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ABSTRACT
As deeper galaxy catalogues are soon to come, it becomes even more important to measure
large–scale fluctuations in the catalogues with robust statistics that cover all moments of the
galaxy distribution. In this paper we reinforce a direct analysis of galaxy data by employ-
ing the Germ–Grain method to calculate the family of Minkowski Functionals. We intro-
duce a new code, suitable for the analysis of large data sets without smoothing and without
the construction of excursion sets. We provide new tools to measure correlation properties,
putting emphasis on explicitly isolating non–Gaussian correlations with the help of integral–
geometric relations. As a first application we present the analysis of large–scale fluctuations
in the LRG sample of SDSS DR7 data. We find significant (more than 2−sigma) deviations
from the ΛCDM mock catalogues on samples as large as 500h−1Mpc and 700h−1Mpc, re-
spectively, and we investigate possible sources of these deviations.

Key words: Cosmology:large-scale structure of Universe, methods: statistical - analytical
- data analysis, galaxy catalogues: morphology, higher–order correlations, Minkowski Func-
tionals

1 INTRODUCTION

Over the past decade, huge progress has been made in accessing
the galaxy distribution at larger and larger scales. At each step of
this process new and larger structures have been discovered, see
e.g. Einasto et al. (2011); Sylos Labini (2011); Park et al. (2012);
Clowes et al. (2013); Keenan et al. (2013); Whitbourn & Shanks
(2013). However, to verify the reality of these structures, a ro-
bust statistical tool is mandatory Nadathur (2013); Nadathur &
Hotchkiss (2013).

The most common tool for the characterisation of large scale
structure is based on two–point measures: the two–point correlation
function of the galaxy distribution and the complementary power
spectrum. They are particularly useful, as they can be related to
the power spectrum determined from the physics of the Early Uni-
verse. Claims that structures on scales of several hundreds of Mega-
parsecs are compatible with the ΛCDM model are often based on
these lower–order statistics. However, of course, they do not al-
low for a complete characterisation of the distribution. This needs
higher–order correlations that play an important role if the density
field is not Gaussian, especially when probing stages after the for-
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mation of structure by gravitational collapse. Note, however, that
also the full knowledge of all higher–order correlations does not
always characterise the distribution uniquely Carron & Neyrinck
(2012). As is well–known, a smoothed–out nonlinear structure –
even if smoothed over very large scales – is not described by struc-
ture described in linear gravitational instability, where in this latter,
the distribution remains Gaussian, if it was so in the initial data.

For this strongly clustered regime in the Late Universe, the
Minkowski functionals that we are using in the present paper pro-
vide a compact and transparent framework to completely charac-
terise the galaxy distribution. As we shall see in Section 2, they
include all higher N–point correlations in a power series in the
sample density. We shall show in Section 5.3 that it is indeed not
enough to include only the lowest order contributions of this series.
This means that the values of the functionals that we determine
significantly depend on higher–order clustering. As is also well–
known, only higher–order correlations are sensitive to the morphol-
ogy of large–scale structure. We shall use this property in Section 5,
to extract certain integrals over the three–point correlation function
of the galaxy distribution.

Due to to this interesting property of including higher correla-
tions in a simple way, the Minkowski Functionals have been deter-
mined for many galaxy and cluster surveys. The specific Germ–
Grain model that has been introduced into cosmology together
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2 A. Wiegand, T. Buchert and M. Ostermann

with the family of Minkowski functionals in Mecke et al. (1994);
Buchert (1995) (see Schmalzing et al. (1996) for a brief tutorial),
and which will be briefly reviewed in Section 2.2, has been used
for example for the IRAS 1.2Jy and PSCz surveys Kerscher et al.
(1996, 1998, 2001a), and the Abell/ACO cluster catalogue Ker-
scher et al. (1997). For an early sample of the SDSS catalogue
(data release DR 3), the Minkowski functionals have been deter-
mined for smoothed iso–density contours of the galaxy distribu-
tion in Hikage et al. (2003), which is also the method employed in
most work on Minkowski Functional analysis of galaxy and cluster
catalogues as well as in simulations Platzöder & Buchert (1996);
Schmalzing & Buchert (1997); Sathyaprakash et al. (1998); Sahni
et al. (1998); Schmalzing et al. (1999); Nakagami et al. (2004);
Blake et al. (2013); Choi et al. (2013). A further, recently proposed
smoothing technique directly uses the Delauney tesselation of the
point distribution Aragon-Calvo et al. (2010).

To robustly measure non–Gaussianity with the help of
Minkowski Functionals is mostly discussed for iso–temperature
contour maps of the Cosmic Microwave Background (CMB)
Schmalzing & Gorski (1998); Schmalzing et al. (2000); Hikage
& Matsubara (2012); Modest et al. (2013); Ducout et al. (2013);
Munshi et al. (2013); Planck Collaboration et al. (2013), as well as
for studies of the weak lensing convergence field Kratochvil et al.
(2012); Petri et al. (2013).

One focus of the present paper is the determination of
non-Gaussian features from Minkowski Functionals in three–
dimensional galaxy data, which has been addressed in Pratten &
Munshi (2012); Codis et al. (2013). The other focus lies on rein-
forcing the Germ–Grain method in the three dimensional case to
calculate the Minkowski Functionals. We shall apply this method
to the SDSS data release DR 7. This release was chosen due to its
complete angular coverage of the SDSS survey region and the ex-
istence of a detailed standard analysis of the two–point correlation
properties in Kazin et al. (2010). In order to be able to probe larger
scales than before in Hikage et al. (2003), we specifically use the
LRG sample of the DR 7 in the compilation of Kazin et al. (2010).
Newer and upcoming data will be analysed in forthcoming work.
Especially the full SDSS DR 12 catalogue, but also catalogues of
after–Sloan programmes, are targets for our optimised code.

The paper is organized as follows: Section 2 recalls basic
properties of the Minkowski Functionals and briefly reviews the
Germ–Grain model for the direct analysis of the galaxy point pro-
cess. We discuss the usefulness of this model by collecting the an-
alytical results that are known for the Minkowski Functionals of
this model, examine the Gauss–Poisson process, and introduce our
method to extract information on higher–order correlations from
the Minkowski Functionals of the model. Section 3 describes the
new code that we use in order to efficiently calculate the Minkowski
Functionals in the Germ–Grain model for a large data set like the
SDSS LRG catalogue. Section 4 presents and discusses the results
for two different subsamples at different luminosity thresholds of
this catalogue as a first application of our methods. In Section 5 we
derive the values of some integrals over the two– and three–point
correlation function and study the deviations of the point distribu-
tion from a Gauss–Poisson process. We here explicitly demonstrate
that the low–order correlations are actually not enough to describe
the structure in the data set. We conclude in Section 6.

Figure 1. Properties of the scalar functionals: (1) Additivity, (2) Motion
invariance, (3) Conditional continuity.

2 MINKOWSKI FUNCTIONALS OF THE GERM–GRAIN
MODEL

Let us begin by a description of Minkowski Functionals in the
Germ–Grain model that we shall use here. For a more complete
description see Mecke & Stoyan (2000), Schmalzing (1999); Beis-
bart (2001) or Mecke (1994).

2.1 Minkowski Functionals

Minkowski Functionals are morphological descriptors of extended
bodies that rely on well–developed results in integral geometry. In
3D Euclidean space there are four of them that we shall label V1 −
V4. In the normalization we use, they are related to geometrical
properties of the body as follows:

V0 = V ; V1 =
S

6
; V2 =

H

3π
; V3 = χ . (1)

Here V is the volume of the body, S is its surface area, H the
integral mean curvature of the surface and χ the Euler characteristic
(the integral Gaussian curvature of the surface).

