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Abstract 

In the competitive analysis of on-line problems, an on-line algorithm is presented with a 
sequence of requests to be served. The on-line algorithm must satisfy each request without 
the knowledge of any future requests. We consider the question of lookahead in on-line 
problems: What improvement can be achieved in terms of competitiveness, if the on-line 
algorithm sees not only the present request but also some future requests? We introduce 
two different models of lookahead and study the "classical" on-line problems such as paging, 
caching, the k-server problem, the list update problem and metrical task systems using these 
two models. We prove that in the paging problem and the list update problem lookahead 
can significantly reduce the competitive factors of on-line algorithms without lookahead. In 
addition to lower bounds we present a number of on-line algorithms with lookahead for these 
two problems. However, we also show that in more general on-line problems such as caching, 
the k-server problem and metrical task systems lookahead cannot improve competitive factors 
of deterministic on-line algorithms without lookahead. 

1 Introduction 

Recently the competitive analysis of on-line algorithms has evoked great interest [ST85, BLS87, 
KMRS88, MMS88, BBKTW90]. The on-line problems studied extensively include paging, 
caching and the k-server problem as weil as the list update problem and metrical task systems. 
All these problems can generally be formulated as foilows. An on-line algorithm is presented 
with a sequence of requests which must be served in the order of occurrence. In particular, the 
on-line algorithm must satisfy each request without the knowledge of any future requests. The 
processing of requests incurs cost, and the goal is to mjnimize the cost incurred on the entire 
request sequence. 

Sleator and Tarjan [ST85] have proposed a new measure for analyzing the performance of 
on-line algorithms. In their work on the list update problem and paging they compared on-line 
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algorithms to an optimal off-line algorithm which knows the entire request sequence in advance 
and can serve it with minimum cost. Karlin et al. [KMRS88] used this approach to analyze 
on-line snoopy caching algorithms, and introduced the notion of competitive analysis. An on­
line algorithm is called c-competitive if, for any request sequence, its cost does not exceed c 
times the cost of the optimal off-line algorithm for that sequence. More formally, let CA(O') 
and COPT(O') be the cost of the on-line algorithm A and the optimal off-line algorithm OPT 
on request sequence 0'. Then the algorit°hm A is c-competitive, if there exists a constant a such 
that 

CA(O') ~ c· COPT(O') + a 

for all request sequences 0'. 

The competitive factor of A is the infimum of all c such that A is c-competitive. If A is a 
randomized algorithm, then CA ( 0') is the eXpected cost incurred by A on request sequence 0'. 
In this paper we evaluate the performance of randomized on-line algorithms only against the 
oblivio'ILS adversary (see [BBKTW90] for details). The oblivious adversary specifies arequest 
sequence in advance and pays the optimal off-line cost. 

We study the problem of lookahead in on-line algorithms. An important question is, what 
improvement can be achieved in terms of competitiveness, if an on-line algorithmknows not 
only the present request to be served, but also some future requests. This issue is fundamental 
from the practical and theoretical point of view. In practical applications the requests do not 
necessarily arrive one after the other, but rat her in blocks of possibly variable size. In paging 
systems there is generally a gap in speed between the memory and the faster CPU. Hence it is 
to be expected that some requests usually wait in line to be processed by a paging algorithm. 
In fact, some paging algorithms used in practice make use of lookahead [S77]. In the theoretical 
context a natural quest ion is: What is it worth to know the future? We investigate the quest ion 
of lookahead for on-line problems such as the list-update problem, paging, caching, the k-server 
problem and metrical task systems. 

We introduce two different models of lookahead. Let 0' = 0'(1),0'(2), . .. , O'(m) be arequest 
sequence oflength m. O'(t) denotes the re quest at time t. Let R be the set of possible requests. 
Two requests O'(t) and O'(s) are called equal ("O'(t) = O'(s)"), ifthey represent the same element 
in R; otherwise they are called distinct. For a given set S, card( S) denotes the cardinality of S. 
Let 1 ~ 1 be an integer. 

Weak lookahead of size 1: The on-line algorithm sees the present request and the next 1 
future requests. More specifically, when answering O'(t), the on-line algorithm already knows 
O'(t + 1), O'(t + 2), ... , O'(t + 1). However, requests O'(s), with s ~ t + 1 + 1, are not seen by the 
on-line algorithm at time t. 

Strong lookahead of size 1: The on-line algorithm sees the present request and a sequence 
of future requests. This sequence contains 1 pairwise distinct requests which also differ from 
the present request. More precisely, when serving re quest O'(t), the algorithm knows requests 

O'(t + 1), O'(t + 2), . . . , O'(t'), where t' = min{s > tlcard( {O'(t), O'(t + 1), ... , O'(s)}) = 1 + 1}. The 
requests O'(s), with s ~ t' + 1; are not seen by the on-line algorithm at time t. 
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In the following, when we investigate on-line problems with lookahead, 1 always denotes the 
size of the lookahead. We always assume that an on-line algorithm has a lookahead of fixed 

size 1 ~ 1. If a strong lookahead of size 1 is given, then for all t ~ 1 we define a value A(t). 
If card( {O'(t), O'(t + 1), ... , 0'( m)}) < 1 + 1 then let A(t) = m; otherwise let A(t) = mini t' > 
tlcard( {O'(t), O'(t + 1), ... , O'(t')}) = 1 + 1}. Suppose an on-line algorithm has a lookahead of size 

1. We define the lookahead L(t) at time t. If a weak lookahead is given, then 

L(t) = {O'(s)ls = t,t + 1, .. . ,min{t + l,m}}. 

If a strong lookahead is given, then 

L(t) = {O'(s)ls = t,t + 1, .. . ,A(t)}. 

At first sight weak lookahead seems to be the intuitive model of lookahead. However, as we 
shall see later, weak lookahead is usually only of minor advantage in the on-line problems we 

study here. The reason is that an adversary that constructs arequest sequence can replicate 
requests in the lookahead, thereby weakening the effect of the lookahead. Strong lookahead is 

of special interest in the theoretical context, when we ask how significant it is to know part of 
the future. An adversarymay replicate requests in the lookahead, but nevertheless it has to 
reveal some really significant information on future requests. We show that strong lookahead can 
sometimes significantly reduce the competitive factors of on-line algorithms without lookahead. 

So far, only few on-line problems with lookahead have been studied in the literature. Specifi­

cally, previous research on lookahead has not addressed the on-line problems we consider here. 
Chung et al. [CGS89] examine dynamic location problems with lookahead. They identify graphs 
for which the dynamic location problem can be solved optimally using a constant lookahead. 
The remaining results on lookahead were obtained in the area of on-line graph problems. In 
these problems our models of weak and strong lookahead coincide. Irani [190] and Halld6rsson 
and Szegedy [HS92] study on-line coloring ofinductive and general graphs. Kao and Tate [KT91] 
examine on-line matching of bipartite graphs. In these problems lookahead is only of advantage, 
if its size is relatively large and depends on the size n of the entire graph. A constant lookahead 

(independent of n) is basically of no help. 

2 Outline of results 

The two main on-line problems we address in this paper are paging and the list update problem. 

The paging problem: Consider a two-Ievel memory system. There exists a fast memory, a 
cache, consisting of k pages, and a slow memory consisting of n- k pages. A sequence of requests 
to pages in the memory system must be served by an on-line algorithm. Arequest is served if 
the corresponding page is in cache. A page fault occurs if the requested page is not in the cache. 
Then a page from fast memory must be moved to slow memory, such that the requested page 
can be loaded into the cache. A paging algorithm specifies which page to evict on a page fault. 

The goal is to rninirnize the number of faults. 
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Section 3 and Section 4 are an in-depth study of paging with strong and weak lookahead. 
We show that strong lookahead significantly reduces competitive factors of deterministic and 
randomized on-line paging algorithms without lookahead; even a lookahead of constant size is 
of advantage. In addition to lower bounds we give a number of deterministic and randomized 
on-line paging algorithms with strong lookahead which are optimal or nearly optimal. To our 
knowledge, paging with strong lookahead is the first example of an on-line problem in which a 
lookahead of constant size helps to reduce the competitive factors of algorithms without look­
ahead. As opposed to strong lookahead, weak lookahead cannot improve competitive factors of 
deterministic and randomized on-line paging algorithms. For every on-line algorithm A with a 
weak lookahead offixed size, there exists arequest sequence U such that CA(U) :2: c· COPT(U). 
Here c denotes the best competitive factor of a deterministic or randomized on-line paging 
algorithm without lookahead. However an on-line algorithm A with weak lookahead 1 can satisfy 
CA(U) < C· COPT(U) for all request sequences of a restricted length m :$ mi the value of m 
depends ofthe size of 1. We bound the value of m, i.e. we evaluate which part of a given request 
sequence U has to be seen by an on-line algorithm A in order to satisfy CA(U) < C· COPT(U): 
We complement these results by presenting on-line algorithms with weak lookahead which are 
optimal or nearly optimal for request sequences of restricted length. 

The list update problem: The list update problem consists of maintaining a set of items as 
an unsorted linear list. A list of items is given. Each request is an access to an item in the list. 
In order to serve an access, a list update algorithm starts at the front of the list and searches 
linearly through the items until the desired item is found. Accessing the ith item in the list 
incurs a cost of i. At any time, a list update algorithm may exchange adjacent items in the list. 
Immediately after an access, the requested item may be moved at no extra cost to any position 
eloser to the front of the list. These exchanges are called free exchanges. All other exchanges 
cost 1 and are called paid exchanges. The goal is to serve the request sequence such that the 
total cost is as small as possible. 

Section 5 addresses the deterministic list update problem with strong and weak lookahead. 
We show that an on-line algorithm requires a strong lookahead of size S1(n) in order to be better 
than 2-competitive. The factor of 2 is the best possible competitive factor of an on-line algorithm 
without lookahead. H an on-line algorithm is given a weak lookahead, the situation is worse. A 
lookahead of size S1(n2) is necessary to asymptotically beat the competitive factor of 2. We give 
simple on-line algorithms with strong and weak lookahead which are competitive, if the off-line 
algorithm uses a static algorithm. Furthermore, we present a more complicated algorithm which 
is competitive against dynamic off-line algorithms. 

We also touch the foilowing problems. 
Caching problems: The structure of caching problems resembles that of paging problems. 
The difference is that loading different items into the cache can cause different costs. The goal is 
to mjnjmize the cost incurred for loading items into the cache. An example of a caching problem 
is the caching of fonts in printersi see [MMS90] fora more detailed description of applications. 

The k-server problem: The general version of the k-server problem was introduced by Man­
asse et al. [MMS88]. It generalizes paging and caching problems as weil as some other important 
scheduling problems. The k-server problem is that of scheduling the motion of k mobile servers 
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· . which cover vertices in a complete directed graph G. The edge lengths are non-negative re als 
and satisfy the triangle inequality. Arequest sequence consisting of vertices in G must be served. 
In response to each request, a server must be moved to the requested vertex, unless a server is 
already present. The goal is to mjnjmjze the total distance traveled by the servers. A k-server 
problem is called symmetrie, if the distance from vertex i to vertex j equals the distance from 

j to i for all vertices i and j j otherwise it is called asymmetrie. 

Metrical task systems: These systems were introduced by Borodin et al. [BLS87] and gener­
alize a large dass of on-line problems. A task system (S, d) consists of a set S = {l, 2, ... , n} of 

n states and an n X n cost matrix d, where d( i, j) ~ 0 denotes the cost of changing from state 
i to state j. The matrix d satisfies the triangle inequality and the diagonal entries are zero. At 
any time the task system resides in one state of S. Arequest sequence equals a sequence of 

tasks. A task T is a vector T = (T(l), T(2), ... , T(n)), where T(i) denotes the cost ofprocessing 
the task while in state i. Given a task sequence q = Tl, T 2 , T 3 , • • • and an initial state s( 0), an 
algorithm for metrical task systems must determine a schedule of states s( l), s( 2), ... , such that 
task Ti is processed in state s( i). The cost of serving a task sequence is the sum of all state 
transition costs and all task processing costs. The goal is to process a given task sequence such 
that the cost is as small as possible. 

Section 6 deals with more general on-line problems such as caching, the k-server problem 
and metrical task systems. We prove that in these more general on-line problems neither weak 
nor strong lookahead can generally improve the competitive factors of deterministic on-line 

algorithms without lookahead. 

3 Competitive paging with strong lookahead 

First we review the main results known for paging without lookahead. Sleator and Tarjan 
[ST85] have demonstrated that the well-known replacement algorithms LRU (Least Recently 
Used) and FIFO (First-In First-Out) are k-competitive. On a fault LRU removes the page 
whose most recent request was earliest, and FIFO evicts the page that has been in the cache 
longest. Sleator and Tarjan have also proved that no on-line paging algorithm can be better than 
k-competitivej hence LRU and FIFO achieve the best competitive factor. Fiat et al. [FKLSY9l] 
have shown that no randomized on-line paging algorithm can be better than H(k)-competitive 

against an oblivious adversary. Here H(k) = Ef=ll/i denotes the kth harmonie number. They 
have also given a simple replacement algorithm, called the MARKER algorithm, which achieves 
a competitive factor of 2H(k). McGeoch and Sleator [MS9l] have proposed a more complicated 
randomized paging algorithm which is H(k)-competitive. 

The paging problem is isomorphie to the uniform k-server problem on an n-vertex graph. In 
the uniform k-server problem, all edge lengths equal one. The n vertices in the graph eorrespond 
to the n pages in the memory system, and the vertices covered by the k servers eorrespond to 
the pages in cache. In the seetions on paging we generally use the terminology of the k-server 
problem rat her than that of the paging problem. A fault oeems if there is arequest to an 
uncovered vertex. Ha page is brought into cache, then a server is moved to that vertex. 
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Belady [B66] has exhibited an optimal off-line algorithm for the paging problem, which is 
also called the MIN algorithm. On a fault, MIN vacates the vertex whose next request occurs 
farthest in the future. 

Unless otherwise stated, we assume in the following that all our paging algorithms are lazy 
algorithms, Le. they only move a server if it is necessary in order to serve arequest to an 
uncovered vertex. It is shown in [MMS91] that any algorithmfor the symmetrie k-server problem 
can be converted into a lazy algorithm without increasing its cost. 

