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Abstract

Accurate estimations of geometric properties of a surface (a curve) from its dis-
crete approximation are important for many computer graphics and computer vi-
sion applications. To assess and improve the quality of such an approximation we
assume that the smooth surface (curve) is known in general form. Then we can
represent the surface (curve) by a Taylor series expansion and compare its geo-
metric properties with the corresponding discrete approximations. In turn we can
either prove convergence of these approximations towards the true properties as
the edge lengths tend to zero, or we can get hints how to eliminate the error. In
this report we propose and study discrete schemes for estimating the curvature and
torsion of a smooth 3D curve approximated by a polyline. Thereby we make some
interesting findings about connections between (smooth) classical curves and cer-
tain estimation schemes for polylines. Furthermore, we consider several popular
schemes for estimating the surface normal of a dense triangle mesh interpolating
a smooth surface, and analyze their asymptotic properties. Special attention is
paid to the mean curvature vector, that approximates both, normal direction and
mean curvature. We evaluate a common discrete approximation and show how
asymptotic analysis can be used to improve it.

It turns out that the integral formulation of the mean curvature

H =
1

2π

∫ 2π

0
κ(φ)dφ,

can be computed by an exact quadrature formula. The same is true for the integral
formulations of Gaussian curvature and the Taubin tensor. The exact quadratures
are then used to obtain reliable estimates of the curvature tensor of a smooth sur-
face approximated by a dense triangle mesh. The proposed method is fast and
often demonstrates a better performance than conventional curvature tensor esti-
mation approaches. We also show that the curvature tensor approximated by our
approach converges towards the true curvature tensor as the edge lengths tend to
zero.

Keywords

Asymptotic Analysis, Polyline, Polygonal Mesh, Curvature, Torsion, Curva-

ture Tensor, Gaussian Curvature, Mean Curvature, Principal Directions



1 Introduction
Given a dense triangle mesh approximating a smooth surface, one of the most fun-
damental problems consists in accurately estimating surface characteristics like
normals and curvatures of the mesh. Normals are important by themselves, e.g.
for smooth shading [Gou71, Pho75], but robust estimates are even more important
for derived properties: curvatures and their derivatives [Tau95a, Rus04, TRZS04].

The mean curvature vector is related to the Laplacian, and its computation is
the core of many smoothing and fairing algorithms [Tau95b, DMSB99], Gaussian
curvature is a measure of deviation from flatness, and the principal directions can
be used for “geometrically meaningful” remeshing [ACSD+03]. Mean curvature,
Gaussian curvature and principal directions together are often referred to as cur-
vature tensor. It is essential for many more tasks, like mesh segmentation, feature
detection and non-photorealistic rendering [DFRS03, OBS04].

One common way to obtain normal vectors at a vertex of a triangle mesh is to
compute it as a weighted average of the normals of the incident triangles. Various
weights have been proposed for that purpose. Perhaps the most popular schemes
are uniform weighting [Gla90], weighting by areas [Tau95a], weighting by inverse
areas [HDW98] and spherical weighting as introduced in [Max99] which is exact
on spheres. In contrast to the previous methods, Meyer et al. [MDSB02] use a
weighted average of the edges to get an approximation of not only the normal
direction but also the mean curvature.

The first two sections of this paper are devoted to the development of a mathe-
matical apparatus for the asymptotic analysis of curves and surfaces, and applying
it to known approximation schemes. A uniform treatment for various approxima-
tions of tangents, normals, curvatures, torsions, and further differential properties
is given. It allows a rigorous mathematical analysis and comparison of different
approaches and can help to improve them. Applications include the evaluation
of planar curves [ABS02] and extend to space curves and surfaces. We analyze
approximations for the first and second order derivatives of space curves as well
as for normal vectors on a mesh. In particular, we show that all known weighting
schemes for mesh normals behave asymptotically similar, converging linearly in
general and quadratically for a wide class of regular vertices. The mean curva-
ture vector approximation [MDSB02] has to be modified slightly to achieve this
result. Even then convergence of the length towards the mean curvature can only
be guaranteed for a very limited class of vertices.

Generally, the situation is much more difficult for surface curvatures. The
first attempts to define and determine the curvature of a surface date back at least
to the eighteenth century when Euler and Gauß laid the foundations for smooth
surfaces [Kat98]. Euler [Eul60] recognized the relationship between the principal
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curvatures and normal curvatures in arbitrary directions,

κ(φ) = κmax cos2 φ + κmin sin2 φ (1)

now known as Euler’s formula, where κmax and κmin are the maximal and minimal
principal curvatures, respectively, κ(φ) is the directional curvature corresponding
to tangent direction t(φ) and φ is the angle between t(φ) and the maximal principal
direction.

In the nineteenth century the seminal work of Gauß [Gau27] gave a more gen-
eral framework for the curvature of surfaces, introducing a local surface quantity
measuring how far a surface is from being flat. The quantity received the name
Gaussian curvature K and turned out to be one of the most important intrinsic
surface characteristics.

A popular discrete approximation estimates the Gaussian curvature at vertex
P of a meshM approximating a smooth surface via the angle deficit at P

K ≈ 2π −∑i αi
1
3 AM

(2)

where αi is the angle of the i-th mesh triangle adjacent to P and AM is the area of
the one-ring formed by these triangles. Some modifications of the angle deficit ap-
proximation (2) are considered in [MDSB02, MD02] and suggest certain changes
of the denominator in (2). Approximation (2) is based on lesser known formu-
lae of Legendre and Gauß [MD02], which deliver asymptotic expansions of the
difference between an angle βi of a geodesic triangle on a surface S and the corre-
sponding angle γi of the flat triangle whose edges are of equal length as the edges
of the geodesic triangle. It can be shown that up to terms quadratic with respect
to the edge lengths

K =
2π −∑i γi

1
3 AS

where the sum is over all triangles adjacent to P, and AS is the area of the polygon
composed of the respective flat triangles. Unfortunately, the convergence of Ap-
proximation (2) is only given for rather special conditions [MW00, BCM03]. The
reason is that the quadratic error in the numerator (by approximation of γi) and the
quadratic term in the denominator (as the area shrinks to zero) yield a total error
of O(1). The advantage of this formula is that the sum of the Gaussian curvature
over all vertices satisfies the global Gauß-Bonnet theorem (a generalization of the
angle deficit formula), which is a deep topological result.

Curvature estimation still remains an active research area with many appli-
cations. Yet, to compute the complete curvature tensor no such simple formulae
as for the Gaussian curvature are known. We will give just a small selection of
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recent studies. Goldfeather and Interrante [GI04] presented methods to fit a poly-
nomial to the one-ring of a vertex. Then the exact curvature of the polynomial
serves as an estimate of the mesh curvature. Many other approaches use a (more
or less) special definition of the curvature tensor from differential geometry and
try to find an appropriate discretization [Rus04, TRZS04, MDSB02]. As a special
case of these “differential geometry methods” we would like to mention the works
of Taubin [Tau95a] and Watanabe and Belyaev [WB01]. They approximate an in-
tegral over all angular directions to obtain an expression for the curvature tensor
(Taubin) or only the principal curvatures (Watanabe and Belyaev), respectively.

In these cases the correct discretization of the complete integral from a small
number of samples in the directions of the edges incident to the central vertex
poses a special problem. Taubin suggests area weights (of the triangles incident to
the respective edges) while Watanabe and Belyaev use angular weights that give
a trapezoidal approximation of the integral. But none of these weights can be ex-
pected to give exact results, even if the edge lengths tend to zero. Convergence to
the correct value could only be achieved if the number of edges tended to infinity,
but this is not a practical assumption.

Based on our asymptotic analysis, we present exact quadratures for the mean
curvature

H =
1

2π

∫ 2π

0
κ(φ)dφ, (3)

Gaussian curvature

K = 3H2 − 1
π

∫ 2π

0
κ(φ)2dφ, (4)

and the Taubin tensor

M =
1

2π

∫ 2π

0
κ(φ)t(φ)t(φ)tdφ. (5)

These integrals can be computed exactly from the normal curvatures κi along the
edges of a mesh. We prove the convergence of our method if approximated values
are used to obtain these normal curvatures.

