Deterministic 1-k Routing on Meshes

With Applications to Worm-Hole Routing

Jop F. Sibeyn™

Abstract

In 1-k routing each of the n® processing units of an n x
n mesh connected computer initially holds 1 packet which
must be routed such that any processor is the destination
of at most k packets. This problem reflects practical desire
for routing better than the popular routing of permutations.
1-k routing also has implications for hot-potato worm-hole
routing, which is of great importance for real world systems.

We present a near-optimal deterministic algorithm run-
ning in vk - n/2 + O(n) steps. We give a second algo-
rithm with slightly worse routing time but working queue
size three. Applying this algorithm considerably reduces the
routing time of hot-potato worm-hole routing.

Non-trivial extensions are given to the general I-k routing
problem and for routing on higher dimensional meshes. Fi-
nally we show that k-k routing can be performed in O(k -n)
steps with working queue size four. Hereby the hot-potato
worm-hole routing problem can be solved in O(k3/2 - n)
steps.

Keywords: theory of parallel and distributed
computation, meshes, packet routing, hot-potato
worm-hole routing.

1 Introduction

Parallel computation is an area of intensive development
during the last decade. Various models for parallel ma-
chines have been designed. Omne of the simplest and
therefore best studied machines with a fixed intercon-
nection network, is the MIMD mesh. In this model the
processing units, PUs, form an array of size n X n and
are connected by a two-dimensional grid of communica-
tion links. In Section 2.1 the model is described in more
detail.

Generally, the problems concerning the exchange of
information packets among the PUs are called rout-
ing problems. Here the destinations of the packets
are known beforehand. The task is to send each packet
to its destination such that at most one packet passes

*Max-Planck-Institut fliir Informatik, Im Stadtwald, 66123
Saarbriicken, Germany. E-mail: jopsi@mpi-sb.mpg.de. This re-
search was partially supported by EC Cooperative Action IC-1000
(Project ALTEC: Algorithms for Future Technologies).

T Wilhelm-Schickard-Institut fiir Informatik, Universitat Tii-
bingen, Sand 13, 72076 Tibingen, Germany.
mk@informatik.uni-tuebingen.de

E-mail:

Michael Kaufmann'

through any wire during a single step. The quality of
a routing algorithm is determined by (1) its running
time, i.e., the maximum time a packet may need to
reach its destination, and (2) its queue length, which
is defined to be the maximum number of packets any
PU may have to store during the routing.

A special case of the routing problem is permuta-
tion routing. In permutation routing, each PU is the
origin of at most one packet and each PU is the desti-
nation of at most one packet. Permutation routing has
been considered extensively. Optimal randomized and
deterministic algorithms were found [18, 13, 2].

When the size of the packets is so large that they can-
not be transferred over a connection in a single step, the
packets have to be split into several flits. The routing
of these flits is considered in the k-k routing prob-
lem: each PU is assumed to send and receive at most
k packets. If the flits are routed independently of each
other we speak of multi-packet routing. Multi-packet
routing is also important when the PUs have to route
packets to several destinations. Multi-packet routing al-
gorithms [12, 8, 11, 9] solve this task much faster than
routing the packets one-by-one. Alternatively, the flits
can be routed as a kind of worm such that consecu-
tive flits of a packet reside in adjacent PUs during all
steps of the routing: cut-through routing [8]. If there
is the additional condition that the worms may be ex-
panded and contracted only once, then this variant is
called worm-hole routing [6, 15]. Unlike the other
more theoretical models, worm-hole routing has direct
applications in many parallel machines [1, 16, 20, 3].

We consider an original variant of the routing prob-
lem: the routing of 1-k distributions, under which
every PU is sending at most one packet, but may be the
destination of up to k packets. 1-k routing reflects
practical purposes better than the routing of permu-
tations: if the PUs are working independently of each
other and generate packets that have to be transferred
to other PUs, then it is unrealistical to assume that ev-
ery PU is the destination of at most one packet. The
parameter k, 1 < k < n%, need not to be known by
the PUs, but is needed for stating the complexity of
the problem. The 1-k routing problem also has impli-
cations for hot-potato worm-hole routing. Hot-potato
routing is a routing paradigm in which packets may

never be queued at a PU but have to keep moving at
all times until they reach their destination [21, 5]. Like
worm-hole routing, this model is used in many systems
[7, 22]. In a recent paper of Newman and Schuster [15]
it is demonstrated that under a light condition any effi-
cient 1-k routing algorithm with working queue size at
most four is useful as a subroutine for the hot-potato
worm-hole routing problem. As far as we know we are
the first to perform a serious analysis of the 1-k routing
problem for meshes. For certain expander networks, the
related I-k routing problem has been studied in [17].

In our first algorithm (Section 3 and Section 4) a
packet is routed either row-first: along the row to its
destination column and then along this column to its
destination; or column-first: first along the column
and then along the row. The central point is the de-
cision which packets will be routed row-first and which
packets will be routed column-first. Straight-forward
strategies result in an algorithm requiring Q(% - n) steps.
A connection-availability argument gives a lower bound
of Vk - n/2. The essential idea which makes possible
the break-through to a O(vk - n) time algorithm, is to
count the numbers of packets with destination in every
row and column, and to make the decision on basis of
these data: if many packets are going to a row, it is bet-
ter to route most of the packets row-first. Most easily
this idea is worked out by tossing a biased coin, but with
some extra routing steps we can do it deterministically
as well. An intricate algorithm has close to optimal per-
formance, vk -n/2+4-n steps, for k = o(n'/?), a much
simpler algorithm works well for general £ and requires
only slightly more steps. The queues do not get longer
than 2 - k 4+ 2 packets. Without modification the ba-
sic algorithm can be applied to the general I-k routing
problem. This is the problem of routing /-k distribu-
tions, distributions of packets such that every PU sends
at most | packets and receives at most k£ packets. This
problem is interesting because of its generality but also
because it appears as a subproblem to the routing of 1-
k distributions on higher dimensional meshes. We show
that the algorithm is near-optimal when ! = o(k).

It turns out (Section 5) that under a natural condition
I-k distributions can be routed in O(!-n) time for [upto
n-k. Informally, the condition is that the ‘density of the
destinations increases gradually’, excluding large areas
in which all PUs receive k packets.

In our second algorithm (Section 6) we aim for a work-
ing queue size four or less, in order to create a subroutine
for the hot-potato worm-hole routing algorithm of [15].
This is achieved with routing time 5-\/l€-n—|—o(\/é-n). In
the algorithm the mesh is subdivided into & squares of
size n/v/k xn/v/k and the packets are redistributed such
that every square holds at most one packet for each des-
tination. Then these squares are rotated along a Hamil-
tonian cycle and after each n/\/E steps the packets that

reached their destination square are routed to their des-
tination. Performing the algorithm with a subdivision
of the mesh into k/2 squares, we can reduce the routing
time to 6/+/2-vk-n+0(v/k-n). A theorem of [15] implies
that using either of these algorithms as a subroutine,
the hot-potato worm-hole routing problem for worms
of maximal length k can be solved in O(k? - n) steps,
coming close to the obvious lower bound of Q(% - n).