3.1 Deterministic algorithms 

We assume that an on-line paging algorithm has a strong lookahead of size l. First we consider 
the important case 1 ~ k - 2. The on-line paging algorithms we ·present are extensions of the 
algorithm LRU to our model of strong lookahead. 

Algorithm LRU(l): On a fault execute the following steps. Among the covered vertices which 
are not contained in the present lookahead determine the vertex whose last re quest occurred 
least recently. Choose the server covering this vertex, and move itto the request. 

Theorem 1 Let 1 ~ k - 2. The algorithm LRU(l) with strong lookahead 1 is (k -l)-competitive. 

Now we prove this theorem. Let u = u(l), u(2), ... , u(m) be arequest sequence oflength m. 
We assume without loss of generality that LRU(l)'s and OPT's servers are initially all on vertex 
1. The following proof consists of three main parts. First, we introduce the potential function 
we use to analyze LRU(l). In the second part, we partition the request sequence u into aseries 
of phases and then, in the third part, we bound LRU(l)'s cost in each phase. 

1. The potential function 
We introduce some basic notations. For t = 1,2, ... , >'(l)-l,let l'(t) = 1 andfor t = >.(t), >.(t) + 
1, ... ,m, let 

l'(t) = max{ t' < tlcard( {u(t'), u(t' + 1), . .. , u( t)}) = 1 + 1}. 

Define 

M(t) = {u(s)ls = l'(t), l'(t) + 1, ... , t}. 

For a given time t, the set M(t) contains the last 1 + 1 requested vertices. 

Let SLRU(I)(t) be the set of vertiees covered by LRU(l) after request t, and let SOPT(t) be 
the set of vertices covered by OPT after request t. For the analysis of the algorithm we assign 
weights to all vertices. These weights are updated after each request. Let w(z, t) denote the 
weight of vertex z after request t. The weights are set as follows. If z ~ S LRU(I)( t) or z E L( t), 
then 

w(z, t) = O. 

Let j = card(SLRU(I)(t) \ L(t». Assign integer weights from the range [l,j] to the vertices in 
SLRU(I)(t) \ L(t) such that 

w(z, t) < w(y, t) 
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iffthe last request to z occurred earlier than the last request to y. If a vertex z E SLRU(I)(t)\L(t) 
has not been requested so far (note that this may apply only to the initially covered vertex 1), 

we assume that the last request to Z occurred earlier than arequest to any other vertex in 

SLRU(I)(t) \ L(t). 

We now define the potential function: 

~(t) = w(z, t) 
zESLRU(/)( t)\ {M(t )USOPT(t)} 

2. The partitioning of the request sequence 
We will partition the request sequence u into P + 1 phases, numbered from 0 to P, such that 

phase 0 contains at most 1 + 1 distinct vertices and phase i, i = 1,2, ... ,P, satisfies the following 
two properties. Let tt and ti denote the beginning and the end of phase i, respectively. 

Property 1: Phase i contains exact1y 1 + 1 distinct vertices, Le. 

card( {u(tt), u(tt + 1), ... , u(tiH) = 1 + 1. 

Property 2: For all z E SLRU(I)(ti_l) \ {L(tt) U SOPT(ti_lH, 

w(z, tn .$ k - 1- 2. 

We claim that the following algorithm generates a desired partition. 

1. 

2. 
3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

t:=mj 

ti:= mj 

repeat 

tt := JL(tnj 
Let z be the vertex in SLRU(I)(tt - 1) \ L(tt) that was requested most recently 

among vertices in SLRU(I)(tt - 1) \ L(tt)j 
ütt = 1 or z E SOPT(tt -1) then 

else 

Let P( i) = u( tt), u( tt + 1), ... , u( tn be the ith phase, and call 
this phase of type 1j 

Determine the largest t' < t~, such that OPT vacates vertex z at time t/j 
~ := t/j 

Let P( i) = u( tt), u( tt + 1), ... , u( tn be the ith phase, and call 
this phase of type 2; 

endüj 
i := i - 1j 
t e .- tb 1· i .- i+l - , 

untiI ti = Oj 
Number the phases from 0 to Pi 

Note that phase 0 cannot be of type 2 because in this case OPT would vacate vertex 1 at 

the fust request. Hence phase 0 is of type 1 and contains at most 1 + 1 distinct vertices. 
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Lemma 1 The partition generated by the above algorithm satisfies Property 1 and Property 2. 

Proof: Let P( i), 1 ~ i ~ p, be an arbitrary phase. First we prove Property 1. 

If P(i) is oftype 1, then Property 1 clearly holds. If P(i) is oftype 2, then let t = Jl(ti) and 
let z be the vertex in SLRU(I)(t - 1) \ L(t) that was requested most recently among vertices in 
SLRU(I)(t -1) \ L(t). The vertex z is not requested in P(i) (see step 9 ofthe above algorithm). 
Let y be a vertex that is requested at time t', where ~ ~ t' < t. We have z ~ L( s) for all 
tt ~ s < t. Since z was not vacated in the interval [tt, t - 1], the vertex y must also bein 
SLRU(I)(t -1). It follows that y E L(t). This showsthat P(i) contains exactly 1 + 1 vertices. 

Now we prove Property 2. Consider an arbitrary z E SLRU(I)(ti-l) \ {L(tt) u SOPT(ti_l)}. 
If w(z, ti) = 0, then the property clearly holds. Therefore, assume w(z, ti) 2: 1. By Property 1, 

L(t~) contains all vertices which are requested in phase i and L(t~) = M(ti). If P(i) is of type 
1, then there must exist a vertex y E SLRU(I)(ti-l) \ L(~) which was requested more recently 
than z. We have w(z, ti) 2: 1, which implies z ~ L(t) for all tt ~ t ~ ti. Since z was not 
vacated during phase i, vertex y and all vertices in L(t~) must also be contained SLRU(I)(ti). All 
z E L(t~) U {y} satisfy w(z, ti) = 0 or w(z, ti) > w(z, ti). Hence w(z, ti) ~ k -1- 2. 

If the phase is of type 2, then OPT vacates a vertex y ~ L(tt) at time tt. Note that 
y E SLRU(I)(ti_l) and z ::/; y. At time t~, the last request to y is more recent than the last 
request to z. Since w( z, ti) 2: 1, we have z ~ L(t) for all tt ~ t ~ ti. As above we conclude that 
vertex y and all vertices in L(tt) must also be contained in SLRU(I)(ti). Hence w(z, ti) ~ k-I-2. 
This completes the proof of the lemma. 0 

3. Bounding LRU(I)'s amortized cost 
We examine the effect of LRU(I)'s and OPT's moves on the potential function ~. We generally 
assume that in response to arequest, OPT moves first and LRU(I) moves second. First we 
investigate the effect of a move made by OPT. 

Lemma 2 IjOPT moves a server dUMng phase P(i), this can increase the potential in either 
the current phase P( i) or the nezt phase P( i + 1) (if this phase exists) by at most k - 1 - 1. 

Proof: Suppose OPT moves a server at time t during phase P(i), and vacates a vertex z that 
is in SLRU(I)(t). Such a move can increase the potential. 

If the potential does increase due to this move, then there must exist a t' 2: t such that 

z E SOPT(t' - 1) or z E M(t' - 1) 

and 

z E SLRU(I)(t') \ SOPT(t') and z ~ M(t') and z ~ L(t') 

and z is not requested during the interval [t, t']. Note that z ~ L(s) for all Jl(t') ~ s ~ t'. 
Since z was not vacated by LRU(I) during [Jl(t') , t'], all vertices in M(t') must be in SLRU(I)(t'). 
At time t', all vertices in M(t') have a weight of 0 or a weight which is greater than w(z, t'). 
Hence w(z, t') ~ k - 1- 1 and the potential can increase by at most k - 1- 1. If t' ~ ti, then 
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the potential increases in the current phase. Suppose t' > t~. Since P( i + 1) contams 1 + 1 
distinct vertices (see Property 1), the vertex z is not requested in phase P(i+ 1). Thus we have 

z rt. M (t~+l)' We conclude t' ::; t~+1 because z rt. L( s) for all t ::; s ::; t'. Hence the potential can 
only increase in either the current phase P(i) or the next phase P(i + 1). 0 

Now, let COPT(i) be the cost incurred by OPT during phase i, let CoPT(i) be the number of 
moves during phase i which increase the potential in that phase and let C3PT(i) = COPT(i)­
CopT(i). Furthermore, let CLRU(I)(i) be the cost incurred by LRU(l) during the ith phase. 

LemIna 3 For i = 1,2, ... ,p, 

Proof: Consider any 1 ::; i ::; p. By Lemma 2, OPT's moves can increase the potential in phase 
i by at most (k -1-1)(CopT(i) + C3PT(i -1)). IfLRU(l) makes no move during phase i, then 
the lemma clearly holds. Therefore, suppose CLRU(l)(i) 2: 1. 

We examine the effect of LRU(l)'s moves on the potential function ~. Obviously, LRU(l)'s 
moves cannot increase the potential. We claim that if there exists a vertex 

z E SLRU(I)(t) \ {L(t) u M(t) U SOPT(t)} 

at time t and if LRU(l) makes a move at time t + 1, then z's weight must decrease by aleast 1. 

Hence the potential decreases by at least 1. The claim clearly holds if z is the vacated vertex 
itself or if z E L(t + 1). If z is not the vacated vertex and if z rt. L(t + 1), then there must be a 
vertex 

Y E SLRU(l)(t) \ {L(t) U M(t)} 

which is vacated and whose last request is longer ago than z's last request. After y is vacated 
z's weight decreases by 1. 

Define C(i) = card(SLRU(l)(ti_l) \ {L(t~) U SOPT(ti_l)})' We show that the following in­
equality holds. 

(1) 

This inequality proves the lemma because, during phase i, LRU(l) makes at most C(i) moves 
more than OPT, Le. 

In order to prove inequality (1), we have to balance a cost of C(i). Consider any z E 

SLRU(l)(t~-l) \ {L(t~) U SOPT(ti_l)}' We distinguish two cases. 

Case 1: For t = ti_ll t~, t~ + 1, ... , ti, z rt. SLRU(I)(t) \ {L(t) U M(t) U SOPT(t)} 
In this case z does not increase the potential in phase i and we charge a cost of 1 to the move 
at which OPT vacates z. This move is counted in C3PT(i - 1). 

Case 2: There exists a t, ti-l ::; t ::; ti, such that z E S LRU(I)( t) \ {L( t) U M (t) U SOPT( t)} 
In this case let tmm be the smallest t with this property. If tmm = t~_l then z's weight must 
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decrease by at least 1 before or at the first move by LRU(I) during phase i. This causes a decrease 

of the potential function by at least 1. If tmm ~ tt then consider w( z, tmm) and investigate two 
cases. If w(z, tmm) = k -1-1, then z's weight must decrease by at least 1 during phase i because 
w(z, tn ~ k -1- 2 (see Property 2). Hence, z causes a decrease of the potential function by at 
least 1. If w(z, tmm) ~ k - 1- 2, we may charge an additional cost of 1 to the move at which 

OPT vacated z. This move is counted in C3PT(i - 1). This completes the proof of inequality 

(1). 0 

U sing Lemma 3 a proof of Theorem 1 is very simple. Phase 0 contains at most 1+ 1 vertices 
Thus, during this phase LRU(I) does not incur a higher cost than OPT, Le. 

CLRU(l)(O) + ~(tg) - ~(O) ~ COPT(O) + (k -I ~ l)CbPT(O), 

where ~(O) = 0 is the initial potential. Sllmming up this inequality and the inequalities of 

Lemma 3 for i = 1,2, . . . ,p we obtain 

CLRU(l)(U) + ~(m) - ~(O) ~ (k -1)CoPT(u). 

The proof of Theorem 1 is complete. 

Next we present another on-line algorithm with strong lookahead. This algorithm does not 
use fu11lookahead but rather serves the re quest sequence in a series of blocks. 

Algorithm LRU(I)-blocked: Serve the re quest sequence in a series of blocks B(l), B(2), ... , 
where B(l) = u(l), u(2), ... , u(A(l)) and B(i) = u(ti_l + 1), u(ti_l + 2), ... , u(A(ti_l + 1)) for 
i ~ 2. Here ti_l denotes the end ofblock B(i-l). Ifthere occurs a fault while B(i) is processed, 
then the following rule applies. Among the covered vertices which are not contained in B(i), 
determine the vertex whose last request occurred least recently. The server covering this vertex 
is moved to the request. 

Interestingly, this algorithm is only slightly weaker than LRU(I). 

Theorem 2 Let I ~ k - 2. The algorithm LRU(IJ-blocked with strong lookahead I is (k -I + 1)­
competitive. 

Proof: We assume that the request sequence consists of b blocks B(l), B(2), ... , B(b). For 
i = 1,2, ... , b, let tt and ti denote the beginning and the end of block B( i), respectively. We 
assume that both LRU(I)-blocked's and OPT's servers are initially all on vertex 1. 

The potential function we use to analyze LRU(I)-blocked is similar to the function we in­

troduced in the proof of Theorem 1. For t ~ 1, the values JL(t) and the sets M(t) are defined 
as in the previous proof. Let SL(t) denote the set of vertices covered by LRU(I)-blocked after 
request t, and let SOPT(t) be the set of vertices covered by OPT after request t. For t ~ 1, we 

define values ,(tl. Set ,(t) = i ifftt ~ t ~ti. Let SB(t) be the set ofvertices that are requested 
during block B(T(t)). 

Again, we assign weights to all vertices. Let w(z, t) denote the weight of vertex z after 

request t. If z f/: SL(t) or if z E SB(t) then w(z, t) = o. Let i = card(SL(t) \ SB(t)). Assign 
integer weights from the range [l,i] to the vertices in SL(t) \ SB(t) such that 

w(z,t) < w(y,t) 
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iff the last request to z occurred earlier than the last request to y. Again, if a vertex z E 
SL(t) \ SB(t) has not been requested so far, we assume that the last request to Z occurred earlier 
than arequest to any other vertex in SL(t) \ SB(t). 

The potential function is defined as 

~(t) = w(Z, t). 
zESL( t)\ {M(t)USoPT(t)} 

U sing a similar analysis as in the proof of Lemma 2 we are able to show 

Lemma 4 1/ OPT moves a server while processing block B(i), this can increase the potential in 
either the current block B( i) or the next block B( i + 1) (i/ this block exists) by at most k - 1- 1 . 