The surprising fact, shown in Hadwiger (1957) is, that every
other scalar functional that can be defined to describe a given body
and that fulfils the properties of motion invariance, additivity and
conditional continuity (sketched in Figure 1), can be expressed as
a linear combination of the four functionals of Equation (1).

Instead of working with the functionals Vµ, we will more often
need the corresponding densities vµ. They are simply defined by

vµ = Vµ/ |D| , (2)

where |D| is the volume within the survey boundary.

2.2 Germ–Grain model

The Minkowski Functionals as described in the previous section
are only defined for extended bodies. To use them for characteris-
ing the galaxy distribution one has to define a procedure that trans-
forms the point distribution into a collection of extended objects.
The two major methods that are used so far to achieve this are the
construction of excursion sets (e.g., iso–density contours) and the
Germ–Grain model.

In order to determine iso–density contours, the point particle
distribution is smoothed into a continuous density field. The sur-
faces of a given density threshold then provide the boundaries of
the body we are going to analyse. The values of the four Minkowski
Functionals (volume, surface, mean curvature, Euler characteristic)
can then be determined as a function of the (over–)density that is
used to determine the iso–density contours (Schmalzing & Buchert
1997). This method is commonly employed in the community (see
the reference list in the introduction), and it has also been used for
the SDSS data in Hikage et al. (2003).

c© 2014 RAS, MNRAS 000, 1–18
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Figure 2. By increasing the radius of Balls around the points
{x1, . . . ,xN} up to the maximum radius R, more and more Balls inter-
sect and a complex structure develops.

In the Germ–Grain model, the point distribution of galaxies is
converted into a set of extended bodies by decorating each galaxy
with a Grain (here a Ball of radius R, but any shape of Grain could
in principle be used to take into account internal morphologies). In-
stead of the (over–)density, the (equal) radius of these Balls can be
used as a diagnostic parameter, i.e. to present the values of the four
functionals as a function of scale (the radiusR of the Balls) (Mecke
et al. 1994). This results in quite complex structures as shown in
Figure 2. Also this method has been used quite extensively in the
past to characterise galaxy and cluster distributions, e.g. in Ker-
scher et al. (1996); Platzöder & Buchert (1996); Kerscher et al.
(1997, 1998, 2001a), but it has not become a standard analysis tool
in cosmology. With this paper we emphasize the advantages of this
direct method to analyse galaxy data.

Comparing the two methods, the Germ–Grain model has sev-
eral important advantages over the construction of excursion sets:

(i) it can be implemented in an easy and robust manner. This
simplicity also implies, that

(ii) we have an analytical understanding of the relation of the
average Minkowski functional (densities) to the connected correla-
tion functions of the underlying point distribution, through which
also the global contribution of Poisson noise is explicitly known;

(iii) the global functionals are represented by their local contri-
butions (so–called Partial Minkowski Functionals). This local in-
formation can be used to extract subsamples with given environ-
mental properties. The partial functionals form the basis of image
analysis techniques, since they allow to extract filamentary or clus-
ter galaxies from a distribution, even if these morphological prop-
erties are strongly diffused by Poisson noise (Platzöder & Buchert
1996)1.

These useful relations, e.g. between the connected correlation func-
tions and the average Minkowski Functional densities, as well

1 see also Mantz et al. (2008) for a more recent application of Minkowski
Functionals in image analysis.

as the image analysis properties of partial functionals have been
demonstrated in Schmalzing (1999).

2.3 Statistical interpretation

Thus far, the Germ–Grain Minkowski Functionals were mainly
used for a comparison of individual samples. These comparisons
made use of the property of the Minkowski Functionals to provide
a morphological characterisation of the galaxy distribution in the
analysed sample: if the Germ–Grain Minkowski Functionals differ
for two samples, these are morphologically distinct (Kerscher et al.
1998).

In addition to this comparison of individual point sets, we here
also want to extract some information on the statistical properties
of the point distribution that underlie these individual galaxy data
sets. We, therefore, interpret an observed or simulated galaxy sam-
ple, as usual, as a particular realisation of a point process with a
priori unknown statistical properties. This gives rise to an ensem-
ble of Minkowski Functionals {Vµ} or their corresponding densi-
ties {vµ}, respectively. As made explicit in Appendix A, it can be
shown that the ensemble average of the densities vµ is related to the
connected correlation functions ξn of the point process as follows:

〈v0〉 = 1− e−%0V 0

〈v1〉 = %0V 1e
−%0V 0 ,

〈v2〉 =

(
%0V 2 −

3π

8
%2

0V
2
1

)
e−%0V 0 ,

〈v3〉 =

(
%0V 3 −

9

2
%2

0V 1V 2 +
9π

16
%3

0V
3
1

)
e−%0V 0 . (3)

For a Poisson distribution, the quantities V µ are simply the
Minkowski Functionals Vµ (B) of the Balls of common radius R
that we use to obtain extended bodies:

V0 (B) =
4π

3
R3 ; V1 (B) =

2

3
πR2 ;

V2 (B) =
4

3
R ; V3 (B) = 1 . (4)

For a point distribution with structure, the V µ pick up contributions
that depend on the dimensionless connected correlation function of
order n+ 1, ξn+1, as

V µ = Vµ (B) +

∞∑
n=1

(−%0)n

(n+ 1)!

ˆ
D

d3x1 . . .d
3xn × (5)

×ξn+1 (0,x1, . . .xn)Vµ (B ∩Bx1 ∩ . . . ∩Bxn) .

The integrals run over the positions of the centres xi of the Balls
Bxi . As it is the intersection of all Balls B ∩ Bx1 ∩ . . . ∩ Bxn

that enters, the integrals vanish for configurations where the xi are
separated by more than 2R. Therefore, determining the Minkowski
functionals as a function of the Ball radiusR probes the correlation
of the point distribution up to a scale of 2R. We shall exploit this
property in Section 5.

The introduction of the dimensionless version of the con-
nected correlation functions ξn requires the assumption that the
global point process possesses a well–defined non–zero and stable
(scale–independent) average density %0 = 〈%(r)〉, a requirement
that is expected to hold for an existing homogeneity scale. Note,
however, that this assumption is not required for the Minkowski
Functional analysis itself. Also for expressing the 〈vµ〉’s in terms
of the statistical quantities describing the point process, one could
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4 A. Wiegand, T. Buchert and M. Ostermann

work with the dimensionfull connected correlation functions, with-
out assuming that %0 > 0. We shall only need it for the extraction
procedure described in Section 2.5. The reasoning in that case is
then, that we interpret the analysed sample as being a representa-
tive realisation of the full point process. We assume that it has a
positive density and estimate this background density %0 from the
sample. Of course, this regional estimate can be biased relative to
the true global value (assumed to exist): for an analysis of the cor-
relation properties well inside the survey region we consider this
assumption as sufficiently accurate, since the estimation of the cor-
relation properties would be most strongly influenced on the scale
of the sample (on this scale the integral constraint requires vanish-
ing of the fluctuations). This subtlety is worth to be kept in mind in
future analyses.

