Ski8 and of the exosome, respectively. It remains unclear where Ski7 binds on both
complexes (indicated by the question marks). (B) The Ski2 insertion domain and the Ski3 N-
terminus cooperate to inhibit the ATPase and helicase activity of the Ski2-Ski3-Ski8 complex,
most likely by regulating substrate access into the helicase core of Ski2.
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speculated to block substrate access to the helicase core when the Ski3 N-terminal arm

is present, effectively shutting down the helicase. Given the fact that helicase activity is

linked to nuclease activity by the joint substrate channel, this would also provide a means

of down-regulating exosome activity. Conversely, activation of the Ski2-Ski3-Ski8 complex

might then require the Ski3 N-terminal arm to be recruited away from the insertion domain,

possibly by binding events that target the conserved surface patch on TPRs 1 and 2 (Fig.

3.2.S2).

4.6 Major conclusions

All three subunits of the SKI complex are required for exosome-mediated mRNA degra-

dation in the cytoplasm. The results of this PhD thesis offer a first view to understand

the role of the individual subunits in the complex, thus rationalizing why each protein is

essential for the entire biological process.

Ski2 contains in addition to its canonical DExH box core a variable insertion domain

that appears to regulate substrate access to the helicase. Ski3 forms a large TPR array

that is formed by two arms. The N-terminal regulatory arm cooperates with the Ski2

insertion domain to control substrate loading. The C-terminal arm acts as scaffold for the

other subunits and may provide the interface to Ski7.

The finding that the Ski2-Ski3-Ski8 complex contains an internal regulatory mechanism

is intriguing because it lends a broader perspective to the notion of the SKI complex

as a general cofactor of the cytoplasmic exosome. First, its ATP-dependent remodeling

capabilities along with the described direct substrate channeling mechanism may activate

the exosome to degrade structured substrates. Second, the identified internal inhibitory

mechanism in the Ski2-Ski3-Ski8 complex may also inhibit exosome activity indirectly by

refusing substrate transfer. Both kinds of regulation (positive and negative) would provide

tools that - together with a yet to be identified sensory system - could control the exosome’s

substrate specificity.
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The structure of the Ski2-Ski3-Ski8 complex and its functional characterization are a first

step to understand the mechanisms by which the cytoplasmic exosome is regulated. The

next step will include a structural characterization of the exosome bound to Ski7 and the

Ski2-Ski3-Ski8 complex. This will help to understand the details of how Ski7 recruits the

helicase complex to the nuclease complex. In particular it will shed more light on the

function of the Ski7 N-terminus as an adapter between both complexes. More structural

data, possibly including cryo-electron microscopy studies, will also help to analyze the

RNA-channelling between both complexes on the molecular level.

On the functional level, the joint substrate channel needs to be characterized in more

detail by different techniques, e.g. electron microscopy or a combination of chemical cross-

linking an mass-spectrometry. The role of alternative entry paths for RNA into the exosome

remains to be examined. While the current data support the presence of an internal

inhibitory mechanism of Ski2-Ski3-Ski8 complex that controls substrate loading, the details

of the process have to be elucidated. Particularly interesting is also the question of how

this inhibition is released once the helicase complex binds to the exosome. Related to this

problem may be the question of how upstream factors of quality control pathways interact

with the Ski2-Ski3-Ski8 complex. Finally, it needs to be confirmed that degradation of

certain substrates by the exosome is directly promoted by means of the helicase activity

of Ski2.

The long-term goal on the functional level is to understand how the substrate speci-

ficity of the exosome is regulated, and the above-mentioned questions can contribute sub-

stantially to clarify this question. However, a comprehensive understanding of all other

exosome cofactors (e.g. the TRAMP complex), specifically in terms of their activities and

interactions with the exosome, will be indispensable to tackle this problem.

Another somewhat unrelated aspect is the function of Ski7 and the Ski2-Ski3-Ski8 com-

plex in the context of the ribosome, e.g. during no-go decay. Crystallographic and electron
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microscopy analysis of ribosome particles bound to translational factors are technically well

established. They offer the possibility to investigate how Ski7 positions the Ski2-Ski3-Ski8

complex on the ribosome and to understand how stalling mRNAs are relayed to the degra-

dation system. Of specific interest is the role of the Ski7 GTPase domain: does it act like

a true eRF3-homolog and are other translational factors (like eRF1-homologs) required for

its interaction with the ribosome? Since Ski7 is not present in other eukaryotic geni than

Saccharomyces, it will be intriguing to find out how the Ski2-Ski3-Ski8 complex interacts

with the exosome and the ribosome in higher eukaryotes.
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05.03.10
cloned by P

&
T

231
236

93
c088

scS
ki2_S

2H
"_his

s. cerevisiae
ski2

867
1048

his
peck3c_his

kan
ok

05.03.10
cloned by P

&
T

232
235

94
c089

scS
ki2_S

2H
"_gst

s. cerevisiae
ski2

867
1048

gst
peck3c_gst

kan
ok

05.03.10
cloned by P

&
T

232
235

95
c090

scS
ki2_S

"_his
s. cerevisiae

ski2
893

1018
his

peck3c_his
kan

ok
05.03.10

cloned by P
&

R
233

234

96
c091

scS
ki2_S

"_gst
s. cerevisiae

ski2
893

1018
gst

peck3c_gst
kan

ok
05.03.10

cloned by P
&

T
233

234

97
c092

spS
ki2!

s_fl
s. pom

be
ski2

1
1213

108
his

peck3c_his
kan

ok
09.04.10

2.170
!

stalk, V
758G

S
R

G
L1014

241
242

98
c093

scS
ki2_!

N
!

s
s. cerevisiae

ski2
296

1287
84

his
peck3c_his

kan
A

1255 backm
ut.,

rest?
07.04.10

2.172
qc on c82, !

stalk
243

244

99
c094

scS
ki2_!

s_fl
s. cerevisiae

ski2
1

1287
117

his
peck3c_his

kan
V

1147 backm
ut,

rest?
07.04.10

2.172
qc on c84, !

stalk
245

246

P
age 3/6
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num
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e
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end
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lab_book
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m
ent

prim
er_f

prim
er_rev

100
c095

spS
ki2_!

s_fl
s. pom

be
ski2

1
1213

108
his

pfastbac_1
am

p
ok

13.04.10
2.176

pcr on c092
142

172

101
c096

scS
ki2_!

s_fl
s. cerevisiae

ski2
1

1287
117

his
pfastbac_1

am
p

F830V
27.04.10

2.182
pcr on c094

142
144

102
c097

scS
ki2_!

N
!

s
s. cerevisiae

ski2
296

1287
84

his
pfastbac_1

am
p

ok
27.04.10

2.182
pcr on c093

142
144

103
c098

scS
ki2_!

s_fl
s. cerevisiae

ski2
1

1287
117

pFL
am

p
F830V, 834/c
fram

eshift
27.04.10

2.182
pcr on c094

197
198

104
c099

scS
ki2_!

s_fl
s. cerevisiae

ski2
1

1287
117

his
pFastB

ac1
am

p
ok

25.05.10
2.185

qc on c96
254

255

105
c100

scS
ki2_arch01

s. cerevisiae
ski2

891
985

10
his

peck3c_his
kan

07.06.10
2.191

259
260

106
c101

scS
ki2_arch02

s. cerevisiae
ski2

891
989

10
his

peck3c_his
kan

07.06.10
2.191

259
261

107
c102

scS
ki2_arch03

s. cerevisiae
ski2

891
1078

21
his

peck3c_his
kan

07.06.10
2.191

259
262

108
c103

scS
ki2_arch04

s. cerevisiae
ski2

891
1078

21
his_sum

o
peckhi_sum

o
kan

07.06.10
2.191

263
266

109
c104

scS
ki2_arch!

2
s. cerevisiae

ski2
851

1073
26

his
peck3c_his

kan
ok

13.07.10
3.2

pcr onc047
268

273

110
c105

scS
ki2_arch!

3
s. cerevisiae

ski2
859

1066
24

his
peck3c_his

kan
ok

13.07.10
3.2

pcr on c047
269

272

111
c106

scS
ki2_arch!

1
s. cerevisiae

ski2
841

1082
28

his
peck3c_his

kan
5'ok

22.07.10
3.3

pcr on c047
267

274

112
c107

scS
ki2_arch!

1
s. cerevisiae

ski2
862

1063
23

his
peck3c_his

kan
ok

22.07.10
3.3

pcor on c047
270

271

113
c108

scS
ki2LS

M
_1

s. cerevisiae
ski2

865
1050

22
his

peck3c_his
kan

ok
10.09.10

cloned by P
&

T
275

278

114
c109

scS
ki2LS

M
_2

s. cerevisiae
ski2

870
1045

21
his

peck3c_his
kan

ok
10.09.10

cloned by P
&

T
276

277

115
c110

spS
ki2LS

M
_3

s. pom
be

ski2
789

976
22

his
peck3c_his

kan
ok

01.10.10
cloned by P

&
T

279
280

116
c111

scS
ki8_3!