. Let CL(i) be the cost incurred by LRU(I)-blocked during block i. Furthermore, let CopT(i) 
be the cost incurred by OPT during block i, let CoPT(i) be the number ofmoves by OPT during 
block i which increase the potential in that block and let C~PT( i) = COPT( i) - COPT( i). Define 

tö = o. 

Lemma 5 For i = 2,3, ... , b, 

Proof: Consider any 2 ~ i ~ b. By Lemma 4 OPT's moves can increase the potential in block 

i by at most (k -1- 1)(COPT(i) + C~PT(i - 1)). Thus, if LRU(l)-blocked does not incur any 
cost during block i, then the lemma clearly holds. Therefore, we assume CL ( i) 2: 1. 

We investigate the effect of LRU(l)-blocked's moves on the potential function~. Obviously, 
LRU(l)-blocked's moves do not increase the potential. If there exists a vertex 

at time t and if LRU(l)-blocked makes amove at time t + 1, then the z's weight decreases by at 
least 1. Hence the potential decreases by at least 1. This claim can be proved in the same way 
as in the proof of Lemma 3. 

Let C(i) = card(SL(t~_l) \ {SB(t~) U SOPT(t~_l)})' We show that 

(2) 

This inequality obviously proves the lemma because CL( i) ~ COPT( i)+C( i). We prove inequality 

(2). We have to balance a cost of C(i). Consider any z E SL(t~_l) \ {SB(ti) U SOPT(t~_l)}' We 
examine two cases. 

Case 1: For t = t~_l' ti, ti + 1, ... , t~, z ~ SL(t) \ {SB(t) U M(t) U SOPT(t)} 
In this case z does not increase the potential during block i and we charge a cost of 1 to the 

move at which OPT vacated z. This move is counted in C~PT(i - 1). 
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Case 2: There exists a t, ti-l :s t :s ti, such that SL(t) \ {SB(t) U M(t) U SOPT(t)} 
In this case let tmm be the smallest t with this property. If tmm = ti_l' then z's weight decreases 
by 1 at the first move by LRU(l)-blocked during block i. Hence the potential function decreases 

by 1. If tmm ~ ~, then observe that w(z, tmm) :s k -1-1. Now we charge an additional cost of 
1 to the move at which OPT vacated z. This move is counted in CöpT(i). This completes the 
proof of the inequality (2). 0 

Note that during block 1, LRU(l)-blocked does not incur a higher cost than OPT, Le. 

CL(l) + ~(tD - ~(O) :s COPT(l) + (k - 1- l)COPT(l), 

where ~(O) = 0 is the initial potential. 5umming up this inequality and the inequalities of 

Lemma 5 for i = 1,2, ... , b, we obtain 

CL(U) + ~(m) - ~(O) :s (k -1 + l)COPT(U). 

Here CL(U) denotes the cost ofLRU(l)-blocked on request sequence u. This conc1udes the proof 

that LRU(l)-blocked is (k-l + l)-competitive. (] 

The following theorem shows that no deterministic on-line paging algorithm with strong 

lookahead 1 :s k - 2 can achieve a better competitive factor than LRU(l) and that LRU(l)­
blocked is nearly optimal. 

Theorem 3 Let A be a deterministic on-line paging algorithm with strong lookahead I, where 
1 :s k - 2. If A is c-competitive, then c ~ (k - 1). 

Proof: Consider a set S = {Zb z2, ... , ZieH} of k + 1 vertices. We assume without loss of 
generality that both A'S and OPT's servers initially cover vertices Zl,Z2, ... ,ZIe. Let SL = 
{Zll Z2,···, zz}. 

We construct arequest sequence U consisting of a series of phases. Bach phase contains 1 + 1 

requests to 1 + 1 distinct vertices. The first phase P(l) consists of requests to the vertices in 

SL, followed by arequest to the uncovered vertex ZIe+l, Le. P(l) = zl,Z2, ... ,ZI,ZleH' Bach 

of the following phases peil, i ~ 2, has the form peil = Zb Z2, ... , Zl, Yi, where Yi E S \ SL is 
chosen as follows. Let Zi E S be the vertex uncovered by A after the last request of phase i-I. 

If Zi E S \ SL, then set Yi = Zi. Otherwise, if Zi E SL, Yi is an arbitrary vertex in S \ SL. 

The algorithm A incurs a cost of 1 in each phase. We show that during k - 1 successive 
phases, OPT's cost is at most 1. This proves the theorem. 

OPT always covers vertices Z1. Z2, ... , Zl. Note that k -1 successive phases contain at most 
k different vertices. If the last request in a given phase is uncovered by OPT, then OPT can 

move a server such that all vertices in the next k - 1 - 1 phases remain covered. 0 

50 far, we have only considered the case 1 :s k - 2, which, of course, is the interesting one. 

If 1 = k - 1 and n = k + 1 then LRU( 1) achieves a competitive factor of 1 because it behaves 

like Belady's optimal paging algorithm MIN [B66). If n > k + 1 and n > 1 ~ k - 1, then the 
competitive factor of an optimal on-line algorithm depends not only on 1 but also on n. 
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3.2 Randomized algorithms 

Suppose a randomized paging algorithm. has a strong lookahead of size 1. Again, we assume 

1 ::; k - 2. The first algorithm. we propose is a slight modification of the MARKER algorithm. 

due to Fiat et al. [FKLMSY91], which we review for the sake of completeness. 

Algorithm MARKER: The algorithm. proceeds in aseries of phases. During each phase a 

set of marked vertices is maintained. At the beginning of each phase all vertices are unmarked. 

Whenever a vertex is requested, that vertex is marked. On a fault a server is chosen uniformly 

at random from among the unmarked vertices, and that server is moved to the request. A phase 

ends immediately before arequest to an" uncovered vertex, when all k servers cover marked 

vertices. At that moment a1l marks are erased and a new phase is started. 

The modified algorithm. with strong lookahead 1 uses lookahead once during each phase. 

Algorithm MARKER( 1): At the beginning of each phase execute an initial step: Determine 

the set U of uncovered vertices in the present lookahead. Then choose card( U) servers uniformly 

at random from among the servers which cover vertices not contained in the current lookahead. 

Move these servers to the vertices in U. Mter this initial step proceed with the MARKER 

algorithm.. 

Theorem 4 Let 1 ::; k - 2. The algorithm MARKER(I) with strong lookahead 1 is 2H(k - 1)­
competitive. 

Proof: The idea of the proof is the same as the idea of the original proof of the MARKER 

algorithm. [FKLMSY91). During each phase we compare the cost incurred by MARKER(1) to 

the cost incurred by the optimal algorithm. OPT. 

Consider an arbitrary phase. We use the same terminology as Fiat et al. A vertex is called 

stale if it is unmarked but was marked in the previous phase, and clean if it is neither stale nor 

marked. 

Let c be the number of clean vertices and S be the number of stale vertices requested in the 

phase. Fiat et al. prove that OPT has an amortized cost of at least c/2 during the phase. 

We evaluate MARKER(1)'s cost during the phase. Serving c requests to clean vertices 

obviously costs c. It remains to bound the expected cost for serving the stale vertices. Let SI 

be the number of stale vertices contained in the lookahead at the beginning of the phase and 

let S2 = S - SI. Note that serving the first SI stale requests does not incur any cost and that 

we just have to evaluate MARKER(l)'s cost on the following S2 requests to stale vertices. The 

expected cost of arequest to such astale vertex is cis, wheres is the current number of stale 

vertices and c is the number of clean vertices requested in the phase so far. 

It follows that the expected cost of the requests to stale vertices is highest if all clean vertices 

are requested before any stale vertices and that this cost is bounded by 

c c c c 
-k-+ + + ... + () 

- SI k - Sl - 1 k - SI - 2 k - SI - S - SI + 1 
c c c c 

-k-+k + + ... + . 
- SI - SI - 1 k - SI - 2 k - S + 1 
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This sum is bounded by c(H(k -1) -1) since 52 :::; k -1-1, and we conclude that MARKER(l)'s 
cost during the phase is bounded from above by cH(k - 1). This proves the theorem because 
OPT's amortized cost during the phase is at least c/2. 0 

We give a lower bound for randomized on-line paging algorithms with strong lookahead. 
This lower bound implies that MARKER( l)'s competitive factor is optimal, up to a constant 
factor. Raghavan [R89] has an elegant prooffor the theorem that no randomized on-line paging 
algorithm (without lookahead) can be better than H(k)-competitive. He makes use of Yao's 
minimax principle [Y77] and provides a prob ability distribution on request sequences u on 
which no deterministic on-line paging algorithm has an expected cost of less than H(k) times 
the optimal cost; see [R89] for details. 

Theorem 5 Let 1 :::; k - 2 and let A be a randomized on-line paging algorithm with strong 
lookahead 1. Jj A is c-competitive, then c ? H(k -1). 

Proof: The proof is similar to Raghavan's proof [R89] and we just sketch the difference. Let 
S = {ZI, Z2, .•• , ZieH} be a set of k + 1 vertices and let SL = {Zl, Z2, ... , Zl}. We construct a 
request sequence which consists of a series of phases. 

The first phase is of the form P(l) = Zl,Z2, ... ,Zl,Yl, where Yl is chosen uniformly at 
random from all vertices in S \ S L. The following phases P( i) equal P( i) = Z11 Z2, ..• , Zl, Yi, 

where Yi is chosen uniformly at random from S \ {SL u {Yi-l}}. It is possible to partition u 
into rounds such that during each round OPT incurs a cost of 1 and any deterministic on-line 
algorithm with strong lookahead 1 incurs an expected cost of at least H(k -1). 0 

We conclude this section by presenting another randomized algorithm, called RANDOM(l)­
blocked. As the name suggests this algorithm is a variant of the algorithm RANDOM due 
to Raghavan and Snir [RS89]. On a fault RANDOMchooses a server uniformlyat random 
from among the covered vertices and moves it to the request. In terms of competitiveness 
RANDOM(l)-blocked represents no improvement upon the previously presented algorithms with 
strong lookahead. However, RANDOM(l)-blocked, as the original algorithm RANDOM, is very 
simple and uses no information on previous requests. 

Algorithm RANDOM(l)-blocked: Service the request sequence u in a series of blocks 
B(1),B(2), ... , where B(l) = u(1),u(2), ... ,u(A(1)) and B(i) = u(ti_l + l),u(ti_l + 2), ... , 
u(A(ti_l + 1)) for i ? 2. Again, ti_l denotes the end ofblock B(i -1). At the beginning ofblock 
B(i) determine the set Ui ofuncovered vertices in B(i). Choose card(Ui) servers uniformly at 
random from among the servers covering vertices not contained in B( i), and move them to the 
vertices in Ui . Then serve the requests in B( i). 

Theorem 6 Let 1 :::; k - 2 . . The algorithm RANDOM(l)-blocked with strong lookahead 1 is 
(k -1 + l)-competitive. 

Proof: The potential function we use to analyze the algorithm is 

~(t) = (k - 1) . card(SR(t) \ SOPT(t)). 
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SR(t) denotes the set of vertices covered by RANDOM(l)-blocked after request t and SOPT(t) 
denotes the set ofvertices covered by OPT after request t. We assume that RANDOM(l)-blocked 
and OPT start with the same initial cache. 

Suppose the request sequence u consists of b blocks B(1), B(2), ... , B(b). We assume without 
loss of generality that the last block B{b) contains 1 + 1 distinct requests. The values t~ and 
t: denote the beginning and the end of block B( i), respectively. Define tg = o. Let E( ~(t:) -
~(t:_l)) be the expected change in potential between t:_1 and t:. Furthermore, let CR( i) and 
COPT(i) denote the cost incurred by RANDOM(l)-blocked and OPT during block B{i). We 

show that for all i = 1,2, ... , b, 

This inequality obviously proves the theorem. 

H CR(i) = 0, then the inequality clearly holds. Each time OPT moves a server during block 
i, it might vacate a vertex which is in SR(t:_ 1 ) = SR(t:). Hence each move can increase the 
potential by (k -l). 

Now suppose CR{i) 2: 1 and let 

We analyze the effect of the moves by RANDOM(l)-blocked and OPT on the potential function 
~, and assume that our on-line algorithm moves first and OPT moves second. 

RANDOM(l)-blocked vacates CR(i) vertices at the beginning of block B{i). The expected 
decrease in potential is 

. C( i) -. 1 - . 
(k -l)CR{t) k -l- 1 + CR{i) 2: (k -l)C{t) k -l = C(t). 

Note that a newly covered vertex might not be in SOPT(t:_1 ), which can increase the potential 
by (k -l) per vertex. Hence, the moves by RANDOM(l)-blocked cause an expected increase of 
potential of at most 

-C(i) + (k -l)CR(i). 

We consider OPT's moves. Each time OPT makes a move and vacates a vertex, this can 

increase the potential by (k - l). Note that a vertex :z: which is requested in B(i) is not in 
SOPT{ti) if and only if it was vacated by OPT during B(i). Hence 

Since CR(i) ~ COPT{i) + C(i), we obtain 

o 

15 



4 Competitive paging with weak lookahead 

It is easy to prove that weak lookahead cannot improve the competitive factors of deterministic 
and randomized on-line paging algorithms, see also [191]. If an on-line paging algorithm is given 
a weak lookahead of size 1, an adversary can simply replicate each request 1 times in order to 
make the lookahead useless. However, we will show in the following sections that a deterministic 
(randomized) on-line paging algorithm with weak lookahead can satisfy CA(er) < k· COPT(er) 
(CA( er) < H(k)·COPT( er)) for request sequences er of a restricted length. We examine which part 
of arequest sequence er has to be seen by an on-line algorithm A such that CA ( er) < k· COPT( er) 
or CA(er) < H(k) . COPT(er). 

4.1 Deterministic algorithms 

Throughout this section we assume that both the k servers of the given on-line paging algo­
rithm and the k servers of the optimal off-line algorithm initially cover the same k vertices 
Zl, Z2, ... , Zlc. The reason is the following. As mentioned before, we will show that a deter­
ministic on-line paging algorithm A with weak lookahead can satisfy CA(er) < k· COPT(er) for 
request sequences er of a restricted length. Hence, when evaluating the performance of an on-line 
paging algorithm, one should not take into ac count the cost any paging algorithm incurs when 
filling up the cache on the first k faults. 