2.4 Gauss–Poisson process

To get a better intuition about the influence of correlation functions
on the modified Minkowski Functionals V µ, we shall first consider
the case of a Gaussian distribution. For low enough average density
%0 and certain correlations ξ2, a point distribution can be described
by a Gauss–Poisson process. Kerscher (2001) shows that for this to
be possible, the correlation function has to be non–negative, ξ2 >
0, and the average density %0 has to satisfy

%0

ˆ
A

dyξ2 (|y|) 6 1 . (6)

The resulting Gauss–Poisson process has the property that all
higher connected correlation functions ξn for n > 2 are zero. This
drastically simplifies the expressions for the V µ’s. Equation (5) be-
comes

V µ = Vµ (B)− %0

2

ˆ
D

d3x1ξ2 (|x1|)Vµ (B ∩Bx1) . (7)

We already gave the explicit expressions for the Minkowski Func-
tionals of the Balls Vµ (B) in Equation (4). For a known correlation
function it is in addition possible to calculate the contribution of
the second term. To this end we have to determine the Minkowski
Functionals for the intersection of two Balls Vµ (B ∩Bx1). This
intersection has the form of a convex lens and it is easy to figure
out its volume and surface as a function of the distance r, sepa-
rating the centres of the Balls. For the mean curvature the result
can be found in Mecke (1994). The form of the Vµ (B ∩Bx1) in a
spherical coordinate system centred on B is then the following:

V0 (r) =
1

12
π (2R− r)2 (r + 4R) ; (8)

V1 (r) =
1

3
πR (2R− r) ; (9)

V2 (r) =
2

3
(2R− r) +

2

3
R

√
1−

( r

2R

)2

arcsin
( r

2R

)
;(10)

V3 (r) = 1 , (11)

where R is again the radius of the Balls. As they do not in-
tersect if the separation of the two centres is larger than 2R,
Vµ (B ∩Bx1) = 0 for r > 2R. Therefore, the integral (7) reduces
to

V µ = Vµ (B)− 2π%0

2Rˆ

0

Vµ (r) ξ2 (r) r2dr . (12)

To get a feeling what aspects of the correlation function
these integrals probe, we show the form of the window functions
Vµ (r) r2 in Figure 3.
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Figure 3. Form of the integration windows Wµ (r) = Vµ (r) r2 in Equa-
tions (8)-(11) used in the integral (12), for a Ball radius ofR = 60h−1Mpc.
The functionals of higher index µ probe the correlation function at larger
distances.

To calculate these integrals for the standard ΛCDM structure,
it is useful to express them directly in terms of the power spectrum.
Inserting the Fourier transform of ξ2 (r) gives

V µ = Vµ (B)− %0

π

∞̂

0

P (k)Wµ (k,R) k2dk , (13)

with the functions

W0 (k,R) =
4π(sin(kR)− kR cos(kR))2

k6
; (14)

W1 (k,R) = −2πR(kR sin(2kR) + cos(2kR)− 1)

3k4
; (15)

W2 (k,R) = −4(kR sin(2kR) + cos(2kR)− 1)

3k4

+
2

3

R

k

π/2ˆ

0

sin(φ) sin(2kR sin(φ))φdφ ; (16)

W3 (k,R) =
sin(2kR)− 2kR cos(2kR)

k3
. (17)

AsW0 (k,R) is simply the square of the Fourier transform of a top
hat window function, V 0 can be related to another well–known sta-
tistical property of a point distribution, namely the matter variance
in a sphere of radius R:

σ2 (R) =
1

(2π)3

ˆ
d3kP (k)

∣∣∣W̃B(R) (k)
∣∣∣2 . (18)

This means that V 0 and V 3 are directly related to the two–point
quantities by

V 0 =
4π

3
R3

(
1−

4π
3
R3%0

2
σ2 (R)

)
, (19)

and

V 3 = 1− 2π%0

2Rˆ

0

ξ2 (r) r2dr . (20)

The two other modified functionals V 1, V 2 then probe different
aspects of the precise form of the correlation function by weight-
ing the integral over it with a different function of r as shown in
Figure 3.

c© 2014 RAS, MNRAS 000, 1–18
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2.5 Extracting higher–order correlations

As we have seen in the previous section, we can directly derive
certain integrals over the two–point correlation function from the
Minkowski functionals of a Gauss–Poisson point distribution. For
a more general point distribution this is no longer straightforward,
but we can use the fact that we know the exact form of the depen-
dence of 〈vµ〉 on the average density of the point process %0. For
a single sample, of course, this density is fixed. By random sub-
sampling of the original sample, however, we can create (noisier)
samples of a lower average density. In this way we can determine
the 〈vµ〉’s not only as a function of the radius of the Balls, but also
as a function of the density of the point distribution. This allows to
extract the integrals over the correlation functions in (5) as follows.

Let us assume that we are able to measure the 〈vµ〉’s accu-
rately for a given density. By repeating this measurement for several
densities %0, we get an approximation to the functional dependence
of vµ on %0. Then, by inverting the system (3), we can derive from
the measured values of 〈vµ (%0)〉 the corresponding functional de-
pendence of V µ on %0. Calling this empirical function Ṽ µ (%0), we
know that it can be written as a series expansion in %0 of precisely
the form (5). This means that, if we can compute the coefficients
of this series, we shall obtain the corresponding weighted integrals
over the correlation functions. Taylor–expanding Ṽ µ (%0) around
%0 = 0 we obtain:

Ṽ µ (%0) =

∞∑
n=0

Ṽ
(n)

µ (0)

n!
%n0 ,

where the exponent (n) stands for the n–th derivative of Ṽ µ (%0)
with respect to %0. These derivatives can now be directly related
to the coefficients of the expansion (5). Writing this expansion in
short as

V µ =

∞∑
n=0

bµn+1

(n+ 1)!
(−%0)n ,

with b1 = Vµ (B), we deduce that

bµn+1 =

ˆ
D
ξn+1 (0,x1, . . .xn)Vµ (B ∩Bx1 ∩ . . . ∩Bxn)×

×d3x1 . . .d
3xn = (n+ 1) (−1)n Ṽ

(n)

µ (0) . (21)

This implies that we are able to quantitatively determine, how much
the point distribution deviates from a pure Gauss–Poisson distribu-
tion. The “Gaussian part” is related to the first derivative of Ṽ µ (%0)
at zero density, and it especially allows to compare the result to
other independent measurements of σ2 (R) and ξ2 (R) via the re-
lations (19) and (20).

To carry out this procedure in practice, we estimate 〈vµ〉 by
the Minkowski Functional density vµ of the given realisation of
the point process. For densities lower than the original density, we
average vµ of several random subsamples. To determine how ac-
curate this estimate is, we use the average and fluctuations of the
individual vµ’s in an ensemble of mock samples produced from
simulations. This allows to test, whether the observed sample is
consistent with the simulated cosmology.

For the three–point functions, the quantity with the simplest
weight functions in the integral reads:

b03 =

ˆ
D

d3x1d3x2d3x3ζ (|x1 − x3| , |x2 − x3| , |x1 − x2|)×

×θ (R− |x1|) θ (R− |x2|) θ (R− |x3|) . (22)

The other integrals of the three–point function are more compli-
cated and we won’t write them out explicitly.

To characterise the deviation of the galaxy distribution in the
SDSS from a Poisson and a Gauss–Poisson distribution, we shall
determine the coefficients bµn+1 in Section 5 for n 6 2.

3 THE NEW CODE PACKAGE: MINKOWSKI–4

As described in the previous section, we can learn a lot about the
structure of the Universe and especially about the magnitude of
higher–order correlations, if we are able to calculate the Minkowski
Functional densities vµ accurately.

With this paper we provide the MINKOWSKI–4 package,
built on the new code CHIPMINK (Code for High–speed Investi-
gation of Partial Minkowski functionals), which is a completely re-
vised version of a code based on previous work by Jens Schmalzing
and Andreas Rabus in 1998, see Rabus (1998). The package com-
piles modules to compute the Minkowski Functionals of a given
point sample for the Germ–Grain model (which generalises the
Boolean Grain model – where the Germs are those of a Poisson
process (Stoyan et al. 1987) – to arbitrary point distributions). It
extracts correlation properties of the point set in the form of the
Minkowski functional densities (3) and the modified Minkowski
functionals V µ. Optionally, it also delivers the full set of Partial
Minkowski Functionals of the environmental morphology of every
point in the sample.

