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Abstract

In ��k routing each of the n� processing units of an n �
n mesh connected computer initially holds � packet which
must be routed such that any processor is the destination
of at most k packets� This problem re�ects practical desire
for routing better than the popular routing of permutations�
��k routing also has implications for hot�potato worm�hole
routing� which is of great importance for real world systems�

We present a near�optimal deterministic algorithm run�
ning in

p
k � n�� � O	n
 steps� We give a second algo�

rithm with slightly worse routing time but working queue
size three� Applying this algorithm considerably reduces the
routing time of hot�potato worm�hole routing�

Non�trivial extensions are given to the general l�k routing

problem and for routing on higher dimensional meshes� Fi�

nally we show that k�k routing can be performed in O	k �n

steps with working queue size four� Hereby the hot�potato

worm�hole routing problem can be solved in O	k��� � n

steps�

Keywords� theory of parallel and distributed

computation� meshes� packet routing� hot�potato

worm�hole routing�

� Introduction

Parallel computation is an area of intensive development
during the last decade� Various models for parallel ma�
chines have been designed� One of the simplest and
therefore best studied machines with a �xed intercon�
nection network� is the MIMD mesh� In this model the
processing units� PUs� form an array of size n� n and
are connected by a two�dimensional grid of communica�
tion links� In Section ��� the model is described in more
detail�

Generally� the problems concerning the exchange of
information packets among the PUs are called rout�

ing problems� Here the destinations of the packets
are known beforehand� The task is to send each packet
to its destination such that at most one packet passes
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through any wire during a single step� The quality of
a routing algorithm is determined by ��	 its running
time� i�e�� the maximum time a packet may need to
reach its destination� and ��	 its queue length� which
is de�ned to be the maximum number of packets any
PU may have to store during the routing�

A special case of the routing problem is permuta�

tion routing� In permutation routing� each PU is the
origin of at most one packet and each PU is the desti�
nation of at most one packet� Permutation routing has
been considered extensively� Optimal randomized and
deterministic algorithms were found 
��� ��� �
�

When the size of the packets is so large that they can�
not be transferred over a connection in a single step� the
packets have to be split into several �its� The routing
of these �its is considered in the k�k routing prob�

lem� each PU is assumed to send and receive at most
k packets� If the �its are routed independently of each
other we speak ofmulti�packet routing� Multi�packet
routing is also important when the PUs have to route
packets to several destinations� Multi�packet routing al�
gorithms 
��� �� ��� �
 solve this task much faster than
routing the packets one�by�one� Alternatively� the �its
can be routed as a kind of worm such that consecu�
tive �its of a packet reside in adjacent PUs during all
steps of the routing� cut�through routing 
�
� If there
is the additional condition that the worms may be ex�
panded and contracted only once� then this variant is
called worm�hole routing 
�� ��
� Unlike the other
more theoretical models� worm�hole routing has direct
applications in many parallel machines 
�� ��� ��� �
�

We consider an original variant of the routing prob�
lem� the routing of ��k distributions� under which
every PU is sending at most one packet� but may be the
destination of up to k packets� ��k routing re�ects
practical purposes better than the routing of permu�
tations� if the PUs are working independently of each
other and generate packets that have to be transferred
to other PUs� then it is unrealistical to assume that ev�
ery PU is the destination of at most one packet� The
parameter k� � � k � n�� need not to be known by
the PUs� but is needed for stating the complexity of
the problem� The ��k routing problem also has impli�
cations for hot�potato worm�hole routing� Hot�potato
routing is a routing paradigm in which packets may
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never be queued at a PU but have to keep moving at
all times until they reach their destination 
��� �
� Like
worm�hole routing� this model is used in many systems

�� ��
� In a recent paper of Newman and Schuster 
��

it is demonstrated that under a light condition any e��
cient ��k routing algorithm with working queue size at
most four is useful as a subroutine for the hot�potato
worm�hole routing problem� As far as we know we are
the �rst to perform a serious analysis of the ��k routing
problem for meshes� For certain expander networks� the
related l�k routing problem has been studied in 
��
�

In our �rst algorithm �Section � and Section �	 a
packet is routed either row��rst� along the row to its
destination column and then along this column to its
destination� or column��rst� �rst along the column
and then along the row� The central point is the de�
cision which packets will be routed row��rst and which
packets will be routed column��rst� Straight�forward
strategies result in an algorithm requiring ��k �n	 steps�
A connection�availability argument gives a lower bound
of
p
k � n��� The essential idea which makes possible

the break�through to a O�
p
k � n	 time algorithm� is to

count the numbers of packets with destination in every
row and column� and to make the decision on basis of
these data� if many packets are going to a row� it is bet�
ter to route most of the packets row��rst� Most easily
this idea is worked out by tossing a biased coin� but with
some extra routing steps we can do it deterministically
as well� An intricate algorithm has close to optimal per�
formance�

p
k �n���� �n steps� for k � o�n���	� a much

simpler algorithm works well for general k and requires
only slightly more steps� The queues do not get longer
than � � k � � packets� Without modi�cation the ba�
sic algorithm can be applied to the general l�k routing

problem� This is the problem of routing l�k distribu�

tions� distributions of packets such that every PU sends
at most l packets and receives at most k packets� This
problem is interesting because of its generality but also
because it appears as a subproblem to the routing of ��
k distributions on higher dimensional meshes� We show
that the algorithm is near�optimal when l � o�k	�

It turns out �Section �	 that under a natural condition
l�k distributions can be routed in O�l �n	 time for l upto
n �k� Informally� the condition is that the �density of the
destinations increases gradually�� excluding large areas
in which all PUs receive k packets�

In our second algorithm �Section �	 we aim for a work�
ing queue size four or less� in order to create a subroutine
for the hot�potato worm�hole routing algorithm of 
��
�
This is achieved with routing time ��pk�n�o�

p
k�n	� In

the algorithm the mesh is subdivided into k squares of
size n�

p
k�n�

p
k and the packets are redistributed such

that every square holds at most one packet for each des�
tination� Then these squares are rotated along a Hamil�
tonian cycle and after each n�

p
k steps the packets that

reached their destination square are routed to their des�
tination� Performing the algorithm with a subdivision
of the mesh into k�� squares� we can reduce the routing
time to ��

p
��pk�n�o�

p
k�n	� A theorem of 
��
 implies

that using either of these algorithms as a subroutine�
the hot�potato worm�hole routing problem for worms
of maximal length k can be solved in O�k� � n	 steps�
coming close to the obvious lower bound of ��k � n	�

As an extension we consider the routing of ��k dis�
tributions on d�dimensional meshes �Section �	� For
d � �� the algorithm requires less than twice as much
as the lower bound� Also the algorithm for routing ��k
distributions with short working queues is generalized�
Compared to the lower bound� the algorithm requires
an additional factor of O�d	�

Finally �Section �	 we apply the new techniques to
the problem of k�k routing with short queues� With a
randomized algorithm this is rather easy� With a minor
extension of the model� k�k distributions can even be
routed with a deterministic algorithm in O�k � n	 steps
and with working queue size four� This reduces the rout�
ing time for the hot�potato worm�hole routing problem
to O�k��� � n	�

� Preliminaries

De�nition � We call an algorithm near�optimal if the
leading term of its runtime matches the leading term of
a lower bound�

��� Machine Model

As computer model we assume a two�dimensional n �
n MIMD mesh without wrap�around connections� We
refer to this machine simply by mesh� It consists of
n� PUs� each of which is connected to �at most	 four
other PUs by a regular square grid� The PU at position
�i� j	 is referred to by Pi�j� and ��� �	 is in the lower�left
corner� For n � � the mesh can be represented by

�� � �� � �� � �� �

�� � �� � �� � �� �

�� � �� � �� � �� �

�� � �� � �� � �� �

The PUs are synchronized� In a single step each PU
can perform arbitrary internal computation and com�
municate with all its neighbors� The only restriction is
that each PU can send and receive at most one packet of
bounded length per edge and per step� Thus a PU may
send and receive during a step �at most	 four packets�
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Neglecting the computation time is motivated by the
fact that generally computation steps can be performed
much faster than routing steps�

Each PU has a working queue� in which packets are
stored temporarily� and an internal queue in which
packets are stored that do not yet move or that have
reached their destination� Only packets in the work�
ing queue can be transferred to a neighboring PU� On
the packets in the internal queues any operation can
be performed and new packets can generated� The op�
erations that can be performed on the packets in the
working queues are limited to checking and comparing
their keys� This allows sorting and routing operations�
For a ��k routing problem the internal queues have size
k� The size of the working queue Q might become much
larger but with good management it can be kept small�
O�k	 or even three�

��� Indexing Schemes

Next to the popular indexing schemes� row�major
column�major and the snake�like variants of these� we
use some less common schemes�

We de�ne a k�layer column�major scheme �also
known as �layer��rst scheme�	� Let P be a PU of an
n � n mesh� with index i with respect to the column�
major scheme� Then in a k�layer column�major scheme
P has k indices� i � j � n�� � � j � k � �� That is� P
gets the indices of the PUs that would stand over it in
an n � n � k mesh� This indexing scheme is useful for
specifying the destinations of packets when performing
k�k sorting� We illustrate it with an example� In a ��
layer scheme on a ��� mesh� the PUs have the following
indices�
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Under a blocked scheme� the mesh is regularly sub�
divided into squares� and the index of a PU is consti�
tuted �rstly by the index of its square and secondly by
its index within this square� Under a blocked snake�

like row�major scheme� the blocks are indexed by
the snake�like row�major scheme and the indexing of
the blocks is left unspeci�ed� As an example we give
the indexing that is obtained with � � � blocks which
are indexed by the row�major scheme in a �� � mesh�
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��� Basics of Routing

We assume that a packet not only contains some mes�
sage but also the information that is necessary for rout�
ing the packet to its destination�

We speak of edge contention when several pack�
ets residing in a PU have to be routed over the same
connection� Contentions are resolved using a priority
scheme� The farthest��rst strategy gives priority to
the packet that has to go farthest�

For the analysis of the routing on higher dimen�
sional meshes we need the �routing lemma� for rout�
ing a distribution of packets on a one dimensional mesh

�
� De�ne for a given distribution of packets over the
PUs hright�i� j	 � �f packets passing from left to right
through both Pi and Pj g� where Pi denotes the PU with
index i� De�ne hleft�j� i	 analogously�

Lemma � Routing a distribution of packets on a linear
array with n PUs� using the farthest��rst strategy� takes
maxi�jfmaxfhright�i� j	� hleft�j� i	g � j � i � �g steps�
This bound is sharp�

��� Lower Bounds

Considering the maximal distance a packet may have
to travel� it follows that d � n � d is a lower bound for
routing on d dimensional meshes� the distance bound�
For routing k�k distributions on a mesh k �n�� steps are
required when all packets residing in the lower half of the
mesh have destination in the upper half� the bisection
bound� We generalize these bounds to the l�k routing
problem�

Considering the number of packets that may have to
go over a limited number of connections� we �nd the
following lower bounds for routing l�k distributions�

Lemma 	 The l�k routing problem requires at least
maxfk� � � l

l�k 	
���� l�k

l�k �
l
� � � k

l�k 	
���g � n steps�

Proof� For the �rst bound we consider the following
subdivision of the mesh�

�
��

�
��

�
��

A

B �l��k � l

��� � n

Suppose that every PU in A holds l packets with desti�
nation in B� It is easy to check that these packets just
�t into B and that routing them across the boundary of
B takes k�� � �l��l � k		��� � n steps�

The second bound is a generalization of the bisection
bound� Consider the following subdivision of the mesh�
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� ��

A

B

k��k� l
 � n

l��k � l
 � n

If all PUs in A hold l packets with destination in B� then
it takes for these l � k��k� l	 � n� packets l � k��k� l	 � n
steps to pass across the boundary between A and B�

The third bound is obtained analogously to the �rst�
considering the time that is required when all PUs of a
�k��k� l		��� �n� �k��k� l		��� �n corner send l packets
to the PUs outside this corner� �

Which of the bounds in Lemma � is strongest� de�
pends on the relation between l and k� the �rst bound is
strongest when l � k��� the second when k�� � l � ��k�
and the third when l � � � k� When l � k� the second
bound gives k �n��� the bisection bound for the k�k rout�
ing problem� In the extreme cases the bound becomes
very simple�

Corollary � When l � o�k	� or k � o�l	� then routing
l�k distributions requires at least ��� o��		 � pl � k � n��
steps�

� A Randomized Algorithm

One might think that the following algorithm has good
performance�

Send all packets to a random destination�
route a packet to its destination�

with probability ��� row��rst�
with probability ��� column��rst�

However� algorithms of this type require ��k �n	 time
for a distribution of packets under which all packets have
destination in the highest n�k rows� Such a distribution
can be routed in O�n	 steps when all packets are routed
row��rst� This illustrates the utmost importance of the
decision along which axis a packet is routed �rst� Clearly
such a decision cannot be based only on information that
is available locally� the ��k routing problem is essentially
more di�cult than the permutation routing problem� for
which the greedy algorithm has optimal routing time�

��� Algorithm

We describe a simple randomized algorithm for the ��k
routing problem that requires

p
k�n���o�

p
k�n	 routing

steps� It proceeds as follows�

Algorithm randroute�
�� for every PU Pi�j with packet p pardo

make two copies of the routing information of p�

send one copy along row i to its dest� column�
send one copy along column j to its dest� row�

�� for every i� j� � � i� j � n � �� pardo
determine the number ri of packets that have to
move along row i� and broadcast ri within row i�
determine the number ci of packets that have to
move along col i� and broadcast ci within col i�
discard all copies of packets�
send ri along the column to all PUs�
send ci along the row to all PUs�

�� for every PU Pi�j with packet p pardo
if the destination of p is Pi��j� � then

take ri� and cj� out of the stream�
color p white with probability ri���ri� � cj�	�
if p is not colored white then

color p black�
�� for all packets p pardo

if p is white then
a� randomize p within its column�
b� route p along the row to its dest� column�
c� route p along the column to its destination

else proceed analogously�

Randomizing a packet p within its column means that
the packet is routed to a randomly and uniformly se�
lected position within its column� The randomization is
intended to bound the size of the queues�

��� Analysis

In the following analysis we do not go into the details
of the randomization� The purpose of this section is to
express the underlying ideas and to indicate that the
performance is near�optimal�

It is easy to implement Step � and Step � to run in
� � n � � steps� Step � consists of three phases of one�
dimensional routing� During phase ��a the packets are
not delaying each other and they all reach the selected
PU within n � � steps� During phase ��b a delay of
o�n	 may occur because a PU may hold more than one
packet� The delay during phase ��c is of a di�erent na�
ture and may be much larger than the delay in phase ��b�
It depends on the distribution of the packets over the
colors�

Lemma 
 The number of packets that have to move
within a row or column during phase ��c is bounded byp
k � n�� � O��

p
k � n � logn	���	�

Proof� Let ai�j be the number of packets with des�
tination in Pi�j� Let zi �

P
j ai�j � cj��ri � cj	� and

sj �
P

i ai�j � ri��ri� cj	� cj��ri� cj	 is the probability
that a packet with destination Pi�j is colored black� and
ri��ri � cj	 is the probability that a packet is colored
white� Hence zi� sj respectively� equals the expected
number of packets that will move through row i� col�
umn j respectively� during phase ��c� Without loss of
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generality we may concentrate on sj� � � ai�j � k� � �
ri � k � n� Further�

Pn��
i�� ai�j � cj� and

Pn��
i�� ri � n��

Considering the functionality of sj for �xed cj� taking
into account that the sum of the ri cannot be chosen
arbitrarily large� we �nd that in order to maximize sj
the ai�j must be concentrated in a few rows� ai�j � k
for cj�k values of i� and ri � k � n��cj for these i� In
this case sj � cj � k � n���k � n� � c�j	� Di�erentiation
shows that the maximum of this function is assumed for
cj �

p
k � n� For this cj � sj �

p
k � n��� Applying Cher�

no� bounds �as presented e�g� in 
�
	� the result follows�
�

By the randomization the packets are nicely dis�
tributed within their row or column at the beginning
of phase ��c� Now� using Lemma �� we can show that
phase ��c takes at most

p
k �n���O��

p
k �n � log n	���	

steps� Thus we get

Theorem � On the n � n mesh� ��k distributions can
be routed in

p
k �n���� �n�O��

p
k �n � logn	���	 steps

by a randomized algorithm�

Notice that randroute works correctly without know�
ing k� and that Theorem � holds for all values of k�

� A Deterministic Algorithm

Randomization enables us to formulate randroute
concisely and without loosing many routing steps� How�
ever� both steps involving randomization can be re�
placed by deterministic steps with the same e�ect�

At �rst glance coloring the packets deterministically
appears to be di�cult� However� this can be achieved by
sorting the packets on their destination PU and coloring
for every destination regularly interspaced packets white
and black� The sorting can be performed in � �n� o�n	
steps� By rounding errors at most n�� extra packets
may move through any row or column during the last
routing phase �compared to the O��

p
k �n � logn	���	 of

the randomized algorithm	�

The randomization of the packets can be replaced by
sorting the packets that are going to be routed row�
�rst �the white packets	 in column�major order� and the
packets that are going to be routed column��rst �the
black packets	 in row�major order� This idea goes back
on Kunde 
��
�

An additional idea� by which the routing time can be
reduced� is to divide the mesh regularly in n� � n� sub�
meshes and to route the packets �rst to any destination
within their destination squares� From there the pack�
ets are routed to their destinations� n� rows �columns	
spanning n�n� submeshes are called a bundle of rows
�columns	�

��� Algorithm

In the algorithm we take care that the lengths of the
queues never exceed O�k	� For the sake of a simple
exposition we choose n� �

p
n�

Algorithm detroute

�� Count in every submesh how many packets are
going to any bundle of rows �columns	� and store the
number going to row �column	 bundle i in the PU at
position �i� i	� Perform a routing along row �column	
and column �row	 in order to obtain the total number
ri �ci	 of packets going to row �column	 bundle i� for
all � � i � p

n� �� in position �i� i	 of all submeshes�

	� Sort the packets on the indices of their destination
submeshes�


� The numbers ri and cj are broadcast within everyp
n�pn submesh� A PU Pl holding a packet p with

destination in submesh �i� j	 picks ri and cj out of the
stream� Let �i�j � ri��ri� cj	� If l mod ����i�j	 � ��
then p is colored white� else p is colored black�

�� Let m � n�
p
k� Divide the mesh in m � m

squares� Sort in each square the white �black	 packets
in column�major �row�major	 order on their destina�
tion column �row	 bundles�

�� Route the white �black	 packets along the row
�column	 to the �rst PU in their destination column
�row	 bundle holding less than k � � white �black	
packets�


� In every submesh� sort the white �black	 packets
in row�major �column�major	 order on their row �col�
umn	 bundle�

�� Route the white �black	 packets along the column
�row	 to the �rst PU in their destination submesh
holding less than k � � white �black	 packets�

�� Route the packets within the submeshes to their
destinations�

If the value of k is unknown� then in Step � we should
use some lower estimate of it� e�g� obtained from the
maximum of the ri and the cj �

��� Analysis

We analyze the correctness and the routing time of de�
troute� Step � takes � �n�O�

p
n	 steps� After Step ��

the ri and cj are locally available in all submeshes�
Step � can be overlapped almost perfectly�

Lemma � Step � and Step �� can be performed in
� � n� O�n���	 steps�

Proof� During the routing of Step � only one out of
every

p
n connections is used� This means that most

connections can be used for Step �� For the sorting we
use the near�optimal deterministic algorithm of 
�
� �
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The sorting in Step � is for rearranging the packets such
that the packets going to the same submesh stand in
positions with consecutive indices� Then� in Step � the
correct fractions of them can be selected� Notice that
Step � works in a distributed fashion without knowing
where the packets going to a certain submesh reside or
how many packets are going to a submesh� It seems
hard to compute these numbers� Step � is performed in
order to bound the queues at the end of Step ��

Lemma � Step 	 takes O�
p
n	 steps
 Step � takes

O�n�
p
k	 steps
 and Step � takes n steps�

The most important point in the analysis is the proof of
the following analogue of Lemma ��

Lemma 
 Step � can be performed correctly� i�e� no
PU holds more than k white �black
 packets afterwards�
Step � takes O�k � pn	 steps� After Step � no column
�row
 holds more than

p
k � n�� � O�

p
n	 white �black


packets�

Proof� Denote the number of packets going to sub�
mesh �i� j	 by ai�j� For Sj � the number of packets
that will move through column bundle j� we now get
Sj �

P
idai�j � ri��ri� cj	e �

P
i ai�j � ri��ri� cj	 �

p
n�

As in the proof of Lemma � this gives that Sj �p
k � n����� �

p
n� These packets are distributed over

at least m �pn PUs� Hence at most dk�pk�ne � k��
packets have to be stored in any PU� After the sort�
ing in Step � the Sj packets are almost perfectly dis�
tributed over the

p
n columns of the bundle� at mostp

k � n�� � O�
p
n	 packets end in every column� �

Comparable to Lemma � but easier is

Lemma � Step � can be performed correctly in
p
k �

n�� � n� n�
p
k�O�

p
n	 steps� I�e� afterwards no PU

holds more than k�� white �black
 packets� Step � takes
O�k � pn	 steps�
Proof� If Sj assumes its maximum then the packets in
the column bundle j �that may have to go all to the
highest or lowest rows	 are spread out over at least m
rows� Now Lemma � gives the maximum routing time�
By the sorting in Step � the packets going to a submesh
are well distributed over the columns� By �rounding
errors� there may be in a column at most

p
n packets

too much� They can be spread out over the
p
n rows of

the destination submesh� Step � is a �� �k��	�k routing
in
p
n �p

n meshes� The algorithm of 
�
 can be used�
�

Summing all routing times we �nd

Theorem 	 detroute takes
p
k �n���� �n�n�

p
k�

O�k � pn	 steps� The size of the queues is bounded by
� � k � ��

Corollary 	 For k � o�n���	� detroute takes less
than

p
k � n�� � � � n steps�

��� Large k

Corollary � expresses that our choice n� �
p
n is partic�

ularly good for k � o�n���	� For k � n�� ��� � � � ��
the additive term can be bounded to o�n	 by taking
n� � n�������� However� for these k we are willing to
spend O�n	 extra steps in order to obtain a much sim�
pler algorithm�

Algorithm largekroute

�� Sort the packets on the indices of their destina�
tions�

	� Make two copies of the routing information� Send
one copy to the destination row and one to the des�
tination column� Count the copies within rows and
columns� Broadcast the numbers ri and cj back� A
PU Ph with a packet going to Pi�j picks out ri and cj �
Let �i�j � ri��ri � cj	� If h mod ����i�j	 � �� then p
is colored white� else p is colored black�


� Sort the white �black	 packets in column�major
�row�major	 order on their destination columns
�rows	�

�� Route the white �black	 packets to their destina�
tion columns �rows	�

�� Route the white �black	 packets along the columns
�rows	 to their destinations�

Analogously to the lemmas of the previous section we
can prove

Lemma � Step � takes less than ��n steps
 Step � takes
� �n steps
 Step 	 takes � �n steps
 Step � takes n steps

Step � takes

p
k � n�� � n steps�

Theorem 
 largekroute routes ��k permutations inp
k � n�� � �� � n� for all k� The size of the queues is

bounded by � � k � ��

We believe that by its simplicity and its generality
largekroute is a very practical algorithm�

��� l�k Routing

We show that largekroute is also suited for routing
l�k distributions for values of l that are small compared
to k�

Now Step �� � � � � Step � are l�l routing and sorting
procedures�

Lemma � Step �� � � � � Step �� are performed in O�l �n	
steps�

More interesting is the following analogue of Lemma �
and Lemma ��

Lemma �� During Step � less than
p
l � k�n���n pack�

ets move through any row or column�

�



Proof� Without loss of generality we concentrate on Sj �
the number of the number of packets moving through
column j� Let ai�j be the number of packets with desti�

nation in Pi�j� � � ai�j � k� � � ri � k � n�Pn��
i�� ai�j �

cj � and
Pn��

i�� ri � l�n�� Consider Sj for �xed cj� Analo�
gously to the proof of Lemma �� Sj is maximized if ai�j �
k for cj�k values of i� and ri � l �k �n��cj for these i� In
this case Sj � cj �l �k �n���l �k �n��c�j 	� For cj �

p
l � k �n

the maximum value equals Sj �
p
l � k �n��� Additional

n packets may come from rounding errors� �

Theorem � Routing l�k distributions by largekrou�
te takes

p
l � k�� � n � O�l � n	 steps� The size of the

queues is bounded by � � k � ��

Combining Corollary � and Theorem �� gives

Corollary 
 largekroute is near�optimal for rout�
ing l�k distributions with l � o�k	�

The choice of an algorithm should be tuned in ac�
cordance with the ratio between l and k� for l that
are smaller than k largekroute is taken� for l that
are comparable to k� the algorithm of 
�
 can be ap�
plied� And for l that are larger than k a �reversal� of
largekroute should be applied with a coloring of the
packets that depends on the initial distribution of the
packets�

� Routing in Many Stages

We apply ideas of Section ��� to show that under certain�
often satis�ed� conditions l�k routing can be performed
in O�l �n	 steps� even for k that are much larger than l�
Throughout this section l � o�k	�

Assume that the destinations of the packets are dis�
tributed such that the density of the destinations in�
creases inversely proportional to the size of the consid�
ered submesh� Formally�

De�nition 	 Consider an l�k routing problem on an
n � n mesh� Let � � �log k � log l	�logn� The problem
has continuously increasing density with parameter �� if
for any n�x�n�x submesh� � � x � n� there are at most
l � x� � �n�x	� packets with destination in this submesh�

This de�nition re�ects a natural situation� E�g�� a prob�
lem with continuously increasing density arises when all
PUs generate packets with a random destination�
The previously derived lower bounds no longer hold�

For an l�k routing problem we remain with the trivial
bound maxf� � n� �� l � n��� kg� Routing the packets to
their destination with largekroute of Section ��� does
not exploit the particular properties of the distribution�
we would get a routing time of �� � o��		 � pl � k�� � n�

Routing the packets in logn stages through smaller and
smaller submeshes to their destination requires only O�l�
n	 steps� This is the optimal time order� The algorithm
is simple�

Algorithm stageroute�
for i �� � to log n do

�� divide the mesh regularly in n��i � n��i submeshes�
�� route all packets to their destination submeshes�
�� redistribute the packets within the submeshes�

stageroute runs correctly without knowing ��

An important point is the implementation of the rout�
ing within the stages� An elegant algorithm guarantees
an optimal distribution of the packets within the sub�
meshes� We give a slightly more general description�
within an n�� n� mesh in which a PU holds at most k�
packets� the packets have to be routed to the n� � n�
submeshes of their destinations� and at most k��n�� pack�
ets have destination in every submesh� The submeshes
are indexed from � through n���n

�
���� the PUs in every

submesh from � through n�� � �� We perform�

�� Sort all packets in the n��n� mesh on the numbers
of their destination submeshes�

	� Route the packet with rank i to the PU in its
destination submesh which has index i mod �n���n

�
�	�

Clearly Step � is a k��k� sorting� Step � is a k��k� rout�
ing� Thus� the routing in the stages can be performed
as fast as a k��k� routing� in

p
k� � k��� �n��O�k� �n�	

steps�

Theorem � If � � �� then stageroute solves an l�
k routing problem with continuously increasing density
and parameter �� in O�l � n	 routing steps�

Proof� In phase i the packets are routed within
n��i�� � n��i�� submeshes to the n��i � n��i sub�
meshes in which their destination lies� Because we
consider a routing problem with continuously increas�
ing density with parameter �� the initial density is at
most l � ��i��
��� and the �nal density is at most l � �i���
Hence� phase i can be performed in �l ���i����
������ �l �
��i��
��	�n��i�� � ����	�l�n���i��
�����
� for some pos�
itive constant �� Thus� all phases together take at mostPlogn

i�� ����	 � l �n���i��
�����
 � ����	��������	 � l �n�
�

� Working Queue Size �

Apart from its own importance� the ��k routing problem
is interesting in view of Corollary ��� from 
��
�

�



Theorem 
 If there is a ��k routing algorithm for the
n � n mesh in which the routing decisions are made
locally� which requires T �k� n	 steps and has maximal
working queue size at most four� then there is a hot�
potato worm�hole routing algorithm for worms of maxi�
mal length k � n��� requiring O�k� �T �k� n�pk		 steps�
detroute of Section ��� cannot be used because the
size of the working queues is too large� We would like
to have a ��k routing algorithm with T �k� n	 � O�

p
k �

n	� and Q � �� Once we have shown that this can be
achieved� we get

Theorem � Hot�potato worm�hole routing for worms
of maximal length k � n��� can be performed in O�k��n	
steps�

��� Algorithm

In contrast to the algorithm of the previous section
we do not strive for near�optimal performance� we are
mainly interested in achieving the right order of mag�
nitude of the routing time� We assume that the PUs
of the mesh are indexed in some suitable way from �
through n���� for example� in the snake�like row�major
order� Furthermore� the mesh is divided in k squares of
size n�

p
k � n�

p
k� Each such square is indexed from

� through n��k � �� The squares lie on a Hamiltonian
cycle� For example� when k � �� as follows�

�

�

�

�




�

��

��

�

�

�

�

�


��

��

��

�


��

��

��

��

��

��

��

��

��

��

��

�


��

��

��

��

��

��

��

The algorithm proceeds as follows�

Algorithm shortqroute�k� n	�
�� Sort the packets with respect to the index

of their destination PU�
�� route the packet in the PU with index i to

the PU with index i div k in square i mod k�
�� for s �� � to k do

a� the packets of a square that have not yet
reached their destination are routed as a block
to the next square of the Hamiltonian cycle�

b� route the packets that reached their
destination square to their �nal destination�

The essential step of shortqroute is Step �� In this
step� the packets are distributed over the squares such
that there is at most one packet with a certain destina�
tion in each square� This implies that after each itera�
tion of Step ��a� at most one packet has to be routed to

a destination in Step ��b� Hence� the routing in Step ��b
is a partial ��� routing within the squares�

For the routing and sorting operations in short�
qroute we apply the algorithm of Schnorr and Shamir

��
� By this algorithm� the packets of an n�n are sorted
in � � n � O�n���	 steps in snake like order� This result
does not require that the connections act as compara�
tors when we accept queue size two� Partial permutation
routing with short queues is slightly harder�

Lemma �� On an n� n mesh partial ��� routing can
be performed in � � n � O�n���	 steps and with working
queue size two�

Proof� We use a variant of the algorithm of Kunde 
��
�
The mesh is divided in n�� � n�� submeshes� In every
submesh the packets are sorted in snake�like column�
major order on their destination columns with the algo�
rithm of 
��
� This takes � �n���O�n���	 steps� In n��
steps this is turned into a column�major order� Subse�
quently the packets are routed row��rst in � � n steps to
their destinations� �

Theorem � shortqroute routes ��k permutations in
� � pk �n� � � n�O�k	�� � n���	 steps and with working
queue size three�

Proof� Step ��a takes n�
p
k steps� Step ��b takes � �

n�
p
k�O��n�

p
k	���	 steps� These steps are performed

k times� Step � and Step � take � � n � O�n���	 each�
So� the whole algorithm requires � � n � O�n���	 � k �
�n�

p
k � � � n�pk � O�n����k���		 steps� The working

queue size of the routing in the single steps is two� but
during Step ��b a PU may hold in addition a packet that
is waiting for being routed to the next square� �

We conclude that for all k � O�n�	 the time for rout�
ing ��k distributions is bounded by O�

p
k � n	� Hence

Theorem � holds�
Notice that in the algorithm we assumed that k was

known� This assumption is not essential� after Step �
the value of k can be determined and broadcast to all
PUs in O�n	 steps�

��� Improvement

A routing or sorting algorithm is called uni�axial� if in
each routing step either only horizontal or only vertical
connections are used� If a routing or sorting algorithm is
uni�axial two of these algorithms can be run in parallel
without interference� one for �white� packets and one
for �black� packets� which are routed orthogonally at all
times� This idea goes back on 
��
�

The sorting algorithm of Schnorr and Shamir 
��

which is used in shortqroute can be made uni�axial
with a loss of O�n���	 steps� This opens the way to an

�



interesting reduction of the routing time� the mesh is
divided into k�� squares of side length

p
��k � n� and a

Hamiltonian cycle through these k�� squares is chosen�
Step � and � of the algorithm are replaced by

�� Color the packet p in the PU with index i
white if i mod k � k��� black otherwise�
route p to the PU with index i div k��
in square i mod k���

�� for s �� � to k�� do
a� the packets of a square that have not yet

reached their destination are routed as a block
to the next square of the Hamiltonian cycle�

b� route the packets that reached their
destination square to their �nal destination�
white packets orthogonally to black packets�

The modi�ed algorithm will be referred to as
shortqroute��

For the routing in Step ��b we need the following ana�
logue of Lemma ���

Lemma �	 On an n� n mesh two partial ��� routings
can be performed in ��n�O�n���	 steps and with working
queue size two�

Proof� The white packets are sorted in � � n�O�n���	
steps in snake�like column�major order� Then they are
routed row��rst� The black packets are routed orthog�
onally� Without further attention it might happen that
during the sorting two white and two black packets re�
side in a single PU at the same time� However� there
are two packets in a single PU only during the phases of
odd�even transposition sort� Hence� it is easy to arrange
that two white packets reside in the PUs Pi�j with i� j
odd� only when two black packets reside in the PUs with
i � j even� �

Theorem � shortqroute� routes ��k permutations
in ��

p
� �
p
k � n � � � n � O�k	�� � n���	 steps and with

working queue size three�

Proof� There are k�� passes of the loop which take
�� � �	 �p��k � n�O��n�

p
k	���	 each� �

shortqroute� is slower than optimal by a factor
��
p
� � ���� For higher�dimensional meshes exploiting

uni�axiality gives a larger gain �see Section ���	�

� Higher Dimensional Meshes

The algorithms largekroute of Section ��� and
shortqroute� of Section ��� are based on ideas that
are suited for generalization to other machines that have
some similarity with meshes� Also these ideas might be
applied successfully to related problems�

In this section we concentrate on the ��k routing prob�
lem on d�dimensional n� � � � � n meshes� for which the
generalizations can be given most easily� Analogously
to Lemma � we can prove that this problem requires at
least maxfd � �n� �	� k����d � n�dg steps�

��� Generalizing shortqroute
�

For the algorithm shortqroute� of Section ��� there is
a natural generalization� the mesh is subdivided in k�d
�cubes� of size �d�k	��d � n� � � � � �d�k	��d � n� Through
these cubes a Hamiltonian cycle is laid out� Slight mod�
i�cation of shortqroute� su�ces�

Algorithm highdimroute�k� n� d	�
�� Sort the packets with respect to

the index of their destination PU�
�� route a packet p in the PU with index i

to the PU with index i div k�d in
cube i mod k�d�

�� for s �� � to k�d do
a� the packets of a cube that have not yet

reached their destination are routed as a
block to the next cube of the Hamiltonian
cycle �from cube k�d� � to cube �	�

b� route the packets that reached their
destination cube to their destination�

For an e�cient implementation of highdimroute it
is important to have

Lemma �
 For d�dimensional meshes a k�k sorting or
routing problem with k � d can be solved in O�d � n	
steps with maximal queue size maxf�� kg�

Proof� Particularly suited is the k�k sorting algorithm
of 
�
� In this algorithm regular routing operations are
alternated with sorting operations on submeshes� The
algorithm is recursive� By the time the submeshes con�
sist of less than n PUs� the sorting can be �nished by
an odd�even transposition sort of an embedded linear
array� �

Theorem �� highdimroute routes ��k distributions
on a d�dimensional mesh in O�d � n � k����d � n	 steps
with working queue size d� ��

Proof� Step � and � take O�d �n	 steps� Then we have
k�d passes of the loop in Step �� Each pass involves a
routing part� requiring �d�k	��d � n steps� and the solu�
tion of a ��d routing problem in a d�dimensional mesh
with side length �d�k	��d � n� Using Lemma ��� we �nd
that this takes O�d � �d�k	��d � n	 steps� Summing and
noticing that d��d � �� we �nd the stated result� The
queue size equals one plus the d from Lemma ��� �

�



The routing time of highdimroute is a factor d
larger than the lower bound� For application of a ��k
routing algorithm as subroutine of a worm�hole routing
algorithm we must have Q � � � d� This requirement is
met�

��� Generalizing largekroute

We give a generalization of largekroute of Section ���
for routing on d�dimensional meshes� The algorithm
consists of d phases� Phase � through Phase d� �� Dur�
ing Phase f the routing is performed within submeshes
of dimension d� f � After phase � we can no longer as�
sume that all PUs initially hold only one packet� There�
fore� and for the sake of generality� it is better to consider
the l�k routing problem from the start�

For routing l�k distributions on d�dimensional meshes
�l��l�k		��d �k �n�d is a lower bound� This can be seen
as in the proof of Lemma �� This gives us an analogue
of Corollary ��

Corollary � When l � o�k	� then routing l�k dis�
tributions on d�dimensional meshes requires at least
��� o��		 � l��d � k����d � n�d steps�

We describe Phase � of the algorithm �corresponding
to Step �� � � � � Step � of largekroute	�

�� Sort the packets on the indices of their destina�
tions�

	� Make d copies of the routing information of each
packet� Give color � through d� � to the copies� For
a packet with destination Pj������jd��

� the copy with
color x� � � x � d� �� is routed along axis x to the
�d� �	�dimensional hyperplane of its destination�


� For all � � x � d��� � � l � n��� determine the

number r
�x

l of packets of color x in the hyperplane

��� � � � � �� l� �� � � �� �	� normal to axis x� and broadcast
it within the hyperplane�

�� For all � � x � d � �� � � l � n � �� send r
�x

l

along axis x� A PU holding a packet with destination

Pj������jd��
� picks out r

��

j�
� � � � � r

�d��

jd��

�

�� A packet p with destination Pj������jd��
resides in

Pm� � � m � nd � �� For � � x � d � �� let ��x
 �

�� � r
�x

jx

�
Pd��

y�� r
�y

jy

	��d � �	� Let x be the smallest

number such that m mod ���
Px

y�� �
�x
	 � �� Give p

color x�


� Sort the packets of each color� The packets with
color x are sorted on jx with respect to an axis x
major indexing scheme�

�� Route the packets of color x along axis x to the
d� ��dimensional hyperplanes of their destinations�

Step � and Step � together constitute a deterministic
equivalent of the randomization statement� �give color x

to p with probability �x � Step � is the translation
of randomizing packets with color x in the hyperplane
normal to axis x� The subsequent phases are performed
analogously within submeshes of decreasing dimension�

Three�Dimensional Meshes� We analyze the algo�
rithm for routing l�k distributions on three�dimensional
meshes� And prove an analogue of Lemma ���

Lemma �� After Step � there are less than ������� �
l��� � k��� � �	 � n� packets� that have to move in any
two�dimensional hyperplane�

Proof� Consider S
��

� � the number of packets that has

to move through ��� �� �	� S
��

� � Pi�jdai�j�� � ���


i�j��e �
n� �

P
i�j ai�j�� � �r��
i � r

��

j 	��r��
i � r

��

j � r

��

� 	��� Let

ai�j�� be the number of packets with destination in Pi�j���

ai�j�� � k� r
��

i � r

��

j � k � n�� Pi�j ai�j�� � r

��

� � and

P
i r

��

i �
P

j r
��

j � l � n�� Consider S

��

� for �xed r

��

� �

Analogously to the proof of Lemma �� Sj is maximized

if ai�j�� � k for r��
l �k pairs �i� j	 forming a square� and

r
��

i � r

��

j � l � �k�r��
� 	��� � n� for these i and j� This

gives

S
��

� � n� �

r
��

�

k
� k
�
� � � l � �k�r��
� 	��� � n�
r
��

� � � � l � �k�r��
� 	��� � n�

� n� �
l � k��� � n� � r��
�

� � l � k��� � n� � r
��

�

���
�

Di�erentiation shows that the maximum is assumed for
r
��

� � ���� � l��� � k��� � n�� For this r��
� we �nd S

��

� �

n� � ������ � l��� � k��� � n�� �

So� after redistributing the packets within the two�
dimensional submeshes� we may assume that a PU holds
at most ������ � l��� � k���� � packets� For the resulting
l��k routing problem we apply Lemma ��� This gives

Theorem �� l�k distributions can be routed on a three�
dimensional n�n�n mesh in ��������� � l��� �k��� �n�
O�l��� � k��� � n	 steps�
Proof� A one�dimensional hyperplane lies on the inter�
section of two two�dimensional hyperplanes� Applying
Lemma �� with l� � ������ � l��� �k���� we �nd that from
each of them at most ������� � l��� �k�����	��� �k��� �n��
packets are routed to the one�dimensional hyperplane�
�

��������� � ����� Hence� for l small in comparison to
k� the algorithm takes less than twice as much steps as
given by the lower bound of Corollary ��

The given analysis is not tight� the maximum was
computed for each phase independently� requiring dif�

ferent values of r��
i and di�erent distributions of desti�
nations to be achieved� Furthermore� in the �nal result

��



we simply doubled the number of packets moving in a
one�dimensional hyperplane because it receives contri�
butions from both planes on which it lies� The algo�
rithm can easily be modi�ed such that the contributions
from both planes are taken into account� This gives a
reduction of the constant of the routing time� We be�
lieve that after this modi�cation a precise analysis will
demonstrate that the algorithm is near�optimal�

The Case d � �� For the analysis of the algo�
rithm for higher dimensions we must develop step�by�
step Lemma �� and Theorem �� for higher and higher
dimensions� The case d � � encompasses all necessary
details� for larger d there are no special problems�

	 Short Queue k
k Routing

The k�k routing problem has been solved near�optimally

��� �
 but these algorithms require working queues of
size ��k	� Considering application as a subroutine for
hot�potato worm�hole routing� we would like to route k�
k distributions with Q � �� Namely� next to Theorem ��
corollary ��� of 
��
 opens the way to even faster hot�
potato worm�hole routing�

Theorem �	 If there is a k�k routing algorithm for the
n � n mesh in which the routing decisions are made
locally� which requires T �k� n	 steps and has maximal
working queue size at most four� then there is a hot�
potato worm�hole routing algorithm for worms of maxi�
mal length k � n��� requiring O�k � T �k� n�

p
k		 steps�

When every PU is the origin and destination of
at most k packets� then the bipartite graph of all
source!destination pairs has maximal degree k� As a
corollary to Hall�s matching theorem 
��� Th� ����
� this
implies that the graph has an edge�coloring with k col�
ors� The source!destination pairs corresponding to each
of these colors constitute a �partial	 permutation� And a
permutation can be routed in O�n	 steps and with work�
ing queue size two� Hence� if such a k�coloring would be
given� then it is trivial to route k�k distributions with
T � O�k � n	 and working queue size two� Particularly
this applies to the situation in which every PU holds
k packets with the same destination� So� the problem
is to split the set of packets in k subsets for which the
source!destination pairs approximate ��� distributions
on�line� A bad splitting might result in k ��k routing
problems� taking k��� � n steps in total� On the other
hand� for a O�k �n	 routing time� we do not need a per�
fect splitting at all� we will show that it su�ces to have
a splitting into O�k	 slices� which are de�ned as follows�

De�nition 
 The mesh is divided regularly in n�
p
k �

n�
p
k submeshes� M�� � � � �Mk��� A subset of the pack�

ets S is a slice if �fp � Sj destination p in Msg �
n��k� for all � � s � k � ��

The packets of a slice can be routed in O�n	 steps to
their destinations as follows�

Algorithm sliceroute
�� Sort all packets on the indices of their destination
submeshes�

	� Route the packet with rank r to the PU in its
destination submesh with index r mod �n��k	�


� Route the packets within the submeshes to their
destinations�

Lemma �� For k � O�n	� sliceroute can be per�
formed in O�n	 steps with working queue size three�

Proof� Applying the algorithm of 
��
� Step � is per�
formed in � � n � o�n	 steps and with working queue
size two� Step � is a partial permutation routing be�
cause of the de�nition of a slice� By Lemma �� it can
be performed in � � n � o�n	 steps and with working
queue size two� Step � is a �partial	 ��k routing in
n�
p
k � n�

p
k meshes� By Theorem � it can be per�

formed in ��
p
� �n�� �n�

p
k�O�k��� �n���	 steps with

working queue size three� �

	�� A Randomized Algorithm

A k�k distribution can easily be split into � � k slices by
the following randomized algorithm�

Algorithm randcolor�
for all PUs pardo

generate a random injection
I � f�� � � � � k � �g 	 f�� � � � � � � k � �g�
for all � � h � k � � do give color I�h	 to packet h�

randcolor does not take a single routing step�

Lemma �
 The packets with color c� � � c � � � k� ��
constitute a slice with high probability�

Proof� The expected number of packets with color c
with destination in Ms is n���� � k	� With Cherno�
bounds it is easy to show that then the actual number of
these packets is smaller than n��k with high probability�
�

Now k�k distributions can be routed by �rst applying
randcolor and then � � k times sliceroute�

Theorem �
 By a randomized algorithm k�k routing
can be performed in O�k�n	 time and with working queue
size three�

Combining Theorem �� and Theorem �� gives

Theorem �� By a randomized algorithm� hot�potato
worm�hole routing for worms of maximal length k can
be performed in O�k��� � n	 steps� The result holds with
high probability� and for all k � n����

��



	�� A Deterministic Algorithm

It appears impossible to perform a deterministical col�
oring without spreading information� Therefore� in this
section we slightly extend the assumptions of the model�

Assumption � For packets in the working queues


 the keys can be checked and compared



 computational operations can be performed on a
data �eld



 the information in the data �eld can be �read��

The last two points are knew� They imply that a packet
can be used to gather information about the distribution
of packets�

Under Assumption �� the packets within row i� � �
i � n� �� with destination in one of the n�

p
k � n�

p
k

submeshes Ms� � � s � k � �� can be colored by the
algorithm hereafter� The PUs in this row are denoted
Pj� � � j � n � �� Let xj be the number of packets in

Pj with destination in Ms� and let Xj �
Pj

h�� xh be
their pre�x sum�

Algorithm detcolor�j�

�� Release from P� a packet p with key value � and
with destination Pn��� In p we monitor Xj �

	� A packet that has rank r among the packets in Pj
going toMs is attributed color �Xj���r	 mod ���k	�

� Discard p in Pn���

For coloring all packets in a row� we can start k copies
of detcolor one after the other� Thus� all packets can
be colored in k � n � � steps� with working queue size
one�

Lemma �� If k � n��� then the packets with color c�
� � c � � � k � �� constitute a slice�

Proof� Let X�i� s	 � Xn���i� s	 be the number of
packets in row i with destination in Ms� In total at
most

Pn��
i�� dX�i� s	��� � k	e � n �

P
X�i� s	��� � k	 �

n � n���� � k	 of these packets get color c� for any c� If
k � n��� then n� n���� � k	 � n��k� �

A small problem with the constructed coloring is that
a PU may hold several packets with the same color�
However� this is not serious�

Lemma �� If k � n��� then there are at most n pack�
ets with color c� � � c � � � k � �� in any row�

Proof� In total at most
Pk��

s��dX�i� s	��� � k	e � k �P
X�i� s	��� � k	 � k � k � n��� � k	 � k � n�� of the

packets in row i get color c� for any c� �

Corollary � The packets with color c� � � c � � �k���
can be redistributed within their rows such that every PU
holds at most one packet of color c� This takes � �n steps
and working queue size one�

Proof� By Assumption �� within every row the rank
of the packets with color c can be determined in n � �
steps� Then the packet with rank r moves to Pr� If it
has to travel d steps� it starts to move after � � n � d
steps� �

Now k�k distributions can be routed by �rst applying
detcolor and then � � k times sliceroute preceded
by the redistribution step�

Theorem �� Under Assumption �� k�k routing can be
performed by a deterministic algorithm in O�k �n	 time
and with working queue size three� for all k � n���

Proof� Use Lemma ��� Lemma �� and Corollary �� �

Combining Theorem �� and Theorem �� gives

Theorem �
 Under Assumption �� hot�potato worm�
hole routing for worms of maximal length k � n��� can
be performed in O�k��� � n	 steps�
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� Conclusion

We analyzed the ��k routing problem� and presented a
deterministic near�optimal algorithm for it� We also pre�
sented an algorithm with very short working queue size�
which is useful as a subroutine for hot�potato worm�hole
routing� The results were extended to l�k routing and
for routing on higher dimensional meshes� Finally we
considered k�k routing with short working queues�

We developed several ideas that may be further ex�
ploited� The most important ideas are� ��	 the infor�
mation gathering� which can be used for coloring the
packets in an intelligent way� ��	 a deterministic selec�
tion procedure based on local sorting� ��	 routing pack�
ets along a Hamiltonian cycle� by which a ��k problem
can be reduced to repeatedly routing permutations�
Future research might consider dynamic variants of

the problem and the algorithms� Somehow one must
assure that the number of active packets remains n��
This is the case when it is assumed that only a PU that
received a packet generates a new packet� Our near�
optimal time algorithm can be adapted to this model�

��



It seems more di�cult to handle dynamically gener�
ated packets in an algorithm with very short working
queues� Another open problem is whether deterministic
k�k routing with short working queues can be performed
without any assumptions�
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