Theorem 7 Let A be a deterministic on-line paging algorithm with weak 100kahead 1. For all 
integers m ~ I, there ezists arequest sequence er 011ength m such that 

. m 
CA(er) ~ mm{k, r 1 + 1 n· COPT(er). 

Proof: Fix an integer m ~ 1. Let S = {ZI, Z2, ••. , ZlcH} be a set of k + 1 vertices. We assume 
that A's and OPT's servers are initially on vertices Zl, Z2, ... , Zlc. The request sequence we 
construct consists of c = m.in{k, r'~ll} phases P(l), P(2), ... , where 

P( i) = er(( i - 1)(1 + 1) + 1), er(( i - 1)(1 + 1) + 2), ... , er( i(1 + 1)) 

for i = 1, 2, ... , c - 1, and 

P(c) = er((c - 1)(1 + 1) + 1), er((c - 1)(1 + 1) + 2), ... , er(m). 

Within each phase, all requests are equal. In the first phase, we request the initially uncovered 
vertex ZlcH. Phase P( i), for i = 2,3, ... , c, then requests the vertex in S which is uncovered by 
A after the first request of phase P( i-I). 

When serving er(l), the algorithm OPT can vacate a vertex that will not be requested during 
the remaining part of the request sequence. Hence OPT's cost equals 1. The on-line algorithm 
incurs a cost of 1 per phase. This proves the theorem. o. 

The above theorem implies that for every determinj.stic on-line paging algorithm A with 
weak lookahead I, there exists arequest sequence of length m = (k - 1)(1 + 1) + 1 such that 
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CA(O') = k· COPT(O'). However, A ean fulfill CA(O') < k . COPT(O') for all request sequenees of 
length m S (k - 1)(1 + 1). Thus, given arequest sequenee 0', a substantiallookahead, whose 
size depends on the length of the entire request sequenee, ean be neeessary in order to satisfy 
CA (0') < k· COPT( 0'). The above theorem also evaluates for which request sequenees 0' an on-line 

algorithm A with weak lookahead ean satisfy CA(O') Sc· COPT(O'), given acE [1, klo 
We present an on-line algorithm with weak lookahead 1 which is optimal for request sequenees 

oflength m S k(1 + 1). 

Algorithm ARBITRARY /MIN(I): Serve the request sequenee in a series of blocks B(l), 
B(2), ... , where B(i) = O'((i - 1)(1 + 1) + l),O'((i - 1)(1 + 1) + 2), .. . ,00(i(1 + 1)). On a fault 
determine the set 5 of eovered vertices which will not be requested during the remaining part 

of the eurrent block. 

(1) H 5 is not empty, then vaeate an arbitrary vertex in 5 and move the eorresponding server 

to the requested vertex. 

(2) Otherwise; if 5 is empty, vaeate a vertex aeeording to the MIN rule, Le. choose the vertex 
whose next request oeeurs farthest in the future, and move the eorresponding server to 

the re quest . 

Theorem 8 Let 0' be arequest sequence of length m and let C AM ( 0') denote the cost incurred 
by ARBITRARY/MIN(l) in processing 0'. Then 

where c = r l~.\ 1-

Proof: First we introduee some notations. Let 5AM(t) denote the set of vertices eovered by 
ARBITRARY jMIN(l) (also ealled AM for simplicity) after request O'(t); 50PT(t) denotes the 
set of vertices eovered by OPT after request O'(t). Furthermore, let 5(0) be the set of vertices 
eovered initially. A fault that oeeurs when serving arequest O'(t) is ealled an initial fault, if the 

requested vertex is in {O'(s)ls = 1,2, ... , m} \ 5(0) and O'(t) is the first request to that vertex. 
Every non-initial fault at arequest O'(t) ean be viewed as being generated by another request 

O'(t'), where t' < t: The paging algorithm vaeates the vertex z = O'(t) when serving O'(t'), and z 
is not requested during O'(t' + 1), O'(t' + 2), ... , O'(t - 1). A fault is ealled a near fault, if it was 
generated in the same block; otherwise it is ealled a far fault. 

Let f be the number of initial faults made by AM and OPT on the request sequenee, Le. 

f = card( {O'(s)ls = 1,2, ... , m} \ 5(0)). 

We observe that during the entire request sequenee, OPT ineurs at least f initial faults and 
that in each block, AM has at most f far faults. Henee the number of far faults made by AM is 

Sc· f, sinee AM serves c = rl~\ 1 blocks. The following lemma obviously implies the theorem. 

Lemma 6 In each block B(i), i = 1,2, ... , c, the number of non-initial faults made by OPT is 
at least as large as the number of near faults incurred by AM. 
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Proof: Let N be the number of near faults incurred by AM during a given block B(i), and let 

tl < t2 < ... < tN be the times at which these near faults occur. We show that there exist 

Sl < S2 < ... < SN such that 

(1) OPT incurs a non-initial fault when processing u(Sj), j = 1,2, ... , N. 

(2) tt S Sj S t~ for j = 1,2, ... , N. Here tt and t~ denote the beginning and the end of block 
B(i). 

More specifically, we will construct sets TAM = {tl, t2,· .. , tN} and TOPT = {Sl' S2,.·., SN} 
such that the above conditions (1) and (2) hold. These sets are built up as follows. Starting 
with empty sets TAM = TOPT = 0, we trace AM's moves during block B(i). Each time AM 
generates a new near fault, which will occur at some time t' , we show the existance of a time 

s' ~ TOPT, tt S s' S t~, such that OPT makes a non-inital fault when serving u(s'). We then 
add t' to TAM and s' to TOPT. At the end of the block we obtain the desired sets. 

Let TAM(t - 1) and TOPT(t - 1) be the sets obtained after request t - 1. We show how to 

construct TAM(t) and TOPT(t). Note that TAM = TAM(ti) and TOPT = TOPT(ti). H AM does 

not generate a near fault at time t, then TAM(t) = TAM(t - 1) and TOPT(t) = TOPT(t - 1). So 
suppose that at time t, the algorithm AM generates a near fault that will occur at some time 
t'. Notice that all vertices in SAM(t - 1) will be requested in the remaining part oft he current 
block. Define 

T AM(t - 1) = {s > tls E TAM(t - 1) \ TOPT(t - In 

TOPT(t - 1) = {s > tls E TOPT(t -1) \ TAM(t - In 

We distinguish between two cases. 

Case 1: 3s E T AM(t - 1) : u(s) ~ SOPT(t) 
Then OPT incurs a non-initial fault at time s. Let TAM(t) = TAM(t - 1) U {t'} and TOPT(t) = 
TOPT(t - 1) U {s}. 

Case 2: 'Vs E T AM(t - 1) : u(s) E SOPT(t) 
Note that the requests u(s), s E T AM(t - 1), arepairwise distinct and that u(s) ~ SAM(t) for 

all sE T AM(t - 1). 

Case 2.1: t' E TOPT(t - 1) 

Since u(s) E SOPT(t) for all s E T AM(t - 1), there must exist card(T AM(t - 1)) vertices in 
SAM(t) which are not contained in SOPT(t). The algorithm AM vacates the vertex z = u(t' ) 
according to the MIN rule. Thus there must be card(TAM(t - 1)) times t", where t < t" < t', 
such that u(t") ~ SOPT(t) and u(t") E SAM(t). Since card(ToPT(t - 1)) = card(TAM(t -1)) 
and t' E TOPT(t - 1), there must be a time s' ~ TOPT(t - 1), with t < s' < t', such that 
u(s') ~ SOPT(t), u(s') E SAM(t) and u(s) :/= u(s') for all t < s< s'. 

Case 2.2: t' ~ TOPT(t - 1) 
H u(t' ) ~ SOPT(t) then let s' = t'. Otherwise, if u(t' ) E SOPT(t), there must exist card(TAM(t-
1)) + 1 times t", where t < t" < t', such that u(t") ~ SOPT(t) and u(t") E SAM(t). Again, 
since card(ToPT(t -1)) = card(T AM(t - 1)), there must exist a time s' ~ TOPT(t - 1), with 
t< s' < t' , such that u(s') ~ SOPT(t), U(S') E SAM(t) and u(s) :/= u(s') for all t < s < s'. 
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In both cases 2.1 and 2.2 we set TAM(t) = TAM(t-1)U{t'} and TOPT(t) = TOPT(t-1)U{s'}. 
Note that O'(s') represents a non-initial fault for OPT because O'(s') E SAM(t -1). 0 

The proof of Theorem 8 is complete. 0 

4.2 Randomized algorithms 

We examine for which request sequences 0' a randomized on-line paging algorithm A can satisfy 

CA(O') < H(k)· COPT(O'). Again, we assume throughout this section that the k servers of the 
on-line algorithm and the k servers of the optimai off-line algorithm initially cover the same k 

vertices Zl, Z2, ••. , Z1c. 

Weintroduce some definitions. For h = 1,2, ... ,k -1, let (nl,n2, .. . ,nh) be the h-tupel 
that maximizes the function 

subject to the constraints 

i=l 

Zi is a non-negative integer for i = 1,2, ... , h. 

If there exist several such h-tupel, let (nl,n2, ... ,nh) be the one that is largest according to 

the lexicographic order. It is easy to show that ni > 0 for all i = 1,2, ... , h. Define fmr.x(h) = 
A(nl, n2,.·., nh)' The following theorem bounds the values fmr.x(h). Note that fmax(k-1)+1 = 
H(k). 

Theorem 9 a) For h = 2,3, ... , k -1, 

b) For h = 1,2, . .. ,k -1, 

Proof: See appendix. 0 

111 
h(l- P/h) - (1 - k) < fmax(h) ~ h(l- P/h)' 

Given a value 1 ~ h ~ k - 1 and a weak lookahead 1 ~ 1, define values m(h, 1) as folIows. If 
I< k - 2, then 

If 1 ~ k - 2, then 

m(h,l) = h·1 + k. 
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Theorem 10 Let A be a randomized on-line paging algorithm with weak 100kahead 1. Then, fOT 

h = 1,2, ... , k - I, there ezists arequest sequence uh of length $ m(h, 1) such that 

CA(Uh) 2: (Jmax(h) + 1)· COPT(uh). 

Proof: Fix a value 1 $ h $ k - 1. We will give a probability distribution on request sequences 

u h which has the following properties. On this prob ability distribution the expected cost of 

any deterministic on-line paging algorithm with weak lookahead 1 is at least (Jmax( h) + 1) while 
the optimal off-line cost is exactly 1. Moreover, any sequence u h that is chosen according to 
this .distribution has a length of m(h, 1). Applying Yao's minimax principle [Y77]we obtain the 

theorem. 

We show how to choose uh . Let S = {ZI, Z2, ... , Z1c+1} be a set of k + 1 vertices, and let 
A be a deterministic on-linepaging algorithm with weak lookahead 1. We assume that both 
A's and OPT's servers initially cover vertices Zl, Z2, ... , Zle. The request sequence u h consists 
of h + 1 phases, numbered from 0 to h. Phase 0 consists of a single request to the uncovered 

vertex ZieH' We assume that we have already chosen phases 0 to i-I and show how to choose 
phase i. Let Mi-1 be the set of vertices requested during phases 0 to i-I, and let Yi-1 be 
the vertex that is requested last in phase i - 1. The first part of phase i consists of requests to 

vertices in Mi-1' More precisely, if card(Mi_d = 1, then we pose 1 requests to the vertex in 
Mi-1. Otherwise, if card(Mi_1) > 1, we use a slightly different strategy. We choose an arbitrary 

subset Li ~ Mi-1 \ {Yi-1} of cardinality min{l, card(Mi_1 \ bi-1})} and request each vertex in 
Li exactly once. If card(Mi_1 \ bi-1}) < 1, we replicate some of the requests until we obtain a 

total of 1 requests. If card(Mi_1 \ {Yi-1}) > 1, we choose r card(Mi_1 \ {Li u bi-1}})' Ie-E;:! nj 1 
vertices uniformly at random from Mi-1 \ {Li u bi-d} and add one request to each of these 
vertices. The second part of phase i consists of requests to vertices in S \ Mi-1. We choose 
~ vertices uniformlyat random from S \ Mi~l and request each of these vertices exactly once. 
This concludes phase i. 

We analyze A's and OPT's cost on request sequence uh . During phase 0 both A and OPT 
incur a cost of 1. Notice that during the remaining phases OPT does not incur any other fault 

because u contains exactly k distinct vertices. We estimate A's cost on an arbitrary phase i, 
where 1 $ i $ h. Let · Zi be the vertex in S that is not covered by A at the beginning of 

the ith phase. Note that Zi =f:. Yi-1. Since phase i contains vertex Zi with probability of at 

least ~/(k - E~::i nj), A's expected cost during phase i is at least ~/(k - E~::i nj). Thus A's 

expected cost on uh is at least (Jmax(h) + 1). It is easy to verify that the length of uh is m(h, 1). 
o 

Remarks: We mention some implication of the above theorem. Let A be a randomized on-line 

paging algorithm with weak lookahead 1. If 1 $ k - 2, then 

h 
~ 

m(h,I)$h.l+k+(k-l-1)·L
k

_ i.-1
n

. +h 
i=l E3=1 3 

for h = 1,2, ... , k - 1. Thus, if 1 < k - 2, Theorem 10 implies that there exists arequest 

sequence oflength m $ (k - 1)1 + 2k - 1 + (k -1- l)H(k) such that CA(U) 2: H(k)· COPT(U). 
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H 1 ~ k - 2, then there exists arequest sequence u of length m < (k - 1)1 + k such that 

CA(U) ~ H(k)· COPT(U). 

We present two on-line algorithms with weak lookahead I, called MARKER2(/)/STATIC 

and MARKER2(/)/MIN, for processing request sequences of restriced length m $ m(k - 1, I). 
We will use MARKER2(1)/STATIC if 1 < k - 2, and MARKER2(1)/MIN if 1 ~ k - 2. Both 

algorithms make use of the following variant of the MARKER algorithm. 