N
_his

s. cerevisiae
ski3, ski8

his
pFLdspe

am
p

ok
14.01.11

3.22
M

C
S

1 ski8 ok, M
C

S
2

S
ki3dN

601 ok

117
c112

scS
ki8_S

ki3!
328_his

s. cerevisiae
ski3, ski8

his
pFLdspe

am
p

ok
18.01.11

3.24
M

C
S

2 1-328-G
S

G
-408-c ok,

M
C

S
1 1-397ok 

118
c113

scS
ki8:S

ki3!
338_his

s. cerevisiae
ski3, ski8

his
pFLdspe

am
p

ok
03.02.11

3.27
M

C
S

 2 1-338-G
S

G
S

-404-C
,

M
C

S
1 S

ki8 fl

119
c114

scS
ki2_LS

M
_897D

-
903A

s. cerevisiae
ski2

835
1085

30
his

peck3c_his
kan

ok
02.02.11

3.29
H

897D
, R

903A
291

292

120
c115

scS
ki7_N

40_sum
o

s. cerevisiae
ski7

1
40

15
his_sum

o
peckhi_sum

o
kan

ok
24.02.11

3.37
295

296

121
c116

scS
ki7_N

62_sum
o

s. cerevisiae
ski7

1
62

18
his_sum

o
peckhi_sum

o
kan

ok
24.02.11

3.37
295

297

122
c117

scS
ki7_N

75_sum
o

s. cerevisiae
ski7

1
75

19
his_sum

o
peckhi_sum

o
kan

ok
24.02.11

3.37
295

298

123
c118

scS
ki7_N

87_sum
o

s. cerevisiae
ski7

1
87

21
his_sum

o
peckhi_sum

o
kan

ok
24.02.11

3.37
295

299

124
c119

scS
ki3_522!

_!
loop3

38
s. cerevisiae

ski3
1

523
53

his_sum
o

peckhi_sum
o

kan
ok

07.04.11
3.38

w
/ C

term
 H

is tag!! P
C

R
 on

c113
102

103

125
c120

scS
ki3!

522!
loop338

s. cerevisiae
ski3

1
523

50
his_sum

o
peckhi_sum

o
kan

ok
15.04.11

3.40
stop after 522 w

/ qc on c119

126
c121

scS
ki2_835-

1085_R
903E

s. cerevisiae
ski2

835
1085

29
his

peck3c_his
kan

ok to1037, rest not
yet seq

18.05.11
3.42

P
C

R
 on c86

308
309

127
c122

scS
ki2_835-

1085_F920A
s. cerevisiae

ski2
835

1085
29

his
peck3c_his

kan
ok to 1018, rest no
yet

25.05.11
3.43

P
C

R
 on c86

306
307

128
c123

scS
ki2_835-

1085_H
897D

s. cerevisiae
ski2

835
1085

29
his

peck3c_his
kan

ok to 1042, rest not
seq

14.07.11
3.44

P
C

R
 on c86

303
302

P
age 4/6
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start
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prim
er_f

prim
er_rev

129
c124

scS
ki3!

160his:scS
ki8

:pFL
s. cerevisiae

ski3, ski8
161

1432
148

his
pFLdspe

am
p

ok
08.09.11

3.57
from

 c78

130
c125

scS
ki3!

279his:scS
ki8

:pFL
s. cerevisiae

ski3, ski8
280

1432
129

his
pFLdspe

am
p

ok
08.09.11

3.57
from

 c78

131
c126

scS
ki3!

487his:scS
ki8

:pFL
s. cerevisiae

ski3, ski8
488

1432
109

his
pFLdspe

am
p

ok
08.09.11

3.58
from

 c78

132
c127

scS
ki3!

521his:scS
ki8

:pFL
s. cerevisiae

ski3, ski8
522

1432
106

his
pFLdspe

am
p

ok
08.09.11

3.59
from

 c78

133
c128

scS
ki3!

555his:scS
ki8

:pFL
s. cerevisiae

ski3, ski8
556

1432
102

his
pFLdspe

am
p

ok
08.09.11

3.61
from

 c78

134
c129

scS
ki2R

149D
:3his:8

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

ok (N
-term

ini,
backbone not seq'd

23.02.12
3.71

quickchanged c80
320

321

135
c130

scS
ki238_2R

G
box-

LoopO
ut

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

(ok) not seq'd: 8,1-
80.2,1-28,1091-
1193.3,1-20

23.02.12
3.71

quickchanged c80
325

326

136
c131

scS
ki238_8_301-

LoopIn
s. cerevisiae

ski2,ski3,
ski8

his 
pFLdspe

am
p

(ok) not seq'd: 8,1-
81.2, 1-22. 3,1-
28,1363-c

23.02.12
3.71

quickchanged c80
327

328

137
c132

scS
ki238_!

8in
s. cerevisiae

ski2,ski3,
ski8

his
pFLdspe

am
p

(ok) not seq'd: 2,1-
23.3,1-22.8,1-81

23.02.12
3.71

quickchanged c80
331

332

138
c133

scS
ki238_2R

R
K

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

01.03.12
3.76

quickch'g c129
323

324

139
c134

scS
ki238_2C

hO
b

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

01.03.12
3.76

quickch'g c80
319

320

140
c135

scS
ki238_3Q

1046R
_

P
1050R

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

01.03.12
3.76

quickch'g c80
337

338

141
c136

scS
ki238_3R

ecA
i

s. cerevisiae
ski2,ski3,
ski8

his
pFLdspe

am
p

23.03.12
3.78

quickch'g c135
339

340

142
c137

scS
ki238_!

8out
s. cerevisiae

ski2,ski3,
ski8

his
pFLdspe

am
p

24.04.12
3.93

quickch'g c80
352

353

143
c138

scS
po11_!

N
s. cerevisiae

spo11
170

398
26

his_ZTA
p-E

C
-K

-H
T-

ZTA
kan

ok
01.03.12

cloned by p&
t

145
c139

scS
ki8_fl_G

S
T

s. cereviaise
ski8

1
397

44
his G

S
T

p-E
C

-K
-3C

-
G

S
T

kan
ok

16.05.12
clones by p&

t

146
c140

scS
po11_!

N
_Q

R
F

s. cerevisiae
spo11

170
398

26
his_ZTA

p-E
C

-K
-H

T-
ZTA

kan
ok 

28.05.12
3.100

Q
376A

,R
377D

,F380D
,Q

C
 on

c138
354

355

147
c141

scS
ki8_G

S
T

s. cerevisiae
ski8

1
397

44
hisG

S
T

p-E
C

-A
-G

S
T

am
p

ok 
30.05.12

3.100
105

106

148
c142

scS
po11_fl_Y

135F
s. cerevisiae

spo11
1

398
44

hisG
S

T
p-E

C
-K

-3C
-

G
S

T
kan

ok
05.11.12

Y
135F, cloned by p&

t

149
c143

scS
po11!

C
s. cervisiae

spo11 
1

170
19

hisTR
X

p-E
C

-K
-TE

V-
TR

X
kan

ok
05.11.12

cloned by p&
T

150
c144

scS
po11!

N
!

C
s. cerevisiae

spo11
38

170
15

hisTR
X

p-E
C

-K
-TE

V-
TR

X
kan

ok
05.11.12

cloned by p&
T
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151
c145

scS
po11!

C
_Y

135F
s. cerevisiae

spo11
1

170
19

hisTR
X

p-E
C

-K
-TE

V-
TR

X
kan

ok
05.11.12

Y
135F, cloned by p&

T

152
c146

scS
po11!

N
!