In real world applications all these computations have often to be carried out
in the presence of noise. In this paper we assume that all points lie exactly on
a smooth surface, since the definitions for differential properties are valid only in
that case. Techniques to cope with noisy data can be found in [MN03] and [HS03].

There are basically two ways to evaluate the quality of any of these methods.
On the one hand, they can be applied to a specific tessellated analytical surface and
the result can be compared with the exact surface normal (or any other approx-
imated geometric property) at the corresponding point [MW00, MDSB02]. On
the other hand, an asymptotic analysis can be applied. In this case, the analytical
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surface is given in general form, usually represented by a Taylor series expan-
sion. Then the outcome of the discrete approximation can again be compared to
the real surface normal. Both methods have advantages and drawbacks. The first
one cannot state general results, but only for certain test surfaces. The second
method holds for all (analytical) surfaces and can give clues for improvement of
the approximations. But it is only helpful for dense meshes where dense is not
well-defined. It has successfully been applied for curves [ABS02, Bou00], but for
surfaces a comprehensive treatment has not been achieved so far. Pioneering work
was done in [MW00, CSM03].

The remainder of this report is organized as follows: in Section 2, we will an-
alyze the convergence behavior of curvature and torsion approximations for space
curves, and in Section 3 we will use our method to evaluate normal approxima-
tions on meshes. In Section 4 we will present a novel method to gain fast and
reliable estimates for mean curvature, Gaussian curvature, and the curvature ten-
sor. We will introduce quadratures to compute certain curvature integrals exactly,
given only three different normal curvatures and the angles between the respective
geodesics. Furthermore, we will show how the necessary curvatures and angles
can be approximated such that a convergence guarantee of our method can be
given if the edge lengths tend to zero. An experimental validation will be given in
Section 5, and, in Section 6, we will present our conclusions. Three appendices
give further details of the mathematical foundations of our proofs.

2 Space curves
As shown in [ABS02], the (2-dimensional) Frenet frame of a planar curve can be
used to evaluate the discrete estimations of curve normals and curvatures. The
same method carries over to the case of space curves using the 3-dimensional
Frenet frame. We will show here that the same formulae essentially still hold to
compute tangent vectors and curvatures of 3D curves. Additionally, we propose
and evaluate an approximation for torsion of a space curve. Due to the nature of
torsion, being a third derivative, we need at least 4 points to do this,but we consider
also an estimation using 5 points to obtain better results. See also [Bou00] for
more estimations.

Let a smooth curve r be interpolated by the five points P−2, P−1, P0, P1, and P2,
with the corresponding edges

−−−−−→
PiPi+1 denoted by c, d, e, and f, and their lengths

denoted by c, d, e, and f , see Figure 1. Then those edges can be expressed by
their Taylor expansions in the coordinate system given by the Frenet frame of r
with tangent t, normal n and binormal b = t×n. Let further κ denote the curvature
at P0 and τ denote the torsion at the same point. For the exact expansions, refer to
Appendix A.
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Figure 1: A space curve.

First, we approximate r by a circle.

2.1 Proposition (tangent vector). The tangent of the circle passing through P−1,
P0 and P1 is a second order approximation of the real tangent of the curve:

t̃ B
de

d + e

( d
d2 +

e
e2

)

= t
(
1 − de

8
κ2 +

d2e − de2

12
κκ′ + O(d, e)4

)

+ n
(de

6
κ′ − d2e − de2

24
(κ′′ − κτ2) + O(d, e)4

)
(6)

+ b
(
−de

6
κτ +

d2e − de2

24
(2κ′τ + κτ′) + O(d, e)4

)
.

This estimation is optimal among all three-point approximations of the tangent
in the sense that the quadratic term in the normal component cannot be different
from the one that shows up here. Also, this is the only linear combination of d and
e that yields a second order approximation.

Proof. The equation can directly be derived from the Taylor expansions in Ap-
pendix A. If there were curves with other quadratic terms we could gain a tangent
estimation and in turn an estimation of the normal for planar curves of the same
accuracy, but this is not possible, see [ABS02].

The last statement of the proposition can easily be derived using the Taylor
expansions of d and e from Appendix A. �

Note that in the planar case, knowledge of tangent and normal is equivalent.
Therefore, every tangent formula can be used to compute normals of plane curves.
In 3D, the computation of normals is more difficult, however, because the oscu-
lating plane is unknown. It can be done after estimating the binormals which
determine that plane. A more direct approach is to compute the curvature vector,
for example by using finite differences.
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2.2 Proposition (curvature vector). The finite difference approach yields a linear
approximation of the true curvature vector, and thus of the true normal vector:

k̄ B
2

d + e

(e
e
− d

d

)

= t
(d − e

4
κ2 − d2 − de + e2

6
κκ′ + O(d, e)3

)

+ n
(
κ − d − e

3
κ′ +

d2 − de + e2

12
(κ′′ − κτ2) + O(d, e)3

)

+ b
(d − e

3
κτ − d2 − de + e2

12
(2κ′τ + κτ′) + O(d, e)3

)
.

(7)

Furthermore, this is the only linear combination of d and e, that yields a linear
approximation of the real normal vector.

Proof. Again all claims can directly be proven from the Taylor expansions given
in Appendix A. �

From the curvature vector we gain the curvature as the norm. Another possi-
bility is to estimate the curvature by angle approximation. That approach is based
on the definition of curvature as the rate of angular change of the tangent vector
along the curve.

2.3 Proposition (curvature). Let ϕ be the angle between d and e, see Figure 1.
Curvature, estimated using the discrete curvature vector (7) or angle approxima-
tion, respectively, is given by

κ̄ B ‖k̄‖

= κ +
e − d

3
κ′ +

d2 − de + e2

12
κ′′ − d2 + de + e2

36
κτ2 +

d2 − 2de + e2

32
κ3 + O(d, e)3

κ̂ B
2ϕ

d + e
= κ +

e − d
3
κ′ +

d2 − de + e2

12
(κ′′ +

κ3

2
) − d2 + de + e2

36
κτ2 + O(d, e)3

These estimations are optimal among all three-point approximations in the sense
that the linear terms cannot be different from the ones that show up here.

Proof. Again the equations can be derived from Appendix A and optimality can
be reduced to the planar case [ABS02]. �

Yet another way to estimate the curvature is as the inverse of the radius of the
circle passing through P−1, P0 and P1. This has been done in [Bou00] and yields

κ̃ = κ +
e − d

3
κ′ +

d2 − de + e2

12
κ′′ − d2 + de + e2

36
κτ2 + O(d, e)3.
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Since sinϕ equals ϕ up to quadratic error we can compute an approximation
for κ as

2‖d × e‖
de(d + e)

≈ κ̂

without significant loss of accuracy.
Also note that for d = e the expansion of the angle approximation becomes

κ̂ = κ +
e2

12
(κ′′ +

κ3

2
− κτ2) + O(e4),

see Appendix A, and here the quadratic term vanishes for a special class of curves
called elastica, characterized by minimizing the bending energy

∫
κ2ds −→ min

while fixing end points. They were first introduced by Euler [Eul44] and have
applications in computer vision today [Mum94, Hor83].

2.4 Proposition (elastica). The curvature estimation κ̂ converges of (at least)
fourth order for elastica if all edges have equal length.

In fact, the lower order error terms vanish for an even broader class of curves,
see Appendix C for a derivation.