3.1 Computation of the Germ–Grain model

The computational methods for the Germ–Grain model of the
Minkowski Functionals (henceforth abbreviated as MFs) heavily
rely on the work of Mecke, Buchert and Wagner Mecke et al. (1994)
and are therefore also strongly related to the works of Kerscher and
collaborators, Kerscher et al. (1997, 1998, 2001a,b).

As outlined in Section 2.2, a sphere of radius r (the so–called
Grain or Ball) is placed around each point of the sample, the Germ.
The union of the Balls then forms the structure Br ,

Br =

N⋃
i=1

B(xi; r) . (23)

When we increase the Balls’ radius r up to a maximum radius R, a
more and more complex structure develops, see Figure 2. Thus, the
radius 0 6 r 6 R serves as a diagnostic parameter.

In the Germ–Grain model, the global MFs – apart from the
volume – are localised on the surface of the structure and can
be determined by means of the so–called partition formula (see
e.g. Schmalzing & Diaferio (2000)),

Vµ(Br) =

N∑
i=1

V (i)
µ +

1

2

N∑
i,j=1

V (ij)
µ +

1

6

N∑
i,j,k=1

V (ijk)
µ , (24)

where V (i)
µ is the contribution of the Ball around xi (at given radius

r), and where V (ij)
µ and V (ijk)

µ are those of its intersection with one
respectively two neighbours.

3.2 Partial Minkowski Functionals

The global MFs can be calculated by adding up Partial MFs as-
signed to each Grain, see for example Mecke et al. (1994) and in
an application Schmalzing & Diaferio (2000),

c© 2014 RAS, MNRAS 000, 1–18



6 A. Wiegand, T. Buchert and M. Ostermann

Figure 4. The left figure shows the covered surface area of a sphere around
xi when intersected with a second sphere as well as the intersection cir-
cle. The right figure illustrates the intersection of three spheres. The triple
point can be found above the centre point of the circumcircle of the triangle
generated by the three centre points xi,xj ,xk .

Vµ(Br) =

N∑
i=1

Vµ(xi; r) , (25)

where Vµ(xi; r) are the Partial MFs of the Ball around xi with
radius r. These can be determined by the local intersections of the
Balls. Since only neighbours within 2r around a point contribute to
its Partial MFs, we determine a neighbourlist for each point of the
sample before the actual calculation, which consists of the points
within a distance of two times the maximum radius (as well as the
point itself).

The statistical weight of intersections of more than three Balls
is zero, see Mecke et al. (1994), therefore we only take into ac-
count intersection circles of two Balls and intersection points of
three Balls, the so-called triple points, see Figure 4. The MFs’ vol-
ume densities are defined by

vµ(Br) =
1

|D |

N∑
i=1

Vµ(xi; r) , (26)

where |D | denotes the volume of the sample mask.
In summary: for any given point xi of the sample, we calculate

(for each radius r up to the maximum radius R):

(i) the uncovered surface area Ai of the Ball around that point,
(ii) the intersection circles of the Ball around that point with

any of its neighbours; here `ij is the uncovered arc length, i.e. the
uncovered segment of the intersection circle of the Balls around xi
and xj ,

(iii) the triple points of the intersection with the Balls around
any two neighbours, where εijk is called spherical excess; it can be
calculated by using the formula of l’Huilier and denotes the contri-
bution of the triple points to the Partial Euler characteristic.

With these quantities, the Partial MFs read (see Mecke et al. (1994);
Mecke & Stoyan (2000) for more details):

V1(xi; r) =
Ai
6

; (27)

V2(xi; r) =
Ai
3πr
− 1

2

∑
j

dij`ij
6π

;

V3(xi; r) =
Ai

4πr2
− 1

2

∑
j

dij`ij
4πr · ρij

+
1

3

∑
j<k

εijk
4π

,

where dij = ‖ xi − xj ‖ 6 2r denotes the distance of two points,
and ρij =

√
r2 − (dij/2)2 the radius of its intersection circle.

Figure 5. To avoid boundary effects when calculating the Partial MFs, we
only take those points into account, which are more than two times the
maximum Germ radius away from the survey mask.

The use of the Partial MFs also has the advantage that one can
obtain an error estimate for the fluctuations of Vµ(Br) by calculat-
ing the variance of the values of the Partial MFs.

3.3 Treatment of boundaries

The family of MFs allows a complete deconvolution of the bound-
ary, based on the principal kinematical formula, see for example
the review of Kerscher (Kerscher 2000, and references therein).
Note that this formula involves all the functionals of the family;
for individual functionals the boundary cannot be corrected with
this powerful tool. Most of the previously cited papers refer to this
method for the boundary correction. The principal kinematical for-
mula reads:

mµ(Br) =
Mµ(Br ∩W )

M0(W )
−
µ−1∑
ν=0

(
µ

ν

)
mν(Br)

Mµ−ν(W )

M0(W )
, (28)

where Mµ(Br) are the MFs, and mµ(Br) their mean volume den-
sities as defined in Kerscher (2000). W denotes the boundaries,
i.e. the survey mask or window. For an example illustrating these
boundary corrections we recommend Kerscher et al. (1996), for an
application to a galaxy catalogue see e.g. Kerscher et al. (1997).

Unlike in these previous papers we here calculate the Partial
MFs only for points more than twice the maximum radius away
from the boundary, i.e. the sample mask, see Figure 5. Thus, we
create a shrunk “calculation window” D2R and don’t have to take
into account any boundary effects. Naturally, if the survey mask is
full of holes, we neglect a lot of galaxies this way, so this approach
is better suited for modern galaxy catalogues like the SDSS and
after–SDSS surveys.

However, it is important to note that the neglected points do
count when it comes to calculating Partial MFs, since their Balls
intersect with Balls inside of the window. Therefore, they have to
be part of the neighbourlists.

The MFs volume densities (26) now take the form

vµ =
1

|D2R |

N∑
i=1

χD2R(xi)Vµ(xi; r) , (29)

where

χD2R(xi) =

{
1 if xi ∈ D2R

0 if xi /∈ D2R
(30)

c© 2014 RAS, MNRAS 000, 1–18



Direct Minkowski Functional analysis of large redshift surveys 7

Figure 6. For any randomly thrown point yi, we generate the list of real
neighbours, i.e. consisting of galaxies of the used sample. The Balls around
all points within a distance of 2r around yi intersect with the Ball B(yi; r).
The volume fraction of the structure within B(yi; r) is then calculated by
a Monte–Carlo integration.

is the characteristic function of the shrunk window. As mentioned
in Schmalzing & Diaferio (2000), these quantities are minus esti-
mators for the MF’s volume-densities. Minus estimators only pro-
vide unbiased estimates if applied to stationary point processes,
as investigated by Kerscher (1999). Hence we use volume-limited
subsamples of the catalogues when carrying out the structure anal-
ysis.

3.4 The structure volume

Since the volume of the structure is not localised on its surface, we
cannot calculate it in the way outlined above. However, to achieve
analogy to the three other functionals, and in view of the possibility
of parallel computing, our goal was to determine the volume by
means of adding up the partial functionals.