As an extension we consider the routing of 1-k dis-
tributions on d-dimensional meshes (Section 7). For
d = 3, the algorithm requires less than twice as much
as the lower bound. Also the algorithm for routing 1-%
distributions with short working queues is generalized.
Compared to the lower bound, the algorithm requires
an additional factor of O(d).

Finally (Section 8) we apply the new techniques to
the problem of k-k routing with short queues. With a
randomaized algorithm this is rather easy. With a minor
extension of the model, k-k distributions can even be
routed with a deterministic algorithm in O(k - n) steps
and with working queue size four. This reduces the rout-
ing time for the hot-potato worm-hole routing problem

to (’)(k3/2 -n).

2 Preliminaries

Definition 1 We call an algorithm near-optimal if the
leading term of its runtime matches the leading term of
a lower bound.

2.1 Machine Model

As computer model we assume a two-dimensional n X
n MIMD mesh without wrap-around connections. We
refer to this machine simply by mesh. It consists of
n? PUs, each of which is connected to (at most) four
other PUs by a regular square grid. The PU at position
(4,7) is referred to by P; ;, and (0,0) is in the lower-left
corner. For n = 4 the mesh can be represented by

0,3—1,312,3-13,3

0,21,212,21-13,2

0,11,112,113,1

0,0—1,0—2,03,0

The PUs are synchronized. In a single step each PU
can perform arbitrary internal computation and com-
municate with all its neighbors. The only restriction is
that each PU can send and receive at most one packet of
bounded length per edge and per step. Thus a PU may
send and receive during a step (at most) four packets.

Neglecting the computation time is motivated by the
fact that generally computation steps can be performed
much faster than routing steps.

Each PU has a working queue, in which packets are
stored temporarily, and an internal queue in which
packets are stored that do not yet move or that have
reached their destination. Only packets in the work-
ing queue can be transferred to a neighboring PU. On
the packets in the internal queues any operation can
be performed and new packets can generated. The op-
erations that can be performed on the packets in the
working queues are limited to checking and comparing
their keys. This allows sorting and routing operations.
For a 1-k routing problem the internal queues have size
k. The size of the working queue @ might become much
larger but with good management it can be kept small,
O(k) or even three.

2.2 Indexing Schemes

Next to the popular indexing schemes, row-major
column-major and the snake-like variants of these, we
use some less common schemes.

We define a k-layer column-major scheme (also
known as ‘layer-first scheme’). Let P be a PU of an
n X n mesh, with index ¢ with respect to the column-
major scheme. Then in a k-layer column-major scheme
P has k indices: i+ j-n%, 0< j < k — 1. That is, P
gets the indices of the PUs that would stand over it in
an n X n X k mesh. This indexing scheme is useful for
specifying the destinations of packets when performing
k-k sorting. We illustrate it with an example. In a 4-
layer scheme on a 3 x 3 mesh, the PUs have the following
indices:

11(29|14(32|17|35
2 (20| 5 (23| 8 |26
10|28]13|31]|16|34
1(19| 4 |22| 7 |25
9 (27]|12(30(15|33
0 (18] 3 |21]|6 |24

Under a blocked scheme, the mesh is regularly sub-
divided into squares, and the index of a PU is consti-
tuted firstly by the index of its square and secondly by
its index within this square. Under a blocked snake-
like row-major scheme, the blocks are indexed by
the snake-like row-major scheme and the indexing of
the blocks is left unspecified. As an example we give
the indexing that is obtained with 2 x 2 blocks which
are indexed by the row-major scheme in a 6 x 6 mesh:

26(27|30|31|34|35
24|25]28|29|32(33
2223181914 |15
20(21|16|17|12|13
213|6|7]10(11
0|1]4(5]8]|9

2.3 Basics of Routing

We assume that a packet not only contains some mes-
sage but also the information that is necessary for rout-
ing the packet to its destination.

We speak of edge contention when several pack-
ets residing in a PU have to be routed over the same
connection. Contentions are resolved using a priority
scheme. The farthest-first strategy gives priority to
the packet that has to go farthest.

For the analysis of the routing on higher dimen-
sional meshes we need the ‘routing lemma’ for rout-
ing a distribution of packets on a one dimensional mesh
[8]. Define for a given distribution of packets over the
PUs hyigne(%, 7) = #4{ packets passing from left to right
through both P; and P; }, where P; denotes the PU with
index ¢. Define st (7,) analogously.

Lemma 1 Routing a distribution of packets on a linear
array with n PUs, using the farthest-first strategy, takes
max; < j{max{hrign(%, 7), hiete(4, %)} + 7 — @ — 1} steps.
This bound 1s sharp.

2.4 Lower Bounds

Considering the maximal distance a packet may have
to travel, it follows that d - n — d is a lower bound for
routing on d dimensional meshes: the distance bound.
For routing k-k distributions on a mesh k- n/2 steps are
required when all packets residing in the lower half of the
mesh have destination in the upper half: the bisection
bound. We generalize these bounds to the {-k routing
problem.

Considering the number of packets that may have to
go over a limited number of connections, we find the
following lower bounds for routing I-k distributions:

Lemma 2 The -k routing problem requires at least

max(’ - (pLe)P 12, B, 4 (ghg) 2} otepe

Proof: For the first bound we consider the following
subdivision of the mesh:

B @@ +1)t72

A

Suppose that every PU in A holds ! packets with desti-
nation in B. It is easy to check that these packets just
fit into B and that routing them across the boundary of
B takes k/2 - (I/(1 + k))*/? - n steps.

The second bound is a generalization of the bisection
bound. Consider the following subdivision of the mesh:

B Yk +1)-n

——

A E/(k+1)-n

If all PUs in A hold ! packets with destination in B, then
it takes for these [- k/(k + 1) -n® packets - k/(k+1)-n
steps to pass across the boundary between A and B.
The third bound is obtained analogously to the first,
considering the time that is required when all PUs of a
(k/(k+1))%-nx (k/(k+1))*/? -n corner send [packets
to the PUs outside this corner. ad

Which of the bounds in Lemma 2 is strongest, de-
pends on the relation between [and k: the first bound is
strongest when [< k/3, the second when k/3 <1 < 3-k,
and the third when [> 3 - k. When [= &, the second
bound gives k-n/2, the bisection bound for the k-k rout-
ing problem. In the extreme cases the bound becomes
very simple:

Corollary 1 When | = o(k), or k = o(l), then routing
I-k distributions requires at least (1 —o(1)) -1 -k-n/2
steps.

3 A Randomized Algorithm

One might think that the following algorithm has good
performance:

Send all packets to a random destination;
route a packet to its destination:

with probability 1/2 row-first,

with probability 1/2 column-first.

However, algorithms of this type require Q(k-n) time
for a distribution of packets under which all packets have
destination in the highest n/k rows. Such a distribution
can be routed in O(n) steps when all packets are routed
row-first. This illustrates the utmost importance of the
decision along which axis a packet is routed first. Clearly
such a decision cannot be based only on information that
is available locally: the 1-£ routing problem is essentially
more difficult than the permutation routing problem, for
which the greedy algorithm has optimal routing time.