C
_Y

135
F

s. cerevisiae
spo11

38
170

15
hisTR

X
p-E

C
-K

-TE
V-

TR
X

kan
ok

05.11.12
Y

135F, cloned by p&
T

P
age 6/6



90 A. AppendixSki complex oligos cloning sequencing
s.cerevisiae, s. pombe, h. sapiens

# Name For/Rev Insert Restriction Vector Tag Sequence storage comment
1 ySki2_pfbachta_f f ySki2p fl SalI pFastBAc HTA 6xHis ATAGTCGACAGATGTCTGAGGGATTCAGTAGC Box I, 1 also f pfastBac1
2 ySki2_pfbachta_r r ySki2p fl XbaI pFastBAc HTA 6xHis GCGCTCTAGACTATAAATACAAACTTGCGGCG Box I, 2 also f pfastBac1
3 003ySki3fl_pfbhta_f f ySki3p fl BamHI pFastBAc HTA 6xHis GCAGGATCCGATGTCGGATATTAAACAGC Box I, 3 also f pfastBac1
4 004ySki3fl_pfbhta_r r ySki3p fl xhoI pFastBAc HTA 6xHis GAGCTCGAGTTAGAAACATTCGTTTAGCGCC Box I also f pfastBac1
5 005ySki8_fl_pfbHTA_f f ySki8p fl SalI pFastBAc HTA 6xHis GCTGTCGACGCATGTCCAAAGTGTTTATTGC Box I also f pfastBac1
6 006ySki8_fl_pfbHTA_r r ySki8p fl XhoI pFastBAc HTA 6xHis GCTCTCGAGTTATTTACCGCCAGCTTCTCTAAACC Box I also f pfastBac1
7 007ySki8_fl_pGex6p1_f f ySki8p fl SalI pGex6P1 GST ACTGTCGACGCATGTCCAAAGTGTTTATTGC Box I
8 008ySki8_fl_pGex6p1_r r ySki8p fl NotI pGex6P1 GST ATAGCGGCCGCTTATTTACCGCCAGC Box I
9 009_pfbGST_f f GST, precission BamHI pFastBAc1 GST ATCGGATCCATGTCCCCTATACTAGGTTATTGG Box I creates GST pfast Bac
10 010_pfbGST_r r GST, precission EcoRI pFastBAc1 GST ATAGAATTCCCAGGGGCCCCTGGAACAG Box I creates GST pfast Bac
11 011_pfBac_f f - - pFastBac 1/  HTA - CCGGAATATTAATAGATCATGG sequencing pfBac1/HTA
12 012_pfBac_r r - - pFastBac 1/  HTA - CAAGTTAACAACAACAATTGC sequencing pfBac1/HTA
13 013_pfBac_6his f - - pFastBAc HTA - CATCACCATCACCATCACG pfbacHTA only
14 014_M13-f f - - DH10 Bacmids - GTTTTCCCAGTCACGAC m13 for D10(multi)Bac derived bacmids
15 015_M13-r r - - DH10 Bacmids - CAGGAAACAGCTATGAC m13 for D10(multi)Bac derived bacmids
16 016_ySki8fl_pfbac-f f ySki8p fl NcoI pFastBac 1/  HTA 6xHis GAGCCATGGCCATGTCCAAAGTGTTTATTGCC
17 017_ySki8fl_pfbac-r r ySki8p fl HindIII pFastBac 1/  HTA 6xHis GCCAAGCTTTTATTTACCGCCAGCTTCTCTAAACC
18 018_ySki8fl_pfbac-f f ySki8p fl SalI pFastBac 1/  HTA 6xHis CCGGTCGACGAATGTCCAAAGTGTTTATTGCC
19 019_ySki2_S132-f f ySki2 - - - GGAAGTTGCAAATGCCAATGCATCAAATTCACTGTCGATTACGAGAAGTATCAACC mutagenesis for wildtype S132. For c001,002
20 020_ySki2_S132-r r ySki2 - - - GGTTGATACTTCTCGTAATCGACAGTGAATTTGATGCATTGGCATTTGCAACTTCC mutagenesis for wildtype S132. For c001,002
21 021_ySki2_N884-f f ySki2 - - GCTGGCATATAAGGAGGCAACAGTCAACCTAATGCAAGAAATGGTTAAATCGCC
22 022_ySki2_N884-r r ySki2 - - - GGCGATTTAACCATTTCTTGCATTAGGTTGACTGTTGCCTCCTTATATGCCAGC
23 023_ySki3_+889 f ySki3p - - - CTGGACAACATGGATGCCCC sequencing
24 024_ySki8+180 f ySki3p - - - CCATAAGTCCGGATTGCACC sequencing
25 025_pfastBac_-190 f - - pFastBac 1/  HTA - GGTTGGCTACGTATACTCCG sequencing, 190bp 5' to 6his
26 026_hsSKI2+145 f hsSKI2 - - - CCTTGTGCCCCAGATCTGC
27 027_hsSKI2+649 f hsSKI2 - - - CCTCTGGATTTGGGTGGG
28 028_hSKI2+1155 f hsSKI2 - - - GGATGTACAGCTGCATCCG
29 029_hsSKI2+1683 f hsSKI2 - - - CCGCACACGTGCCCAGTTGC
30 030_hsSKI2+2132 f hsSKI2 - - - CCACAGGCACCGTTATCC
31 031_hsSKI2+2622 f hsSKI2 - - - GGTCTTGTGTGATAAGCCC
32 032_hsSKI2+3135 f hsSKI2 - - - GGATCAGTCATTGCTGCTGC
33 033_hsSKI3+5 f hsSKI3 - - - CCAGCAAGGAAGTGAAGACTGC
34 034_hsSKI3+498 f hsSKI3 - - - CCTGGCTGAAAGTACAGAGG
35 035_hsSKI3+986 f hsSKI3 - - - GCAGTCAAGCTCTGAAGATCG
36 036_hsSKI3+1537 f hsSKI3 - - - GCTCGTGGATGTTATAGG
37 037_hsSKI3+2024 f hsSKI3 - - - GCCATCTTATGATGGCAAAAGC
38 038_hsSKI3+2521 f hsSKI3 - - - GGAAATTATGCCCTTGCTCAGC
39 039_hsSKI3+2991 f hsSKI3 - - - GGAAGCAGCAAATGCATACC
40 040_hsSKI3+3482 f hsSKI3 - - - GGTGCCTTCTTACATCAGC
41 041_hsSKI3+3963 f hsSKI3 - - - CCAGTCCCTTGAAAAGTGG
42 042_hsSKI3+4421 f hsSKI3 - - - CCTTGAAGCTTTGCTTTTGTCC
43 043_hsSKI8+129 f hsSKI8 - - - GGTGAAGGTCTGGAAATGG
44 044_hsSKI8+538 f hsSKI8 - - - GGAAAACTTCTGCATACCCTGG
45 045_scSKI7_pFast-f f scSKI7 NcoI pFastBac 1/  HTA 6xHis CGATACCATGGGGATGTCGTTATTAGAGCAATTAGC
46 046_scSKI7_pFast-r r scSKI7 HindIII pFastBac 1/  HTA 6xHis CGTACTGAAGCTTTTACTGGCATGCAATTCTGCC
47 047_scSKI7_pLIC-f f scSKI7 - pLIC (TEV) CCAGGGAGCAGCCTCGATGTCGTTATTAGAGCAATTAGC
48 048_scSKI7_pLIC-r r scSKI7 - pLIC (TEV) GCAAAGCACCGGCCTCGTTATTACTGGCATGCAATTCTGCC
49 049_hsSKI2_pFast-f f hsSKI2 EcoRI pFast 6xHis CGCATGAATTCATGATGGAGACAGAGCGACTTGTGC
50 050_hsSKI2_pFast-r r hsSKI2 HindIII pFast 6xHis CCTATGAAGCTTTCACTGGGTGTAGAGGCTGG
51 051_hsSKI3_pFast-f f hsSKI3 BamHI pFast 6xHis GCATAGGGATCCAATGTCCAGCAAGGAAGTGAAGACTGC
