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Abstract. We investigate the comple.xi.ty of merging sequences of small inte­
gers on the EREW PRAM. Our most surprising result is that two sorted se­
quences of n bits each can be merged in O(log log n) time. More generally , we 
describe an algorithm to merge two sorted sequences of n integers drawn !rom 
the set {O, •.• , m - I} in O(log log n + log m) time using an optimal number 
of processors. No sublogarithmic merging algorithm for this model of compu­
tationwas previously known. The algorithm not only pro duces the merged 
sequence, but also computes the rank of each input element in the merged 
sequence. On the other hand, we show a lower bound of O{log min {n, m}) 
on the time needed to merge two sorted sequences of length n each with 
elements in the set {O, •.. , m - I}, implying that our merging algorithm is 
as fast as possible for m = (logn)O(l). H we impose an additional stability 
condition requiring the ranks of each input sequence to form an increasing 
sequence, then the time complexity of the problem becomes e(log n), even 
for m = 2. Stable merging is thus harder than nonstable merging. 

1 Introduction 

A PRAM is a synchronous parallel machine with a global memory accessible to 
all processors. The EREW (exclusive-read exclusive-write) PRAM is the weakest 
member of the PRAM familYi it disallows concurrent access to the same memory 
cell by more than one processor, even for reading purposes. The resulting difficulties 
of interprocessor communication preclude superfast algorithms for even very simple 
problems: Lower time bounds oHl(logn) for the EREW PRAM were established by 
Cook, Dwork and Reischuk [7] for the problem of computing the OR of n bits (this 
bound holds even for the stronger CREW PRAM, which allows concurrent reading), 
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by Beame, Kik and Kutylowski [1] for the problem of creating n copies of an input 
bit, and by Snir [11], under certain assumptions, for the problem of searching, i.e., 
of locating a value in a sorted table of size n. In fact, except for certain algorithms 
given by Snir [11] with running tim es down to 9( y1Og7i), the only EREW PRAM 
algorithms known to the authors that use o(log n) time on inputs of size n are either 
for trivial problems (e.g., compute the OR of n bits, at most one of which is a 1), 
or have the property that each output bit is determined by a small set of input 
bits that is very easy to compute (e.g., the ruling-set algorithm of Cole and Vishkin 
[6]). Against this background one might strongly suspect that merging two sorted 
sequences oflength n each also requires O(log n) time on the EREW PRAM. Indeed, 
since merging a sequence of length 1 with a sorted sequence of length n is surely 
no more difficult than merging two sorted sequences of length n each, such a result 
follows from the lower bound of Snir mentioned above. Note, however, that the lower 
bound for merging derived from Snir's result is unsatisfactory for two reasons. First, 
Snir places restrictions on the values that can be stored in memory cells and on the 
interna! workings of individual process~rs. Second, his proof uses Ramsey theory and 
therefore breaks down if the values that can occur in the input sequences are drawn 
from a restrided domain. As shown by Snir, the restrictions placed on memory cells 
and processoIS are essential in the sense that without them, the searching problem 
can be solved faster than in 9(log n) time. The same can be seen to hold if the 
entries in the table to be searched are drawn from a sufficiently small domain, but 
neither effect is apparent for the more difficult problem of merging. We here answer 
the question of whether sublogarithmic merging on the EREW PRAM is possible 
in some circumstances and explore the fine boundary between what can and what 
cannot be done. Since the results obtained turn out to be very sensitive to the exact 
definition of merging, we back off for a while to provide such definitions. 