3.1 Algorithm

We describe a simple randomized algorithm for the 1-%
routing problem that requires \/E-n/Z—i—o(\/E-n) routing
steps. It proceeds as follows:

Algorithm RANDROUTE;
1. for every PU F; ; with packet p pardo
make two copies of the routing information of p;

send one copy along row 2 to its dest. column,
send one copy along column j to its dest. row;
2. for every i, j, 0 < 4,5 <n —1, pardo
determine the number r; of packets that have to
move along row 2, and broadcast r; within row g,
determine the number ¢; of packets that have to
move along col ¢, and broadcast ¢; within col g;
discard all copies of packets,
send 7; along the column to all PUs,
send c¢; along the row to all PUs;
3. for every PU P;; with packet p pardo
if the destination of p is Py j/, then
take r;; and c;s out of the stream;
color p white with probability r;//(ri + ¢;/);
if p is not colored white then
color p black;
4. for all packets p pardo
if p is white then

a randomize p within its column;
b. route p along the row to its dest. column;
c. route p along the column to its destination

else proceed analogously.

Randomizing a packet p within its column means that
the packet is routed to a randomly and uniformly se-
lected position within its column. The randomization is
intended to bound the size of the queues.

3.2 Analysis

In the following analysis we do not go into the details
of the randomization. The purpose of this section is to
express the underlying ideas and to indicate that the
performance is near-optimal.

It is easy to implement Step 1 and Step 2 to run in
3 -n — 3 steps. Step 4 consists of three phases of one-
dimensional routing. During phase 4.a the packets are
not delaying each other and they all reach the selected
PU within n — 1 steps. During phase 4.b a delay of
o(n) may occur because a PU may hold more than one
packet. The delay during phase 4.c is of a different na-
ture and may be much larger than the delay in phase 4.b.
It depends on the distribution of the packets over the
colors.

Lemma 3 The number of packets that have to move
within a row or column during phase 4.c 15 bounded by

VE-n/2+ O((Vk - n-logn)t/?).

Proof: Let a;; be the number of packets with des-
tination in P; ;. Let z; = E]' a; ;- ¢;/(ri + ¢;), and
s; = aij-ri/(ri+¢;). ¢j/(ri+¢c;) is the probability
that a packet with destination F; ; is colored black, and
ri/(r; + ¢;) is the probability that a packet is colored
white. Hence z;, s; respectively, equals the expected
number of packets that will move through row z, col-
umn j respectively, during phase 4.c. Without loss of

generality we may concentrate on s;. 0 < a;; <k, 0 <
ri < k-n. Further, Y7 a;j = ¢;, and Y1 i = n?.
Considering the functionality of s; for fixed c;, taking
into account that the sum of the »; cannot be chosen
arbitrarily large, we find that in order to maximize s;
the a; ; must be concentrated in a few rows: a;; = k
for c;/k values of 4, and r; = k - n?/c; for these i. In
this case s; = ¢; - k - n*/(k - n* 4 ¢}). Differentiation
shows that the maximum of this function is assumed for
¢ = Vk - n. For this Cj, 8§ = Vk- n/2. Applying Cher-
noff bounds (as presented e.g. in [4]), the result follows.
O

By the randomization the packets are nicely dis-
tributed within their row or column at the beginning
of phase 4.c. Now, using Lemma 1, we can show that
phase 4.c takes at most \/En/Z + (’)((\/E-n-log n)l/z)
steps. Thus we get

Theorem 1 On the n X n mesh, 1-k distributions can
be routed in Vk-n/2+5-n+ O((Vk-n-logn)'/?) steps

by a randomazed algorithm.

Notice that RANDROUTE works correctly without know-
ing k, and that Theorem 1 holds for all values of k.

4 A Deterministic Algorithm

Randomization enables us to formulate RANDROUTE
concisely and without loosing many routing steps. How-
ever, both steps involving randomization can be re-
placed by deterministic steps with the same effect.

At first glance coloring the packets deterministically
appears to be difficult. However, this can be achieved by
sorting the packets on their destination PU and coloring
for every destination regularly interspaced packets white
and black. The sorting can be performed in 2 -n + o(n)
steps. By rounding errors at most n/2 extra packets
may move through any row or column during the last
routing phase (compared to the O((vk - n-log n)*/?) of
the randomized algorithm).

The randomization of the packets can be replaced by
sorting the packets that are going to be routed row-
first (the white packets) in column-major order, and the
packets that are going to be routed column-first (the
black packets) in row-major order. This idea goes back
on Kunde [10].

An additional idea, by which the routing time can be
reduced, is to divide the mesh regularly in n’ x n’ sub-
meshes and to route the packets first to any destination
within their destination squares. From there the pack-
ets are routed to their destinations. n' rows (columns)
spanning n/n' submeshes are called a bundle of rows
(columns).

4.1 Algorithm

In the algorithm we take care that the lengths of the
queues never exceed O(k). For the sake of a simple
exposition we choose n' = \/n.

Algorithm DETROUTE
1. Count in every submesh how many packets are
going to any bundle of rows (columns), and store the
number going to row (column) bundle 7 in the PU at
position (%,4). Perform a routing along row (column)
and column (row) in order to obtain the total number
7; (¢;) of packets going to row (column) bundle 4, for
all 0 <7 < 4/n—1, in position (¢,%) of all submeshes.

2. Sort the packets on the indices of their destination
submeshes.

3. The numbers r; and c; are broadcast within every
A/ X y/n submesh. A PU P, holding a packet p with
destination in submesh (%, j) picks 7; and ¢; out of the
stream. Let a; ; = 73 /(ri +¢;). If I mod (1/a; ;) < 1,
then p is colored white, else p is colored black.

4. Let m = n/vk. Divide the mesh in m x m
squares. Sort in each square the white (black) packets
in column-major (row-major) order on their destina-
tion column (row) bundles.

5. Route the white (black) packets along the row
(column) to the first PU in their destination column
(row) bundle holding less than %k + 1 white (black)
packets.

6. In every submesh, sort the white (black) packets
in row-major (column-major) order on their row (col-
umn) bundle.

7. Route the white (black) packets along the column
(row) to the first PU in their destination submesh
holding less than & + 1 white (black) packets.

8. Route the packets within the submeshes to their
destinations.

If the value of k£ is unknown, then in Step 4 we should
use some lower estimate of it, e.g. obtained from the
maximum of the »; and the c;.

4.2 Analysis

We analyze the correctness and the routing time of DE-
TROUTE. Step 1 takes 2-n+ O(y/n) steps. After Step 1,
the r; and ¢; are locally available in all submeshes.
Step 2 can be overlapped almost perfectly:

Lemma 4 Step 1 and Step 2, can be performed in
2-n+ O(n?3) steps.

Proof: During the routing of Step 1 only one out of
every 1/n connections is used. This means that most
connections can be used for Step 2. For the sorting we
use the near-optimal deterministic algorithm of [9]. O

The sorting in Step 2 is for rearranging the packets such
that the packets going to the same submesh stand in
positions with consecutive indices. Then, in Step 3 the
correct fractions of them can be selected. Notice that
Step 3 works in a distributed fashion without knowing
where the packets going to a certain submesh reside or
how many packets are going to a submesh. It seems
hard to compute these numbers. Step 4 is performed in
order to bound the queues at the end of Step 5.

Lemma 5 Step 8 takes O(y/n) steps; Step 4 takes
O(n/V'k) steps; and Step 5 takes n steps.