52 052_hsSKI3_pFast-r r hsSKI3 XbaI pFast 6xHis GGTATCTAGATTATTGTGAGGACAATCTCTGATTCAGTTCC
53 053_hsSKI8_pFast-f f hsSKI8 NcoI pFast 6xHis GCATACCATGGGGATGACCAACCAGTACGGTATTCTC
54 054_hsSKI8_pFast-r r hsSKI8 EcoRI pFast 6xHis CGTGCGAATTCTTAAATTGGACAATCATAGATGTGAATTTCC
55 055_spSKI8_pFast-f f spSKI8 BamHI pFast 6xHis GCATAGGATCCGATGAGGAAAGAGTATCTCGTTAGCC
56 056_spSKI8_pFast-r r spSKI8 EcoRI pFast 6xHis GCGATGAATTCTTATTCTGTAGCAGCAGCTCTATACC
57 057_spSKI2_pFast-f f spSKI2 NcoI pFast 6xHis GCATACCATGGGGATGTCTTCTAAACTTGTAGATGCAATCAACG
58 058_spSKI2_pFast-r r spSKI2 XbaI pFast 6xHis GCTCGTCTAGATTCACATATACAGTGAAGGGC
59 059_spSKI3_pFast-f f spSKI3 BamHI pFast 6xHis TTATAGGATCCGATGGCAAAACCAGCCCTCAAAGC
60 060_spSKI3_pFast-r r spSKI3 XhoI pFast 6xHis CGTATCTCGAGCTACGAAGCATCACTTGAAACTAGTGC
61 061_spSKI8+222 spSKI8 - - - CGTTTCTTGCGGATTTGG
62 062_spSKI8+721 spSKI8 - - - GGTGATTTGTTGCTTTCGGC
63 063_spSKI3+6 spSKI3 - - - AAAACCAGCCCTCAAAGC
64 064_spSKI3+496 spSKI3 - - - GAAAGCATGGATCGTTGC
65 065_spSKI3+980 spSKI3 - - - ACAATAGCGCTGAACTAGC
66 066_spSKI3+1465 spSKI3 - - - CTACTCTTAGACGACCACG
67 067_spSKI3+1947 spSKI3 - - - CAATTGGCATCACACTTCC
68 068_spSKI3+2424 spSKI3 - - - CGCATGTTTATCATTCTGCC
69 069_spSKI3+2897 spSKI3 - - - TGTGGGCAAATTATGGTGC
70 070_spSKI3+3389 spSKI3 - - - TCGGCAGGTTATATTTGGC
71 071_spSKI3+3831 pspSKI3 - - - CCTCAAACAAGTTCAGATTATGG
72 072_spSKI2+18 spSKI2 - - - AGATGCAATCAACGAAGTAGC
73 073_spSKI2+525 spSKI2 - - - TTCCATGACAGCGACATCC
74 074_spSKI2+1051 spSKI2 - - - GGAATTTTAACTGGTGATGTCC
75 075_spSKI2+1543 spSKI2 - - - GGCGTTCAAACGAATATGATGC
76 076_spSKI2+1948 spSKI2 - - - GCAATGGGTGTAAATATGCC
77 077_spSKI2+2432 spSKI2 - - - TCCGAGCAATAACTACTGC
78 078_spSKI2+2924 spSKI2 - - - CCGGAAATCCAATTATCTCG
79 079_spSKI2+3413 spSKI2 - - - TGGAGGTTTGCTACGAGTGG
80 080_scSKI7+3 scSKI7 - - - GTCGTTATTAGAGCAATTAGC
81 081_scSKI7+494 scSKI7 - - - CATCAATACCGCTATCGTCG
82 082_scSKI7+952 scSKI7 - - - AAGGTCATTCTAGACAATACC
83 083_scSKI7+1397 scSKI7 - - - GTTCGGGTTTATTAGGTTCG
84 084_scSKI7+1860 scSKI7 GCAATTTCACATTCGTAAGGG
85 085_scSKI7_116C_pLIC f scSKI7 - pLIC (TEV) LIC CCAGGGAGCAGCCTCGGATGATAAACTCAACTTAGAAGAGTCATGG
86 086_scSKI7_266C_pLIC f scSKI7 - pLIC (TEV) LIC CCAGGGAGCAGCCTCGCTGAATTTGACATGTTTGTTCCTCGG
87 087_scSKI7_N265_pLIC r scSKI7 - pLIC (TEV) LIC GCAAAGCACCGGCCTCGTTAAGGATGGGTGGCAATGAATG
88 088_scSKI7_pLICsumo f scSKI7 - pLIC (SuMO) LIC ACCAGGAACAAACCGGCGGCCGCTCGATGTCGTTATTAGAGCAATTAGC
89 089_scSKI7_116C_pLICsumo f scSKI7 - pLIC (SuMO) LIC ACCAGGAACAAACCGGCGGCCGCTCGGATAAACTCAACTTAGAAGAGTCATGG
90 090_spSKI3_pLIC_cry-f f spSKI3 BamHI pLIC (TEV) - CCAGGGAGCAGCCTCGGGATCCGATGGCAAAACCAGCCCTCAAAGC
91 091_spSKI3_pLIC_cry-r r spSKI3 xhoI pLIC (TEV) - GCAAAGCACCGGCCTCGTTACTCGAGCTACGAAGCATCACTTGAAACTAGTGC
92 092_spSKI2_pLIC_cry-f f spSKI2 NcoI pLIC (TEV) - CCAGGGAGCAGCCTCGCCATGGGGATGTCTTCTAAACTTGTAGATGCAATCAACG
93 093_spSKI2_pLIC_cry-r r spSKI2 XbaI pLIC (TEV) - GCAAAGCACCGGCCTCGTTATCTAGATTCACATATACAGTGAAGGGC
94 094_hsSKI2_Q1133-f f hsSKI2 - - - GCTCCCAAACACCCTCAAGCAGGGAATAGAACGTGTCC
95 095_hsSKI2_Q1133-r r hsSKI2 - - - GGACACGTTCTATTCCCTGCTTGAGGGTGTTTGGGAGC
96 096_hsSKI2_R151-f f hsSKI2 - - - CCTTATGGGGAAATCCAACTCGGTATCCCTTCTGGCCAGG
97 097_hsSKI2_R151-r r hsSKI2 - - - CCTGGCCAGAAGGGATACCGAGTTGGATTTCCCCATAAGG
98 098_scSKI2_D444N_f f scSKi2 - - - GATGTAGAGTTTGTCATTTTCAATGAAGTTCACTACGTTAATGATCAAGACCGTGG
99 099_scSKI2_D444N_r r scSKI2 - - - CCACGGTCTTGATCATTAACGTAGTGAACTTCATTGAAAATGACAAACTCTACATC
100 100_scSKI2_E445_Q_f f scSkI2 - - - GATGTAGAGTTTGTCATTTTCGATCAAGTTCACTACGTTAATGATCAAGACCGTGG
101 101_scSKI2_E445Q_r r scSKi2 - - - CCACGGTCTTGATCATTAACGTAGTGAACTTGATCGAAAATGACAAACTCTACATC
102 102_scSKI3_N522_f f scSKI3 - SUMO LIC SuMOHis ACCAGGAACAAACCGGCGGCCGCTCGATGTCGGATATTAAACAGC
103 103_scSKI3_N522_r r scSKI3 - SUMO/TEV LIC SuMOHis GCAAAGCACCGGCCTCGTTATTTTTCCTTTCAATAAAAATTATACCTTTGCCC
104 104_scSKI3_N522_pLIC-f f scSKI3 - TEV LIC TEV cassette CCAGGGAGCAGCCTCGATGTCGGATATTAAACAGC
105 105_scSKI8_pLIC-f f scSki8 - pLIC TEV TEV cassette CCAGGGAGCAGCCTCGATGTCCAAAGTGTTTATTGCC
106 106_scSKI8_pLIC-r r scSki8 - pLIC TEV TEV cassette GCAAAGCACCGGCCTCGTTATTTACCGCCAGCTTCTCTAAACC
107 107_scSki8_3C_1f f scSki8 - pLIC 3C 3C cassette CCAGGGGCCCGACTCGATGTCCAAAGTGTTTATTGC
108 108_scski8_3C_397r r scSki8 - pLIC 3C 3C cassette CAGACCGCCACCGACTGCTTATTTACCGCCAGCTTCTCTAAACC
109 109_scSki3_1_f f scski3 EcoRI pFastBac Dual - GGCGAATTCATGTCGGATATTAAACAGC