A sequence (Zl"'" z .. ) of integers is called 80rted if Zl ~ .•• ~ z ... Given two 
sorted sequences X and Y of integers, we denote by X u Y the sorted sequence 
of integers that contains as many occunences of i, for each integer i, as X and 
Y put together. We consider several different merging problems. Common to all 
of these is that the input consists of two sorted sequenceS X = (Zl"" ,z .. ) and 
X' = (Z"+l"'" Z2 .. ) with elements drawn from a set {O, ... ,m - 1}, where n and 
mare positive integers known to all processorSj without loss of generality we always 
assume that n ~ 4 and m ~ 2. The tJalue-merging problem simply calls for the 
construction of the sequence X U X'. Rank-merging, on the other hand, provides a 
description of how to construct X U X' from the input sequences. More precisely, 
the rank-merging problem is to compute apermutation r of {1, ... ,2n}, called a 
rank tJector and represented by the sequence (r(l), ... ,r(2n)), such that zr-1(1) ~ 
Zr-'(2) ~ ••. ~ Zr-'(2 .. )· When wanting to be explicit about the parameters n and 
m, we speak of (n, m)-value-merging and (n, m)-rank-merging. Furthermore, when 
the meaning is dear from the context, we will omit the qualifiers "value" and "rank". 

A procedure for (n, m)-rank-merging dearly implies a procedure for (n, m)-value­
merging with the same resource bounds (up to constant factors). Value-merging at 
first glance might seem more natural than rank-merging. The laUer is needed, 
however, whenever the actual objects to be merged are records containing other 
information in addition to the integer keys according to which the records are to 
be merged, since value-merging the keys alone does not allow the full records to 
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be put in order. The definition of rank-merging given above is precise, but often 
cumbersome. In most proofs to follow, we therefore employ a less precise but more 
convenient informal terminology that we now introduce. The uy point is to consider 
the input elements not as integers, of which several may be identical, but as pairwise 
distinct objects with several attributes. An input element :Ci has a value, the integer 
:Ci I and an original position, i , and the goal of rank-merging is to mark each input 
element with a rankfrom the set {l, ... I 2n} such that distinct input elements receive 
distinct ranks and smaller elements receive smaller ranks. Equivalently, the goal is 
to store the input element of rank i in position i of an output sequence of length 2n, 
for i = 1, ... , 2n. In the formal definition, the rank Of:Ci of course corresponds to 
r(i). 

Consider the easiest among the merging problems introduced above, that of 
(n,2)-value-merging, i.e., given two sorted sequences X and X' of n bits each, con­
struct the sorted sequence of 2n bits that contains exactly as many O's as X and 
X' put together. Despite its seeming simplicity, this is a fascinating problem whose 
complexity is still unresolved. Observefirst that it is easy to solve the problem in 
constant time on a CREW PRAM. If a processor is associated with each bit in X 
and each such processor inspects its own bit and the bit following it, if any, exactly 
one processor, detecting the change from 0 to 1 in X, will know the number of O's in 
X. The number of O's in X'can be determined in the same way, and the sum of the 
two counts can be broadcast to each of 2n processors, each of which can then easily 
produce one output bit. Since only the broadcasting }>art of this algorithm uses 
concurrent reading, it is also evident that even an EREW PRAM can compute any 
desired bit of the output in constant time. Computing all output bits faster than in 
e(logn) time, however, is achallenging problem, and both authors expended con­
siderable energy trying to prove that it cannot be done. The lower bound of Beame, 
Kilt and Kutylowski cited above shows that any EREW PRAM algorithm that uses 
the same general approach as the above CREW PRAM algorithm is doomed to fall, 
since broadcasting the total number ofO's to sufficiently many processors will require 
n(logn) time. . 