Binormals at Pi can be estimated by the normal of the plane defined by three
consecutive points, Pi−1, Pi, and Pi+1, for example b0 =

d×e
‖d×e‖ . Now we can apply

the method of angle approximation to these binormals to compute the torsion τ̂e

(located at the edge e) from the angle ηe between b0 and b1, ‖b1 × b0‖ = sin ηe.
But instead of taking the norm, which is computationally rather expensive, and
even worse, always yields positive values (as do most other methods as well),
whereas torsion is a signed property, we use the fact from the Frenet equations that
db
ds = τn. Therefore, b1 ×b0 should be approximately aligned with t and we define
η̂e B 〈b1 × b0, t̃〉 where t̃ denotes the tangent approximation from equation (6).
In fact η̂e = ηe + O(d, e, f )3 (because η depends linearly on d, e and f , and sin η
approximates η up to second order). We define η̂d analogously from b−1 and b0
and get (see Appendix A for the Taylor expansion of η̂e)

2.5 Proposition (torsion). Using four of the five points P−2, P−1, P0, P1 and P2

we have the following approximations for torsion:

τ̂d B
3η̂d

c + d + e
= τ − c − e

6
κ′

κ
τ − c + 2d − e

4
τ′ + O(c, d, e)2,

τ̂e B
3η̂e

d + e + f
= τ +

f − d
6
κ′

κ
τ − d − 2e − f

4
τ′ + O(d, e, f )2.
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It is interesting to compare the above estimation with the results from [Bou00]:
Let g be the distance ‖−−−→P0P2‖. Then

τ̃1 = τ +
d − e + 3g

6
κ′

κ
τ +

e − d + g
4

τ′ + O(d, e, f )2

and

τ̃2 = τ +
d + e + g

6
κ′

κ
τ +

e − d + g
4

τ′ + O(d, e, f )2.

Our approximation is more symmetric in the sense that the first linear error
term vanishes if all edge lengths are equal. By estimating torsion using the angle
between b−1 and b1, we can get an expression completely without linear terms if
d = e and c = f :

τ̃ B
3η̃

c + 2(d + e) + f
= τ − c2 + cd + d2 − e2 − e f − f 2

6(c + 2(d + e) + f )
κ′

κ
τ

− c2 + 3cd + 3d2 − 3e2 − 3e f − f 2

4(c + 2(d + e) + f )
τ′ + O(c, d, e, f )2.

Another possibility to get such a symmetric expression is to take the (unique)
weighted average of τ̂d and τ̂e such that the term involving τ′ vanishes completely
and the term involving κ

′

κ
τ vanishes for d = e and c = f :

τ̂ B
1

c + d + e + f
(
( f + 2e − d)τd + (c + 2d − e)τe

)

= τ − ce − e2 + d2 − d f
3(c + d + e + f )

κ′

κ
τ + O(c, d, e, f )2.

It can be further improved by estimating κ
′

κ
τ and eliminating the corresponding

error term. In that way, we can get a five-point approximation of the torsion at P0

that converges quadratically for arbitrary edge lengths.
For this purpose, we approximate curvatures at P−1 and P1 from the angles ϕ−1

between c and d, and ϕ1 between e and f:

κ−1 B
2ϕ−1

c + d
= κ − c + 2d

3
κ′ + O(c, d)2

and

κ1 B
2ϕ1

e + f
= κ +

f + 2e
3
κ′ + O(e, f )2.
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From this, we get five-point estimates for curvature

κ5 B
1

c + 2(d + e) + f
((2e + f )κ−1 + (c + 2d)κ1) = κ + O(c, d, e, f )2,

for its derivative (as suggested in [Bou00])

κ′5 B
3

c + 2(d + e) + f
(κ1 − κ−1) = κ′ + O(c, d, e, f ),

and for torsion

τ5 B τ̂ +
ce − d f + d2 − e2

3(c + d + e + f )
κ′5
κ5
τ̂ = τ + O(c, d, e, f )2.

The last equation shows that it is possible to obtain a second order approximation
for torsion using only five points.

3 Mesh normals

3.1 Averaging of face normals
Our approach to assess discrete approximation schemes for normals is to com-
pare the normal of an arbitrary analytical surface with the estimated normal at
the same point. For this purpose we determine an appropriate coordinate system
such that the estimated normal can be expressed only in terms of directional cur-
vatures, geodesic torsions and their derivatives at that point. These could, in turn,
be expressed in terms of the principal curvatures and their derivatives, but this is
of no relevance for the asymptotic analysis and we do not pursue it. An appro-
priate coordinate system will probably include the normal n itself and two further
orthonormal vectors, let’s call them t and v. Then a good approximation for the
normal would look like this:

nestimated = (1 + ε)n + ε′t + ε′′v

where the εs are supposed to be small and should tend to zero if a denser mesh is
regarded. If this is not the case, we might be able to give a good approximation
for the εs to improve the approximation of n.

Consider a dense meshM interpolating a smooth surface S and a mesh ver-
tex P. Let Q1,Q2, . . . ,Qn be the immediate neighbors of P, ordered counter-
clockwise with respect to the chosen normal, see Figure 2. For each Qi, consider
the geodesic curve gi(s), parameterized by arc length s, connecting P with Qi,
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Figure 3: Example of a regular vertex.

gi(0) = P. For each geodesic gi(s) consider its Darboux frame {ti, vi,n} for s = 0:
n is the unit surface normal at gi(0), ti =

dgi(s)
ds |s=0 is the unit tangent vector, and

vi = n × ti.
Let ai B

−−→
PQi and let αi be the angle between ai and ai+1 (indices taken mod-

ulo n). Now we can compute the normal of an incident triangle at P as

ai × ai+1

‖ai × ai+1‖
= n
(
1 + O(ai, ai+1)2

)

− vi
( ai+1

2 sinαi
κi+1 + O(ai, ai+1)2

)
+ vi+1

( ai

2 sinαi
κi + O(ai, ai+1)2

)

+ ti
(
O(ai, ai+1)2

)
+ ti+1

(
O(ai, ai+1)2

)
,

where κi denotes the normal curvature in direction ti, see Appendix B. This shows
that the triangle normal, and therefore every normal computed as a weighted av-
erage of the triangle normals in the one-ring of P, converges linearly to the real
normal, as has already been shown by Meek and Walton [MW00].

But we can prove even quadratic convergence for regular vertices1. These

1For area weighted normals, this has already been proved in [MW00] in the case n = 4, all
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shall be vertices of even valence, where opposing edges have the same length, and
opposing angles are equal, see Figure 3. More rigorously, we define

3.1 Definition (regular vertex). Let P be a mesh vertex of valence n = 2m with
incident edges ai of length ai. Let αi be the angle between ai and ai+1. Then P is
called regular iff

ai = ai+m and αi = αi+m

for all i = 1 . . .m.

For regular vertices we can conclude

vi+m = −vi + O(a j)2 and κi+m = κi + O(a j)2,

see Appendix B. Therefore, the linear terms cancel out when summing up all facet
normals of the faces incident at P. Summarizing, we can state

3.2 Theorem (mesh normals). Let P be a mesh vertex with incident edges ai of
length ai connecting P with Qi. Let αi be the angle between ai and ai+1 and let
ni B

ai×ai+1
‖ai×ai+1‖ . Let wi be weights depending only on edge lengths and enclosed

angles. Then ∑n
i=1 wini

‖∑n
i=1 wini‖

converges linearly to the real normal as edge lengths ai tend to zero if all αi are
bounded within (0, π) (meaning that there is a δ > 0 such that always δ < αi < π−δ
for all αi).

If P is a regular vertex the convergence is even quadratic.

Proof. We have already shown the linear convergence. For regular vertices we get
by the above arguments
∑

i

wi
ai × ai+1

‖ai × ai+1‖

=
∑

i

nwi

(
1 + O(ai, ai+1)2

)
+
∑

i

vi
(
O(ai, ai+1)2

)
+
∑

i

ti
(
O(ai, ai+1)2

)
.
�

We have also computed the angular error of the facet normal ni, for details
see Appendix B. It seems sensible to us to interpret the inverse of that approxi-
mated error as confidence values for the respective normals. Using these values
as weights for the faces incident at P yields

ñ B
∑

i
sinαi

di
ni

‖∑i
sinαi

di
ni‖

where di is the length of the triangle edge opposing P, see Figure 2.

edges and angles equal.
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Figure 4: Cotangent weights and Voronoi area.