Table A.2 | PCR primers generated during my PhD work (continued on pages 95-97).
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110 110_scSki3_1432_r r scSKI3 NotI pFastBac Dual - GATGCGGCCGCTTAGAAACATTCGTTTAGC
111 111_scSki8_1f f scSki8 - LIC 3C 3C cassette CCAGGGGCCCGACTCGATGTCCAAAGTGTTTATTGCC
112 112_scSki8_397r r scSki8 - LIC 3C 3C cassette CAGACCGCCACCGACTGCTTATTTACCGCCAGCTTCTCTAAACC
113 113_scSki8_NHis3Cf f scSki8 Xho pFastBac Dual - CAGCTCGAGATGAAACATCACCATCACC
114 114_scSki8_397r r scSki8 KpnI pFastBac Dual - CGAGGTACCTTATTTACCGCCAGC
115 115_PH_seq_f f polyhedrin prom . . AAAATGATAACCATCTCGC
116 116_p10_seq_f f p10 prom . . . CGGACCTTTAATTCAACCC
117 117_scSKi3_3CLIC_1f f scSKI3 - 3c lic 3C cassette CCAGGGGCCCGACTCGATGTCGGATATTAAACAGCTATTGAAGG
118 118_scSki3_3CLIC_1432_r r scSKI3 - 3c lic 3C cassette CAGACCGCCACCGACTGCTTAGAAACATTCGTTTAGCGCCTTCAC
119 119_3CsiteFastBac_f f - - - - GATCAATGAAACATCACCATCACCATCACCATCACCATCACTCCGCGGGTCTG