Our main result is that not only (n,2)-value-merging, but in fact (n,2)-rank­
merging can be done in O(loglogn) time on an EREW PRAM. An interesting 
feature of the algorithm is that, intuitively speaking, a significant portion of the 
computation is carried out by processors operating on incorrect data. A major 
concern in the design of the algorithm was to prevent such. processors from inter­
fering with the useful part of the computation, e.g., by causing concurrent reading 
or writing. We also extend the algorithm to solve the general (n,m)-rank-merging 
problem, in which case the running time becomes O(loglogn + logm), and reduce 
the number ofprocessors used to obtain an algorithm that executes O(n) operations, 
which is optimal. On the other hand, we prove that (n,m)-value-merging requires 
n(logmin{n,m}) time, thereby showing our algorithm to be as fast as possible for 
m = (logn)O(l) (assume that we switch to a standard O(logn)-time algorithm for 
m ~ n). Our discovery that integer merging is easier than general merging on the 
EREW PRAM to some extent parallels what is known for the CREW PRAM. Gen­
eral merging can be done in O(loglogn) time on the CREW PRAM with an optimal 
number of processors [9] and there is a corresponding lower bound [4], whereas an 
algorithm that runs in O(logloglogm) time using an optimal number of processors 
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is known for the case of input numbers drawn from the set {O, ... , m - I} [2]. 
It is frequently desirable to impose an additional restriction on the rank vector 

r obtained by merging two sorted sequences X and X' oflength n each. Requiring 
that r(l) < ... < r(n) and r(n + 1) < ". < r(2n) (informally, the ·relative order 
of the elements in X and X' is to be preserved), we obtain the problem of stable 
(rank-) merging. Stable merging clearly is no easier than unadorned rank-merging, 
which we will also call unstable merging. Our fast algorithm solves the unstable 
merging problem only and cannot be extended to stable merging. In fact, we prove 
a lower time bound of O(logn) for stable (n,2)-merging. Stable merging is hence 
more difficult than unstable merging. Although such a result might seem natural for 
randomized algorithms (compare, e.g., the integer sorting algorithm of Rajasekaran 
and Reif [10]), in our deterministic setting it is somewhat unexpected. 

2 Lower bounds 

In this section we first show that (n,m)-value-merging needs O(logmin{n,m}) time 
on the EREW PRAM. We then give an O(logn) lower time bound for stable merg­
ing. All of our lower bounds allow any number of processors and memory cells, 
arbitrary local computation, the storage of arbitrary values in memory cells, and 
nonuniformity. They are derived from the following result, proved by Beame, Kik 
and Kutylowski [1] and valid under the same assumptions. 

Lemma 2.1 Every EREW PRAM algorithm that takes as input a single bit :z: and 
stores the value ol:z: in n distinct fixed memory cells has a running time 01 O(log n). 

Corollary 2.2 In order to show that an EREW PRAM algorithm runs in O(logt) 
time, it suffices to exhibit two inputs that differ in ;ust one component (i.e., the 
contents 01 exactly one input cell differ), but whose associated outputs, as computed 
by the algorithm, differ in t components. 

We first use Corollary 2.2 to show the lower bound on (n,m)-value-merging. 

Theorem 2.3 (n,m)-value-merging requires O(logmin{n,m}) time on the EREW 
PRAM. 

Proof: Let t = min{n, m} and consider the n-element sequences X = (1,2, ... , t -
2,t-l,t-l;." ,t-l), Yl = (O,t-l,t-l,. ",t-l) and Y2 = (t-l, t-l,,, .,t-l). 
Viewed as input to a merging algorithm, (X, Yd and (X, Y2 ) difl'er in exactly one 
component, but X U Yl = (0, 1, ... , t - 3, t - 2, t - 1, . .. , t - 1) and X U Y2 = 
(1,2, '" , t - 2, t - I, t - 1, ... , t - 1) differ in their first t - 1 components. The 
theorem now follows from Corollary 2.2. 0 

Section 4 presents an (n,m)-rank-merging algorithm that runs in O(loglogn + 
logm) time. By Theorem 2.3, this is as fast as possible for m = (logn)O(l). For 
m = (logn)o(l) the complexity of the problem is unknown. 

In the remainder of this section we consider stable (n, 2)-merging. We first show 
a lower time bound of O(log n) for the strictly stable merging of two sorted sequences 
X = (:Z:l,' .. , :Z:n) and X' = (:Z:n+lI ... , :Z:2n), which we define to bethe problem of 
computing apermutation r that satisfies the following condition in addition to those 
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of stable merging: r(i) < rU) for all integers i and j with 1 $ i $ n < j $ 2n such 
that :Ci = :Cj (i.e., in the case of ties, elements in X are to be considered smaller). 
Since tbis result is subsumed by our next lower bound and mostly serves as a warm­
up to the latter, we shall not formulate it as a theorem. 