Algorithm. MARKER2(1): Serve the request sequence in aseries of phases. These phases 

have almost the same structure as those in the original MARKER algorithm. During each' 

phase we maintain a set of marked vertices. Whenever a vertex is requested, that vertex is 
marked. Aphase ends immediately before a fault, when there are k marked vertices. At 

that moment all marks are erased and a new phase is started. Each phase is served in a 

sequence of blocks. Each block consists of 1 + 1 successive requests. More precisely, let u(t) 
be the first request in a given phase. Then the ith block, i ~ 1, in that phase consists of 

u(t + (i - 1)(1 + 1)), u(t + (i - 1)(1 + 1) + 1), ... , u(t + i(1 + 1) - 1). On a fault, determine 
the set S of unmarked covered vertices which are not contained in the current block. H S is 

non-empty, then choose avertex uniformly at random in S and move the corresponding server 

to the request. H S is empty, then vacate an unmarked covered vertex according to Belady's 

MIN algorithm. H a phase ends before the current block is completely served, then that block 

is stopped and declared finished. 

In the following we assume that the length m of the given request sequence is known to our 

on-line algorithms. 

Case 1: 1 < k - 2 

Algorithm MARKER2(1)/STATIC: Determine the maximum h such that m(h, I) $ m. On 

the first h(1 + 1) requests execute the MARKER2(/) algorithm. After the h(1 + 1)st request, 
stop the MARKER2( I) algorithm, even if the current phase is not finished. Serve the remaining 
requests using the algorithm STATIC which works as follows. Let S be the set of vertices 

which were covered initially or which were requested during the first h(1 + 1) requests. First, 

the algorithm STATIC chooses k vertices uniformly at random from S and covers them by 

servers. While STATIC serves the remaining requests, the set S is occasionally updated such 

that it always includes the vertices which have been requested so far. Suppose there occurs 

a fault when STATIC serves arequest to a vertex which is in the current set S. In this case 

the algorithm moves an arbitrary server to the request, serves the request, and then moves the 

server back to the original vertex. H there occurs a fault while serving arequest to a vertex 

not in S, the algorithm first adds this new vertex to S. Then it chooses a server uniformly at 

random and moves this server to the request. With probability k/card(S), the server remains 

on this vertex, and with prob ability 1 - k/ card( S) it moves back. 

Case 2: 1 ~ k - 2 

Algorithm. MARKER2(/)/MIN: Compute the minimum h such that m(h, I) ~ m. Serve 

the first h(1 + 1) requests using the algorithm MARKER2(1). Then switch to Belady's MIN 

algorithm (note that m - h(1 + 1) $ 1 + 1). 
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Theorem 11 Let 1 ~ 1 and let U be arequest sequence 0/ length m ~ m(k - 1,1). 

a) 1f 1 < k - 2, then let h be the largest integer such that m(h, 1) ~ m. Let CMS(U) be the 
cost incurred by MARKER2(1)/STAT1C in processing u. Then 

CMS(U) ~ c· COPT(U), 

where C = 4(fmax(h) + 1) + 5 + !. 
b) 1f 1 ~ k - 2, then let h be the smallest integer such that m(h, 1) ~ m. Let CMM(U) be the 

cost incurred by MARKER2(1)/M1N in processing u. Then 

CMM(U) ~ c· COPT(U), 

where c = 2{fmax(h) + 1) + 2. 

Proof: Let U be arequest sequence oflength m. If 1 < k-2, then let h be the largest integer such 
that m( h, I) ~ m. If 1 ~ k - 2, then let h be the smallest integer such that m( h, I) ~ m . First we 
analyze the cost incurred on the first h(/+ 1) requests. Suppose MARKER2(/) executes p phases 
(the last phase might be incomplete). We use the same terminology as Fiat et al. (FKLMSY91]. 
Consider an arbitrary phase. We call a vertex stale if it is unmarked but was marked in the 
previous phase, and clean if it is neither stale nor marked. Let Ci be the number of clean vertices 
in phase i, 1 ~ i ~ p. Let d~ be the number of vertices that are covered by MARKER2( I) servers 
but not by OPT's servers at the beginning of the ith phase, and let d~ be this value at the end 
of the ith phase. Using the same analysis as Fiat et al. we are able to lower bound OPT's cost 

during each phase. During phase i, where 1 ~ i ~ p - 1, OPT incurs a cost of at least 

1 
2(Ci - c(' + di)· 

Note that d~ = o. During phase p, OPT incurs a cost of at least 

1 
2(cp - ~). 

S11mming up these lower bounds, we obtain that OPT incurs a cost of at least 

during the first h(l + 1) requests. 

1 P 

2Lci 
i=1 

We study the cost of MARKER2( I). Consider an arbitrary phase i and suppose it consists 
of bi blocks. Note that 1 ~ bi ~ h. At each re quest to a clean vertex, MARKER2(l) incurs a 

cost of 1. We estimate the cost incurred for serving stale vertices. For 1 ~ j ~ bi , let s~ be the 
number of stale vertices requested during the jth block of phase i. After block j - 1 is served, 
the previously clean vertices are uniformly distributed among 

i-I 
k- LS~ 

v=1 
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servers which covered stale vertices at the beginning ofthe phase. Thus MARKER2(1)'s expected 
cost of serving s~ stale vertices in block j is at most 

i · Ci s··_-....,.......".-
3 k _ ",j-1 si . 

L..v=1 11 

By calculating the sum over all blocks, we obtain that MARKER2(l)'s expected cost during one 
phase is bounded from above by 

b.; i s· 
Ci· (L ~-1 . + 1) ~ Ci· (fmax(h) + 1). 

j=l k - 2:11=1 s~ 

Hence MARKER2( 1) 's expected cost during the first h( 1 + 1) requests is at most 

p 

L ci(fmax(h) + 1). 
i=l 

Now we prove part a) of the theorem. Our task is to evaluate the cost incurred by the 
algorithm STATIC on the last m - h(1 + 1) requests. We first bound the value m - h(l + 1). We 

show 
m - h(1 + 1) ~ 2· k + 1 + (k - 1) . fmax(h). 

We have 

m(h, 1) 
h 

< h·l + k + Lf(k -1) n;_l 1 
i=l k - 2:j =l nj 

~ h·l + k + (k -1)fmax(h) + h 

= h· (1 + 1) + k + (k - l)fmax(h) 

If h = k - 1, then m = m(h, 1) and hence 

If h < k - 1, then 

and hence 

m - h(1 + 1) ~ k + (k -1)fmax(h). 

m(h+ 1,1) ~ (h+ 1)(1 + 1) + k + (k -1)fmax(h+ 1) 

m - h( 1 + 1) < m( h + 1) - h( 1 + 1) 

< 1 + 1 + k + (k -1)fmax(h + 1) 

< 1 + 1 + k + (k - l)fmax(h) + k -1 

= 2· k + 1 + (k - l)fmax(h). 

(3) 

The last inequality follows because fmax(h + 1) - fmax(h) ~ 1 by Theorem 9. This completes 
the proof of the inequality (3). 

For t ~ 1 define S(t) as the set of vertices which were covered at the beginning of the 
request sequence or which were requested during the first t requests. Let r = card(S(m)) - k. 
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Before processing u( h( 1+ 1) + 1), the algorithm STATIC chooses k vertices uniformly at random 
from the set S(h(1 + 1)) and covers these vertices by servers. This step incurs a cost of at most 
card(S(h(I+1)))-k, which is at most r. It is easy to verify that when STATIC serves u(t), where 
t> h(1 + 1), each vertex in Set - 1) is covered by a server with probability of k/card(S(t - 1)). 
Thus, if u(t) E Set - 1), then STATIC's expected cost on u(t) is 

card(S(t - 1)) - k 2· r 
2 · <-. 

card(S(t - 1)) - k 

If u(t) ft Set - 1), then this re quest incurs a cost of at most 2. Hence STATIC's expected cost 
on the last m - h( I + 1) requests of u is bounded by 

We obtain 

Since 

we conclude 

2r 
r + 2 . r + k(2 . k + 1 + (k - I)fmax(h)) 

2 
< r(2fmax(h) + 7 + k). 

p 2 
CMS(U) ~ I: ci(fmax(h) + 1) + r(2fmax(h) + 7 + k)· 

i=l 

1 p 

COPT(U) 2: max{- I:Ci,r} 
2 i=l 

CMS(U) ~ C· COPT(U), 

where c ~ 4(fmax(h) + 1) + 5 + ~. 
It remains to prove part b) of the theorem. For t ~ 1 define sets Set) as above and let 

r = card(S(m)) - k. After MARKER2(I) has served the first h(1 + 1) requests, there can 
be at most r vertices which are covered by OPT but not by MARKER2(1)/MIN. Let 6 be 
the cost incurred by OPT during the last m - h(1 + 1) requests. Then the cost incurred by 
MARKER2( I) /MIN during the last m - h( I + 1) requests is at most 6 + r. This implies 

and 

Thus 

p 

CMM(U) ~ I: Ci (fmax(h) + 1) + 6 + r 
i=l 

1 p 

COPT(U) ~ max{- I:ci,C,r} . 
2 i=l 

CMM(U) ~ c· COPT(U), 

where c ~ 2(fmax(h) + 1) +2. 0 
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5 The list update problem with lookahead 

The list update problem without lookahead has been studied extensively [R76, BM85, ST85, 
IRWS90] . We just mention the important results relevant to our work. Sleator and Tarjan [ST85] 
have shown that the move-to-front algorithm, which simply moves an item to the front of the 

list each time it is requested, is 2-competitive. Karp and Raghavan [KR90] have observed that 
no deterministic on-line algorithm for the list update problem can be better than 2-competitive. 
Thus the move-to-front algorithm achieves the best competitive factor. 

We consider the deterministic list update problem with strong and weak lookahead. We 

assume that the given list consists of n items Zl, Z2, ... ,Zn and that n ~ 2. Furthermore, we 
generally assume that the size 1 of the given lookahead is constant of a function of n. First we 

derive lower bound for list update with strong and weak lookahead. Then we are concerned with 
the development of on-line alorithms with lookahead. The algorithms we propose are essentially 
adaptations of the move-to-front algorithm (MTF) to the model of lookahead. 

5.1 Lower bounds 

We show that a deterministic on-line algorithm with strong lookahead 1 :s n - 1 can only be 
better than 2-competitive if 1 is linear in n. 

Theorem 12 Let A be a deterministic on-line algorithm with strong lookahead 1 :s n - 1 for 
the list update problem. 1f A is c-competiti1Je, then 

1+2 
c>2---. 

- n+1 

Proof: We construct arequest sequence u = u(l), u(2), ... using the following algorithm. 

Algorithm LIST-REQUEST: The first 1+1 requests u(l), u(2), ... , u(1 + 1) are requests to 
the last 1 + 1 items in the initial list. For t ~ 1 + 2 the request u(t) is constructed as follows. 
After A has served u( t - I - 1), determine the item Z which has the highest position in the 
current list among items not contained in {u(t -l),u(t -I + 1), .. . ,u(t -1)}. Set u(t) = z. 

Given this request sequence u, we compare the cost incurred by A to the cost incurred by the 
optimal algorithm OPT. It is not hard to see that OPT can process each request sequence such 

that its amortized cost on each request is at most (n + 1)/2. OPT can simply use the optimal 
static algorithm which initially sorts the items in non-increasing order of request frequencies and 

then makes no exchanges while processing the request sequence. Hence OPT's amortized cost 
during 1+1 successive requests in u is at most (I + l)(n + 1)/2. 

We evaluate A's cost on request sequence u. For simplicity, we handle paid exchanges made 
by A in the following way. Whenever A moves an item Z eloser to the front of the list using paid 
exchanges, we charge the cost of these paid exchanges to the next request to z. The following 

lemma proves that on any 1+ 1 successive requests, A incurs a cost of at least L:~=o (n - i). This . 
implies that if A is c-competitive, then 

L:~=o(n-i) (1+1)n-(1+1)1/2 2n-l 1+2 c> = =--=2---0 
- (I + l)(n + 1)/2 (I + l)(n + 1)/2 n + 1 n + l' 
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Lemma 7 Let CA ( Ü( t)) be the cost incurred by A when processing the subsequence ü( t) 
u(t), u(t + 1), ... , u(t + 1). Then 

l 

CA(Ü(t)) ;::: L:(n - i) for all t ;::: 1. 
i=O 

Proof: For t;::: 1 let Set) = {t,t+ 1, ... ,t+ I} and let CA(U(t)) be the cost incurred by A 
when processing request u(t). We prove by induction on t that for all t ;::: 1 and for all k, where 
n - 1 :$ k :$ n, the inequality 

card( {s E S(t)ICA(U(S)) ;::: k}) 2: n - k + 1 (4) 

holds. This obviously implies the lemma. 

We introduce some more notations. For an item z and t ;::: 1, let pos(z, t) denote z's position 
in the list immediately after A has served u(t - 1). We assume that paid exchanges at time t 
are executed before u(t) is served. Furthermore, for tl :$ t2 let p(z, [tl, t2]) be the number of 
paid exchanges which move item z closer to the front of the list during the interval [tl, t2]. 

Note that 1 + 1 successive requests are pairwise distinct. Thus for any s E Set), s # t + 1, 

CA(u(s)) ;::: pos(u(s), t) + p( u(s), [s - 1, t - 1]) 

and 
CA(u(t + 1)) ;::: pos(u(t + 1), t). 

We proceed with the inductive proof. The inequality (4) obviously holds at time t = 1. By 
induction hypo thesis it holds at time t - 1. We show that the inequality is also satisfied at time 
t. We distinguish between two cases. 

Case 1: pos(u(t + 1), t) ;::: CA(U(t - 1)) 
In this case the inequality (4) obviously holds for all n -1:$ k :$ n. 

Case 2: pos(u(t + 1), t) < CA(U(t - 1)) 
After A has served u(t - 1), the items u(s) with s E Set) \ {(t + I)} occupy all positions 
pos(u(t+ 1),t) + l,pos(u(t+ l),t) + 2, .. . ,n. We observe that for k > pos(u(t+ l),t) 

card( {s E Set) \ {(t + l)}ICA(u(s)) ;::: k}) ;::: n - k + 1. 

By induction hypothesis, we have, for n -1 :$ k :$ pos(u(t + 1), t), 

card({s E Set) \ {(t+ 1)}ICA(u(s));::: k});::: n - k. 