3.2 Averaging of edges
Now we turn our attention to the mean curvature vector k at P. We use an approx-
imation similar to the one in the paper of Meyer et al. [MDSB02]. That is, we
approximate the integral over the mean curvature vector in a certain environment
of P and divide by the corresponding area A. Using the notation of Figure 4, let
wi B cot γi + cot δi and let A B 1

8

∑
i wia2

i be the Voronoi area of the one-ring of
P. A can be computed in terms of γi and δi because ηi =

π

2 − γi. We define

k B
1

4A

∑

i

wiai = 2
∑

i wiai∑
i wia2

i

.

This formula has already been suggested, up to a factor of two, in [DMSB99] as
a “normalized version of the curvature operator”. We argue that it is not merely a
normalized version but the correct (discrete) mean curvature vector.

In contrast to [MDSB02], where a “mixed region” for A has been used to en-
sure that it lies completely within the one-ring of P, we always use the Voronoi re-
gion. The reason for this becomes clear in Theorem 4.1 where we show why these
regions determine the “right” area whereas the mixed regions seem somewhat ar-
tificial to us. Note that our approach is still compatible with the derivation given
in [MDSB02]: the boundary of our “Voronoi region” (dashed lines in Figures 4
and 5) passes through the midpoints of the edges ai, and all “Voronoi regions” of
the complete mesh together guarantee a perfect tessellation without overlapping
if we allow “negative areas”: even though the Voronoi cell at the obtuse angle ex-
ceeds the area of the triangle in Figure 5 a), this is compensated by the “Voronoi
cells” at the acute angles that count the same area negative (Figure 5 b)).

3.3 Theorem (normal approximation). Let P be a mesh vertex and k be the
approximated mean curvature vector at P as above. Then k converges linearly
against the real normal vector of the same length.
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If P is regular, the convergence is even quadratic.

Proof. Using the Taylor expansion of ai
ai

in Appendix B, we get

4A · k B
∑

i

wiai =
∑

i

ti

(
wiai −

wia3
i

8
κ2i + O(a4

i )
)

+
∑

i

vi

(
−

wia3
i

6
κiτi + O(a4

i )
)

+ n
∑

i

(
wi

a2
i

2
κi + wi

a3
i

6
κ′i + O(a4

i )
)
.

Therefore, we have to show that
∑

i wiaiti = O(ai)3. Then we obtain

4A · k =
∑

i

ti

(
−

wia3
i

8
κ2i + O(ai−1, ai, ai+1)3

)

+
∑

i

vi

(
−

wia3
i

6
κiτi + O(a4

i )
)

+ n
∑

i

(
wi

a2
i

2
κi + wi

a3
i

6
κ′i + O(a4

i )
)
.

(8)

Since all the angles and consequently the weights wi converge quadratically to
respective values in the tangent plane, we may assume that the one-ring of P is
already planar and ai = aiti. Let hi be the part of the Voronoi edge separating P and

Qi that connects
−→

PQi to the circumcenter of the triangle 4PQiQi+1, see Figure 4.
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P

Figure 6: Complete Voronoi area.

From ηi =
π

2 − γi we conclude hi = ( 1
2 cot γiai)⊥, where ()⊥ is the π

2 counter-
clockwise rotation. Now it suffices to show that the the sum of the Voronoi edges∑

i wia⊥i is zero, but this is clear, compare Figure 6. Note that this may not be
a Voronoi region in the usual sense, but it retains the important property that it
forms a closed curve.

For regular vertices, we know ai = ai+m and αi = αi+m, and therefore, wi =

wi+m, κi ≈ κi+m, and τi ≈ τi+m, see Appendix B. This means that the third or-
der terms, which are explicitly given in the tangential components of equation (8),
vanish, and a careful examination shows that also the O(ai−1, ai, ai+1)3 terms, stem-
ming from the computations above, cancel. �

4 Curvature Tensor
In this section, we will analyze the asymptotic behavior of the (modified) mean
curvature vector as defined in [MDSB02]. We will show its limitations and sug-
gest a novel weighting scheme for better approximation of the mean curvature.
Furthermore, we will show how this approach can be extended to gain accurate
estimates of Gaussian curvature and the curvature directions.

4.1 Mean curvature vector
4.1 Theorem (mean curvature approximation I). Let

k B 2
∑

i(cot γi + cot δi)ai∑
i(cot γi + cot δi)a2

i

be the mean curvature vector at P defined in Section 3.2. Let all edge lengths ai

be equal and let all angles αi be equal. Then ‖k‖ converges linearly towards the

14



real mean curvature.
If the edge lengths ai and angles αi are varying then ‖k‖ will in general not

converge towards the correct mean curvature.

Proof. Under the assumption that all the ai and αi are equal, the angles γi and δi

and therefore the weights wi have to be equal for all i as well. Using formula (8)
we obtain ‖k‖ = ∑i

wia2
i∑

i wia2
i
κi + O(ai) = 1

n

∑
i κi + O(ai). The last term is known to

be exactly the mean curvature, since the angles αi are equal and the directional
curvatures κi are evenly distributed, compare the proof of Theorem 4.2.

This argumentation doesn’t hold in the general case of course. For example,
it can be that all directional curvatures κi and therefore the result of the cotangent
formula are smaller than the mean curvature. �

Therefore, the cotangent weights are not appropriate to get the correct mean
curvature with differing edge lengths and angles, even though they are very well
suited to obtain the correct normal. Now note that the mean curvature is always
given by the normal component of the mean curvature vector k. That means, that
we can use better weights if we can ensure by other means that the tangential
components of k vanish. This is the case for regular vertices. Alternatively, if
we already know the exact normal (at least up to quadratic error) we can use it to
extract the normal component of k. This motivates

4.2 Theorem (mean curvature approximation II). If P is regular, then the nor-
mal component of

k̄ B 2

∑
i(tanαi−1 + tanαi) ai

a2
i∑

i(tanαi−1 + tanαi)

converges linearly towards the mean curvature at P.

Proof. Let w̄i B tanαi−1 + tanαi. If we insert the asymptotic expansion into the
above formulae, we get 〈k̄,n〉 = 1∑

i w̄i

∑
i w̄iκi + O(ai). ( This reduces to 1

n

∑
i κi +

O(ai) if all angles αi are equal.) Let φi be the angle between the principal direction
of maximal curvature and ti. Euler’s formula yields

1∑
i w̄i

∑

i

w̄iκi =
κmax∑

i w̄i

∑

i

w̄i cos2 φi +
κmin∑

i w̄i

∑

i

w̄i sin2 φi

=
κmax∑

i w̄i

∑

i

w̄i
1 + cos 2φi

2
+
κmin∑

i w̄i

∑

i

w̄i
1 − cos 2φi

2

=
κmax + κmin

2
+
κmax − κmin

2
∑

i w̄i
Re
(∑

j

w̄ je2iφ j
)
.
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Figure 7: Weights for computation of the mean curvature.

Now it is sufficient to show that
∑

j w̄ je2iφ j = 0. If we consider e2iφ j as the vertices
of a one-ring with the origin of the complex plane as center, then we know already,
from the proof of Theorem 3.3, that the correct weights are cot γ̄ j + cot δ̄ j, see
Figure 7. But since all the edges e2iϕ j have the same length, we can compute
cot γ̄ j + cot δ̄ j = cot π−2α j

2 + cot π−2α j−1

2 = w̄ j. �

The formula 2
〈 ai

a2
i
,n
〉

has already been used by Taubin [Tau95a] to gain an ap-
proximation of κi and in turn also of the mean curvature. Numerous other methods
exist to approximate the mean curvature, see for example [Boi95]. But at least so
far we haven’t been able to prove asymptotic correctness for them.