The most important point in the analysis is the proof of
the following analogue of Lemma 3:

Lemma 6 Step 5 can be performed correctly, t.e. no
PU holds more than k white (black) packets afterwards.
Step 5 takes O(k - +/n) steps. After Step 6 no column
(row) holds more than vk - n/2 + O(/n) white (black)
packets.

Proof: Denote the number of packets going to sub-
mesh (¢,7) by a;;. For S;, the number of packets
that will move through column bundle j, we now get
Si < Xilaig i/ (ri+¢j)] < Xy aig-mif (ri+cj) +/n.
As in the proof of Lemma 3 this gives that S; <
Vk -n32/2 + \/n. These packets are distributed over
at least m-/n PUs. Hence at most [k ++vk/n] = k+1
packets have to be stored in any PU. After the sort-
ing in Step 5 the S; packets are almost perfectly dis-
tributed over the 4/n columns of the bundle: at most
Vk -n/2 4 O(y/n) packets end in every column. O

Comparable to Lemma 6 but easier is

Lemma 7 Step 7 can be performed correctly in Vk -
n/2+n —n/vVk+ O(y/n) steps. Le. afterwards no PU
holds more than k+1 white (black) packets. Step 8 takes
O(k - 4/n) steps.

Proof: If S; assumes its maximum then the packets in
the column bundle j (that may have to go all to the
highest or lowest rows) are spread out over at least m
rows. Now Lemma 1 gives the maximum routing time.
By the sorting in Step 7 the packets going to a submesh
are well distributed over the columns. By ‘rounding
errors’ there may be in a column at most /n packets
too much. They can be spread out over the /n rows of
the destination submesh. Step 81is a (2 k+2)-k routing

in 4/n x 4/n meshes. The algorithm of [9] can be used.
O

Summing all routing times we find

Theorem 2 DETROUTE takes \/E-n/2—|—4-n—n/\/l€—|—
O(k - 4/n) steps. The size of the queues 1is bounded by
2-k+2.

Corollary 2 For k = o(n'/®), DETROUTE takes less
than Vk - n/2+4-n steps.

4.3 Large k

Corollary 2 expresses that our choice n’ = 4/n is partic-
ularly good for k = o(n!/3). For k = n*, 1/3 < a < 2,
the additive term can be bounded to o(n) by taking
n' = nl/2-2/% However, for these k we are willing to
spend O(n) extra steps in order to obtain a much sim-
pler algorithm:

Algorithm LARGEKROUTE

1. Sort the packets on the indices of their destina-
tions.

2. Make two copies of the routing information. Send
one copy to the destination row and one to the des-
tination column. Count the copies within rows and
columns. Broadcast the numbers r; and ¢; back. A
PU P, with a packet going to P; ; picks out »; and c;.
Let a; ; = ri/(ri + ¢;). If hmod (1/e ;) < 1, then p
is colored white, else p is colored black.

3. Sort the white (black) packets in column-major

(row-major) order on their destination columns
(rows).

4. Route the white (black) packets to their destina-
tion columns (rows).

5. Route the white (black) packets along the columns
(rows) to their destinations,

Analogously to the lemmas of the previous section we
can prove

Lemma 8 Step 1 takes less than 3-n steps; Step 2 takes
3 -n steps; Step 8 takes 6 -n steps; Step 4 takes n steps;
Step 5 takes vk -n/2 +n steps.

Theorem 3 LARGEKROUTE routes 1-k permutations in
\/E-n/Z + 14 - n, for all k. The size of the queues 1s
bounded by 2 -k + 2.

We believe that by its simplicity and its generality
LARGEKROUTE is a very practical algorithm.

4.4 [-k Routing

We show that LARGEKROUTE is also suited for routing
-k distributions for values of [that are small compared
to k.

Now Step 1, ..., Step 4 are {-I routing and sorting
procedures:

Lemma 9 Step 1, ..., Step 4, are performed in O(l-n)
steps.

More interesting is the following analogue of Lemma 6
and Lemma 3:

Lemma 10 During Step 5 less than /1 - k-n/2+n pack-
ets mowve through any row or column.

Proof: Without loss of generality we concentrate on Sj,
the number of the number of packets moving through
column j. Let a; ; be the number of packets with desti-
nationin P; ;. 0<a;; <k, 0<7r; <k-n, 2?2—01 a;; =
¢j, and 2?2—01 r; < 1-n?. Consider S; for fixed ¢;. Analo-
gously to the proof of Lemma 3, S; is maximized if a; ; =
k for ¢; /k values of ¢, and 7; = [- k-n?/c; for these 1. In
this case S; = ¢;-1-k-n?/(l-k-n’+c}). For¢; = Vi-kn
the maximum value equals S; = Vik- n/2. Additional
n packets may come from rounding errors. a

Theorem 4 Routing [-k distributions by LARGEKROU-
TE takes V1-k/2-n+ O(l-n) steps. The size of the
queues 15 bounded by 2 -k + 2.

Combining Corollary 1 and Theorem 4, gives

Corollary 3 LARGEKROUTE 1s near-optimal for rout-
ing I-k distributions with | = o(k).

The choice of an algorithm should be tuned in ac-
cordance with the ratio between ! and k: for [that
are smaller than ¥ LARGEKROUTE is taken; for [that
are comparable to k, the algorithm of [9] can be ap-
plied. And for [that are larger than k£ a ‘reversal’ of
LARGEKROUTE should be applied with a coloring of the
packets that depends on the initial distribution of the
packets.

5 Routing in Many Stages

We apply ideas of Section 4.4 to show that under certain,
often satisfied, conditions I-k routing can be performed
in O(I-n) steps, even for k that are much larger than I.
Throughout this section ! = o(k).

Assume that the destinations of the packets are dis-
tributed such that the density of the destinations in-
creases inversely proportional to the size of the consid-
ered submesh. Formally,

Definition 2 Consider an l-k routing problem on an
n X n mesh. Let a = (logk —log!)/logn. The problem
has continuously increasing density with parameter «, 1f
for any n/zxn/z submesh, 1 < z < n, there are at most
l-2%-(n/z)? packets with destination in this submesh.

This definition reflects a natural situation. E.g., a prob-
lem with continuously increasing density arises when all
PUs generate packets with a random destination.

The previously derived lower bounds no longer hold.
For an [-k routing problem we remain with the trivial
bound max{2-n—2,1-n/2,k}. Routing the packets to
their destination with LARGEKROUTE of Section 4.4 does
not exploit the particular properties of the distribution:
we would get a routing time of (1 4+ o(1)) - V1-k/2 - n.

Routing the packets in log n stages through smaller and
smaller submeshes to their destination requires only O({-
n) steps. This is the optimal time order. The algorithm
is simple:

Algorithm STAGEROUTE;
for ::=1to logn do
1. divide the mesh regularly in n/2¢ x n/2¢ submeshes;
2. route all packets to their destination submeshes;
3. redistribute the packets within the submeshes.

STAGEROUTE runs correctly without knowing «.