We do this as follows: first, we throw a number of randomly
distributed points yi into the shrunk mask D2R of the sample; sec-
ond, we determine neighbourlists for the random points. These
neighbourlists consist of the thrown points themselves as well as
of the real galaxies in their vicinity, i.e. points of the given sample,
within a distance of twice the maximum radius, see Figure 6; third,
in a second Poisson process, we throw random points into the Ball
around yi, i.e. B(yi; r), and determine whether the random point
is covered by a Ball around any of the real neighbours or not. This
way we calculate the fraction of volume covered by the structure
in that local area. Hence, we defined a Partial MF v0(yi; r) for the
volume similar to the other three (strictly speaking, we defined the
volume density of the Partial MF); the last step for obtaining the
global volume density of the structure consists of adding up the
v0(yi; r) and normalising them by the number of random points,
say M , for which we calculated the volume fraction,

v0 =
1

M

M∑
i=1

v0(yi; r) . (31)

If we are interested in the absolute value of the structure’s volume
within the shrunk windows, we obtain it by multiplying the global
volume fraction by the window’s volume. Note: only the third and
fourth step of the volume fraction calculation are executed by the

CHIPMINK code itself, whereas the primary steps are data prepa-
ration. So instead of throwing points into the shrunk window D2R

in the first step, one can throw them into the original survey mask
and create neighbourlists for all of them. Thus, calculations for dif-
ferent maximum radii or specific areas of the survey mask can be
carried out with subsamples of this set of neighbourlists.

4 APPLICATION: THE SDSS LRG SAMPLE

We shall now apply the code described in the previous section to
two different data sets. First, to the luminous red galaxy (LRG,
Eisenstein et al. (2001)) sample of the Sloan Digital Sky Survey
(SDSS, York et al. (2000)) Data release 7 (DR7, Abazajian et al.
(2009)), and, second, to the mock catalogues drawn from ΛCDM
simulations of the SDSS volume performed by the LasDamas2 col-
laboration McBride et al. (2014).

4.1 The data

From the SDSS DR7 LRG–data described in Abazajian et al.
(2009), we use in particular the samples extracted by Kazin et al.
(2010). For selecting them the authors used the following criteria:
the galaxy has a SDSS spectrum, is not in an area around bright
stars, has a sector completeness of at least 60%, a redshift in the
range 0.16 − 0.47 and a colour– and k–corrected magnitude be-
tween −21.2 and −23.1. The details of the selection can be found
in Kazin et al. (2010). After this pre–selection, the sample contains
105831 LRGs.

We neglect the small amount of area in the southern galac-
tic regions from the DR7 sample, as our code requires contigu-
ous regions (note that boundaries can be corrected by integral–
geometrical means; this property is exploited in our previous
codes). In addition, in order to have simpler boundaries we choose
to restrict ourselves to a region with ra ∈ [132◦, 235◦] and dec ∈
[−1◦, 60◦].

With the radial selection we have to make sure that the sample
we obtain is volume–limited. According to Kazin et al. (2010), the
sample is volume–limited up to a redshift of 0.36 for a magnitude
of −21.2 and up to a redshift of 0.44, if we select galaxies with a
magnitude brighter than −21.8. This implies that we shall analyse
two different samples derived from the pre–selected galaxies: a first
one that we shall refer to as the “dim sample” with a magnitude cut
off at −21.2 and a redshift in the range z ∈ [0.16, 0.35], and a
second one to which we refer to as the “bright sample” with a mag-
nitude cut off at−21.8 and a redshift in the range z ∈ [0.16, 0.44].
With these requirements, the “dim sample” contains 41375 galax-
ies and the “bright sample” 22386.

In order to compare the structure in the galaxy data to the
model of gravitational structure formation, we use mock data sam-
ples provided by the LasDamas2 collaboration McBride et al.
(2014). These authors simulated structure formation in a ΛCDM
model with ΩΛ = 0.75 in boxes of 2.4h−1Gpc for 12803 parti-
cles. They identify halos with a friends–of–friends algorithm, and
populate them with mock galaxies using a halo occupation distri-
bution (HOD). The HOD–parameters are chosen as to reproduce

2 See http://lss.phy.vanderbilt.edu/lasdamas/ for information on the project
and for downloading the samples.
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small-scale clustering of the observed LRG sample. From 40 in-
dependent N-body simulations, LasDamas provides 160 sky–based
mock galaxy catalogues for the northern SDSS region that we use.

We further modify the basic catalogues they provide by also
removing regions around bright stars3 and performing the same an-
gular cut as for the SDSS data samples. This results in catalogues
that contain on average 46710 galaxies for the “dim sample” and
22181 galaxies for the “bright sample”.

Our treatment of various issues encountered in data taking,
which should be included in the mock galaxy selection, is not com-
plete. It does not take problems like e.g. completeness or fibre colli-
sions into account. To deal with these issues the necessary weights
could probably be included into Equation (25), but we leave it for a
more thorough analysis in future work to figure out the exact form
of this weighting. For the purpose of this paper, testing the code
and a general analysis of the influence of higher clustering we do
not need this precision.

Instead of considering the MFs in redshift space, we convert
all redshifts into comoving distances using the distance redshift re-
lation of a ΛCDM model with ΩΛ = 0.75. An example of the
galaxy distribution in the “dim sample” is shown in Figure 7. It
also helps to recall the dimensions of the sample. The thickness of
the z–shell of the "dim sample" z ∈ [0.16, 0.35] is 507h−1Mpc.
The thickness of z–shell of the "bright sample" 730h−1Mpc. The
largest cube that fits into our "dim sample" region has a side length
of 452h−1Mpc; Figure 7 presents a slice of this cube. In Wiegand
(2012) two independent cubes of this size have been used to demon-
strate the stability of the Minkowski Functionals throughout the
sample.

4.2 The functionals on different scales

We now turn to the analysis of the samples defined in the previous
section. In this analysis we compare the structure in the observed
samples to the structure in the mock samples. For this comparison
it is crucial to know, how precise our results for the Minkowski
Functional densities are. To estimate these errors we determine the
MF densities for each of the 160 Mock samples and calculate the
error bars from the resulting fluctuation. For comparison, we also
calculate the error bars from random subsampling jack–knife real-
isations drawn from the data and consisting of 80% of the points
of the samples. They turn out to be of the same magnitude. Finally,
we also compared them to the error estimate that the CHIPMINK
code determines directly from the fluctuations of the Partial MFs.
Also in this case, the error bars are close to those determined from
the mocks, even though systematically smaller by a few percent.
So, for a first estimate of the errors already the output of the code
is quite useful.

There are two possible reasons for the Minkowski Functional
densities (3) to fluctuate between different realisations. First, the
N−point correlation functions of the point distribution in different
realisations may be different. Then, the integrals (21) and therefore
the coefficients in the expansion (5) vary and lead to fluctuations
in the measured vµ’s. But the series (5) indicates that also a differ-
ent average density %0 of the sample will lead to a change of the
measured vµ’s. This means that we have to ensure that all the re-
alisations approximately have the same density, if we really want

3 We use the software mangle Swanson et al. (2008) to apply the mask
that can be found in the NYU value–added catalogue Blanton et al. (2005);
Padmanabhan et al. (2008).

Figure 7. Example of the galaxy distribution in the “dim sample”. The pro-
jection is extracted from a slice of a thickness of 22.5h−1Mpc from the
maximally fitting cube.

to compare the structure of the point distribution. Otherwise, the
analysis of the influence of (higher–order) correlations in the point
distribution would be spoiled by a fluctuation in %0.

To ensure that all realisations have the same density %0, we im-
plement a random choice of ≈ 80% of the sample that discards all
configurations that do not have the desired density. Due to slightly
different average densities of the mock and data samples this frac-
tion is not exactly 80%, but is adjusted to give the same average
density for the mocks and the data.

4.2.1 The “dim sample”

Figure 8 shows the MF densities obtained from this procedure and
the code described in Section 3. We plot the average from 244 ran-
dom 80%–realisations of the “dim sample” as the (red) line with
the dots. The 80% of selected points correspond to an average den-
sity of %0 = 7.7×10−5h3Mpc−3. For the mock catalogues we also
extract 244 configurations of this average density %0 from each of
the 160 simulated samples and calculate the average value for the
MFs of each mock. The mean value and the error bars are then
calculated from the mean and the variance of these 160 averages.