We conclude that the inequality (4) must hold for all n - 1 :$ k :$ n. 0 

26 



Theorem 13 Let A be a deterministic on-line algorithm with weak lookahead 1 for the list update 

problem. 

a) If 1 = o(n2 ) and Ais c-competitive, then c 2: 2. 

b) If (1 + 1) = K n 2 and A is c-competitve, then 

c 2: 2 - 2V 4K2 + 2K + 4K. 

Proof: For integers j with 1 ~ j ~ min{l + 1,n - 1} we construct request sequences (Ti. H 
j = 1 + 1 then we generate arequest sequence using the algorithm LIST-REQUEST proposed 
in the proof of Theorem 12. 

H j < 1 + 1 we use a slightly different algorithm. Let :1:1 be the first item in the initial list. 
The request sequence (Ti which we are constructing consists of aseries of phases each of which 
contains exactly 1 + 1 requests. In each phase, the first j requests are made to items :I: 'f; :1:1, 
while the remaining 1 + 1 - j requests are made to item :1:1. More precisely, the first j requests 

in the first phase are requests to the last j items in the initial list. H u(t) belongs to the first j 
requests in a given phase i, where i 2: 2, then u(t) is constructed as follows. After A has served 
u(t - 1 - 1), determine the item :I: which is at the highest position in the current list among 
items not contained in {u(t - 1), u(t - 1+ 1), ... , u(t - 1)}. Set u{t) = :1:. 

We analyze A's and OPT's cost incurred on a given sequence ui . Again, whenever A moves 
an item :I: eloser to the front of the list using paid exchanges, we charge the cost of these paid 
exchanges to the next request to :1:. We elaim that in each phase, A incurs a cost of at least 

jn - j(j - 1) + (I + 1 - j). 
2 

The elaim elearly holds if j = 1 + 1 or if j < 1 + 1 and A always stores :1:1 at the first position of 
the list. In these two cases we can use the same analysis as in the proof of Lemma 7. H j < 1 + 1 

and if A does not always store :1:1 at the front of the list, then consider the following algorithm 
A'. The algorithm A' always maintains the items :I: 'f; :1:1 in the same order as A, but always 
stores :1:1 at the first position of the list. It is easy to verify that in each phase, A' does not incur 
a higher cost than A. Again, using the same analysis as in the proof of Lemma 7, we can show 

that on any 1 + 1 successive requests, A' incurs a cost of at least jn - h(j - 1) + (1 + 1 - j). 

We show that in each phase, OPT's amortized cost is at most 

.(n(n+ 1) 1) (1 .) 
J 2( n _ 1) - n _ 1 + + 1 - J . 

This bound obviously holds true if j = 1 + 1 because 

n(n + 1) 1 n + 1 ----'-----'- - -- > --. 
2(n-1) n-1 - 2 

If j < 1 + 1 then OPT can apply the following static algorithm. Initially, the list is rearranged 
such that item:l:1 occupies position 1 in the list and such that the remaining items are sorted in 
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order of non-increasing request frequencies. While processing (1'i no exchanges are made. Using 

this static algorithm, OPT's amortized cost on arequest to an item ::I: ::f. ::1:1 is at most 

1 n 
n _ 1 (2: k) = n( n + 1) 1 

k=2 2(n-1)-n-1· 

Rence A's competitive factor c satisfies c ~ maxi GnU), where 

in - iJi=]J + (l + 1 - j) 2in - i 2 - i + 21 + 2 
GnU) = .(nt+l~ _2_. 1_) + (I + 1 _ j) = in + 21 + 2 

J 2 n-l n-l 

(5) 

Now we prove the two parts of the theorem. 

Part a): If 1 = 0(1) then, for all positive integers n, set in = 1. It is easy to see that Gn(in) 
converges to 2 as n tends to infinity. 

Now suppose 1 = w(l) and 1 = 0(n2
). We maximize the function 

C (.) = 2in - P - i + 21 + 2 
n J . in + 21 + 2 

(6) 

subject to the constraint 0 < i ~ min{1 + 1, n - 1}. Rere we are also interested in possibly 
non-integral solutions for i. We determine in such that dC •• .,(in) = o. 

dC~in) = 0 is equivalent to 

(2n - 2in - l)Unn + 21 + 2) - (2inn - i~ - in + 21 + 2)n 0 

<:} 2inn 2 + 4nl + 4n - 2i~n - 4inl - 4in - inn - 21 - 2 

-(2inn 2 
- i~n - inn + 2nl + 2n) = 0 

<:} i~n + 4inl + 4in - 2nl - 2n + 21 + 2 0 

This implies 

(in + 2(1 + 1))2 = 4 (I + 1)2 + 2(1 + 1) _ 2(1 + 1). 
n n2 n 

Since we require in > 0, only 

in = ~(J4(1 + 1)2 + 2(1 + l)n(n - 1) - 2(1 + 1)) 

can be a solution to our maximization problem. 

Defining D = 4(1 + 1)2 + 2(1 + l)n(n - 1), we have 

GnUn) = ~(2VD - 4(1 + 1) - ~(D - 4VD(1 + 1) + 4(1 + 1)2) 
vD n 

1 
--(VD - 2(1 + 1)) + 2(1 + 1)) 

n 
1 2 1 

= m(2VD - 2 D + 2VD(4(1 + 1) - n)) 
vD n n 

2 ~ 1 
= 2 - 2 v D + 2 ( 4( 1 + 1) - n). 

n n 
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Hence 

Cn(in) = 2 - :;)4(1 + 1)2 + 2(1 + 1)n(n - 1) + ~(4(1 + 1) - n). 
n . n 

(7) 

It is easy to verify that Cn(in) is in fact a maximum of the function CnU) and that 0 < in ~ 
min{1 + 1, n - 1}. 

Note that in might not be an integer. However, since 1 = w(1), the sequence in, i = 1,2,3, ... , 
is w(1). Thus, using equation (6), we can easily prove that the sequences Cn(in) and Cn(linJ) 
have the same limit as n tends to inDnity. Taking the limit of the sequence Cn(in), we obtain 
that A's competitive factor cannot be asymptotically better than 2, if 1 = o(n2). This proves 

part a) of the theorem. 

Part b): If (1 + 1) = Kn2 , then by equation (7) 

2 - 2...)4K2n4 + 2Kn4 - 2Kn3 + 4K - ~ 
n2 n 

> 2 - 2..) 4K2 + 2K + 4K - ~ 
n 

and this expression converges to 

2 - 2..) 4K2 + 2K + 4K 

as n tends to inDnity. 0 

Remarks: (1) Note that the bounds given in Theorem 13 hold asymptotically. For small values 
of none can derive more precise bounds. (2) At first sight Theorem 13 seems to imply that it 
would not be worthwhile to consider weak lookahead in the list update problem. This might not 
be true, as the following example shows. Part b) of the above theorem implies that an on-line 
algorithm needs a weak lookahead of at least 1 = 1~on2 - 1 in order to be 1. 75-competitive. 
Recall that the list update problem is of practical interest for smalllists consisting of only a 

few dozen items. For n1 = 12 and n2 = 24 we obtain a lookahead of size 11 = 1 and 12 = 5, 
respectively. Assuming that our lower bounds are relatively tight, a 1.75-competitive algorithm 

working on smalllists would require a weak lookahead of reasonable size. 

5.2 Upper bounds against static adversaries 

In this section we present deterministic on-line algorithms with lookahead for the list update 
problem. Thesealgorithms are competitive, if the off-line algorithm uses a static algorithm. 
Static algorithms initially arrange the list in some order and make no other exchanges while 
processing the request sequence. Static algorithms are less powerful than dynamic off-line algo­

rithms which may rearrange the list at each request. In the following STAT denotes the optimal 
static off-line algorithm. Given arequest sequence (T, STAT arranges the item in the list in order 
of non-increasing request frequencies. 

Early work on the list update problem has evaluated the performance of on-line algorithms 

against static adversaries, e.g. Bentley and McGeoch [BM85] have shown that the move-to-front 
algorithm is 2-competitive against static off-line algorithms. Recently, d'Amore et al. [DMN91] 
have discussed a variant of the list update problem, called the weighted list update problem, 
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with respect to static adversaries. Staticoff-line algorithms are interesting from the practical 

point of view, since they can compute an optimal ordering of the list in O( m) time, where m is 
the length of the request sequence. The best known dynamic off-line algorithm due to Reingold 

and Westbrook [RW90] takes O(2n n!m) time. 

In the following we consider strong and weak lookahead in parallel because the algorithms 
and analyses are very similar for both kinds of lookahead. Note that if a strong lookahead 1 is 

provided, then 1 $ n - 1. 

Algorithm FREQUENCY.COUNT(l): Serve the re quest sequence in a series of blocks 

B(i). Ifa strong lookahead 1 is given, then B(1) = 0'(1),0'(2), ... ,0'(.\(1» and B(i) = O'(ti_l + 
1), O'(ti_l + 2), . .. , O'(.\(ti_l + 1» for i 2: 2. Here ti_l denotes the end ofblock B( i -1). If a weak 

lookahead 1 is provided, then B( i) = 0'« i - 1)(1 + 1) + 1), O'«i - 1)(1 + 1) + 2), ... , 0'( i(l + 1» 
for i 2: 1. Each block is processed as follows. At the beginning of each block, sort the items 
in the list such that they are in non-increasing order of request frequencies with respect to the 
current block. Execute this step using as few exchanges as possible. (This restriction ensures 
that items with the same request frequency are not exchanged.) Mter this rearrangement, serve 

the requests in the current block without making any further exchanges. Note that the sorting 
of the items can be implemented as follows. First determine the items with the highest request 
frequency in the current block, and move these items in an order preserving way to the front of 

the list. Then determine the items with the next lower re quest frequency and move these items 
(in an order preserving way) as elose to the front ofthe list as possible, but without passing the 
items with the highest request frequency. Repeat this process for the other request frequencies . 

Theorem 14 Let 1 $ n -1. The algorithm FREQUENCY.COUNT(l) with strong lookahead 1 
is c-competitive against static oJJ-line algorithms, where 

c$2-~' 1+2 
3 2n - l' 

Theorem 15 Let K > 0 be areal constant. I/ a weak lookahead 1 is given with (1 + 1) = Kn2
1 

then FREQUENCY.COUNT(l) is c-competitive against static oJJ-line algorithms, where 

1 2 V 2Kn2 1 c< 2 - -( K2n4 + Kn2(2n - 1)(n - 1) - - --). 
- 3 (n - 1)2 (n - 1)2 n - 1 

Notice that FREQUENCY-COUNT( 1) can be (4/3)-competitive, if a large lookahead is given. 
Table 1 compares, for various values of a weak lookahead 1 and various n, the performance of 
FREQUENCY-COUNT(l) to the lower bounds derived in Section 5.1. 

In order to prove the two theorems, we start with a general analysis of the algorithm 
FREQUENCY-COUNT(I) (also called FC) that applies to strong and weak lookahead. We 
use a potential function ~ to analyse the performance of our on-line algorithm. ~ is the number 

of inversions in FC's list with respect to STAT's list. Given two lists containing the same items, 
an inversion is an unordered pair of items {z , y} such that z occurs before y in one list while z 
occurs after y in the other list . We assume that FC and STAT start with the same list, such 
that the initial potential is zero. 
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Competitive Factors Value of (I + 1) for 
Lower Bound Upper Bound 

1 + 1 for n E [15,30] n = 15 n = 20 n = 25 n = 30 
_1_n2 
soo 1.88 1.98 0.45 0.8 1.25 1.8 

1 2 
200 n 1.82 1.95 1.125 2 3.125 4.5 

1 2 
100n 1.75 1.93 2.25 4 6.25 9 
...!..n2 
50 1.67 1.89 4.5 8 12.5 18 
...!..n2 
20 1.54 1.83 11.25 20 31.25 45 

fön2 1.42 1.77 22.5 40 62.5 90 

Table 1: Competitive factors for list update with weak lookahead 

There is given arequest sequence (1'. Initially, STAT rearranges the items in the list using 
paid exchanges. Each paid exchange incurs a cost of 1 and can increase the potential by 1. In 
the following we bound FC's amortized cost in each block of (1'. We consider an arbitrary block 
B. Let CFc(B) be the actual cost FC incurs in processing B and let ß~ be the change in the 
potential function between the beginning and the end ofthe given block. The sum CFc(B)+ß~ 
is FC's amortized cost in block B. Furthermore, let S be the set of items in the list, and let 
SB be the set of items requested in block B. For an item :z: E SB and A E {FC, STAT}, let 
CA (:z:) be the cost that algorithm A incurs when serving arequest to item :z: in block B. JB (:z: ) 
denotes the request frequency of item :z: in block B, i.e. JB (:z:) is the number of times item :z: 

is requested in B. Finally, let j = card(SB) be the number of different items requested in B. 
Note that j = 1 + 1 if we deal with strong lookahead. 

Lemma 8 

CFc(B) + ß~ ~ 2 L CSTAT(:Z:) + ~ L (fB(:Z:) - 1)CSTAT(:Z:) - ~j(j + 1) 
:cESs :cESs 

Proof: For a subset M ~ S we introduce the following definitions. 

1. For A E {FC, STAT} and :z: E SB let 

CA(:z:,M) = card({y E MI y =:Z: or item y precedes item:z: in A's list when A 
serves arequest to :z: in block B}). 

CA(:Z:, M) can be regarded as the cost caused by set M when A serves arequest to item:z:. 

2. Let ß~+(M) be the number ofinversions {:z:,y} created between items:z: E SB and y E M 
when B is served, and let ß~-(M) be the number of inversions {:z:, y} removed between 
items:z: E SB and y E M. Set ß~(M) = ß~+(M) - ß~-(M). 

3. Let p(M) be the number ofpaid exchanges FC incurs when swapping an item:z: E SB with 
an item y E M at the beginning of the block. 
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Notice that for any Z E SB and A E {Fe, STAT} 

CA(Z) = CA(z, SB) + CA(Z, S \ SB) 

and 

ß~ = ß~(SB) + ß~(S \ SB). 