An important point is the implementation of the rout-
ing within the stages. An elegant algorithm guarantees
an optimal distribution of the packets within the sub-
meshes. We give a slightly more general description:
within an n; X ny mesh in which a PU holds at most k;
packets, the packets have to be routed to the ns x ns
submeshes of their destinations, and at most ks-n2 pack-
ets have destination in every submesh. The submeshes
are indexed from 0 through n?/nZ — 1, the PUs in every
submesh from 0 through n% — 1. We perform:

1. Sort all packets in the 11 Xn; mesh on the numbers
of their destination submeshes.

2. Route the packet with rank ¢ to the PU in its
destination submesh which has index i mod (n?/n2).

Clearly Step 11is a ki-k; sorting; Step 2 is a ki-kg rout-
ing. Thus, the routing in the stages can be performed
as fast as a kq-k3 routing, in v/k1 - k2/2-n1 + O(k1 - n1)
steps.

Theorem 5 If « < 1, then STAGEROUTE solves an l-
k routing problem with continuously increasing density
and parameter o, in O(l - n) routing steps.

Proof: In phase i the packets are routed within
n/2'71 x n/2'"! submeshes to the n/2° x n/2° sub-
meshes in which their destination lies. Because we
consider a routing problem with continuously increas-
ing density with parameter ¢, the initial density is at
most ! - 26-1@ and the final density is at most I - 2¢®,
Hence, phase i can be performed in (I-20:-1/2) /24 3.].
20-1ra).p /211 < (B41)-1-n /20~ (1=) for some pos-
itive constant 3. Thus, all phases together take at most
S (B 1) -1/ 26-D00) < (B11)/(1-21-2)-I-m.
O

6 Working Queue Size 3

Apart from its own importance, the 1-k routing problem
is interesting in view of Corollary 2.3 from [15]:

Theorem 6 If there s a 1-k routing algorithm for the
n X n mesh in which the routing decisions are made
locally, which requires T(k,n) steps and has mazimal
working queue size at most four, then there 1s a hot-
potato worm-hole routing algorithm for worms of mazr-
mal length k < n?/5 requiring O(k? - T(k,n/vk)) steps.

DETROUTE of Section 4.1 cannot be used because the
size of the working queues is too large. We would like
to have a 1-k routing algorithm with T'(k,n) = O(Vk -
n), and @ < 4. Once we have shown that this can be
achieved, we get

Theorem 7 Hot-potato worm-hole routing for worms
of mazimal length k < n?/5 can be performed in O(k*-n)
steps.

6.1 Algorithm

In contrast to the algorithm of the previous section
we do not strive for near-optimal performance, we are
mainly interested in achieving the right order of mag-
nitude of the routing time. We assume that the PUs
of the mesh are indexed in some suitable way from 0
through n? — 1, for example, in the snake-like row-major
order. Furthermore, the mesh is divided in k squares of
size n/\/E X n/\/E Each such square is indexed from
0 through n?/k — 1. The squares lie on a Hamiltonian
cycle. For example, when k£ = 36 as follows:

5 6 |15 16|25 26

4 |7 |14(17 |24 (27

318 |13|18]23]|28

2191121192229

1 (10 11|20 21|30

0 35 34 33 32 31

The algorithm proceeds as follows:

Algorithm SHORTQROUTE(k, n);
1. Sort the packets with respect to the index
of their destination PU;
2. route the packet in the PU with index ¢ to
the PU with index ¢ div k in square 7 mod k;
3. for s:=1to k do
a. the packets of a square that have not yet
reached their destination are routed as a block
to the next square of the Hamiltonian cycle;
b. route the packets that reached their
destination square to their final destination.

The essential step of SHORTQROUTE is Step 2. In this
step, the packets are distributed over the squares such
that there is at most one packet with a certain destina-
tion in each square. This implies that after each itera-
tion of Step 3.a, at most one packet has to be routed to

a destination in Step 3.b. Hence, the routing in Step 3.b
is a partial 1-1 routing within the squares.

For the routing and sorting operations in SHORT-
QROUTE we apply the algorithm of Schnorr and Shamir
[19]. By this algorithm, the packets of an nxn are sorted
in 3-n + O(n3*) steps in snake like order. This result
does not require that the connections act as compara-
tors when we accept queue size two. Partial permutation
routing with short queues is slightly harder:

Lemma 11 On an n X n mesh partial 1-1 routing can
be performed in 4 -n 4 O(n®*) steps and with working
queue size two.

Proof: We use a variant of the algorithm of Kunde [10].
The mesh is divided in n/2 x n/2 submeshes. In every
submesh the packets are sorted in snake-like column-
major order on their destination columns with the algo-
rithm of [19]. This takes 3-n/2 + O(n3/4) steps. In n/2
steps this is turned into a column-major order. Subse-
quently the packets are routed row-first in 2 - n steps to
their destinations. ad

Theorem 8 SHORTQROUTE routes 1-k permutations in
5-Vk-n46-n+ O3 n3*%) steps and with working
queue size three.

Proof: Step 3.a takes n/\/E steps, Step 3.b takes 4 -
n/vVk+ O((n/\/E)SM) steps. These steps are performed
k times. Step 1 and Step 2 take 3 - n + O(n%/*) each.
So, the whole algorithm requires 6 - n + O(n3/4) 4+ & -
(n/vVk +4-n/VE + O(n3*/k>®)) steps. The working
queue size of the routing in the single steps is two, but
during Step 3.b a PU may hold in addition a packet that
is waiting for being routed to the next square. ad

We conclude that for all £ = O(n?) the time for rout-
ing 1-k distributions is bounded by (’)(\/E -n). Hence
Theorem 7 holds.

Notice that in the algorithm we assumed that k& was
known. This assumption is not essential: after Step 1
the value of £ can be determined and broadcast to all
PUs in O(n) steps.

6.2 Improvement

A routing or sorting algorithm is called uni-axial, if in
each routing step either only horizontal or only vertical
connections are used. If a routing or sorting algorithm is
uni-axial two of these algorithms can be run in parallel
without interference: one for ‘white’ packets and one
for ‘black’ packets, which are routed orthogonally at all
times. This idea goes back on [12].

The sorting algorithm of Schnorr and Shamir [19]
which is used in SHORTQROUTE can be made uni-axial
with a loss of O(n3/*) steps. This opens the way to an

interesting reduction of the routing time: the mesh is
divided into k/2 squares of side length /2/k - n, and a
Hamiltonian cycle through these k/2 squares is chosen.
Step 2 and 3 of the algorithm are replaced by

2. Color the packet p in the PU with index 3
white if ¢ mod k < k/2, black otherwise;
route p to the PU with index i div k/2
in square ¢ mod k/2;
3. for s:=1to k/2 do
a. the packets of a square that have not yet
reached their destination are routed as a block
to the next square of the Hamiltonian cycle;
b. route the packets that reached their
destination square to their final destination,
white packets orthogonally to black packets.

The modified algorithm will be referred to as
SHORTQROUTE’.
For the routing in Step 3.b we need the following ana-

logue of Lemma 11:

Lemma 12 On an n X n mesh two partial 1-1 routings
can be performed in 5-n—|—(’)(n3/4) steps and with working
queue size two.

Proof: The white packets are sorted in 3 - n + O(n%/4)
steps in snake-like column-major order. Then they are
routed row-first. The black packets are routed orthog-
onally. Without further attention it might happen that
during the sorting two white and two black packets re-
side in a single PU at the same time. However, there
are two packets in a single PU only during the phases of
odd-even transposition sort. Hence, it is easy to arrange
that two white packets reside in the PUs P; ; with ¢ +
odd, only when two black packets reside in the PUs with
t 4 j even. a

Theorem 9 SHORTQROUTE' routes 1-k permutations
mn 6/\/5 VEk-n+6-n4+ (’)(k5/8 . n3/4) steps and with

working queue size three.