GAAGTTCTGTTCCAGGGGCCCGACGTCG
120 120_3CsiteFastBac_r r - - - - GATCCGACGTCGGGCCCCTGGAACAGAACTTCCAGACCCGCGGAGTGATGG

TGATGGTGATGGTGATGGTGATGTTTCATT
121 121_scSki2_3CLIC_1f f scSKi2 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGTCTGAGGGATTCAGTAGC
122 122_scSki2_3CLIC_1286_r r scSKi2 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTATAAATACAAACTTGCGGCG
123 123_Ski2_3C_2FW f scSKi2 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGTCTGAGGGATTCAGTAGCAGTTC
124 124_Ski2_3C_136RV r scSKi2 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTACGACAGTGAATTTGATGCATTGGC
125 125_Ski2_3C_17FW f scSKi2 - 3c lic 3C cassette CCAGGGGCCCGACTCGATGTTAAAAGAAATCACTAACAACGCAGACG
126 126_Ski2_3C_122RV r scSKi2 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTAATCAACCTCTTCTTTGTAGCCTG
127 127_Ski2_3C_296FW f scSKi2 - 3c lic 3C cassette CCAGGGGCCCGACTCGATGGTTCCTGTTAAAAAGGAATGGGCC
128 128_Ski2_3C_1286RV r scSKi2 - 3c lic 3C cassette CAGACCGCCACCGACTGCTTATAAATACAAACTTGCGGCGAAAACAATATC
129 129_Ski2_3C_515RV r scSKi2 - 3c lic 3C cassette CAGACCGCCACCGACTGCTTATTTAGCCCATATATTTATTTCCAATGGAAC
130 130_Ski2_3C_607FW f scSKi2 - 3c lic 3C cassette CCAGGGGCCCGACTCGATGGATGGTCCTTCGAAAAAAACATGG
131 131_Ski2_sumo_2FW f scSKi2 - Sumo SuMOHis ACCAGGAACAAACCGGCGGCCGCTCGATGTCTGAGGGATTCAGTAGCAGTTC
132 132_Ski2_sumo_17FW f scSKi2 - Sumo SuMOHis ACCAGGAACAAACCGGCGGCCGCTCGATGTTAAAAGAAATCACTAACAACGCAGACG
133 133_Ski2_sumo_296FW f scSKi2 - Sumo SuMOHis ACCAGGAACAAACCGGCGGCCGCTCGATGGTTCCTGTTAAAAAGGAATGGGCC
134 134_Ski2_sumo_607FW f scSKi2 - Sumo SuMOHis ACCAGGAACAAACCGGCGGCCGCTCGATGGATGGTCCTTCGAAAAAAACATGG
135 135_Ski2_sumo_122RV r scSKi2 - Sumo SuMOHis GCAAAGCACCGGCCTCGTTAATCAACCTCTTCTTTGTAGCCTG
136 136_Ski2_sumo_136RV r scSKi2 - Sumo SuMOHis GCAAAGCACCGGCCTCGTTACGACAGTGAATTTGATGCATTGGC
137 137_Ski2_sumo_515RV r scSKi2 - Sumo SuMOHis GCAAAGCACCGGCCTCGTTATTTAGCCCATATATTTATTTCCAATGGAAC
138 138_Ski2_sumo_1286RV r scSKi2 - Sumo SuMOHis GCAAAGCACCGGCCTCGTTATAAATACAAACTTGCGGCGAAAACAATATC
139 139_Ski7_3C_2FW f scSKI7 - 3c lic 3C cassette CCAGGGGCCCGACTCGATGTCGTTATTAGAGCAATTAGCAAGAAAAAG
140 140_Ski7_3C_515RV r scSKI7 - 3c lic 3C cassette CAGACCGCCACCGACTGCTTAATTATGCTCTACCAATAGATATAGTTGCG
141 141_Ski7_3C_747RV r scSKI7 - 3c lic 3C cassette CAGACCGCCACCGACTGCTTACTGGCATGCAATTCTGCCAAC
142 142_Ski2_3CtP_His_FW f scSki2:3CHis SpeI pFast - GGACTAGTATGAAACATCACCATCACC
143 143_Ski2_3CtP_136RV r SCSki2 Acc65I pFast - GCGGTACCCTACGACAGTGAATTTGATGC
144 144_Ski2_3CtP_1286RV r scSki2 Acc65I pFast - CCGGTACCCTATAAATACAAACTTGCGGCG
145 145_Ski2_3CtP_515RV r scSki2 Acc65I pFast - CCGGTACCCTATTTAGCCCATATATTTATTTCC
146 146_Ski3_3CtP_1432RV r scSki3 Acc65I pFast - CCGGTACCCTAGAAACATTCGTTTAGCGCC
147 147_Ski3_3CtP_HisFW f scSki3 EcoRI pFast - CCGAATTCATGAAACATCACCATCACC
148 148_Ski8_3CtP_397RV r scSki8 Acc65I pFast - CCGGTACCCTATTTACCGCCAGCTTCTCTAAACC
149 149_spSki2_3C_1FW f spSki2 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGTCTTCTAAACTTGTAGATGCAATCAAC
150 150_spSki2_3C_1213RV r spSKI2 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTACATATACAGTGAAGGGCAGAAGAC
151 151_spSki3_3C_1FW f spSKI3 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGGCAAAACCAGCCCTCAAAG
152 152_spSki3_3C_1389RV r spSKI3 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTACGAAGCATCACTTGAAACTAGTGC
153 153_spSki8_3C_1FW f spSKI8 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGAGGAAAGAGTATCTCGTTAGC
154 154_spSki8_3C_302RV r spSKI8 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTATTCTGTAGCAGCAGCTCTATACC
155 155_spSki7_3C_1FW f spSKI7 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGTCTAGGTTGTCTCAGTTGTTAAAC
156 156_spSki7_3C_695RV r spSKI7 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTAGTCATGCAGAGATAGTACTGTTCC
157 157_hsSki2_3C_1FW f hsSki2 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGATGGAGACAGAGCGACTTG
158 158_hsSki2_3C_1246RV r hsSki2 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTACTGGGTGTAGAGGCTGGC
159 159_hsSki3_3C_1FW f hsSki3 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGTCCAGCAAGGAAGTGAAGAC
160 160_hsSki3_3C_1564RV r hsSki3 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTATTGTGAGGACAATCTCTGATTCAG
161 161_hsSki8_3C_1FW f hsSki8 - 3C LIC 3C cassette CCAGGGGCCCGACTCGATGACCAACCAGTACGGTATTCTC
162 162_hsSki8_3C_305RV r hsSki8 - 3C LIC 3C cassette CAGACCGCCACCGACTGCTTAAATTGGACAATCATAGATGTGAATTTCC
163 163_pFBDM_SpeI_FW f - - - - CCTACGTCGACGAGCTCTCTAGTCGCGGCCGCTTTCG quikchange: second SpeI site 3' of ph promoter neutralized.
164 164_pFBDM_SpeI_RV r - - - - CGAAAGCGGCCGCGACTAGAGAGCTCGTCGACGTAGG quikchange: second SpeI site 3' of ph promoter neutralized.
165 165_pFBDM_1 f - - - - GAAGTGGTTCGCATCCTCGG
166 166_pFBDM_2 f - - - - CCATGGCTCGAGATCCCGGG
167 167_pFBDM_3 f - - - - GGATCATAATCAGCCATACC
168 168_spSki3_3CtP_FW f spSki3 XhoI pFastBac 1 His 3C GGCGCTCGAGATGAAACATCACCATCACC
169 169_spSki3_3Ctp_RV r spSKI3 Acc65I pFastBac 1 His 3C/- CCGGTACCCTACGAAGCATCACTTGAAACTAGTGC
170 170_spSki3_notag_FW f spSKI3 XhoI pFastBac 1 - CCATCTCGAGATGGCAAAACCAGCCCTCAAAGC
171 171_spSki2_notag_FW f spSKI2 SpeI pFastBac 1 - GGACTAGTATGTCTTCTAAACTTGTAGATGC
172 172_spSki2_3Ctp_RV r spSKI2 Acc65I pFastBac 1 His 3C/- CCGGTACCCTACATATACAGTGAAGGG
173 173_spSki7_notag_FW f spSKI7 SpeI pFastBac 1 - GGACTAGTATGTCTAGGTTGTCTCAGTTG
174 174_spSki7_3Ctp_RV r spSKI7 Acc65I pFastBac 1 His 3C/- CCGGTACCCTAGTCATGCAGAGATAGTACTG
175 175_spSki8_notag_FW f spSki8 SpeI pFastBac 1 - GGACTAGTATGAGGAAAGAGTATCTCGTTAGC
176 176_spSki8_3Ctp_RV r spSki8 Acc65I pFastBac 1 His 3C/- CCGGTACCCTATTCTGTAGCAGCAGCTCTATACC
177 177_scSki8_mb_FW f scski8 - pFL etc - GACTTGATCACCCGGATGTCCAAAGTGTTTATTGCCACAGC
178 178_scSki8_mb_His_Fw f scSki8 - pFL etc His 3C GACTTGATCACCCGGATGAAACATCACCATCACCATCACTCC
179 179_scski8_mb_RV r scSki8 - pFL etc His 3C / - GGCTCGAGATCCCGGCTATTTACCGCCAGCTTCTCTAAACC
180 180_scSki3_mb_His_FW f scSki3 - pFL etc His 3C GAAGCGCGCGGAATTATGAAACATCACCATCACCATCACTCC
181 181_scSki3_mb_RV r scSki3 - pFL etc His 3C GTAGGCCTTTGAATTCTAGAAACATTCGTTTAGCGCCTTCACTGC
182 182_scSki2_mb_FW f scSki2 - pFL etc - GAAGCGCGCGGAATTATGTCTGAGGGATTCAGTAGC
183 183_scSki2_mb_RV r scSki2 - pFL etc - GTAGGCCTTTGAATTCTATAAATACAAACTTGCGGCG
184 184_spSki7_30 f spSki7 - - - GTTGTCTCAGTTGTTAAACTCC
185 185_spSki7_499 f spSKI7 - - - GCGACCAACTGAAGAAGAACC
186 186_spSki7_1002 f spSKI7 - - - GCTAAAGTCCACCAAAACG
187 187_spSki7_1485 f spSKI7 - - - GATACAAATCATGGCACATGG
188 188_spSki278_3C_FW f spSKI278 spei pfastbac his/- GGACTAGTATGAAACATCACCATCACC
189 189_LLC_sumo_FW f lambda phosphatase pEC-K_HI_sumo his ACCAGGAACAAACCGGCGGCCGCTCGATGCGCTATTACGAAAAAATTGATGGC
190 190_LLC_sumo_RV r labda ph. pEC-K_HI_sumo his GCAAAGCACCGGCCTCGTTATGCGCCTTCTCCCTGTACC
191 191_LLC_pfb_FW f lambda ph. pfb SpeI pfastbac - GGCACTAGTATGCGCTATTACGAAAAAATTGATGGC
192 192_LLC_pfb_RV r lambda ph. pfb Acc65I pfastbac - CCGGTACCCTATGCGCCTTCTCCCTGTACC
193 193_scSki3_MBhis_f f scski3 EcoRI multibac 3c his CCAGAATTCATGAAACATCACCATCACC
194 194_scSki3_MB_r r scSki3 StuI multibac 3c his /- GCAAGGCCTTTAGAAACATTCGTTTAGCG
195 195_scSki8_MB_f f scSki8 XmaI multibac - CATACCCGGGATGTCCAAAGTGTTTATTGCC
196 196_scSki8_MB_r r scSki8 NcoI multibac - GGATTCCATGGTTATTTACCGCCAGCTTCTCTAAACC
197 197_scSki2_MB_f f scSki2 SacI multibac - CCTGAGCTCATGTCTGAGGGATTCAGTAGC
198 198_scSki2_MB_r r scSki2 XbaI multibac - GCTCTAGACTATAAATACAAACTTGCGGCG
199 199_scSki8_MBhis_f f scSki8 XmaI multibac 3c his CATACCCGGGATGAAACATCACCATCACC
200 200_ss17_compl ss17 trap CCCCACCACCATCACTT
201 201_A25cccca7 polyA binding ssRNATTTTTTTTTTTTTTTTTTTTTTTGGGGTGGGGTGGGGTGGGGTGGGGTG