The upper four plots in Figure 8 indicate that the determina-
tion of the MF densities is quite robust. The one–sigma error bands
around the average are barely visible. The values for a Poisson dis-
tribution with the same density lie far away from both mocks and
observed galaxies, a clear indication of the presence of structure
(which is of course not surprising). For the curves of the mocks
and observed galaxies, however, it is harder to distinguish them.

In order to facilitate the comparison of the observed and mock
results, the lower four plots of Figure 8 show a zoom into these
curves. It is obtained by subtracting the average of the mocks.
In this zoom we find that the mock catalogues and the observed
galaxy sample are marginally consistent, but only by allowing for
2−sigma fluctuations.

4.2.2 The “bright sample”

We applied the same procedure to the “bright sample”. In this case,
randomly choosing 80% of the points corresponds to a density of

c© 2014 RAS, MNRAS 000, 1–18
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Figure 8. Top four: the four Germ–Grain MF densities for the SDSS LRG “dim sample” compared to those of the corresponding LasDamas mock galaxies
and those of a Poisson distribution. The errors and average for the mock samples are obtained taking 160 different mock realisations.
Bottom four: the same quantities, but with the average of the mock sample subtracted to make the error bars more visible. The dark shaded regions are the
1–σ, the light shaded regions 2–σ error bands.

%0 = 2.1 × 10−5h3Mpc−3. The resulting differences of the MF
densities of the mocks to those of the SDSS “bright sample” are
shown in Figure 9. The reduced galaxy density allows to go to
larger scales, due to the larger volume and a more restrictive selec-
tion. This is possible, because it needs a larger radius of the Balls
to fill the observed volume completely. Therefore, the structure sat-
urates for larger values of R only. From these plots we see a dis-
crepancy between the mock galaxies and the observed ones even
by allowing for 2−sigma fluctuations.

To show how this discrepancy is transferred to the modified
MFs V µ, we show them in Figure 10. The upper four plots show

them together with the Poisson case. This latter is very simple for
V µ as it consists of the functionals of a Ball, Equation (4). The val-
ues and error bars have been obtained by calculating the V µ’s for
every realisation and taking the average and variance of these val-
ues. As the errors grow rapidly beyond 60h−1Mpc (in diameter),
we only plot the V µ’s up to this scale. The reason for this growth
is that around 60h−1Mpc the volume becomes largely filled with
the Balls, and therefore the measurement has to become more and
more accurate to give correct values after the removal of the expo-
nential damping factor e−%0V µ . But also on these scales, where the

c© 2014 RAS, MNRAS 000, 1–18
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Figure 9. The same quantities as in the lower four plots of Figure 8, but for the bright “sample”. The dark shaded regions are the 1–σ, the light shaded regions
2–σ error bands.

errors are still controllable, and for this way to present the results,
there is a clear discrepancy between mocks and SDSS data.

5 NON–GAUSSIAN CORRELATIONS

From Figures 9 and 10 it is not clear, whether the origin of the dis-
crepancy between mocks and data is already present for the two
point statistics, or whether it is due to a difference in the non–
Gaussian properties showing up in the three– and N−point con-
tributions to the series (5). To answer this question, we use the
method introduced in Section 2.5. This method requires to mea-
sure the MFs as a function of %0, and to extract for every scale R
the function Ṽ µ (%0).

The procedure we use is the following: first, we choose 24
different densities corresponding to a fraction f between 0.05 and
0.8 of the full density of %0 = 2.6 × 10−5h3Mpc−3. For each
of these densities we generate a large number of realisations (from
about 15000 for f = 0.05 down to 244 for f = 0.8). For each of
these realisations we determine the modified MFs V µ as a function
of the Ball radius R. For each R we take the average over all the
realisations and arrive at an Ṽ µ (%0) evaluated at 24 points. We add
the value of V µ at %0 = 0 as the 25th point, which is simply the MF
of a Ball (see Equation (4)) with the respective radiusR. From these
25 points we want to derive the first coefficients in the expansion (5)
which, by Equation (21), is equivalent to the determination of the
components of a polynomial fit to Ṽ µ (%0).

As the resampling of the points introduces an important
amount of correlation between the realisations and as the r–
dependence of the vµ also contains some correlation, we use the
160 mock samples to estimate the covariance matrix for the points
of the empiric function Ṽ µ (r, %0). We use Ṽ µ (%0) at 7 different
distances r and use its values at 20 of the 25 %0–points. This gives
us a covariance matrix of dimension 140 × 140. We use this com-
bined covariance matrix to do a polynomial fit of fourth order to the

average Ṽ µ (r, %0) for all the mocks and for the SDSS. With Equa-
tion (21) this gives us the coefficients b2–b4 for both the mocks and
the SDSS.

We finally divide these integrals by the corresponding power
of the volume,

cµn+1 =
bµn+1

V n+1
0 (B)

=
1

V n+1
0 (B)

ˆ
D

d3x1 . . .d
3xn × (32)

×ξn+1 (0,x1, . . .xn)Vµ (B ∩Bx1 ∩ . . . ∩Bxn) ,

where V0 (B) is the volume of a Ball of radius R.

5.1 Integrals of the two–point correlation function

The results for the coefficients cµ2 , i.e. those involving an integral
over the two–point correlation function, are shown in the upper four
plots of Figure 11. As described in Section 2.4, the first quantity
plotted, c02, is related to the matter variance in spheres of radius R.
In fact, from Equation (32) and (19), one can see that c02 = σ2. So,
the first plot of Figure 11 compares different ways of calculating
σ2. The data and mock points and their error bars are derived from
the MFs using the method just described. The points of σ2

emp. are
calculated from the observed sample with the usual estimator for
the matter variance in spheres of radius R,

σ2 (R) =
E
[
M (R)2]− E [M (R)]2

E [M (R)]2
, (33)

where M (R) is the integrated matter density of the sphere and
E [X] is the average over all spheres.

The third way of calculating σ2 is direct integration of the
theoretical power spectrum using Equation (13) which, for c02, di-
rectly becomes Equation (18). For the form of P (k), we use the
parametrisation of Eisenstein & Hu (1998) that includes the effects
of baryons. However, we use the form without their oscillations.
We normalise the amplitude of the power spectrum to match the
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Figure 10. Top four: the four modified Germ–Grain MFs V µ of the SDSS LRG “bright sample” and the LasDamas mock galaxies. The errors and average for
the mock samples are obtained taking 160 different mock realisations. The Poisson case is simply given by the MFs of a single ball (see Equation (4)).
Bottom four: the same quantities, but with the average of the mocks subtracted to make the error bars more visible. The dark shaded regions are the 1–σ error
bands, the light regions correspond to 2–σ.

amplitude of the mocks. This gives a linear bias of b ≈ 2.37, i.e.
σ2
mock = b2σ2

lin..

In the V1–V3 plots of Figure 11, we use the power spectrum
with the same normalisation and Equation (13) for the theory pre-
diction. The first plot of Figure 11 shows that all three ways of
calculating σ2 are overall in agreement. This is also true for the
plots derived from V 1–V 3, but there is also a clear deviation of the
coefficients cµ2 of the observed galaxies from those of the simulated
mock galaxies. On small scales they start quite close, but on larger
scales the deviation becomes more important. It is interesting to see

that the mocks are indeed well–described by the theoretical power
spectrum that entered into their calculation. This shows that the
simulations and the extraction procedure appear to give a consis-
tent picture. The observed galaxies, however, seem to deviate from
the simulated cosmology. This means that, even though the overall
normalisation of the correlation function is correct by the consis-
tency of the σ2 results, other features of the correlation function
are not captured equally well.