4.2 Quadratures for curvature integrals
Now we adopt another point of view concerning our formula to approximate mean
curvature. It can be seen as the approximation of an exact quadrature of the mean
curvature integral (3). This viewpoint proves to be powerful and extensible to the
computation of Gaussian curvature and the curvature tensor.

Given a point P on a smooth surface S, consider its tangent plane that is
spanned by two unit vectors in the principal directions tmax and tmin, see Figure 8
on the left hand side. The curvatures in these directions are given by κmax and κmin,
respectively. Assume now that ti, i = 1..n are further unit tangent vectors. Let φi

be the angle between tmax and ti measured counter-clockwise and let βi B φi+1−φi

(indices modulo n) be the angle between ti+1 and ti. Let κi be the normal curvature
of S at P in direction ti. More general, let t(φ) be the unit tangent vector with
angle φ to tmax and κ(φ) the normal curvature in that direction. Now we will show
how mean curvature, Gaussian curvature and the curvature tensor can be com-
puted only from the knowledge of the κi and βi. (Discrete estimations for κi and βi
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are given in Section 4.3.)

Mean curvature

In this paragraph, we will present a formula to compute the mean curvature H. It
can be seen as a generalization of a result from mathematical folklore that states
H = 1

n

∑
i κi which, again, is a generalization of H = 1

2 (κmax + κmin). We prefer to
regard it as a quadrature

∑
i wiκi of curvature integral (3) with certain weights wi

that add up to one:

w j B
tan β j−1 + tan β j∑
k(tan βk−1 + tan βk)

. (9)

They have the property ∑

i

wi cos 2φi = 0

as shown in the proof of Theorem 4.2, and we arrive at

4.3 Theorem. Mean curvature is given by the weighted sum of normal curvatures
with the weights defined in (9):

H =
∑

i

wiκi.

Gaussian curvature

To obtain the Gaussian curvature K we have to compute the integral G B 1
2π ·∫ 2π

0
κ(φ)2dφ from Equation (4). Again with Euler’s formula (1) we obtain an ap-

proximation of that integral:

G̃ B
∑

i

w̃iκ
2
i =

3
2

H2 − 1
2

K+

∑

i

w̃i

(4 cos 2φi + cos 4φi

8
κ2max −

4 cos 2φi − cos 4φi

8
κ2min −

cos 4φi

4
K
)
.
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Here we exploit
∑

j w̃ je4iφ j = 0 for

w̃ j B
tan 2β j−1 + tan 2β j∑
k(tan 2βk−1 + tan 2βk)

(10)

and therefore ∑

i

w̃i sin 4φi =
∑

i

w̃i cos 4φi = 0. (11)

With the notation Σcos B
1
2

∑
i w̃i cos 2φi we get

G̃ =
3
2

H2 − 1
2

K + 2H(κmax − κmin)Σcos.

Using the same weights for the estimation of H we obtain

H̃ B
∑

i

w̃iκi = H + (κmax − κmin)Σcos.

Therefore, we can compute the exact value of K:

4.4 Theorem. Gaussian curvature can be computed from the mean curvature H
and the corrected weighted sum of squares of normal curvatures with the weights
defined in (10):

K = 3H2 − 2
∑

i

w̃iκ
2
i + 4H(

∑

i

w̃iκi − H).

The Taubin tensor

Now we will show how the matrix M, defined by integral (5), that was introduced
by Taubin [Tau95a] to compute the curvature tensor, can be evaluated exactly. Af-
terwards, we will give an alternative method to compute the principal curvatures
and directions.

Let T B (n, tmax, tmin) be the orthogonal matrix with the columns given by the
normal and the unit tangent vectors of the principal directions at the surface point
P. In [Tau95a], it was shown that

M = T



0 0 0
0 λ1 0
0 0 λ2

Tt

where λ1 and λ2 are the eigenvalues of M that are related to the principal curva-
tures in the following way:

κmax = 3λ1 − λ2, κmin = 3λ2 − λ1.

18



To compute a discrete approximation of integral (5) we use the equalities (11) for
weights (10) together with Euler’s formula (1) and obtain:

M̃ B
∑

i

w̃iκititt
i = T



0 0 0
0 λ1 + κmaxΣcos HΣsin

0 HΣsin λ2 − κminΣcos

Tt

with Σcos B
1
2

∑
i w̃i cos 2φi and Σsin B

1
2

∑
i w̃i sin 2φi. Again, we want to com-

pute the error terms and subtract them afterwards as we did when computing the
Gaussian curvature. However, the task is trickier this time since the error terms
are given in a coordinate system yet unknown.

But let us define the error matrix

Ẽ B
∑

i

w̃ititt
i = T



0 0 0
0 1

2 + Σcos Σsin

0 Σsin
1
2 − Σcos

Tt.

After restriction of the matrices to the tangent plane by a Householder transforma-
tion Q as done in [Tau95a], we can eliminate most of the error terms and control
the remaining ones by computing:

QM̃Q
t − H(QẼQ

t − 1
2



0 0 0
0 1 0
0 0 1

)

= QT



0 0 0
0 λ1 +

κmax−κmin
2 Σcos 0

0 0 λ2 +
κmax−κmin

2 Σcos

 (QT)t. (12)

Now all the desired information can be extracted:

4.5 Theorem. The matrix defined in equation (12) has the surface normal and the
principal directions as eigenvectors. Its eigenvalues µ1 and µ2 corresponding to
the latter two eigenvectors are related to the principal curvatures by

κmax = 3µ1 − µ2 − (H̃ − H), κmin = 3µ2 − µ1 − (H̃ − H).

Direct computation of the curvature tensor

Once we know mean and Gaussian curvature, there is also a more direct approach
to obtain principal curvatures and directions. First, we can compute the principal
directions:

κmax = H +
√

H2 − K, κmin = H −
√

H2 − K.
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Now we use Euler’s formula (1) in the form

κi = (κmax − κmin) cos2 φi + κmin.

When solving for φi we get two solutions for every i (modulo π). Since the correct
solutions coincide for all i, they can be easily determined.

4.3 Practical curvature tensor estimation
In this section we will discuss how the quadratures from Section 4.2 lead to a
working algorithm.

Normal curvatures and geodesic angles

Let P be a vertex of the meshM with its one-ring given by vertices Qi such that
P and the Qi interpolate the surface S. Let ai be the edge connecting P and Qi, let
gi be the geodesic connecting P and Qi in S, and let ti be the unit tangent to gi at
P. Given a (possibly estimated) unit normal vector n at P, the normal curvature
can be approximated as κi ≈ 2 〈ai,n〉

a2
i

, where ai B ‖ai‖, see for example [Tau95a].
Furthermore, βi can initially be approximated by the angle αi between ai and ai+1,
see Figure 8 on the right hand side. The tangent vector ti can be estimated by the
normalized projection of ai to the tangent plane a′i B

ai−〈ai,n〉n
‖ai−〈ai,n〉n‖ . Finally, the angle

α′i between a′i and a′i+1 gives a better approximation for βi than αi does.

Convergence properties

Along with the above estimates for κi, βi and ti, we utilize the classical Darboux
frame for gi to express the Taylor expansion of S at P in order to prove the con-
vergence of our formulae as the edge lengths tend to zero:

ai

ai
= ti

(
1 −

a2
i

8
κ2i

)
+ vi

(
−

a2
i

6
κiτi

)
+ n
(ai

2
κi +

a2
i

6
κ′i
)
+ h. o. t.

where vi B n × ti. It becomes clear that the above estimate for κi is a linear
approximation of the true normal curvature provided that n is at least a quadratic
approximation of the correct normal. This is a reasonable assumption since it
was proven in [MW00] that such an approximation can be obtained by fitting
a quadratic patch to the one-ring of P if P has at least valence five. This linear
error introduces a linear error in our approximations for mean curvature, Gaussian
curvature and the curvature tensor.