Suppose that an algorithm for strictly stable merging maps the input sequences 
Xo = (0,0, ... ,0) and X' = (0,0, ... ,0) to the rank vector ro, and the input se­
quences Xl = (0,0, ... ,1) and X' to the rank vector rl. Then (ro(n+ 1), ... , ro(2n)) 
= (n + 1,n + 2, ... ,2n), but (rl(n + 1), ... ,rl(2n)) = (n,n+ 1, ... ,2n -1). The 
desired lower bound again follows !rom Corollary 2.2. 

As announced above, we can extend the last result to (not necessarily strict) 
stable merging. Note how the above proof breaks down in the absence of strict 
stability. 

Theorem 2.4 Stable (n, 2)-merging requires O(logn) time on the EREW PRAM. 

Proof: Consider 2n + 1 inputs (Xo, Yo), ... , (X2n , Y2n ) defined as follows: For i = 
0, ... ,n, Xi consists of n - i zeros followed by iones, and Yi consists of nones. For 
i = 0, ... ,n, Xn+i consists of nones, and Yn+i consists of i zeros followed by n - i 
ones. Given a stable merging algorithm, let ri be the rank vector computed by the 
algorithm on the input sequences (Xi, Yi), for i = 0, ... , 2n, and let ()i = Ei=l riU), 
that is, ()i is the sum of the ranks of the elements of Xi in Xi U Yt. In order to 
gain intuition for the remainder of the proof, consider an experiment consisting of 
2n steps. In the ith step, for i = 1, ... , 2n, we replace (Xi-I, Yi-d by (Xi, Yi) as 
input to the merging algorithm and observe the resulting change in ()i. 

Since ()o = Ei=lj and ()2n = Ei=l(n+ j), we have ()2n - ()o = n 2
• It follows 

that for some io with 1 $ io $ 2n, ()io - ()io-l ~ n/2. Let t = Vn/2 and consider 
two possibilities: 

Oase 1: maxlSjSn(rioU) - rio-lU)) $ t. In tbis case at least t elements of 
Xi change their rank in step io of the experiment, i.e., (rio(l), ... , rio(n)) and 
(rio-l(l), ... , rio-l(n)) differ in. at least t components. Since the input sequences 
(Xio,Yio) and (Xio - lI Yio-d differ in exactly one component, the lower bound now 
follows !rom Corollary 2.2 and the fact that logt = O(logn). 

Oase 2: For so me j with 1 $ j $ n , rioU) > rio-lU) + t. Note that in a stable 
merging of two sequences X and Y, the rank of the jth element of X is precisely 
j plus the number of elements in Y of smaller rank. Hence the element of Xi that 
increases its rank by more than t in step io of the experiment changes its relative 
order with respect to more than telements of Yi. By another application of the same 
principle, each of these more than telements of Yi changes its rank in the same step 
of the experiment. The lower bound now follows as in Case 1. 0 

If even the requirement of stability is relinquished, merging becomes substantially 
easier, as demonstrated in the following sections. 

3 Bitonic ranking 

For kEIN and bl , b2 , •• •. , bio E {O, I}, we call a sequence of O's and l 's a bl b2 ••• bk -

sequence ifit belongs to the set described by the regular expression bibi··· bk, i.e., if 
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it consists of zero or more occurrences of bl , followed by zero or more occurrences of 
b2 , etc. 010- and 101-sequences are collectively said to be bitonic. In this section we 
describe an algorithm for bitonic ranhng, i.e., given abitonic sequence (XI,"" xn), 
compute apermutation r of {1, ... , n} such that Xr-'(I) ~ ••. ~ xr-'(n)' Note, as 
before, that ranking can be used to sort, i.e., to actuaßy arrange the input elements 
in sorted order, and that the opposite is true provided that each element is marked 
with its original position. Since the concatenation of a sorted bit sequence with the 
reverse of another such sequence is bitonic, rank-merging of sorted bit sequences 
reduces to bitonic ranking. 