Fe's amortized cost in block B satisfies 

CFc(B) + ß~ = ~ fB(Z)CFc(Z) + P(SB) + p(S \ SB) + ß~(SB) + ß~(S \ SB) 
ZESB 

= ~ fB(Z)CFc(Z, SB) + P(SB) + p(S \ SB) + ß~(SB) + ß~(S \ SB). 
ZESB 

The last equation follows because C FC ( Z, S \ SB) = 0 for an Z E SB. 

Claim 1 

p(S \ SB) + ß~(S \SB) $ 2 ~ CSTAT(Z, S \ SB) 
ZESB 

Proof of Claim 1: We have 

~ CSTAT(Z,S\ SB) = ~ ~ CSTAT(Z,{y}). 
ZESB ZESB yES\SB 

Suppose Fe moves an item Z E SB closer to the front of the list using paid exchanges and swaps 
Z with an item y E S \ SB. If an inversion is removed, then the potential decreases by 1. If an 
inversion is created, then the pair {z, y} incurs a cost of 2 on the left hand side of the inequality 

in the claim. But CSTAT(Z,{y}) = 1. This proves the ~laim. 0 

Claim 2 

~ fB(Z)CFC(Z, SB) + P(SB) - ß~-(SB) $ L fB(Z)CSTAT(Z, SB) 
ZESB ZESB 

Proof of Claim 2: We have 

~ fB(Z)CFC(Z, SB) = L L fB(Z)CFC(Z, {y}) 
ZESB zESByESB 

and 

L fB(Z)CSTAT(Z,SB) = L L fB(Z)CSTAT(Z,{y}). 
ZESB zESByESB 

This implies that the inequality in the claim is equivalent to 

L L fB(Z)CFc(Z, {y}) + P(SB) - ß~-(SB) $ L L fB(Z)CSTAT(Z, {y}). (8) 
ZESB ,ESB 

#z 
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Consider any pair {z, y} with z, y E SB and Z # y . Suppose y is before Z in FC 's list after 
the re arrangement of the items in SB. 

Case 1: H FC does not swap Z and y at the beginning of the block, then 

Case 2: H FC swaps Z and y and the potential decreases , then 

Case 3: H FC swaps Z and y and the potential increases, then 

because fB(Y) > fB(Z). 

Adding the appropriate inequalities for all such pairs, we obtain inequality (8). 0 

Claim 3 

Proof of Claim 3: Suppose FC moves an item Z closer to the front of the list and creates an 
inversion with an item y E SB. Notice that Z must be requested at least twice in block B and 
that C ST AT (z, {y}) = 1. f Z is requested three times, then we may charge a cost of 1/3 to each 
of these fB( z) requests. 

We estimate the number J of inversions created between items requested twice and items 
requested once in B. Let S1 be the set of items requested exact1y once in B andlet S~ be the 
set ofitems requested exactly twice in°B. Define il = card(S1) and i2 = card(S~). We prove 

(9) 

This obviously implies the claim. We have Lz€S~u~ CSTAT(Z, S1uS~) = ~(il +i2)(jl +i2+1). 
First suppose that each of the i2 items in S~ causes il new inversions. Then J = ili2 and 

LZES2 CSTAT(Z,S1 U S~) =H(il + i2)(il + i2 + 1) - il(il + 1)). Now suppose that an item 
Z E sZ causes onlYil - kz inversions. Then, J = ili2 - LZE~ kz and 

. B 

It is easy to prove that 

Using the last two inequalities, we can easily derive inequality (9). 0 
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Summing up the inequalities in Claim 1, Claim 2 and Claim 3 we obtain, as desired, 

CFc(B) + Ll~ 
4 

< 2 2: CSTAT(Z, S \ SB) + 3 2: fB(Z)CSTAT(Z, SB) 
ZESB ZESB 

4 2 j(j + 1) 
< 2 2: CSTAT(Z) + - ~ UB(Z) - 1)CSTAT(Z) - - . 3 LJ 3 

ZESB ZESB 

o 

Proof of Theorem 14 Suppose the request sequence consists of b blocks B(1), B(2), ... , B(b). 

By Lemma 8, 

CFC(O") < L~=1(2 LZESB(i) CSTAT(Z) + ~ LZESB(i)UB(i)(Z) -1)CSTAT(Z) - (l+l~l+2») 
CSTAT(O") - CSTAT(O") 

Here we assume without loss of generality that the last block B(b) contains 1 + 1 distinct requests. 
Jf B(b) contains less than 1+1 distinct requests, then we can simply add -3

1 l+1 l+; on the right­
STAT 

hand side of the above inequality. This does not affect FC's competitive factor. Hence, 

We have 

Thus 

CFC(O") 2 b(l+lJ(l+2) + Lt=l LZESB(i)UB(i)(Z) -1)CSTAT(Z) 
--....:.....,.;...,.. < 2 - - . -~-----::------=~-.-..:....:.------
CSTAT(O") - 3 Lt=l LZESB(i) fB(i)(Z)CSTAT(Z) 

b 
~ 2: CSTAT(Z) ~ b(1 + 1)(1 + 2) 
,=1 ZESB . 

CFc(O") 

CSTAT(O") 

2 b(l+l)(l+2) 
< 2--. 2 

3 Lt=l LZESB(i) CSTAT(Z) 

2 (I + 2)/2 < 2- -. . 
3 n - 1/2 

The last line follows because L~=l LZESB(i) CSTAT(Z) :S b U=o(n - k) = b((1 + 1)n -1(1 + 1)/2). 
We conclude that FC is c-competitive, where 

c<2_2 1+2 
- 3 . 2n -I' 

o 

Proof of Theorem 15: Again, we assume that the request sequence 0" consists of b blocks 
B(1), B(2), ... , B(b). Furthermore, we assume without loss of generality that the last block B(b) 

contains 1 + 1 requests. Let ji be the number of different items requested in block B(i). By 
Lemma 8 

CFC(O") < Lt=1(2 LZESB(i) CSTAT(Z) + ~ LZESB(i)UB(i)(Z) - 1)CSTAT(Z) - ji(j~+l») 
CSTAT(O") - Lt=l(LzESB(i) CSTAT(Z) + LZESB(i)UB(i)(Z) -1)CSTAT(Z)) 
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Note that EZESB(i) CSTAT(:C) :::; iin and that 

b 

:Lii(ji + 1) ~ bi(j + 1), 
i=l 

h . 1 "b . H w ere J = ;; LJi=l Ji. ence, 

CFc(O") < E~=1(2in- ilip2 + ~ EZESB(i) (fB(i)(:C) -l)CSTAT(:C)) 

CSTAT(O") - E~=l(jn + EZESB(i)(fB(i)(:C) - l)CSTAT(:C)) 

It is easy to verify that 

Hence 

2in -h(j+1) > ~ 
----'J"-. n--'---~ - 3· 

Et=1(2in -li(j + 1) + ~(I + 1 - i)) < 
E~=l(jn + (I + 1- i)) 

= 
2in - ~p -li + t(l + 1) 

i n -i+(l+l) 

We have (I + 1) = Kn2
• We maximize the function 

2J·n - 1J·2 - ?J. + 1Kn2 

C ( .) - 3 3 3 
nJ- . . +K2 Jn - J n 

subject to the constraint 0< i :::; min{Kn2,n}. We determine in such that dC~jn) = o. 

dCiin ) = 0 is equivalent to 

This is equivalent to 

Since we require in > 0, only 

can be a solution to our maximization problem. 

We have 
1 ·2 . 2K 2 

C (. ) = 2 __ . Jn - Jn + n 
n Jn 3· . K 2 Jnn - Jn + n . 
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Define D = K 2n4 + Kn2(2n - 1)(n - 1). Then 

·2 . 
Jn - Jn + 2Kn2 

i nn-in+ Kn2 
1 1 

= y1D«n _1)2(D - 2Kn
2
.JD + K 2

n
4

) - n ~ 1 (.JD - Kn
2

) + 

2Kn2) 

= 2.JD _ _ 2_K_n_2_ 1 
(n - 1)2 (n - 1)2 - n - 1 

Hence 

. 1 2 V 2Kn2 1 
Cn(Jn) = 2 - -( K2n4 + Kn2(2n - 1)(n - 1) - - --). 

3 (n - 1)2 (n - 1)2 n - 1 

It is easy to see that Cn (in) is in fact a maximum of Cn (i) and that 0 < in ::; min{ K n2 , n}. 

We reroark that it is possible to derive more precise but also more complicated bounds on 
the competitive factor, if one takes into account that EZESB(i) CSTAT(Z) ::; iin - iiU;-l). 0 

Now we give a lower bound on the performance of Fe. We show that Fe with a strong 
lookahead 1 ::; I::; n - 1 is not better than c-competitive, where 

1+2 4(n+1)- L(I~l)J-1 
c > max:{2 - -- } 

- n+1' 3(n+1)+ 2nt2 . 

This implies that Fe is not better than (7/6)-competitive if a strong lookahead I = n - 1 is 

given. The bound of c 2: 2 - !t; is obvious. We prove the bound 

c 2: 4( n + 1) - L ~ J - 1 
3(n+ 1) + 2nf2 

We construct arequest sequence consisting of aseries of blocks B( i). Each block contains 
1 + 1 distinct requests. Let L l be the list given initially, and let Li be the configuration of the 
list after Fe has served block B(i - 1), where i 2: 2. Given Li, we show how to contruct B(i). 
First we request the last L~ J items stored in Li; each ofthese items is requested exact1y twice. 
Then we add one request to each of the iteros stored at positions 

n-l,n-I+1 L
1

+
1 

, ... ,n- -2-J 

in Li. 

The algorithm OPT can serve the request sequence such that its amortized cost in one block 
is less than or equal to 

(1+1+ Ll~1J)n;1 
which is at most 

3L1+1Jn+1 + n+1. 
2 2 2 
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We analyze Fe's cost in an arbitrary block B(i). The algorithm moves the items requested in 
B(i) to the front of the list. In particular, all items requested twice are exchanged with items 
requested only once. Fe incurs a cost of 

n+l 1+1 
(I + 1)(n - (I + 1)) + l-2-J(1 + 1 - l-2- j ) 

for paid exchanges. After the rearrangement, the requests in the current block can be processed 
using a cost of 

1 11+11+1 
2(1 + 1)(1 + 2) + 2l-2-j( l-2-j + 1). 

Hence Fe's cost in block B( i) satisfies 

. 1 2 1 1+1 1+1 1 1+1 1+1 
CFc(B(z)) = n(1 + 1) - -(I + 1) + -(I + 1) + l-H-l + -l-J(l-j + 1). 

2 2 2222 2 

We show 
n( 1 + 1) - ~ (I + I? > 2n II + 1 j _ 211 + 1 JlI + 1 j . 

2 - 2 2 2 

This inequality clearly holds if l ~ j = ~. H l ~ j = ~ - ~, then 

1)2 1 + 1 . 1 + 1 1 2 
n(l + 1) - 2(1 + 1 = 2nl-2-j + n - 2(l-2-J + 2) 

1+1 1+1 1+1 1+1 1 
= 2n l-2-J + n - 2l-2-H-2-J - 2l-2-J - 2 

> 2n II + 1 J _ 211 + 1 JlI + 1 J 
2 2 2 

Thus 

CFc(B(i)) > 2 II + 1J II + I J II + 1J 1(1 ) I l1 + 1J(ll + I J ) n -2- - -2- --2- + 2 + 1 + 2 -2- --2- + 1 

> 2n II + 1 J - II + 1 J( II + 1 J - 1) + ~ II + 1 J( II + 1 J + 1) 
2 2 2 2 2 2 

= 2nll + 1 J _ II + 1 J( ~ II + 1 J - ~) 
2 2 2 2 2 

We conclude that Fe's competitive factor c satisfies 

2n - ll!.±1J + ~ 4(n+ 1) - l!±1J - 1 c> 2 2 2 > 2 
- 3n±1 + n±1 ( 1 ) - 3( + 1) + 2n±2 • 2 2· l(l±1}/2] n l 
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5.3 Upper bounds against dynamic adversaries 

We present an on-line algoritlun with lookahead which is competitive against dynamic off-line 
algorithms. 

Algorithm MTF /OPT{l): Serve the request sequence in a series of blocks B(i). H a 
strong lookahead 1 is given then B(1) = u(1), u(2), ... , u(A(l)) and B(i) = u(tr_l +1), u(tr_l + 
2), ... , U(A(tr_l + 1)) for i ~ 2. Here tr-l denotes the end ofblock B(i-1). Ha weak lookahead 

1 is provided then B (i) = u( ( i - 1) (1 + 1) + 1), u( ( i - 1) (1 + 1) + 2), ... , u( i( 1 + 1)) for i ~ 1. At 
the beginning of each block, rearrange the list as follows. 

(1) Determine the items that are requested in the current block and move them in an order 

preserving way to the front of the list. 

(2) Then determine the items that are requested at least twice in the current block and move 
them in an order preserving way to the front of the list. 

After this rearrangement, serve the requests in the current block such that the incurred cost is 

as small as possible. Whenever an item z is requested for the last time in the current block, 
determine the items y that precede z in the present list and that are still requested at least once 
in the current block. Move item z together with the items y in an order preserving way to the 

front of the list. 

We are able to show that MTF /OPT(l) has a competitive factor of less than 2, if a large 
strong lookahead is provided (see Theorem 16 below). However, the competitive factor we can 

prove is quite weak. H 1 = n-1, then our theoremimplies that MTF /OPT(1) is basically (15/8)­
competitive. We conjecture that the above algorithm without step (2) is (2-! . ~t; )-competitive 
if a strong lookahead is given and that this variant is optimal among on-line algorithms with 
strong lookahead which serve the request sequence in a series of blocks. It is possible to show 

that any on-line algorithm with strong lookahead 1 = n - 1 which serves the request sequence 
in blocks cannot be better than 1.5-competitive. 

Theorem 16 1/ a strong lookahead 1 < L~J is given, then the algorithm MTFjOPT(I) is 2-
competitive. 1/ a strong lookahead 1, l~J ~ 1 ~ n-1, is given, then the algorithm MTFjOPT(I) 
is c-competitive, where 

c ~ min{2, 2 _ :1(2(1 + 1) - n)2 + :1(2(1 + 1) - n) !(l + 1)2 
(1 + 1)n }. 