GGGTGGGGTCCTATAGTGAGTCGTATTACATATGCGTG
202 202_spSki3_notag_f f spSki3 BamHI pFastBac 3C his AGCGGATCCATGAAACATCACCATCACC
201 201_scSki3_mbHis_f f scSki3 EcoRI pFL 3c His CCGAATTCATGAAACATCACCATCACC
202 202_scSki3_mb_r r scSki3 StuI pFL CAGAGGCCTCTAGAAACATTCGTTTAGCGC
203 203_scski8_mbF_f f scSki8 XmaI pFL - CCATACCCGGGATGTCCAAAGTGTTTATTGCC
204 204_scSki8_mb_r r scski8 NcoI pFL GATCCATGGCTATTTACCGCCAGCTTCTCTAAACC
205 205_scSki3_3cHis_f f scSki3 BamHI pFL 3c his CACGGATCCATGAAACATCACCATCACC
206 206_scSki3_r r scSki3 EcoRI pFL 3c his CGCGAATTCTTAGAAACATTCGTTTAGCGCC
207 207_hsHBS1like_1FW f hsHBS1-like - 3C LIC CCAGGGGCCCGACTCGATGGCCCGGCATCGGAATG
208 208_hsHBS1like_684RV r hsHBS1-like - 3C LIC CAGACCGCCACCGACTGCTTATTCTTTTATCTCAGTGACAACACCAG
209 209_pFL_MCS1_f f - - - - ACGGACCTTTAATTCAACCC sequencing primer for pFL series vectors
210 210_pFL_MCS2_f f - - - - CGATTCGCGACCTACTCCGG " "
211 211_scSki2_3806_r r - - - - CTTAATCAACTCTTGAGCCC reverse sequencing primer for polycis constructs
212 212_scSki3_4270_r r - - - CGTTTAGCGCCTTCACTGC " "
213 213_scSki8_1169_r r - - - - CCGCCAGCTTCTCTAAACC " "
214 214_scSki2_dC_f f scSki2 XmaI pFL etc - CCATACCCGGGATGTCTGAGGGATTCAGTAGC 1-136, no tag
215 215_scSki2_dC_r r scSki2 NcoI pFL etc - GATCCATGGTTACGACAGTGAATTTGATGCATTGGC "
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216 216_scSki2_dNdC_f f scski2 XmaI pFL etc - CCATACCCGGGTTAAAAGAAATCACTAACAACGCAGACG 17-136, no tag
217 217_c79_dAcc65Ia_f f c79 - pfl - CCTCTACGCGGCCGCAGTACCATAACTTCGTATAGC
218 218_c79_dAcc65Ia_r r c79 - pfl - GCTATACGAAGTTATGGTACTGCGGCCGCGTAGAGG
219 219_scSki7_c79_f f scski7 XmaI c79 - CATACCCGGGATGTCGTTATTAGAGCAATTAGC
220 220_scSki7_c79_r r scSki7 Acc65I c79 - TTACTGGCATGCAATTCTGCGGTACCCC
221 221_hsSki2_1FW f hsSki2 - - 3c HIS CCAGGGGCCCGACTCGATGATGATGGAGACAGAGCGACTTG
222 222_hsSki2_1246RV r hsSki2 - - 3c HIS CAGACCGCCACCGACTGCTTACTGGGTGTAGAGGCTGGC
223 223_hsSki3_1FW f hsSki3 - - 3c HIS CCAGGGGCCCGACTCGATGATGTCCAGCAAGGAAGTGAAGAC
224 224_hsSki3_1564RV r hsSki3 - - 3c his CAGACCGCCACCGACTGCTTATTGTGAGGACAATCTCTGATTCAG
225 225_hsSki8_1FW f hsSki8 - - 3c HIS CCAGGGGCCCGACTCGATGATGACCAACCAGTACGGTATTCTC
226 226_hsSki8_305RV r hsSki8 - - 3cHIS CAGACCGCCACCGACTGCTTAAATTGGACAATCATAGATGTGAATTTCC
227 227_scSki2dA_834_r r scSki2 XbaI - - GGCTCTAGACCCGGCATTCTCACTAAAAGAATACTTG loop out arch 835 incl 1085 
228 228_scSki2dA_1086_f f scSki2 XbaI - - CCGTCTAGAGGACTGAGCTTACTACCCG loop out arch 835 incl  1085 
229 229_scSki2dloop_541_r r scSKi2 XmaI - - CGGCCCGGGACCTGTATTTAGAATCTCTTTATGTTTCC loop out RecA linker 542 incl 606
230 230_scSki2dloop_607_f f scSKi2 XmaI - - CCGCCCGGGTCAGGTGATGGTCCTTCGAAAAAAACATGG loop out RecA linker 542 incl 606
231 231_scArch4Hb_834FW f scSKi2 - - 3cHIS CCAGGGGCCCGACTCGATGAAAGAAACTTTACAACCTGAACATGAAAAAC arch constructs scski2
232 232_scArch4Hb_866FW f scSKi2 - - 3cHIS CCAGGGGCCCGACTCGATGGATATCGAAAAGTTTTTGGAATTGATGC arch constructs scski2
233 233_scArch4Hb_892FW f scSKi2 - - 3cHIS CCAGGGGCCCGACTCGATGCCTTCGATATTGCATATCTTGAAAGAG arch constructs scski2
234 234_scArch4Hb_1017RV r scSKi2 - - 3cHIS CAGACCGCCACCGACTGCTTACGTTTTGCCGTCCAAAATGTTATTTG arch constructs scski2
235 235_scArch4Hb_1047RV r scSKi2 - - 3cHIS CAGACCGCCACCGACTGCTTATTTGAATATCTCATCCCTTATATTTGTACG arch constructs scski2
236 236_scArch4Hb_1084RV r scSKi2 - - 3cHIS CAGACCGCCACCGACTGCTTAATTTTGGTCAGACATCAAATGGTACAATTC arch constructs scski2
237 237_spdA_758_r r spSki2 BamHi - - CCTGGATCCACTAACGTTTTCACTAAAGCTGC loop out arch 759 incl 1013
238 238_spdA_1014_f f spSki2 BamHI - - CCAGGATCCGGGCTAGAGTTACTGCCTGATTACG loop out arch 759 incl 1013
239 239_spdLoop_490_r r spSki2 XmaI - - GGTCCCGGGTCCGCTTTTCAGTGCATCGTTTGCG loop out RecA linker 491 incl 530
240 240_spdLoop_531_f f spSki2 XmaI - - GGACCCGGGTCAGGTGAAAGAAGAGATGCTAACACTTGG loop out RecA linker 491 incl 530
241 241_spdA758_r r spSki2 XbaI - CCTTCTAGACCCAACGTTTTCACTAAAGCTGC loop out arch 759 incl 1013
242 242_spdA1014_f f spSki2 XbaI - - CCATCTAGAGGGCTAGAGTTACTGCCTGATTACG loop out arch 759 incl 1013
243 243_scSki2_A1255_f f scSki2 - - - GCCGCGAAGTTAAGACTGCCTCTATTATTATTGGTAATTCC
244 244_scSki2_A1255_r r scSki2 - - GGAATTACCAATAATAATAGAGGCAGTCTTAACTTCGCGGC
245 245_ySki2V1147f f scSki2 GGAAGCTTTGAACCTGAAGAGATTGTAGCCTTATTATCAGTATTTGTTTATGAGGGG
246 246_yski2V1147r r scSki2 CCCCTCATAAACAAATACTGATAATAAGGCTACAATCTCTTCAGGTTCAAAGCTTCC
247 247_scSki2dN_mb f scSki2 SacI PFL etc - CCTGAGCTCATGGTTCCTGTTAAAAAGGAATGGGCC
248 248_scSki2_2398 f scSki2 - - - GGTGTTCCGACGAGGTTGC
249 249_spSki2_2066 f spSKI2 - - - CAATGCTCTGGACGCGCTGG
250 250_scSki2_F830_f f scSki2 / CGTTGAGAGTTGAAGAAATGATCAAGTATTCTTTTAGTGAGAATGCCAAAGAAACTTTACAACC
251 251_scSki2_F830_r r scSki2 GGTTGTAAAGTTTCTTTGGCATTCTCACTAAAAGAATACTTGATCATTTCTTCAACTCTCAACG
252 252_pfb_T7L GCTTGTCGAGAAGTACTAGAGG
253 253_pfb_T7R CGCATCTGTGCGGTATTTCACACC
254 254_scSki2_F830f f scSki2 CGTTGAGAGTTGAAGAAATGATCAAGTATTCTTTTAGTGAGAATGCCGGGTCTAGAGGACTGAGCTTACTACC
255 255_scSki2_F830r r scSki2 GGTAGTAAGCTCAGTCCTCTAGACCCGGCATTCTCACTAAAAGAATACTTGATCATTTCTTCAACTCTCAACG
256 256_scSki2_FGSEG f Scki2 CGTTGAGAGTTGAAGAAATGATCAAGTATTCTTTTAGTGAGAATGCCGGGTCTGAAGGACTGAGCTTACTACC
257 257_scski2_FGSEG r scSki2 GGTAGTAAGCTCAGTCCTTCAGACCCGGCATTCTCACTAAAAGAATACTTGATCATTTCTTCAACTCTCAACG
258 258_spSki2_247F f spSki2 CCAGGGGCCCGACTCGTTGCATAAGCAACCAGACTATGCTC
259 259_scSki2_891f f scSki 3C CCAGGGGCCCGACTCGATGTCGCCTTCGATATTGCATATCTTG
260 260_scski2_985r r scSki2 3C CAGACCGCCACCGACTGCTTAGCGTTTAGTGATCACTTCAATAGC
261 261_scSki2_989r r scSki2 3C CAGACCGCCACCGACTGCTTATGCGGCAAACTTGCGTTTAGTG
262 262_scSki2_1078r r scSki2 3C CAGACCGCCACCGACTGCTTAATGGTACAATTCTTCAATTTTCTTTTTAATTACATG
263 263_scSki2_891f f scski2 SUMO ACCAGGAACAAACCGGCGGCCGCTCGATGTCGCCTTCGATATTGCATATCTTG
264 264_scSki2_985r r scSki2 SUMO GCAAAGCACCGGCCTCGTTAGCGTTTAGTGATCACTTCAATAGC
265 265_scSki2_989r r scSki2 SUMO GCAAAGCACCGGCCTCGTTATGCGGCAAACTTGCGTTTAGTG
266 266_scSki2_1078r r scSki2 SUMO GCAAAGCACCGGCCTCGTTAATGGTACAATTCTTCAATTTTCTTTTTAATTACATG
267 267_scSki2_840FW f Scki2 3c CCAGGGGCCCGACTCGATGGAACATGAAAAACAAATCAAAGTATTACAAGAG
268 268_scSki2_850FW f scSki2 3c CCAGGGGCCCGACTCGATGGAGGAATTACAAACCATAGAGTACAAAAG
269 269_scSki2_858FW f scSki2 3c CCAGGGGCCCGACTCGATGAAAAGTTGTGAAATCTGTGATAATGATATCG
270 270_scSki2_861FW f scSki2 3c CCAGGGGCCCGACTCGATGGAAATCTGTGATAATGATATCGAAAAGTTTTTG
271 271_scSki2_1062RV r scSki2 3c CAGACCGCCACCGACTGCTTAGGGAACAATGTGTTGGCTTAGG
272 272_scSki2_1065RV r scSki2 3c CAGACCGCCACCGACTGCTTACTTAAACTTGGGAACAATGTGTTGG
273 273_scSki2_1072RV r scSki2 3c CAGACCGCCACCGACTGCTTATTTCTTTTTAATTACATGCGCCTTAAACTTG
274 274_scSki2_1081RV r scski2 3c CAGACCGCCACCGACTGCTTAAGACATCAAATGGTACAATTCTTCAATTTTC
275 275_ScSki2_864FW f scSki2 3C cassette CCAGGGGCCCGACTCGATGGATAATGATATCGAAAAGTTTTTGGAATTGATG