Theorem 3.1 When n ~ 4 is apower 0/ 2, abitonic 8equence 0/ length n can be 
ranked in O(loglogn) time on an EREW PRAM using O(n) processors and O(n) 
space. 

Proof: We show Theorem 3.1 by induction on n, i.e., by giving a recursive algorithm 
that performs as stated. It turns out to be necessary for the inductive argument to 
make an additional assumption about the rank vector r computed by the recursive 
algorithm. Recaß that every permutation can be written as a product 0/ cycles, 
Le., as the composition of a number of cyclic permutations. We inductively assume 
that r has a particularly simple cyele structure, namely that it can be written as 
a product of disioint transpositions, Le., of cyclic permutations of disjoint sets of 
size 2. 

Given abitonic input sequence of length n, where n ~ 4 is apower of 2, let 
s = 2Llogn/2J and t = n/s and consider the input sequence to be stored in an s x t 
tableau A in column-major order, i.e., the first s elements in the sequence are stored, 
!rom top to bottom, in the first column oft he tableau, the next s elements are stored 
in the next column, etc. Number the rows and columns of aß tableaus consecutively 
starting at 1. It is easy to see that each row of Ais bitonic, so that the rows of A 
can be sorted by recursive applications of the algorithm (or triviaßy, if t = 2). The 
resulting tableau B has at most one column containing distinct values (i.e., both 
O's and l's). In the following assume that B has such a column, called the critical 
columnj it will be easy to see that the case in which B has no critical column is 
handled correctly. 

Since the critical column of B is bitonic, the most natural way to solve the 
original problem would be first to sort the rows of A to obtain B, and then to sort 
the critical column of B, whichresults in a sorted sequence (stored in column-major 
order). However, this would give a recurrence relation for the running time T(n) of 
the algorithm on input of size n of the approrimate form T(n) = 2T(vfn) + 0(1), 
which solves to T(n) = O(logn). Since this is elearly too slow, we must proceed 
differently. Our approach is to sort the critical column of B be/ore B has been 
constructed, i.e., while the rows of A are being sorted! In this way we obtain an 
algorithm that uses oD.ly constant time in addition to a number of recursive calls on 
arguments of size O( vfn), aß of which can be started simultaneously; the running 
time is O(log log n), as desired. 

We cannot actuaßy compute the critical column of Band store it in a fixed place 
(this would require O(log n) time). What we can do, however, is to construct two 
candidate sequences, one of which will equal the critical column C of B. Note care­
fully that we take C to be simply a sequence of O's and 1 'Sj the additional information 
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associated with the elements in the critical column of B, such as their original posi­
tions, is not available. Begin by constructing the sequence D = (d l , ..• , d,), where 
c4 is the number of O's in the ith row of A (or B), for i = 1, ... ,8. Computing c4 
is easy since the ith row of A is bitonic: In the sequence of values there is at most 
one change from 0 to 1 and one change from 1 to 0, and c4 is a simple function of 
the positions of these changes, which can be determined in constant time by letting 
each pair of consecutive elements be inspected by a processor. If d is the index of 
the critical column, then for each i E {1, ... ,8} we have d = c4 or d = c4 + 1. Hence 
if the parity of d were DOwn, a processor Pi associated with the ith element of D 
could determine the exact value of d and hence the ith element of C. The parity of d 
being unknown, Pli"" P, instead construct an "even candidate" E = (el"'" e,), 
equal to C if d is even, and an "odd candidate" U = (Ul"'" u,), equal to C if d 
is odd (see Fig. 1). In precise terms, if di is even, then Pi sets ei := 0 and 'Ui := 1; 
otherwise it sets ei := 1 and 'Ui := O. Observe that E and U are both bitonic. 