From the same Taylor expansion, it can be seen that ai
ai

is already a linear
approximation of ti. The projection to the tangent plane yields an even quadratic
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approximation of ti by a′i . After computing the cross product of ai and ai+1, we
conclude that αi is a quadratic approximation of βi (compare [MD02]) and the
same holds for α′i . The quadratic error for βi yields a quadratic error for tan βi and
for wi and w̃i. Again these quadratic errors propagate through all our computations
and add an additional quadratic error to the results of mean curvature, Gaussian
curvature and curvature tensor.

Implementation details

When computing the weights defined in (10), it may happen that the value of
the denominator becomes zero or close to zero, for example if right angles are
involved. In this case the weights can become very big and will enlarge small
errors in the estimation of the normal curvatures greatly. To cope with a situation
of a very small denominator for a vertex we omit some edges in the one-ring of
that vertex. That means, we use only the subset of edges in the one-ring such that
the denominator becomes maximal for the new weights. (Remember that we only
need three edges to apply our method.) This improved our results for these cases.

5 Experimental results
In this section, we present at first detailed results of our quadrature method to
compute the mean curvature; then we make a short comparison of our methods
and existing approaches to compute the curvature tensor.

5.1 Mean curvature
We applied our newly proposed formulae for mean curvature approximation on
several meshes with the vertices exactly interpolating smooth surfaces of constant
mean curvature. For these meshes it is especially easy to compare the estimated
values with the true values. We studied the following methods: cotangent weights
using a mixed area as proposed by Meyer et al. [MDSB02], cotangent weights
using Voronoi areas as defined in Theorem 4.1 and tangent weights as defined in
Theorem 4.2. Since, for the last method, knowledge of the normal vectors is nec-
essary, we compared the results when using the true normals which were available
for our test surfaces, and using estimated normals with spherical weights [Max99]
to study the case where the true normals are unknown. The meshes with the most
interesting results and the corresponding histograms are depicted in Figure 9.

Our first test surface was a sphere with constant mean curvature −1. Since the
estimated normals are identical with the true normals in this example, we forbore
from using the true normals to simplify the histogram representation. While the
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Figure 9: Some of our test shapes. From top to bottom: a polar sphere, a catenoid
with strongly differing edge lengths and Enneper’s surface with very irregular
connectivity. On the left side is the mesh and on the right side the corresponding
histogram. The leftmost and rightmost columns count not only the vertices of the
specified curvature but also all vertices with lower or higher curvature, respec-
tively.
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average error using cotangent weighting with mixed areas was 0.002, the use of
Voronoi areas gave much better results as can be seen in the histogram of the
sphere. This clear difference is due to the fact that in the given sphere nearly
every second triangle is obtuse and, in turn, nearly every vertex is affected by the
different area computation. It is also remarkable that the tangent weights gave the
exact value ‘−1’ for the mean curvature within the limits of numerical precision
of our implementation.

The two other test surfaces were minimal surfaces with constant mean cur-
vature zero. For these meshes, the difference between Voronoi areas and mixed
areas were less significant. Since we have already shown the superiority of us-
ing Voronoi areas by means of the first model, we haven’t included cotangent
weights with mixed areas in the histograms any longer. The second surface was a
catenoid with strongly differing edge lengths. With this mesh, we wanted to test
our hypothesis that these differing edge lengths distort the results of the cotangent
weighting. This proved to be correct as can be seen in the histogram. The majority
of the curvature estimations were shifted to negative values which correspond to
the direction of the longer edges. Surprisingly for us, the tangent weights with
exact normals gave a shifted result as well – but to the other direction. Judging
from additional tests, this could be due to the nearly rectangular angles in this
mesh that pose a problem for the computation of the tangent. Still more unex-
pectedly, we got the best results using the merely estimated normals. Note also
that the catenoid has 126 boundary vertices which can clearly be seen in the left-
most and rightmost column of the histogram for the cotangent weights and the
tangent weights with spherical normals, respectively. Using the tangent weights
with exact normals we obtained good results in our implementation without any
special treatment of boundary vertices. Since only the normal component is used,
the unbalanced situation has no effect.

Our last test surface was an irregular mesh (with 320 boundary vertices) of
Enneper’s surface, a manifold that cannot completely be embedded in �3 without
self-intersections. Here the full power of our tangent weights approach could be
observed. While the cotangent weights mean curvature estimations were scattered
over a large range of values, the tangent weights method still gave good approxi-
mations of the correct value. Also, the importance of a good normal approxima-
tion could be seen here: using the estimated normals, the tangent and cotangent
weights led to similar results. But note in the histogram of the cotangent method
that the correct zero value seems to be avoided. This is probably an inherent prob-
lem of computing the mean curvature as the norm of a vector. A small disturbance
in any direction yields a wrong value, while using only the normal components
errors in tangential directions are ignored.
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Figure 10: Meshes of a polar sphere and a regular torus.

Figure 11: Principal directions (colored according to the corresponding principal
curvature values decreasing from red over green to blue) of a triangulated torus.

5.2 Curvature tensor
We tested our algorithm on a model of a sphere with constant Gaussian curvature
K = 1 and on a model of a torus with Gaussian curvature varying from −1 to
1
3 , both are depicted in Figure 10. The results are given in Tables 1 and 2. We
measured the root-mean-square error for mean curvature H, Gaussian curvature
K, the angular deviation θ of the principal directions in radians, and the time in
seconds computed on a 1.8 GHz CPU (Intel Xeon). No optimization to achieve
especially short running times was done for our algorithm. We compared the
following methods: (1) angle deficit in the version of Meyer et al. [MDSB02],
(2) quadrature of curvature integrals as presented in this paper (principal direc-
tions via Euler’s formula); the first number gives the time for computing only the
curvatures, the second number the time to compute additionally the principal di-
rections; the results for the torus are also visualized in Figure 11, (3) the original
Taubin method [Tau95a], (4) the Taubin tensor computed by exact quadrature as
presented in this paper, (5) and (6) quadratic and cubic polynomial fitting as done
by Goldfeather and Interrante [GI04]. All computations were done with the exact
normals known.
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H K T (sec)
angle deficit – 0.00465 0.02
quadrature* 1.85 · 10−13 3.87 · 10−13 0.03 / 0.06
Taubin (classic) 3.47 · 10−14 0.422 0.03
Taubin (quadrature)* 1.81 · 10−13 3.62 · 10−13 0.05
GI (quadratic) 0.00402 0.00805 0.07
GI (cubic) 0.000563 0.00113 0.16

Table 1: Error and time for a polar sphere (1026 vertices), the starred methods are
developed in this paper.

H K θ T (sec)
angle deficit – 0.000901 – 0.09
quadrature* 0.00120 0.0284 0.0886 0.14/0.21
Taubin (classic) 0.0817 0.380 0.158 0.11
Taubin (quadr.)* 0.00120 0.0405 0.139 0.21
GI (quadratic) 0.00791 0.00657 0.00175 0.21
GI (cubic) 0.00456 0.00789 0.00182 0.53

Table 2: Error and time for a regular torus (3969 vertices), the starred methods are
developed in this paper.

The angle deficit method is the simplest and fastest, yet it can only be used
to compute the Gaussian curvature and no asymptotically correct results can be
expected in general. The classical Taubin method is the fastest to compute the
whole curvature tensor, but its accuracy is less than that of modern techniques.
Nevertheless, if the Taubin tensor is computed using the quadrature weights as
proposed in this paper, it can achieve competitive results with a small time penalty.
The approach of Goldfeather and Interrante offers the best results for computing
the principal directions, yet it is also the algorithm with the highest running time
which limits its usefulness for very large meshes. Our approaches combine high
accuracy and relatively short computation times. Furthermore, by the modular
structure of method (2), running times can be further decreased if only the curva-
tures, but not the principal directions are needed.

6 Conclusion
We introduced a framework for asymptotic analysis of differential properties of
discrete curves and surfaces. Using it, we have proposed formulae to compute
curvature, torsion, and the Frenet frame of a space curve, and investigated their
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convergence properties when edge lengths tend to zero.
We have shown that all commonly used weighting schemes for estimating ver-

tex normals on a mesh from the normals of the incident faces converge quadrati-
cally at regular vertices. The same is true for the mean curvature vector when it is
computed with cotangent weights at the edges and normalized by Voronoi areas
as proposed by us.