276 276_scSki2_869FW f scSki2 3C cassette CCAGGGGCCCGACTCGATGAAGTTTTTGGAATTGATGCTGGCATATAAG
277 277_scSki2_1044RV r scSki2 3C cassette CAGACCGCCACCGACTGCTTACTCATCCCTTATATTTGTACGGTC
278 278_scSki2_1049RV r scSki2 3C cassette CAGACCGCCACCGACTGCTTATTTTAGTTTGAATATCTCATCCCTTATATTTG
279 279_spSki2_789FW f spSki2 3C CCAGGGGCCCGACTCGATGTTGAAAGAAATTAAAAGTTGTTTATTGAGCAG
280 280_spSki2_977RV r spSki2 3C CAGACCGCCACCGACTGCTTAATTTCCGGATAACTTGTTCTGAAGAAAATTTC
281 281_c78_5pSpeI_fw f pFLdSpe - CGTATACTAGTATCGATTCGCGACCTACTCCG
282 282_c78_3pSpeI_rv r c78 - TTGATACTAGTGATTCAACAGGTAAAGTATCAACCTTTGACTCTATCC
283 283_Ski3K328_5p_rv r c78 - CCTGATCGTCTCTCCCGAGCCTTTTGAGGAAAGCCAGGAATAGAGG
284 284_Ski3E408_3p_fw f c78 - GGATCGTCTCGCGGGAGAAGAGGTTGTCACTGTATTGACGG
285 285_Ski3E338_5p_rv r c78 - GGATCGTCTCAGATCCCGAGCCTTCCAAACTTTTAATATCATATTTCG
286 286_Ski3G404_3p_fw f c78 - GGATCGTCTCAGATCTGGTTTATTAGAGGAAGAGGTTGTC
287 287_Ski3N602_5p_rv r c78 - CAATCGTCTCGCATCGTTCATCGAGTCGGGCCCCTGG
288 288_Ski3N602_3p_fw f c78 - CTAGCGTCTCCGATGCTAAACAGGAAAACGTCAAGTGC
289 289_Ski3_P303_QC_f f c112 - CGAAGATCTGGACAACATGGATGCCCCATTGATAATAAAGTACTTTAAGAAATTTCC
290 290_Ski3_P303_QC_r r c112 GGAAATTTCTTAAAGTACTTTATTATCAATGGGGCATCCATGTTGTCCAGATCTTCG
291 291_Ski2_897D-903A_f f ski2 - CGCCTTCGATATTGGATATCTTGAAAGAGGGCGCACTCGTTGCTTTTAGGGACCCC
292 292_Ski2_897D-903A_r r ski2 - GGGGTCCCTAAAAGCAACGAGTGCGCCCTCTTTCAAGATATCCAATATCGAAGGCG
293 293_Ski2_897D-900E-903A_f f ski2 - CGCCTTCGATATTGGATATCTTGGAAGAGGGCAGACTCGTTGCTTTTAGGGACCCC
294 293_Ski2_897D-900E-903A_r r ski2 - GGGGTCCCTAAAAGCAACGAGTCTGCCCTCTTCCAAGATATCCAATATCGAAGGCG
295 295_scSki7_1FW f ski7 SUMO LIC ACCAGGAACAAACCGGCGGCCGCTCGATGATGTCGTTATTAGAGCAATTAGCAAGAAAAAG
296 296_scSki7_40RV r ski7 SUMO LIC GCAAAGCACCGGCCTCGTTAATTCTTATGTAGTCTTTCTAGTAAGGATG
297 297_scSki7_62RV r ski7 SUMO LIC GCAAAGCACCGGCCTCGTTAGTCTTTTGCAAGTAGCGTCTTCAG
298 298_scSki7_75RV r ski7 SUMO LIC GCAAAGCACCGGCCTCGTTAACTATGCTGGTTCGGGGTAAAG
299 299_scSki7_87RV r ski7 SUMO LIC GCAAAGCACCGGCCTCGTTACTTCTTTAAGGCAGACAACTTTAAACTC
300 300_scSki3_522stop_f f ski3 GGTATAATTTTTATTGAAAGGAAAAATTAAGAGGCCGGTGCTTTGCAGGATCCG
301 301_scSki3_522stop_r r ski3 CGGATCCTGCAAAGCACCGGCCTCTTAATTTTTCCTTTCAATAAAAATTATACC
302 302_scSki2_897D_f f ski2 CGCCTTCGATATTGGATATCTTGAAAGAGGGCAGACTCGTTGCTTTTAGGGACCCC
303 303_scSki2_897D_r r ski2 GGGGTCCCTAAAAGCAACGAGTCTGCCCTCTTTCAAGATATCCAATATCGAAGGCG
304 304_scSki2_903A_f f ski2 CGCCTTCGATATTGCATATCTTGAAAGAGGGCGCACTCGTTGCTTTTAGGGACCCC
305 305_scSki2_903A_r r ski2 GGGGTCCCTAAAAGCAACGAGTGCGCCCTCTTTCAAGATATGCAATATCGAAGGCG
306 306_scSki2_920A_f f ski2 CCCAATGATTGCTTGAAATTAGGATTTGTAGCTAAAGTTTCTCTGAAGGATGC
307 307_scSki2_920A_r r ski2 GCATCCTTCAGAGAAACTTTAGCTACAAATCCTAATTTCAAGCAATCATTGGG
308 308_scSki2_903E_f f Ski2 CGCCTTCGATATTGCATATCTTGAAAGAGGGCGAACTCGTTGCTTTTAGGGACCCC
309 309_scSki2_903E_r r ski2 GGGGTCCCTAAAAGCAACGAGTTCGCCCTCTTTCAAGATATGCAATATCGAAGGCG
310 310_c78_3p_rv r GCACGCAATGGACACATTATCATCAGTAGTGCTATCG
311 311_c78_5p_f f GTACCGCATGCTATGCATCAGCTGCTAGCACC 
312 312_c78_5p_rev r CAATCGTCTCCGAGTCGGGCCCCTGGAACAGAACTTCC
313 313_d160_3p_f f CAATCGTCTCAACTCGCGTCATCTATCTACACCCCAGGACGC 
314 314_d279_3p_f f CAATCGTCTCAACTCGCAATCTTTGCTTGCATGGCAAAAGTATTTCG 
315 315_d487_3p_f f CAATCGTCTCAACTCGAAGGACCACAATGCTGCATTAAAG 
316 316_d521_3p_f f CAATCGTCTCAACTCGAAAAATTGGAAGGATGCTATGAC 
317 317_d555_3p_f f CAATCGTCTCAACTCGGGTTATATGGACGAGGCATTAGC 
318 318_c78_5p_for f CCAGAAAATGAAGTGGTAGCAACAAGG
319 319_ski2_412R413R_f f GGTGATGTGCAAATTAATCGGCGTGCTAACTGTTTGATTATGACGACCG
320 320_ski2_412R413R_r r CGGTCGTCATAATCAAACAGTTAGCACGCCGATTAATTTGCACATCACC
321 321_ski2_R149D_f f CCATAACCAAAACTCAGTAGACGGTTCTACAGCGCAATTGCC
322 322_ski2_R149D_r r GGCAATTGCGCTGTAGAACCGTCTACTGAGTTTTGGTTATGG
323 323_ski2_1250D-1253D_f f GGCTAGACGAAATTTGCGACGAAGTTGATACTGCCTCTATTATTATTGG
324 324_ski2_1250D-1253D_r r CCAATAATAATAGAGGCAGTATCAACTTCGTCGCAAATTTCGTCTAGCC
325 325_ski2_141GSG155_f f CACTGTCGATTACGAGAAGTATCGGTTCCGGATTGCCTTTCACACCAGGCGG
326 326_ski2_141GSG155_r r CCGCCTGGTGTGAAAGGCAATCCGGAACCGATACTTCTCGTAATCGACAGTG
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327 327_ski8_302GRRS303_f f GAGTCTATCGTTTAATGATTCTGGACGACGTTCGGGTGAAACATTATGCAGTGCCGG
328 328_ski8_302GRRS303_r r CCGGCACTGCATAATGTTTCACCCGAACGTCGTCCAGAATCATTAAACGATAGACTC
329 329_dSki8out_f f CGATACCGGTAAACAAGTATGGGCAGACAGTGCGGACTTTTTCCCTAATAACCTCAAGG
330 330_dSki8_out_r r CCTTGAGGTTATTAGGGAAAAAGTCCGCACTGTCTGCCCATACTTGTTTACCGGTATCG
331 331_dSki8_in_f f GAGAGTAAGAATTTGAGAAGCATAGCAGACGGTATGGATTTGTGCCCTTGGAACGTTACTGC
332 332_dSki8_in_r r GCAGTAACGTTCCAAGGGCACAAATCCATACCGTCTGCTATGCTTCTCAAATTCTTACTCTC
333 333_ski3_751D757D_f f GCATACCACGCGTGTGGTGATATAGAAGCATCTATCGACGTTTTTGACAAGGC
334 334_ski3_751D757D_r r GCCTTGTCAAAAACGTCGATAGATGCTTCTATATCACCACACGCGTGGTATGC
335 335_Ski3_751D757D730D_f f GAGTGGTTTCAATCTGCTTTAGATGTTGATCCAAATGATGTAGAGTCATGG
336 336_Ski3_751D757D730D_r r CCATGACTCTACATCATTTGGATCAACATCTAAAGCAGATTGAAACCACTC
337 337_Ski3_1046A1050R_f f GGTTCTGAATAAATTAGCAAGCCTTGCCCGACAAGATTCGTCACCTTGG
338 338_Ski3_1046A1050R_r r CCAAGGTGACGAATCTTGTCGGGCAAGGCTTGCTAATTTATTCAGAACC
339 339_Ski3_1046A1050R1078A_f f GGAAGTTCTAAACTTTTTGCAGCCTCCTTCATATTATCTAATGGAAGG
340 340_Ski3_1046A1050R1078A_r r CCTTCCATTAGATAATATGAAGGAGGCTGCAAAAAGTTTAGAACTTCC
341 css17A10 TTTTTTTTTTAAGUGAUGGUGGUGGGG
342 342_Css17 AAGUGAUGGUGGUGGGG
343 343_Ski2_325r r CCTGAAATTTTACCTTCTAACCC
344 344_Ski3_240r r CCTTTCCACGCTAAAAGG
345 345_Ski8_390r r GGCACCCCATTTTAATGCC
346 346_scSki3_1f f SUMO LIC ACCAGGAACAAACCGGCGGCCGCTCGATGTCGGATATTAAACAGCTATTGAAGG
347 347_scSki3_160rv r SUMO LIC GCAAAGCACCGGCCTCGTTAACCAATAGTTTCCGCCATTAGCG
348 348_scSki3_nat_1f f LIC CBP NdeI CAGACATATGTCGGATATTAAACAGCTATTGAAGGAAGCC
349 349_scSki3_nat_160rv r LIC CBP XhoI ATATCTCGAGGTCGGGCCCCTGGAACAGAACTTCCAGGCTACCAATAGTTTCCGCCATTAGC
350 350_dSki8_out_f f CGATACCGGTAAACAAGTATGGGCTGATAGTGCGGACTTTTTCCCTAATAACCTCAAGGTTTGGG
351 352_dSki8_out_r r CCCAAACCTTGAGGTTATTAGGGAAAAAGTCCGCACTATCAGCCCATACTTGTTTACCGGTATCG
352 353_dSki8_out_short_f f GGTAAACAAGTATGGGCTGATAGTGCGGACTTTTTCCCTAATAACC
353 354_dSki8_out_short_r r GGTTATTAGGGAAAAAGTCCGCACTATCAGCCCATACTTGTTTACC
354 354_ySpo11_QRF_f f CGTCATCATAGAATGTGCGGACGAAATTGATTTCCAAAAGAAAGC
355 355_ySpo11_QRF_r r GCTTTCTTTTGGAAATCAATTTCGTCCGCACATTCTATGATGACG
356 356_scSpo11_Y135F_f f CAGTGAGAGATATCTTCTTCTCCAACGTGGAATTGTTTCAAAGAC
357 357_scSpo11_Y135F_r r GTCTTTGAAACAATTCCACGTTGGAGAAGAAGATATCTCTCACTG
358 358_scSpo11_1F f TEV-LIC CCAGGGAGCAGCCTCGATGGCTTTGGAGGGATTGCG
359 359_scSpo11_38F f TEV-LIC CCAGGGAGCAGCCTCGATGACTCCCTGTTCAAACGCAGATG
360 360_scSpo11_170Rv r TEV-LIC GCAAAGCACCGGCCTCGTTATGGTATAATGTTTAAGGATTTTCTTGGAG
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