Proof: There are k/2 passes of the loop which take

(14 5)- \/2/k - n+ O((n/Vk)**) each. O

SHORTQROUTE' is slower than optimal by a factor
6/+/2 ~ 8.5. For higher-dimensional meshes exploiting
uni-axiality gives a larger gain (see Section 7.1).

7 Higher Dimensional Meshes

The algorithms LARGEKROUTE of Section 4.4 and
SHORTQROUTE’ of Section 6.2 are based on ideas that
are suited for generalization to other machines that have
some similarity with meshes. Also these ideas might be
applied successfully to related problems.

In this section we concentrate on the 1-k routing prob-
lem on d-dimensional n X - -- X n meshes, for which the
generalizations can be given most easily. Analogously
to Lemma 2 we can prove that this problem requires at
least max{d- (n — 1), k*~/%.n/d} steps.

7.1 Generalizing SHORTQROUTE'

For the algorithm SHORTQROUTE’ of Section 6.2 there is
a natural generalization: the mesh is subdivided in k/d
‘cubes’ of size (d/k)/%-n x --- x (d/k)*/%.n. Through
these cubes a Hamiltonian cycle is laid out. Slight mod-
ification of SHORTQROUTE’ suffices:

Algorithm HIGHDIMROUTE(k, 1, d);
1. Sort the packets with respect to
the index of their destination PU;
2. route a packet p in the PU with index ¢
to the PU with index ¢ div k/d in
cube ¢ mod k/d;
3. for s:=1to k/d do
a. the packets of a cube that have not yet
reached their destination are routed as a
block to the next cube of the Hamiltonian
cycle (from cube k/d — 1 to cube 0);
b. route the packets that reached their
destination cube to their destination.

For an efficient implementation of HIGHDIMROUTE it
is important to have

Lemma 13 For d-dimensional meshes a k-k sorting or
routing problem with k < d can be solved in O(d - n)
steps with mazimal queue size max{2,k}.

Proof: Particularly suited is the k-k sorting algorithm
of [9]. In this algorithm regular routing operations are
alternated with sorting operations on submeshes. The
algorithm is recursive. By the time the submeshes con-
sist of less than n PUs, the sorting can be finished by
an odd-even transposition sort of an embedded linear
array. O

Theorem 10 HIGHDIMROUTE routes 1-k distributions
on a d-dimensional mesh in O(d - n + k=14 . n) steps
with working queue size d + 1.

Proof: Step 1 and 2 take O(d - n) steps. Then we have
k/d passes of the loop in Step 3. Each pass involves a
routing part, requiring (d/k)'/¢ - n steps, and the solu-
tion of a 1-d routing problem in a d-dimensional mesh
with side length (d/k)'/¢.n. Using Lemma 13, we find
that this takes O(d - (d/k)*/? - n) steps. Summing and
noticing that d'/¢ < 2, we find the stated result. The
queue size equals one plus the d from Lemma 13. a

The routing time of HIGHDIMROUTE is a factor d
larger than the lower bound. For application of a 1-k
routing algorithm as subroutine of a worm-hole routing
algorithm we must have @ < 2. d. This requirement is
met.

7.2 Generalizing LARGEKROUTE

We give a generalization of LARGEKROUTE of Section 4.4
for routing on d-dimensional meshes. The algorithm
consists of d phases, Phase 0 through Phase d — 1. Dur-
ing Phase f the routing is performed within submeshes
of dimension d — f. After phase 0 we can no longer as-
sume that all PUs initially hold only one packet. There-
fore, and for the sake of generality, it is better to consider
the [-k routing problem from the start.

For routing /-k distributions on d-dimensional meshes
(1/(14+ k). k-n/d is a lower bound. This can be seen
as in the proof of Lemma 2. This gives us an analogue
of Corollary 1:

Corollary 4 When | = o(k), then routing l-k dis-
tributions on d-dimensional meshes requires at least

(1—o(1)) - 1M/ g1=Yd. n/d steps.

We describe Phase 0 of the algorithm (corresponding
to Step 1, ..., Step 4 of LARGEKROUTE):

1. Sort the packets on the indices of their destina-
tions.

2. Make d copies of the routing information of each
packet. Give color 0 through d — 1 to the copies. For
a packet with destination P;, .. ;, ,, the copy with
color z, 0 < z < d— 1, is routed along axis z to the
(d — 1)-dimensional hyperplane of its destination.

3. Foral 0 <z <d—1,0<[<n—1, determine the
number rl(x) of packets of color z in the hyperplane
(,...,%,1,%,...,%), normal to axis z, and broadcast
it within the hyperplane.

4. ForallOS:c§d—1,0§l§n—1,sendrl(x)
along axis z. A PU holding a packet with destination
(0) (d-1)

Pj, ... ja_., picks outr NOTURN

5. A packet p with destination P;, . ;,_ , resides in
P, 0<m<n®—1. For0<:c<d—1leta(“”)—
(1- (“”)/E;l é ;y))/(—1). Let @ be the smallest

number such that m mod (1/ E;:O al®) < 1. Give p
color .

6. Sort the packets of each color. The packets with
color z are sorted on j,; with respect to an axis =z
major indexing scheme.

7. Route the packets of color z along axis z to the

d — 1-dimensional hyperplanes of their destinations.

Step 1 and Step 5 together constitute a deterministic
equivalent of the randomization statement: “give color

10

to p with probability «,”. Step 6 is the translation
of randomizing packets with color z in the hyperplane
normal to axis . The subsequent phases are performed
analogously within submeshes of decreasing dimension.

Three-Dimensional Meshes. We analyze the algo-
rithm for routing I-k distributions on three-dimensional

meshes. And prove an analogue of Lemma 10:

Lemma 14 After Step 6 there are less than (42/3/6 -
12/3 . k13 4 1) - n? packets, that have to move in any
two-dimenstonal hyperplane.

Proof: Consider S(()z), the number of packets that has
to move through (¥, *, 0). S(()z) < Diglaigo- ag?j{(ﬂ <
n? 4+ 3, g () +) /(0 + 0D 4 1) /2. Let
a; j o be the number of packets with destination in P; ; o.
(0),7';1) < k- n? Ei,j a4 j0 = roz, and
(0) E r(l) < 1.n% Consider S(()z) for fixed r(()z).

Analogously to the proof of Lemma 3, S; is maximized

aijo < k, r

if a; j 0 = k for rl(z)/k pairs (%, 7) forming a square, and

rz(o) = r;l) =1. (lc/r(()z))l/2 - n3 for these ¢ and j. This
gives
() 9 r(()z) k 2.1 (lc/r(()z))l/2 -3
o0 < ME TS T @
ko2 p) p2.0. (k/rg?)1/2 .03
. l-kl/z-nS-r(()z)
= n 3/2°
2.1 k2. n3 —|—r(2)

Differentiation shows that the maximum is assumed for
() — — 42/3.12/3 . k1/3 . n2, For this r(()z) we find 5(()2) <
n +42/3/6-l2/3-k1/3-n2. O

So, after redistributing the packets within the two-
dimensional submeshes, we may assume that a PU holds
at most 42/3/6 - 12/3 . k/3 4 1 packets. For the resulting
-k routing problem we apply Lemma 10. This gives

Theorem 11 [-k distributions can be routed on a three-
dimensional n x n x n mesh in 41/3/61/2. /3 . }2/3.n 4
O(1?/3 . kY3 . n) steps.