The lower four plots of Figure 11 show the same quantities,
but we divided them by the theoretical prediction for the simulated

c© 2014 RAS, MNRAS 000, 1–18
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Figure 11. Top four: the four Minkowski integrals of the two–point correlation function, i.e. cµ2 from Equation (32), for the SDSS LRG “bright sample” and

one of the corresponding mock samples. The error bars are 1–σ errors for the parameters from the fit Ṽ µ (%0) with a polynomial of fourth order in %0. The
lines for V1–V3 are empirical fits to the data points. The theoretical curves are calculated from the matter power spectrum corresponding to the parameters of
the simulation using Equation (13). As c02 corresponds to σ2, we also plot the result of a standard determination of σ2 for the observed galaxies.
Bottom four: the same quantities but all divided by the theoretical prediction of the mock power spectrum. This allows a more detailed comparison. The value
of the straight line indicates the bias between the linear correlation function and the correlations in the bright sample. The line following the trend of the SDSS
data corresponds to the theoretical prediction for a power spectrum with the Planck parameters Ωm ≈ 0.32.

cosmology. This divides out the general trend and allows a more
detailed comparison. Thus, in these plots, the scales on the y–axis
have only a relative meaning: the value y = 1 marks the (scale–
dependent) integrated mock power spectrum for Ωm = 0.25. The
value of≈ 5.6 for the straight mock line corresponds to the squared
bias of the mocks b2. The line going through the points of the SDSS
data, represents the cµ2 ’s calculated from a Planck Ωm ≈ 0.32

power spectrum for comparison. Figure 11 shows that the devia-
tions of the MFs for the data and the mock galaxies, as found in
Figure 9 and 10, already occur at the level of the first correction
to the leading Poisson term in the expansion V µ, Equation (5). We
shall return to the influence of the higher orders in the next section.
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5.2 Integrals of the three–point correlation function

In addition to the integrals over the two–point correlation function
of the previous section, which are completely describing a Gauss–
Poisson point process, also the higher–order terms are important
for a general point distribution. In this sense, the first corrections to
the Gaussian point distribution are the integrals cµ3 .

These integrals cµ3 are shown in Figure 12. In comparison with
Figure 11 we recognise that the amplitude of the cµ3 integrals is
larger by a factor of 5 than the integrals cµ2 . Like in Figure 11, we
also have a slight but less significant deviation for these quantities.

The line in the upper left plot is calculated from a tree–level
bispectrum using Equation (22) and the bias of b = 2.37 as found
from the two point normalisation.

As described in the beginning of this section, we use a fit up
to %4

0 and, therefore, we have also determined the coefficients cµ4 .
However, the quality of the determination of those coefficients be-
comes even worse than already for the cµ3 coefficients and therefore
we do not plot them here.

5.3 Importance of higher–order correlations

In order to get an impression of how accurately the first four terms
in the series (5) already describe the MFs of the “bright” galaxy
sample, we use the coefficients cµ2 (R)–cµ4 (R), as obtained from
the fit to Ṽ µ (%0) in the two previous sections, to calculate the V µ’s
of Equation (5) up to n = 3. Using Equations (3), this allows to
derive the densities vµ (R) within this approximation.

For comparison, we can then plot the approximative function-
als in Figure 13. However, as the series V µ of Equation (5) is a
power series in the density, the approximation of the function by
a truncated version of this series will be better when %0 is lower.
In addition we would like to compare the series expansion to the
case of a pure Gauss–Poisson point distribution. It has been shown
in Kerscher (2001) that for a Gauss–Poisson process to exist, the
density must be low enough for a given amount of two–point cor-
relation. To be more precise:

%0

ˆ
A

dyξ2 (|y|) 6 1 .

For the strongly clustered SDSS LRGs this requirement is not
fulfilled for the full density of the sample. Also for 80% of the
density like in Figures 9 and 10, where the density was %0 =
2.1 × 10−5h3Mpc−3, the two point amplitude is too high to al-
low for a Gaussian approximation. So already from this condi-
tion we know that the point sample is not a Gaussian distribu-
tion. However, for a sample having 30% of the full density, i.e.
%0 = 0.78 × 10−5h3Mpc−3, the condition is (marginally) satis-
fied. Therefore, we calculated the modified MFs for a large number
of realisations of 30% of the “bright sample” mocks in the same
way as in Section 4.2.

Figure 13 shows the approximating series directly for the
modified MFs V µ of the Mocks divided by their average. We con-
firm that the mock point catalogues are not a realisation of a Gauss–
Poisson process and that higher–order corrections are crucial for
the MFs.

Instead of being Gaussian it has been shown that the logarithm
of the density field can have a Gaussian distribution. This implies
that a Log–normal distribution can describe the two–point prop-
erties of galaxy samples quite well. We compare the distribution
found in the mock catalogues with that of a Log–normal distribu-
tion in Appendix B

The effect of including these higher correction terms up to
%3

0 in (5) is shown by the two other lines. This truncated model is
quite good in describing the modified MF densities of the data up
to a scale of around 60h−1Mpc. For larger scales, the coefficients
bµn+1 become too big (even though the cµn+1 decay withR, they de-
cay slower than V n+1

0 (B) and, therefore, the bµn+1 grow), and the
quality of the approximation becomes worse. This deviation from
the approximated function shows that, even for densities as low as
the present %0 = 0.78×10−5h3Mpc−3, the MFs include contribu-
tions from galaxy correlations way beyond the standard two–point
correlations. This confirms the claim made in the introduction that
they are sensitive to higher–order correlations.

6 CONCLUSION

In this paper we provided new analysis tools based on the Germ–
Grain model to calculate the family of Minkowski Functionals of
point sets. The code is made available to the community with this
paper that complements the existing Germ–Grain codes. The ad-
vantage of the former codes is still the possibility to deconvolve the
boundaries, which is especially needed for sparse catalogues with
complicated mask structure. The advantage of the new code has to
be seen in the fast performance for large samples, the possibility
to study the Partial Minkowski Functionals locally and in explicit
relation to correlation properties of the data sets.

As a first application of the new code, we also performed
an extensive analysis of the Minkowski Functionals of the SDSS
LRG sample for the Germ–Grain model. We favour this model be-
cause it provides a direct way to analyse the data without additional
smoothing, and because it provides analytical relations between the
Minkowski Functionals and the N–point correlation functions of
the galaxy distribution. We especially had a detailed look at those
correlation properties to locate the deviations found between the
mock samples and the SDSS data.

In Section 4, we compared the Minkowski Functionals of the
observed galaxies to a grid of ΛCDM N–body simulations of the
galaxy distribution, for two different luminosity thresholds. In both
cases, the Minkowski Functionals of the observed and the simu-
lated galaxy distributions show a significant disagreement. For the
galaxies with the higher luminosity, this difference is more impor-
tant than for the “dim” LRG sample.

Making use of the analytic relation to the correlation functions
provided in this paper, we derived in Section 5 some integrals over
the two– and three–point function of the galaxy distribution. For
the two–point function we were able to compare the results to the
prediction for structure in a perturbed Friedmannian Universe. We
found that this prediction describes quite well the simulated galaxy
distribution, but fails to describe the observed one.

We also showed that the galaxy distribution is clearly different
from a Gauss–Poisson distribution and that, therefore, higher–order
correlations are important to describe the observed structure. As
previously often emphasized, it is crucial to address higher–order
correlations for the purpose of determining morphological fluctua-
tions. It is not sufficient, if the density or the two–point measures
agree on selected samples, in order to conclude on the absence of
significant fluctuations or the reality of large structures.