B 
1 2 d 

o 

t 
critical 
column 

E U E U 

Case 1: d is even Case 2: d is odd 

Fig. 1. The candidate critical columns E and U. 

Recursively rank both E and U and recall that this pro du ces permutations rE 

and ru of {1, .. . , 8} that sort E and U, respectively. Our remaining task is, using 
constant time after the construction of B, to permute the elements in the critical 
column of B, now marked with their original positions, according to the proper one 
of rE and ru (i.e., rE if d is even, and ru if dis odd). The problem again is that 
the parity of dis unknown. We might therefore apply both rE and ru, arguing that 
permuting elements in columns other than the critical column does no harm. More 
precisely, let Pi move the elements in position i of its candidate critical columns 
in B, i.e., those indexed by c4 and c4 + 1 (introduce dummy columns numbered 0 
and t + 1), according to rE and ru, with rE operating in the column of even index 
and ru operating in the column of odd index. However, while this applies one of 
the permutations rE and ru correctly in column d, the other permutation may be 
applied partly in column d - 1 and partly in column d + 1. This is because not all 
processors have the same two candidate critical columns, and it does not lead to 
the desired result (some positions in the tableau may afterwards hold either 0 or 
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2 elements). In order to counter this problem, we modify the procedure so that it 
moves an element to a new position only if the element in that position before the 
move has a different value (e.g., a 0 may be moved to a position previously holding a 
1, but not to one previously holding a 0). This clearly prevents movement of elements 
outside of the critical column, as desired. Because rE and ru are products of disjoint 
transpositions, according to the inductive hypothesis, the modified procedure still 
has the effect of permuting the elements within the critical column - we have simply 
cancelled all interchanges of O's with O's and of 1 's with 1 's). Since the critical 
column is sorted and no other column is modified, the resulting tableau is sorted. 

At this point we have obtained apermutation r that sorts the input sequence. 
Because an element may be moved both by a transposition within a row and subse­
quently by a transposition within the critical column, however, r is not necessarily 
a product of disjoint transpositions. In order to satisfy the inductive assumption, a 
final constant-time computation described below replaces r by a product r' of dis­
joint transpositions that is equivalent to r, i.e., results in the same distribution of 
O's and l's. 

Let G be an undirected graph with n vertices arranged in an 8 x t array and 
with each vertex corresponding in the natural way to a tableau position. There is 
an edge between two vertices if and only if elements in the corresponding positions 
are interchanged during the sorting procedure described above. G has "horizontal" 
edges, corresponding to interchanges within rows during the construction of B, and 
"vertical" edges, corresponding to interchanges within the critical column. Since only 
vertices in the critical column have incident vertical edges and no vertex is incident to 
more than one horizontal edge or to more than one vertical edge, it is easy to see that 
no connectedcomponent of G contains more than 4 vertices. Call a vertex of G a 01-
vertex if the corresponding position initially contains a 0, but after the application of 
r contains a 1, and define a 10-vertex analogously. Since all "inter action" takes place 
within connected components of G, the number of 01-vertices within a connected 
component equals the number of 10-vertices. Now construct a new graph G' from G 
as follows: Within each connected component of G, replace all edges by new edges 
that form a perfect matching of the 01-vertices with the 10-vertices. G' in a natural 
way corresponds to a product of disjoint transpositions, which clearly is equivalent 
to rand can be taken as r'. Since connectedcomponents are treated independently 
and each component represents a problem of constant size, the construction of G' 
and r' from G can be carried out in constant time on an EREW PRAM if only we can 
associate a unique processor with each connected component of G. But since each 
nontrivial component contains exactly one vertical edge, this is easy: Associate a 
processor with each vertex of G and assign responsibility for a nontrivial component 
to the processor associated with the upper endpoint, say, of the vertical edge. This 
ends the description of the recursive algorithm, which can clearly be executed using 
O(n) processors and O(n) space. 0 

4 Optimal merging 
-

In this section we extend the basic algorithm of the previous section in two directions: 
First we show how the algorithm can be modified to handle input numbers in the set 
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{O, ... , m - I}, for arbitrary m ~ 2. Then we reduce the number of processors used 
by the modi:fied algorithm in order to obtain an algorithm with optimal speedup. 