Furthermore, we presented a new, mathematically founded method to compute
mean curvature, Gaussian curvature and the curvature tensor. For the case where
all edge lengths and angles are known to be equal we have even been able to
prove linear convergence of the norm of the mean curvature vector, computed
with cotangent weights, to the true mean curvature. In general though, we have
shown that the tangent weights suggested by us are more appropriate for mean
curvature computation. We have demonstrated that they yield especially superior
results if used for meshes with irregular connectivity, but require knowledge of
the normal vector.

In particular, we have proven theorems for exact computation of curvature
integrals that lead to quite impressive results and rely only on elementary math-
ematics. Our experiments showed short running times and often superior results
compared to existing methods. Furthermore, the method is proven to converge if
normal vectors of at least quadratic accuracy are available.

In the future, we plan to extend our research to curvature and torsion of curves
on surfaces. Also, we want to examine the influence of noise on normal and
curvature estimations.
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A Taylor series expansion of space curves
Given an arbitrary curve r(s) as in Figure 1 we can analyze it using Taylor series
together with the well known Frenet equations [dC76, Koe90]

dt
ds
= κn,

db
ds
= τn,

dn
ds
= −κt − τb (13)
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where t, b and n are unit tangent, unit normal and unit binormal vector, respec-
tively, and κ and τ are curvature and torsion, respectively. (We omit the position
s, since the equations hold for all (fixed) s and we are interested only in the case
s = 0, anyway.) Differentiating the curve r(s) with respect to its arc length s, then
yields

r′ = t, r′′ = t′ = κn, r′′′ = (κn)′ = κ′n − κ2t − κτb

and so on. Now we can use Taylor expansion to express e =
−−−→
P0P1 = r(s1) − r(s0):

e = s1r′ +
s2

1

2
r′′ +

s3
1

6
r′′′

s4
1

24
r(4) +

s5
1

120
r(5) + O(s6

1)

= t
(
s1 −

s3
1

6
κ2 −

s4
1

8
κκ′ +

s5
1

120
(
κ4 + κ2τ2 − 4κκ′′ − 3(κ′)2) + O(s6

1)
)

+ n
( s2

1

2
κ +

s3
1

6
κ′ +

s4
1

24
(κ′′ − κ3 − κτ2) −

s5
1

120
(6κ2κ′ + 3κττ′ + 3κ′τ2 − κ3) + O(s6

1)
)

+ b
(
−

s3
1

6
κτ −

s4
1

24
(2κ′τ + κτ′) +

s5
1

120
(κ3τ + κτ3 − κτ′′ − 3κ′τ′ − 3κ′′τ) + O(s6

1)
)
.

Since (t,n,b) is an orthonormal basis, we can compute the length e of e in terms
of s1 by

e B ‖e‖ = s1 −
s3

1

24
κ2 −

s4
1

24
κκ′ +

s5
1

5760
(3κ4 + 8κ2τ2 − 72κκ′′ − 64(κ′)2) +O(s6

1).

After inverting the Taylor series for e we obtain

s1 = e +
e3

24
κ2 +

e4

24
κκ′ − e5

5760
(3κ4 + 8κ2τ2 − 72κκ′′ − 64(κ′)2) + O(e6).

Substituting the expansion of s1 into the formula for e and dividing by e yields

e
e
= t
(
1 − e2

8
κ2 − e3

12
κκ′ − e4

1152
(
15κ4 − 8κ2τ2 + 24κκ′′ + 16(κ′)2) + O(e5)

)

+ n
(e
2
κ +

e2

6
κ′ +

e3

24
(κ′′ − κτ2) +

e4

360
(2κ2κ′ − 9κττ′ − 9κ′τ2 + 3κ′′′) + O(e5)

)

+ b
(
−e2

6
κτ − e3

24
(2κ′τ + κτ′)

− e4

360
(2κ3τ − 3κτ3 + 3κτ′′ + 9κ′τ′ + 9κ′′τ) + O(e5)

)
.
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In the same way we get the expressions for d
d , c

c and f
f :

d
d
= t
(
1 − d2

8
κ2 +

d3

12
κκ′ + O(d4)

)

+ n
(
−d

2
κ +

d2

6
κ′ − d3

24
(κ′′ − κτ2) + O(d4)

)

+ b
(
−d2

6
κτ +

d3

24
(2κ′τ + κτ′) + O(d4)

)
,

c
c
= t
(
1 − c2 + 4cd + 4d2

8
κ2 +

c3 + 5c2d + 9cd2 + 6d3

12
κκ′ + O(c, d)4

)

+ n
(
−c + 2d

2
κ +

c2 + 3cd + 3d2

6
κ′ +

c2d + 2cd2 + d3

8
κ3

− c3 + 4c2d + 6cd2 + 4d3

24
(κ′′ − κτ2) + O(c, d)4

)

+ b
(
−c2 + 3cd + 3d2

6
κτ +

c3 + 4c2d + 6cd2 + 4d3

24
(2κ′τ + κτ′) + O(c, d)4

)
,

and

f
f
= t
(
1 − f 2 + 4 f e + 4e2

8
κ2 − f 3 + 5 f 2e + 9 f e2 + 6e3

12
κκ′ + O(e, f )4

)

+ n
( f + 2e

2
κ +

f 2 + 3 f e + 3e2

6
κ′ − f 2e + 2 f e2 + e3

8
κ3

+
f 3 + 4 f 2e + 6 f e2 + 4e3

24
(κ′′ − κτ2) + O(e, f )4

)

+ b
(
− f 2 + 3 f e + 3e2

6
κτ − f 3 + 4 f 2e + 6 f e2 + 4e3

24
(2κ′τ + κτ′) + O(e, f )4

)
.

Using the above expansions we can also compute the cross product of d
d and

e
e :

d
d
× e

e
= t
(d2e + de2

12
κ2τ + O(d, e)4

)

+ n
(e2 − d2

6
κτ +

d3 + e3

24
(2κ′τ + κτ′) + O(d, e)4

)

+ b
(d + e

2
κ +

e2 − d2

6
κ′ +

d3 + e3

24
(κ′′ − κτ2) − d2e + de2

16
κ3 + O(d, e)4

)
.

Note that the quadratic terms vanish for d = e. The same is true for fourth order
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terms:
d
d
× e

e
d=e
= t
(e3

6
κ2τ + O(e5)

)

+n
( e3

12
(2κ′τ + κτ′) + O(e5)

)

+b
(
eκ +

e3

12
(κ′′ − κτ2) − e3

8
κ3 + O(e5)

)
.

Since the norm of the above vector equals sinϕ we obtain

sinϕ =
d + e

2
κ − d2 − e2

6
κ′ +

(d − e)(d2 − e2)
36

κτ2

+
d3 + e3

24
(κ′′ − κτ2) − d2e + de2

16
κ3 + O(d, e)4,

ϕ =
d + e

2
κ − d2 − e2

6
κ′ +

d3 + e3

48
(κ3 − 2

3
κτ2 + 2κ′′)

− d2e + de2

36
κτ2 + O(d, e)4,

and for d = e

ϕ
d=e
= eκ +

e3

24
(2κ′′ + κ3 − 2κτ2) + O(e5).

We can also compute the normalized binormal at P0 by

b0 B
d × e
‖d × e‖ =

d
d ×

e
e

sinϕ

= t
(de

6
κτ + O(d, e)3

)

+ n
(e − d

3
τ +

d2 − de + e2

12
τ′ +

d2 + de + e2

18
κ′

κ
τ + O(d, e)3

)

+ b
(
1 − (d − e)2

18
τ2 + O(d, e)3

)
.