Proof: A one-dimensional hyperplane lies on the inter-
section of two two-dimensional hyperplanes. Applying
Lemma 10 with I’ = 4%/3/6.1%/3. /3 we find that from
each of them at most (4%/3/6-12/3.k1/3 4 1)1/2. 1Y/ 2. /2
packets are routed to the one-dimensional hyperplane.
O

41/3/61/2 ~ 0.65. Hence, for ! small in comparison to
k, the algorithm takes less than twice as much steps as
given by the lower bound of Corollary 4.

The given analysis is not tight: the maximum was
computed for ea(;h) phase independently, requiring dif-

nations to be achleved. Furthermore, in the final result

ferent values of ;" and different distributions of desti-

we simply doubled the number of packets moving in a
one-dimensional hyperplane because it receives contri-
butions from both planes on which it lies. The algo-
rithm can easily be modified such that the contributions
from both planes are taken into account. This gives a
reduction of the constant of the routing time. We be-
lieve that after this modification a precise analysis will
demonstrate that the algorithm is near-optimal.

The Case d > 3. For the analysis of the algo-
rithm for higher dimensions we must develop step-by-
step Lemma 14 and Theorem 11 for higher and higher
dimensions. The case d = 3 encompasses all necessary
details, for larger d there are no special problems.

8 Short Queue k-k Routing

The k-k routing problem has been solved near-optimally
[11, 9] but these algorithms require working queues of
size (k). Considering application as a subroutine for
hot-potato worm-hole routing, we would like to route k-
k distributions with @ < 4. Namely, next to Theorem 6,
corollary 2.3 of [15] opens the way to even faster hot-
potato worm-hole routing:

Theorem 12 If there 15 a k-k routing algorithm for the
n X n mesh in which the routing decisions are made
locally, which requires T(k,n) steps and has mazimal
working queue size at most four, then there 1s a hot-
potato worm-hole routing algorithm for worms of mazr-

mal length k < n?/5 requiring O(k - T(k, n/\/E)) steps.

When every PU is the origin and destination of
at most k packets, then the bipartite graph of all
source/destination pairs has maximal degree k. As a
corollary to Hall’s matching theorem [14, Th. 1.17], this
implies that the graph has an edge-coloring with & col-
ors. The source/destination pairs corresponding to each
of these colors constitute a (partial) permutation. And a
permutation can be routed in O(n) steps and with work-
ing queue size two. Hence, if such a k-coloring would be
given, then it is trivial to route k-k distributions with
T = O(k - n) and working queue size two. Particularly
this applies to the situation in which every PU holds
k packets with the same destination. So, the problem
is to split the set of packets in k subsets for which the
source/destination pairs approximate 1-1 distributions
on-line. A bad splitting might result in & 1-k routing
problems, taking k3/2 - n steps in total. On the other
hand, for a O(k - n) routing time, we do not need a per-
fect splitting at all: we will show that it suffices to have
a splitting into O(k) slices, which are defined as follows:

Definition 8 The mesh 1s divided regularly in n/\/E X
n/\/E submeshes, Mo, ..., Mp_1. A subset of the pack-
ets S 1s a slice if #{p € S| destination p in M,} <
n?/k, for all0 < s <k —1.

11

The packets of a slice can be routed in O(n) steps to
their destinations as follows:

Algorithm SLICEROUTE
1. Sort all packets on the indices of their destination
submeshes.

2. Route the packet with rank r to the PU in its
destination submesh with index r mod (n?/k).

3. Route the packets within the submeshes to their
destinations.

Lemma 15 For k = O(n), SLICEROUTE can be per-
formed in O(n) steps with working queue size three.

Proof: Applying the algorithm of [19], Step 1 is per-
formed in 3 - n + o(n) steps and with working queue
size two. Step 2 is a partial permutation routing be-
cause of the definition of a slice. By Lemma 11 it can
be performed in 4 - n + o(n) steps and with working
queue size two. Step 3 is a (partial) 1-k routing in
n/vk x n/Vk meshes. By Theorem 9 it can be per-
formed in 6/+/2 -1+ 6 -n/Vk + O(k/* . n3/%) steps with

working queue size three. ad

8.1 A Randomized Algorithm

A k-k distribution can easily be split into 2 - k slices by
the following randomized algorithm:

Algorithm RANDCOLOR;
for all PUs pardo
generate a random injection
I:{0,...,k—1}—40,...,2-k—1};
for all 0 < h < k — 1 do give color I(h) to packet h.

RANDCOLOR does not take a single routing step.

Lemma 16 The packets with colorc, 0 <c¢<2-k—1,
constitute a slice with high probability.

Proof: The expected number of packets with color ¢
with destination in M, is n?/(2- k). With Chernoff
bounds it is easy to show that then the actual number of
these packets is smaller than n?/k with high probability.
O

Now k-k distributions can be routed by first applying
RANDCOLOR and then 2 -k times SLICEROUTE.

Theorem 13 By a randomized algorithm k-k routing
can be performed in O(k-n) ttme and with working queue
size three.

Combining Theorem 12 and Theorem 13 gives

Theorem 14 By a randomized algorithm, hot-potato
worm-hole routing for worms of mazimal length k can
be performed in O(k3/? - n) steps. The result holds with
high probability, and for all k < n?/5.

8.2 A Deterministic Algorithm

It appears impossible to perform a deterministical col-
oring without spreading information. Therefore, in this
section we slightly extend the assumptions of the model:

Assumption 1 For packets in the working queues
o the keys can be checked and compared;

e computational operations can be performed on a

data field;
o the information in the data field can be ‘read’.

The last two points are knew. They imply that a packet
can be used to gather information about the distribution
of packets.

Under Assumption 1, the packets within row i, 0 <
1 < n — 1, with destination in one of the n/\/E X n/\/E
submeshes M, 0 < s < k — 1, can be colored by the
algorithm hereafter. The PUs in this row are denoted
P;j,0<j7<n—1. Let z; be the number of packets in
P; with destination in M,, and let X; = 22:0 zp be
their prefix sum.

Algorithm DETCOLOR()

1. Release from Py a packet p with key value 0 and
with destination P,_;. In p we monitor X;.

2. A packet that has rank r among the packets in P;
going to M, is attributed color (X;_1+7) mod (2-k).

3. Discard pin P,_;.

For coloring all packets in a row, we can start k copies
of DETCOLOR one after the other. Thus, all packets can
be colored in k& 4+ n — 1 steps, with working queue size
one.

Lemma 17 If k < n/2, then the packets with color
0<c<2-k—1, constitute a slice.