Lemma 4.1 (n, m)-rank-merging problems can be sol"et! on an EREW PRAM using 
O(loglogn + logm) time, O(nm) procel1l1ors and O(nm) space. 

Proo!: Without loss of generality assume that n ~ 4 and that n is apower of 2 (to 
achieve this extend each input sequence by ci. suitable number of dummy elements 
larger than all other elements). Since nm processors can easily create m copies oft he 
entire input in O(logm) time, it suffices to show how to compute the ranks of all oc­
currences of an arbitrary but fixed value i E {O, ... , m-l} using O(loglogn+logm) 
time, n processors and O(n) space in addition to a constant number of applications 
of the algorithm of Theorem 3.1 to inputs of size O(n). This can be done as follows 
(see Fig.2): 

Given two sorted input sequences X and X' of length n each and with elements 
in the set {O, ... , m - I}, let Y be the concatenation of X with the reverse of X'. 
In order to compute ranks for all occurrences of some value i E {O, ... ,m - I}, first 
derive a 010-sequence V from Y by replacing each value $ i by 0 and each value 
> i by 1. Derive another 010-sequence W from Y by replacing each value < i by 0 
and each value ~ i by 1. Sort both V and W and form a new 010-sequence Z as the 
componentwise exclusive-or of the two resulting 01-sequences. For j = 1, ... , 2n, it 
is easy to see that Z contains a 1 in position j exactly if sorting Y places an i in 
position j, i.e., if j E R, where R is the set of ranks to be distributed among the 
occurrences of i in Y. Mareng each 1 in Z with its position in Z and subsequently 
sorting Z stores the elements of R in the last positions of a sequence SR' In a 
similar fashion we store in the last positions of another sequence SI (constructed as 
explained below) the elements of the set I of positions that contain an occurrence 
of i in the (unsorted) sequence Y. Matching corresponding positions in the two 
sequences SI and SR now defines a bijection between land R, i.e., computes the 
desired ranks. 

In order to compute SI, first derive from each half of Y a 010-sequence by 
replacing each occurrence of i by 1 and each occurrence of a value different from i 
by O. Mark each 1 in either half with its position in Y, sort the halves separately 
and concatenate the sorted first half with the reverse of the sorted second half. This 
creates a new 010-sequence, the sorting of which easily yields SI' This ends the 
proof of Lemma 4.1. 0 

Before deriving an optimal algorithm from Lemma 4.1, we discuss the reasons 
why this is not as easy as it might seem. The standard way of merging optimally, 
given a nonoptimal subroutine for merging, is to begin by merging sequences of 
equally-spaced representati"es. As a result of this computation, each representative 
knows its rank in the opposite sequence to within the distance between successive 
representatives. Each representative then determines its exact rank in the opposite 
sequence, typically by binary search in the relevant subsequence, which splits the 
original problem into a collection of small and independent subproblems that are 
easily solved in parallel. The binary search by the representatives is easy on the 
CREW PRAM, but on the EREW PRAM requires co ordination between represent­
atives. This co ordination between representatives can be achieved by means ofprefix 
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Fig. 2. Computing the ranks of all occurrences of i. Nonzero integers mark key values of 1. 

10 



summation [8]; in the present context, however, we do not have the time to carry 
out a prefi.x summation. While still merging sequences of representatives, we are 
therefore forced to proceed in an entirely different way. 

Theorem 4.2 Two sorted sequences 0/ lengtk n each and with elements drawn /rom 
{O, ... , m - 1} can be rank-merged on an EREW PRAM using O(loglogn + log m) 
time, O(n) operations and O(n) space. 