The terms for the binormals b−1 at P−1 and b1 at P1 are similar:

b−1 B
c × d
||c × d||

= t
(
−cd + d2

6
κτ + O(c, d)3

)

+ n
(
−c + 2d

3
τ +

c2 + 3cd + 3d2

12
τ′ +

c2 + cd + d2

18
κ′

κ
τ + O(c, d)3

)

+ b
(
1 − c2 + 4cd + 4d2

18
τ2 + O(c, d)3

)
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and

b1 B
e × f
||e × f||

= t
(
− f e + e2

6
κτ + O(e, f )3

)

+ n
( f + 2e

3
τ +

f 2 + 3 f e + 3e2

12
τ′ +

f 2 + f e + e2

18
κ′

κ
τ + O(e, f )3

)

+ b
(
1 − f 2 + 4 f e + 4e2

18
τ2 + O(e, f )3

)
.

With those we can in turn estimate the angle between two consecutive binormals
as

η̂ = 〈b1 × b0, t̃〉 =
d + e + f

3
τ − d2 + de − e f − f 2

18
κ′

κ
τ

− d2 − de − 2e2 − 3e f − f 2

12
τ′ + O(d, e, f )3

where t̃ is the tangent approximation from equation (6).

B Taylor series expansion of geodesics
The behavior of the Darboux frame for an arbitrary smooth curve r(s) on a surface
S is governed by the following modified Frenet-Serret equations [dC76, Koe90]



dt/ds
dv/ds
dn/ds

 =



0 κg κn
−κg 0 τ

−κn −τ 0





t
v
n



where κn is the normal curvature, κg is the geodesic curvature, and τ is the geodesic
torsion of the curve. Thus for the geodesic gi(s) as defined in Section 3 we have

dti

ds
= κin,

dvi

ds
= τin,

dn
ds
= −κiti − τivi,

where κi(s) and τi(s) are the normal curvature and geodesic torsion of gi(s), re-
spectively. Note that these are exactly the same equations as for the space curves
given in equation (13), only with a slightly different meaning of κi and τi com-
pared to κ and τ. Therefore, we have (formally) exactly the same Taylor series
expansions for ai B

−−→
PQi and ai B ‖ai‖ as for e and e in Appendix A and get

finally

ai

ai
= ti
(
1 −

a2
i

8
κ2i + O(a3

i )
)
+ vi
(
−

a2
i

6
κiτi + O(a3

i )
)
+ n
(ai

2
κi +

a2
i

6
κ′i + O(a3

i )
)
.
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Let βi be the angle between ti and ti+1 (indices taken modulo n), see Figure 8
on the right hand side. Now we can compute the normal of an incident triangle at
P as

ai

ai
× ai+1

ai+1
= sin βin

(
1 −

a2
i

8
κ2i −

a2
i+1

8
κ2i+1 + O(ai, ai+1)3

)

+ cos βin
(
−

a2
i+1

6
κi+1τi+1 + O(ai, ai+1)3

)

− vi
(ai+1

2
κi+1 +

a2
i+1

6
κ′i+1 + O(ai, ai+1)3

)

− cos βin
(
−

a2
i

6
κiτi + O(ai, ai+1)3

)

+ sin βin
(
O(ai, ai+1)3

)

+ ti
(
O(ai, ai+1)3

)

+ vi+1
(ai

2
κi +

a2
i

6
κ′i + O(ai, ai+1)3

)

− ti+1
(
O(ai, ai+1)3

)
.

Since βi equals the angle αi between ai and ai+1 up to quadratic order we can
also use that angle in our asymptotic formula (compare also [MD02]):

sinαi =

∥∥∥∥
ai

ai
× ai+1

ai+1

∥∥∥∥= sin βi + (
1

sin βi
− sin βi)

(a2
i

8
κ2i +

a2
i+1

8
κ2i+1

)

+ cos βi

(a2
i

6
κiτi −

a2
i+1

6
κi+1τi+1

)
− cot βi

(aiai+1

4
κiκi+1

)
+ O(ai, ai+1)3

and therefore αi = βi + O(ai, ai+1)2.
But we can also use this result to compute ai×ai+1

‖ai×ai+1‖ . Now suppose ai = ai+m and
αi = αi+m. We know

2
i+m−1∑

j=i

α j =

2m∑

j=1

α j =

2m∑

j=1

β j + O(a j)2 = 2π + O(a j)2.

Therefore, we get

βi,i+m =

i+m−1∑

j=i

βi =

i+m−1∑

j=i

αi + O(a j)2 = π + O(a j)2,

vi+m = cos βi,i+m−1vi − sin βi,i+m−1, ti = −vi
(
1 + O(a j)2) + ti

(
O(a j)2),
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and the corresponding result for ti+m where βi j is the counter-clockwise angle
between ti and tj. Using Euler’s formula

κi = κmax cos2 θ + κmin sin2 θ

for curvature and the corresponding

τi = (κmax − κmin) cos θ sin θ

for torsion we obtain

κi+m = κi + O(a j)2 and τi+m = τi + O(a j)2.

We can also use our computations to gain an estimation of the angular error.
We compute the scalar product to obtain the cosine of the angle

〈 ai × ai+1

‖ai × ai+1‖
,n
〉

= 1 − 1
8 sin2 αi

(a2
i κ

2
i + a2

i+1κ
2
i+1 − 2aiai+1κiκi+1 cosαi) + O(ai, ai+1)3.

Therefore, the angular error has to be

1
2 sinαi

·
√

a2
i κ

2
i + a2

i+1κ
2
i+1 − 2aiai+1κiκi+1 cosαi + O(ai, ai+1)2.

Because the curvature is unknown anyway we simplify the term by setting κi =

κi+1 = 1 and we get

1
2 sinαi

√
a2

i + a2
i+1 − 2aiai+1 cosαi

as the main error term. We note that the square root equals the length of the edge
di opposing P, see Figure 2.

This justifies to use sinαi
di

as weights for the unit facet normals ni of a one-
ring. It uses the inverse of the estimated angular error to give stronger weights to
triangles whose normals are closer to the real normal.

C Euler’s elastica for space curves
In this section we will derive necessary conditions for a space curve r(s) to be an
elastica, i. e. ∫

κ2ds −→ min,
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while fixing position and tangent of the two end points. Hereby we follow the
treatment given in [BAYY99] and [Mum94] for elastica in the plane.

We consider a small perturbation of r(s)

r̂(s) B r(s) + ε
(
h(s)n + k(s)b

)

where r(s) is an elastica parameterized by arc length s, h(s) and k(s) are real
functions with compact support and ε is a real number. Using the Frenet equations
we get

dr̂
ds
= t + ε

(−hκt + (h′ + kτ)n + (k′ − hτ)b
)
.

Let r̂(ŝ) be a parameterization of r̂ by arc length. Then

dŝ =
∥∥∥∥

dr̂
ds

∥∥∥∥ds = (1 − εhκ + O(ε2))ds.

Therefore, we have

t̂ =
dr̂
dŝ
=

dr̂
ds

ds
dŝ
= t + ε

(
(h′ + kτ)n + (k′ − hτ)b

)
+ O(ε2),

κ̂n̂ =
dt̂
dŝ
=

dt̂
ds

ds
dŝ

= κn + ε(−h′κ − kκτ)t
+ ε(h(κ2 − τ2) + h′′ + kτ′ + 2k′τ)n + ε(−hτ′ − 2h′τ − kτ2 + k′′)b + O(ε2)

and

κ̂2 = ‖κ̂n̂‖2 = κ2 + 2εκ
(
h(κ2 − τ2) + h′′ + kτ′ + 2k′τ

)
+ O(ε2).

Now we can compute, using integration by parts:
∫
κ̂2dŝ =

∫
κ2ds + ε

∫
h(κ3 + 2κ′′ − 2κτ2) − 2k(κτ′ + 2κ′τ)ds + O(ε2).

Because h(s) and k(s) are arbitrary functions with compact support and the integral∫
κ2ds is minimal for r(s), this shows:

κ′′ +
κ3

2
− κτ2 = 0 and κ′τ +

κτ′

2
= 0.
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