Proof: Let X(i4,s) = X,_1(¢,s) be the number
packets in row ¢ with destination in M,. In total
most S [X(,8)/(2 - B)] < 1+ 3 X(i,5)/(2 - B)
n+n?/(2 - k) of these packets get color ¢, for any c. If
k <n/2,then n+n?/(2-k) < n?/k. O

A small problem with the constructed coloring is that
a PU may hold several packets with the same color.
However, this is not serious:

Lemma 18 If k < n/2, then there are at most n pack-
ets with color ¢, 0 < c<2-k—1, in any row.

Proof: In total at most Ef;g [X(4,8)/(2-k)] < k+
N X(4,8)/(2-k)=k+k-n/(2-k) =k +n/2 of the

packets in row ¢ get color ¢, for any c. a

12

Corollary 5 The packets with colorc, 0 < c<2-k—1,
can be redistributed within their rows such that every PU
holds at most one packet of color c. This takes 2-n steps
and working queue size one.

Proof: By Assumption 1, within every row the rank
of the packets with color ¢ can be determined in n — 1
steps. Then the packet with rank r moves to P.. If it
has to travel d steps, it starts to move after 2 -n — d
steps. O

Now k-k distributions can be routed by first applying
DETCOLOR and then 2 -k times SLICEROUTE preceded
by the redistribution step.

Theorem 15 Under Assumption 1, k-k routing can be
performed by a deterministic algorithm in O(k-n) time
and with working queue size three, for all k < n/2.

Proof: Use Lemma 15, Lemma 17 and Corollary 5. O

Combining Theorem 12 and Theorem 15 gives

Theorem 16 Under Assumption 1, hot-potato worm-
hole routing for worms of mazimal length k < n/2, can
be performed in O(k3/% - n) steps.

Acknowledgement

We thank Assaf Schuster for triggering our interest in
the 1-k routing problem. The idea to route in stages
(Section 5) originated from a shared work together with
Andrea Pietracaprina and Geppino Pucci.

9 Conclusion

We analyzed the 1-k routing problem, and presented a
deterministic near-optimal algorithm for it. We also pre-
sented an algorithm with very short working queue size,
which is useful as a subroutine for hot-potato worm-hole
routing. The results were extended to /-k routing and
for routing on higher dimensional meshes. Finally we
considered k-k routing with short working queues.

We developed several ideas that may be further ex-
ploited. The most important ideas are: (1) the infor-
mation gathering, which can be used for coloring the
packets in an intelligent way; (2) a deterministic selec-
tion procedure based on local sorting; (3) routing pack-
ets along a Hamiltonian cycle, by which a 1-k problem
can be reduced to repeatedly routing permutations.

Future research might consider dynamic variants of
the problem and the algorithms. Somehow one must
assure that the number of active packets remains n?.
This is the case when it is assumed that only a PU that
received a packet generates a new packet. Our near-
optimal time algorithm can be adapted to this model.

It seems more difficult to handle dynamically gener-
ated packets in an algorithm with very short working
queues. Another open problem is whether deterministic
k-k routing with short working queues can be performed
without any assumptions.

References

[1]

[11]

Athas, W.C., ‘Physically Compact, High Perfor-
mance Multicomputers,” MIT Conference on Ad-
vanced Research wn VLSI, pp. 302-313, 1990.

Chlebus, B.S., M. Kaufmann, J.F. Sibeyn, ‘Deter-
ministic Permutation Routing on Meshes,” Proc.
5th Symp. on Parallel and Distributed Proc., IEEE,
1993, to appear.

Dally, W.J., ‘Virtual Channel Flow Control,” 17th
Symp. on Computer Architecture, pp. 60-68, ACM,
1990.

Hagerup, T., C. Rib, ‘An Efficient Guided Tour
of Chernoff Bounds,’ Inf. Proc. Lett. 33, 305-308,
1990.

Feige, U., P. Raghavan, ‘Exact Analysis of Hot-
Potato Routing,” Proc. 38rd Symp. on Foundations
of Computer Science, pp. 553-562, IEEE, 1992,

Felperin, S., P. Raghavan, E. Upfal, ‘A Theory of
Wormhole Routing in Parallel Computers,” Proc.
83rd Symp. on Foundations of Computer Science,
pp. 563-572, IEEE, 1992.

Hillis, W.D., ‘The Connection Machine,” MIT
Press, 1985,
Kaufmann, M., S. Rajasekaran, J.F. Sibeyn,

‘Matching the Bisection Bound for Routing and
Sorting on the Mesh,” Proc. 4th Symposium on
Parallel Algorithms and Architectures, pp. 31-40,
ACM, 1992.

Kaufmann, M., J.F. Sibeyn, T. Suel, ‘Derandomiz-
ing Algorithms for Routing and Sorting on Meshes,’
Proc 5th Sympostum on Discrete Algorithms, ACM-
STAM, 1994, to appear.

Kunde, M., ‘Routing and Sorting on Mesh Con-
nected Processor Arrays,” Proc. VLSI Algorithms
and Architectures, Lecture Notes in Computer Sci-
ence, 319, pp. 423-433, Springer-Verlag, 1988.

Kunde, M., ‘Block Gossiping on Grids and Tori:
Deterministic Sorting and Routing Match the Bi-
section Bound,” Proc. FEuropean Symp. on Algo-
rithms, 1993.

13

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

Kunde, M., T. Tensi, ‘Multi-Packet Routing on
Mesh Connected Processor Arrays,” Proc. Sympo-
sium on Parallel Algorithms and Architectures, pp.
336-343, ACM, 1989.

Leighton, T., F. Makedon, Y. Tollis, ‘A 2n—2 Step
Algorithm for Routing in an n x n Array with Con-
stant Size Queues,” Proc. Symposium on Parallel
Algorithms and Architectures, pp. 328-335, ACM,
1989.

Leighton, T., Introduction to Parallel Algorithms
and Architectures: Arrays-Trees-Hypercubes, Mor-
gan-Kaufmann Publishers, San Mateo, California,
1992.

Newman, I., A. Schuster, ‘Hot-Potato Worm Rout-
ing as almost as easy as Store-and-Forward Packet
Routing,” Proc. ISTCS, 1993.

Noakes, M., W.J. Dally, ‘System Design of the J-
Machine,” MIT Conference on Advanced Research
tn VLSI, pp. 179-194, 1990.

Peleg, D., E. Upfal, ‘The Generalized Packet Rout-
ing Problem,” Theoret. Computer Sc., 53, pp. 281-
293, 1987.

Rajasekaran, S., Th. Tsantilas, ‘Optimal Routing
Algorithms for Mesh-Connected Processor Arrays’,
Algorithmaica, 8, pp. 21-38, 1992,

Schnorr, C.P., A. Shamir, ‘An Optimal Sorting
Algorithm for Mesh Connected Computers,” Proc.
18th Symposium on Theory of Computing, pp. 255-
263, ACM, 1986.

Seitz, et al., ‘The Architecture and Programming of
the Ametek Series 2010 Multicomputer’, 8rd Con-
ference on Hypercube Concurrent Computers and
Applications, pp. 33-36, ACM, 1988.

Sibeyn, J.F., Algorithms for Routing on Meshes,
Ph. D. Thesis, Universiteit Utrecht, Utrecht, 1992.

Smith, B., ‘Architecture and Applications of the
HEP Multiprocessor Computer System,” Proc. 4th
Real Tvme Signal Processing, pp. 241-248, 1981.