It will be interesting to see, whether larger and deeper surveys
will confirm these results.
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Figure 12. The four Minkowski integrals of the three–point correlation function, i.e. cµ3 from Equation (32), for the SDSS LRG “bright sample” and the

average of the corresponding mock samples. The error bars are the 1–σ errors from the fit of Ṽ µ (%0) with a polynomial of fifth order in %0. The line in the
first figure is the integral of Equation (22) evaluated for the LasDamas cosmology.
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APPENDIX A: DERIVATION OF EQUATION (3)

As we make heavy use of the analytic relation (3), we recall here the
derivation of this formula in the general formulation that we need
here. The version for the Poisson case has been shown in Mecke &
Wagner (1991). Schmalzing (1999) states the general case without
explicit derivation.

To derive the relation for all four Minkowski Functionals, we
first define the Minkowski polynomial as follows:

M (t;K) =

3∑
µ=0

tµ

µ!
αµVµ (K) ,

from which we can extract the functionals by taking the derivatives

Vµ (K) =
1

αµ

∂µM (t;K)

∂tµ

∣∣∣∣
t=0

.

These Minkowski polynomials obey the additivity relation of the
Minkowski functionals, ∀ B1,B2 ∈ R:

M (B1 ∪ B2) = M (B1) +M (B2)−M (B1 ∩ B2) . (A1)

So, for a collection of Balls, we have:

M
(
∪Ni=1Bi

)
=

N∑
i=1

M (Bi)−
∑
i<j

M (Bi ∩Bj) + . . .

+ (−1)N+1 M (B1 ∩ . . . ∩BN ) .

To calculate the average Minkowski Functionals for a structure with
a given correlation, we weight this configuration with its probabil-
ity

p ∝ %N (x1, x2, . . . , xN ) dV1dV2 . . . dVN ,

where %N (x1, x2, . . . , xN ) is the complete N–point correlation
function that is related to the probability of finding particles at the
N positions xn simultaneously. Calling the integration measureˆ
dτn =

ˆ
d3x1d

3x2 . . . d
3xn ,

we therefore find for the average

〈M〉 =
1

NN

ˆ
dτN%N (x1, x2, . . . , xN )M

(
∪Ni=1Bi

)
=

=

N∑
n=1

(
N
n

)
N−n (−1)n+1

ˆ
D

d3τn%n (x1, x2, . . . , xn)×

×M (Bx1 ∩Bx2 ∩ . . . ∩Bxn) .
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In the limit of an infinite structure N →∞,
(
N
n

)
N−n → 1

n!
,

and so

〈M〉 = 1−
∞∑
n=0

(−1)n

n!

ˆ
D

d3τn%n (x1, x2, . . . , xn)×

×M (Bx1 ∩Bx2 ∩ . . . ∩Bxn) .

To pass from the complete N–point correlations to the connected
N–point correlation functions ξn one needs the principal kinemat-
ical formulaˆ
D
d3xM (A ∩Bx) ∼mod(t4) M (A)M (B) ,

that connects the integral of the Minkowski polynomial of the in-
tersection A∩Bx with a product of Minkowski polynomials when
dropping all terms involving powers of t larger than t3. This is then
used to show the following formal cumulant relation

1 +

∞∑
n=1

mnt
n/n! = exp

(
∞∑
n=1

κnt
n/n!

)
,

connecting the “moments”

mn =
1

%n

ˆ
dτn%n (x1, x2, . . . , xn)M (Bx1 ∩Bx2 ∩ . . . ∩Bxn)

to the “cumulants”

κn =

ˆ
dτnξn (x1, x2, . . . , xn)M (Bx1 ∩Bx2 ∩ . . . ∩Bxn) .

This formal cumulant relation leads to the expression of the average
Minkowski polynomial m of the form

m = 1− exp

∞∑
n=1

(−%)n

n!

ˆ
D

d3τnξn (x1, x2, . . . , xn)×

×M (Bx1 ∩Bx2 ∩ . . . ∩Bxn) . (A2)

It can be reconnected to the single Minkowski Functional densities
of the structure by taking the derivative

vµ =
1

αµ

∂µm (t)

∂tµ

∣∣∣∣
t=0

,

which then leads directly to Equation (3).

APPENDIX B: COEFFICIENTS OF A LOG–NORMAL
DISTRIBUTION

Here we want to check how well the expansion coefficients can
be predicted, if we chose a Log–normal distribution as hypothe-
sis. We plot the comparison of the values obtained from the mock
catalogues, to those calculated for the Log–normal distribution in
Figure B1. This latter resembles the Gaussian distribution, but has
as probability distribution the form

p ({% (ri; ∆V ) /%0}) = B (% (ri; ∆V ) /%0)×

×e−
1
2

∑
i,j(log(%(ri;∆V )/%0)−µi)Aij(log(%(rj ;∆V )/%0)−µj). (B1)

For a single cell, without the correlation to other cells encoded in
Aij , the distribution is

p (%/%0) =
1

(%/%0)
√

2πσ2
e
− 1

2σ2
(log(%/%0)−µ)2

, (B2)
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Figure B1. Comparison of the coefficients c02–c04 defined in (32) to those of
a Log–normal distribution with the same two–point function. For a better
visibility the coefficients c0n have been multiplied by V (B)3/4(n−1) in
these plots.

E [%/%0] = eµ+σ2

2 (B3)

and variance

E
[
(%/%0)2]− E [%/%0]2 =

(
eσ

2

− 1
)
e2µ+σ2

. (B4)

As we need the cumulants, we have to determine the joint expecta-
tion values of several variables. This gives

E

[∏
i∈B

Xi

]
= e

∑
i µi+

1
2

∑
ij A

−1
ij , (B5)

where the Xi are again the distributions of the i–th cell, Xi =
%̂ (xi) /%0, and A−1

ij are the elements of the inverse matrix to the
matrix A. The sums in the exponents run over the indices corre-
sponding to the Xi in the product

∏
i∈B Xi. For the first two ex-

pectation values this means

E [X1] = eµ1+ 1
2
A−1

11 , (B6)

E [X1X2] = eµ1+µ2+ 1
2
A−1

11 +A−1
12 + 1

2
A−1

22 . (B7)

This leads to the second cumulant ξ (x12) =

c© 2014 RAS, MNRAS 000, 1–18
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= κ (X1, X2) = eµ1+µ2+ 1
2
A−1

11 + 1
2
A−1

22

(
−1 + eA

−1
12

)
. (B8)

This implies that, unlike in the Gaussian case, the relation of the
matrix elementsA−1

ij to the correlation function of the density field
is now given by

A−1
ij = log (1 + ξ (ri, rj)) . (B9)

This modified dependence on ξ comes from the fact that the over–
density field Xi = %̂ (xi) /%0 has as its average the value 1. So
E [X1] = 1 and (B6) fixes the parameter µi in the distribution (B1)
to be µi = − 1

2
A−1
ii . This directly leads to (B9) for the components

of A−1
ij .
With these two conditions all parameters of the distribu-

tion (B1) are fixed. Using (B5) we can now calculate, in principle,
all higher connected correlation functions for a multivariate log–
normal distribution having a given two–point correlation function.
In practice, however, this quickly leads to long expressions, be-
cause of the rapid increase of the combinatorial component. There-
fore, we only use connected correlation functions up to ξ4.

Using the ξ’s constructed in this way we can evaluate the se-
ries (5) up to an index n = 4. However, we do not calculate the
coefficients for all four Minkowski Functionals. For V1 and V2 the
problem is to determine the values of the MFs of an intersection
of three Balls Vµ (B ∩Bx1 ∩Bx2). While this is straightforward
for V0 and V3 for the other two functionals, this would imply the
search for suitable parametrisations of the body resulting from the
intersection. Especially for V3 this would be hard in view of the
complicated expression (10) for V2 for two Balls. This is why we
restrict ourselves to the calculation of the higher–order terms for
V0.
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