Proof: As in the proof of Lemma 4.1 we can assume n to be apower of 2. We will 
also assume that m ::; n 1 / 3 • This is no restriction, since for m > n 1/ 3 the running 
time claimed is O(log n), so that general merging algorithms [3, 8] can be used. 
Choose k ::; nasa power of 2 with k = e(mlogn). 

Let (Zl,"" Zn) and (Zn+l,"" Z2n) be two sorted input sequences with ele­
ments drawn from {O, ... , m - 1} and divide each of these into blocks of k con­
secutive elements. For i = 1, ... , 2n/k, call ;ei1: the representative of the block 
containing the elements Z(i-1)1:+1,"" Zi1:, and call the value of Zi1: the header of 
the block. Use the algorithm of Lemma 4.1 to merge the sequences (Z1:, Z21:,"" zn) 

and (zn+1:,Zn+21:"",Z2n) ofrepresentatives. This needs O(loglogn+logm) time 
and O((n/k)m(loglogn+logm)) = O(n) operations and marks eachrepresentative 
with a rank in the set {1, ... , 2n/k}. Multiply each rank by kor, equivalently, place 
the representatives in sorted order in equally-spaced positions of an output array 
A of size 2n. Broadcast the rank of each representative to its entire block, which 
takes O(logk) = O(loglogn + logm) time, and subsequently move the block with 
its representative, i.e., for i = 1, ... , 2n/k, if the (new) rank of Zi1: is jk, then move 
Zi1:-1 to A[jk - ~, for I = 0, ... , k - 1. 

If A were sorted, it would implicitly define the desired ranks. It is easy to see, 
however, that this is not generally the case. Our remaining task therefore is to 
sort A. We do this by identifying a small set of critical elements that are potentially 
"out of order", extracting these, sorting them and putting them back in their original 
positions (but in a different order), after which A will turn out to be sorted. 

Define a block to be kete'rogeneous if it contains at least two distinct values, and 
homogeneous if it contains just one value. Label each heterogeneous block with 'L' 
if its elements came from the "left" sequence (Zl"'" zn), and otherwise with 'R'. 
For i = 0, ... , m - 1, also label a block with '1' or '2' if it is the first or second 
homogeneous block in A, respectively, with header i. The labeling is easy to carry 
out using O(logk) time and O(n) operations. Note that no two distinct blocks can 
have the same label and the same header. Define an element to be critical exactly ifit 
belongs to a labeled block. Since there are only 4 distinct labels, m distinct headers 
and k elements in each block, it is easy to place all critical elements in an array of 
size 4km using 0 (log k) time and 0 (n) operations. N ow sort both the set of critical 
elements and the set of their original positions in A using Cole's algorithm [5]. This 
takes O(log(km)) = O(logk) time and O(kmlogk) = O(n) operations (recall that 
m::; n 1/ 3 ). Match up corresponding elements in the two sorted sequences, i.e., place 
the ith smallest critical element in A[j], for i = 1,2, ... , where j is the ith smallest 
index of a cell in A that held a critical element before the sorting. We must prove 
that A is now sorted. 

Since every element of a heterogeneous block is critical, the subsequence of the 
sequence stored in A consisting of all noncritical elements is clearly sorted. After 
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the sorting of the critical elements, the same by definition applies to the subse­
quence consisting of all critical elements. Furthermore, since no noncritical element 
is preceded by a larger element before the sorting of the critical elements, the same 
condition holds after the sorting. The only remaining problem is hence that some 
noncritical element might be followed by a smaller critical element after the sorting. 
To see that this is impossible, note that before the sorting, a noncritical element with 
value i is followed by at most 2(k - 1) smaller elements (each such element must 
be a nQnrepresentative in a block with header ~ i but containing a value smaller 
than ij each input sequence contributes at most one such block), while it is preceded 
by at least 2k critical elements with value i (those in the first two homogeneous 
blocks with header i)j the number of positions available to critical elements before 
the noncritical element under consideration hence exceeds the number of positions 
required by smaller critical elements. 0 
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