Now we prove this theorem. We use a potential function ~ to analyze the algorithm 
MTF/OPT(l) (also called MO for simplicity). Again, ~ is the number ofinversions in MO's list 
with respect to OPT's list. Recall that an inversion is an unordered pair {z, y} of items such 
that z occurs before y in one list while z occurs after y in the other list. ~(t) is the number 
of inversions after request u(t) has been served. The algorithms MO and OPT start with the 
same list such that the initial potential ~(o) is o. 

We assume that the request sequence u consists of b blocks B(1), B(2), ... , B(b). For i = 
1,2, ... , b, the values t~ and tr denote the beginning and the end of the ith block. We assume 
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that the last block B( b) contains 1+1 distinct item.s, too. As we shall see later, this assumption 
represents no restrietion. We introduce the following notations. Let S be the set of items in 
the list and let SB(i) be the set of items which are requested during block B(i). We partition 

SB(i) into two set S1(i) and S1(i)' The set S1(i) contains all items which are requested exactly 
once in B(i) while S1(i) = SB(i) \ S1(i) contains all items which are requested at least twice in 
B(i). For Z E SB(i)' the value fB(i)(Z) denotes the request frequency of item. Z in block B(i), 
Le. fB(i)(Z) is the number of times item Z is requested during B(i). 

Now consider an arbitrary block B( i). For an algorithm A E {MO, OPT} we introduce the 
following definitions. Let CA(B(i)) be the cost incurred by algorithm A in processing block 
B(i). Furthermore, for Z E SB(i) and j = 1,2, ... ,fB(i)(z),let C~(z,i) be the cost incurred by 
A when serving the jth request to item Z in block B(i). Set 

fB(i)(Z) 

CA(z,i) = L C~(z,i). 
j=l 

We split the cost CA(z,i) into two summands CA(z,i) and CÄ(z,i). Here CA(z,i) = C1(z,i) 
is the cost incurred by A when processing the first request to item z in B(i). The difference 
CÄ(z,i) = CA(z,i) - CA(z,i)is the cost ofprocessing the other requests to z in B(i). Note 

that CÄ(z,i) = 0 ifz E S1(i)' 

Ifthe algorithm A moves an item z E SB(i) eloser to the front ofthe list using paid exchanges, 
then we charge the cost of these paid exchanges to the next request to item. z in block B( i). 
More precise1y, if A exchanges z with a preceding item. y between the (j - 1)st and the jth 
request to z, then we assume that y precedes z in A's list at the jth request to z, Le. y is 
contained in the set 

and 

M = {z E SI z = z or item z precedes item z in A's list when A serves the 
jth re quest to z in block B( in 

C~(z,i) = card(M). 

Note that the algorithm MO does not swap an item z E S B(i) with a preceding item in the list 
after the last re quest to item. z in the present block has been served. For simplicity we assume 
that the same property also holds for the algorithm OPT. If OPT exchanges z with preceding 
items after its last request in a given block B(i), then each ofthese paid exchanges can increase 
the potential by 1. But OPT incurs a cost of 1 for each paid exchange. Therefore, these paid 
exchanges cannot increase MO's competitive factor. The same argument holds if OPT uses paid 
exchanges to move an item z fj. SB(i) eloser to the front of the list. Hence, in the following, we 
also assume that these paid exchanges do not occur. . 

Furthermore, for i = 1,2, ... , b, we introduce sets PB(i)' The set PB(i) contains 

(1) all sets {z} with z E SB(i) and 

(2) all sets {z,y} with z,y E SB(i), Z:f: y such that {z,y} represents no inversion at the end · 
of block B( i). 

In order to simplify the following proof, we define a set SB(O)' SB(O) contams 1+1 arbitrary 
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items in the initial list. The set PB(O) contains all sets {z, y} with z, y E S B(O)' 

We present a lemma which is crucial for the proof of Theorem 16. Define 

1 1 1 
D = -(2(1 + 1) - n)2 + -(2(1 + 1) - n) - -(1 + 1)2. 
448 

Note that D is the numerator of the fraction in Theorem 16. Finally, let to = O. 

Lemma 9 a) 1f 1 :::; 1 :::; n - 1, then for i = 1,2, ... , b 

CMo(B(i)) + ~(tD - ~(ti-d :::; 2· COPT(B(i)). 

b) 1f I? L ~ J, then for i = 1, 2, ... , b 

CMo(B(i)) + ~(tn - ~(ti-l) :::; 2 L COPT(z, i) + ~ L CÖPT(z, i) - D 
ZESB(i) ZESB(i) 

1 +'2 (card(PB(i_l») - card(PB(i»))' 

First wefinish the proof of Theorem 16 and then show Lemma 9. We sum up the inequalities 
in Lemma 9. For arbitrary 1 :::; 1 :::; n - 1 we obtain 

CMO(U) + ~(tb) - ~(O) :::; 2· COPT(U) 

which implies that MO is 2-competitive. 

Now let I? l~J and D ? o. We obtain 

t(2 L CoPT(z,i) + ~ L CöPT(z,i)) - b· D 
i=l ZESB(i) 2 ZESB(i) 

b 

LCMO(B(i)) + ~(tb) - ~(O) < 
i=:l 

1 
+'2card(PB(O»)' 

Note that card(PB(o») = (1 + 1)(1 + 2)/2. Hence MO's competitive factor c satisfies 

2 . ~=:l l:zESB(i) COPT( z, i) - b . D + ~ . l:t=l l:zESB(i) CÖPT( z, i) 
c < 

- l:t=:ll:zESB(i) COPT(z, i) + l:t=:l EZESB(i) CÖPT(z, i) 

Taking into ac count that EZESB(i) CoPT(z,i)?' (1 + 1)(1 + 2)/2, it is easy to prove that 

Thus 

c < 

2· Et=:l EZESB(i) COPT(z, i) - b· D 3 
----~----~~------------ > -

Et=l EZESB(i) COPT(z, i) - 2 

2· Et=l EZESB(i) COPT(z, i) - b· D 

l:t=:ll:zESB(i) COPT(z, i) 
b·D < 2 - --,----,--

b(1 + l)n 

= 2 _ H2(1 + 1) - n)2 + H2(1 + 1) - n) - k(1 + 1)2 
(1 + l)n 

This proves the other desired bound. 
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Proof of Lemma 9: First we prove part b) of the lemma. Then we show that a simple 
modification of the proof yields part a). 

We need a few more notations. Let 1 S i S b. Consider a sub set M ~ S and an algorithm 
A E {MO, OPT}. For z E SB(i) and j = 1,2, .. . ,fB(i)(Z), let C~(z,i,M) be the cost caused by 
the set M when A serves the jth request to item Z in block B(i), Le. 

Define 

and 

C~ (z, i, M) = card( {y E MI y = Z or item y precedes item z in A's list when A 
serves the jth request to z in block B(i)}). 

fB(i)(Z) 

CA(Z, i, M) = L C~(z, i, M), 
j=1 

C~(z, i, M) = C1(z, i, M) 

C~(z, i, M) = CA(z,i, M) - C~(z,i, M). 

For a sub set M ~ S let 

Furthermore, for subsets MI ~ S and M 2 ~ S, let 4i(t, Mb M 2 ) be. the number of inversions 
{z,y} which exist after request u(t) and which satisfy z E MI and y E M 2 • 

We proceed with the proof of part b) of the lemma. In the following we assume I 2: l j J . 
Consider afixed 1 S i S b. 

Claim 4 

L CMO(Z, i, S \ SB(i)) + 4i(ti, SB(i)' S \ SB(i)) - 4i(ti_l' SB(i)' S \ SB(i)) 
zESB(i) 

S 2 L CbPT(Z,i,S\SB(i)) 
ZESB(i) 

Claim 5 

L CMO(Z, i, S B(i)) + 4i(ti, SB(i)' S B(i)) - 4i(ti_l' S B(i), SB(i)) 
ZESB(i) 

-~card(PB(i_I)(SB(i))) + ~card(PB(i)) - ~card( {{z, y}lz E S1(i) and y E S1(i)}) 

< 2 L CbPT(Z,i,SB(i))-~ L CbPT(Z,i,SB(i_l)nSB(i)) 
ZESB(i) ZESB(i_l)nSB(i) 

+~ L cgPT(z, i, SB(i)) (10) 
ZESB(i) 
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Before we prove the two claims, we show that they imply part b) of Lenuna 9. Summing up 

the two inequalities and taking into account that PB(i-l)(SB(i») ~ PB(i-l), we obtain 

CMo(B(i)) + ~(ti) - ~(ti_l) ~ 

2 L CbPT(Z, i) - ~ L CbPT(Z, i, SB(i-l) n SB(i») 
ZESB(i) zEsB(i_1)nsB(i) 

+~ L CöPT(z,i) 
ZESB(i) 

1 1 1 2 
+2(card(PB(i-l») - card(PB(i»)) + 2 card({{z,Y}lz E SB(i) and Y E SB(i)}) 

We show that 

~( L CbPT(z, i, SB(i-l) n SB(i») - card( {{z, y}lz E S1(i) and y E S1(i)})) ~ D. 
zESB(i_l)nSB(i) 

This implies part b) of the lemma. 

Since 1 ~ L~J, there exist 2(1 + 1) - n items in SB(i) which are also contained in SB(i-l). 

Hence 

L CbPT(z, i, SB(i-l) n SB(i») ~ ~(2(1 + 1) - n)(2(1 + 1) - n + 1) 
ZESB(i_l)nSB(i) 

Note that 

card( {{z, y}lz E S1(i) and y E S1(i)}) 

1 1 
-(2(1 + 1) - n)2 + -(2(1 + 1) - n) 
2 2 

< 

card(S1(i») . card(S1(i») 

1+1 1+1 
2 2 

1 
= 4(1 + 1)2. 

Using these two inequalities we obtain the desired bound for D. 

It remains to prove the two claims. Recall that if an algorithm A E {MO, OPT} moves an 

item z E SB(i) closer to the front of the list using paid exchanges, then we charge the cost of 

these paid exchanges to the next request to item z in B(i). As mentioned before, we also assume 

that OPT does not use paid exchanges to move an item z E SB(i) closer to the front of the list, 

after z has been requested for the last time in block B(i). Furthermore, we assume the OPT 

does not swap items z E S \ SB(i) with preceding items in the list. 

Proof of Claim 4: Consider any two items z E SB(i) and y E S \ SB(i). We prove that 

CMO(Z, i, {y}) + ~(ti, {z}, {y}) - ~(ti-l' {z}, {y}) ~ 2CbPT(z, i, {y}) (11) 

Summing up this inequality for all such pairs, we obtain Claim 4. 

Note that CMO(Z, i, {y}) ~ 1 and that item z precedes item y in MO's list at the end of 

block B(i). 
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First suppose CMo(z,i,{y}) = o. Then we have ~(ti,{z},{y}) - ~(ti_l'{z},{y}) :s; 0 
and the inequality (11) clearly holds. The case CMo(z,i,{y}) = 0 and ~(ti,{z},{y})­
~(ti-l'{z},{y}) = 1 cannot occur because we assume that OPT does not exchange y with 
preceding items in the list during block B( i). 

Now let CMo(z,i,{y}) = 1. If ~(ti,{z},{y}) - ~(ti-l'{Z},{y}) = -1, then the in­
equality is obviously satisfied. If ~(ti, {z}, {y}) - ~(ti-l' {z}, {y}) = 0 or if ~(ti, {z}, {y}) -
~(ti_l'{Z},{y}) = 1, then C6PT(z,i,{y}) = 1. In each ofthe two cases the inequality (11) 
holds. 0 

Proof of Claim 5: Let I be the set of pairs {z, y} satisfying the following properties: 

(1) (z E S1Ci) and y E S1Ci)) or (z E S1Ci) and y E S1Ci)) 

(2) The pair {z,y} represents an inversion at the beginning of the given block or after MO 
has arranged the items in S1Ci) and S1Ci) at the front of the list (see steps (1) and (2) of 
the algorithm). 

First we prove that 

L CMo(z,i,SBCi)):S; L COPT(z,i,SBCi)) + card(I). (12) 
ZESB(i) ZESB(i) 

Mter MO has arranged the items in S1Ci) and S1Ci) at the front of the list, it serves the requests 
in the current block such that a mjnjmum cost is incurred. Hence, MO never exchanges an item 

z E S1Ci) with a preceding item y, when the last request to y in the current block has not been 
processed. This implies that an inversion {z, y} with z, y E S1

C
i) cannot increase MO's cost. It is 

easy to see that each inversion {z, y} E I with z E S1c i) and y E S1Ci) can cause an extra cost of 1. 

We show that each ofthe remaining inversions {z, y} E I with z, y E S1 Ci) can cause MO to have 
an additional cost of 1. MO serves the requests to items z E S1

C
i) such that the incurred cost is 

as small as possible. Among all strategies to serve those requests, MO could choose the following 
rule. Before it serves the requests in the current block, it could remove all inversions {z, y} with 

z,y E S1Ci)' thereby incurring a cost of ~(ti-l,S1ci)'S1Ci)) = card({{z,y} E Ilz,y E S1Ci)})' 
and could then maintain the items in S1Ci) in the same order as OPT. In this case we would 
have 

L CMO(Z, i, S1Ci)):S; L COPT(Z, i, S1Ci)) + card( {{z, y} E Ilz, y E S1Ci)})· 
zES1(i) zES1(i) 

If MO chooses a different rule, then its actual cost EZES2 CMO(Z, i, S1c.)) must satisfy the 
B(i) \ 

above inequality, too. The inequality (12) must hold. 

In the following we show how to amortize MO's extra cost caused by the inversions in I. 

We also amortize the change in potential ~(ti, SBCi), SBCi)) - ~(ti-l' SBCi), SBCi)). We sketch the 
main idea of the remaining part of the proof. Note that the sums in Claim 5 can be written as 
follows. 

L CMo(z,i,SBCi)) = L L CMo(z,i,{y}), 
ZESB(i) ZESB(i) yESB(i) 
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~ CoPT(z,i,SB(i)) = ~ ~ COpT(z,i,{y}), 
:eESS(i) :eESS(i) yESS(i) 

~ CoPT(z,i,SB(i_l)nSB(i)) = ~ ~ CopT(z,i,{y}) 
:eESS(i-1)nSS(1) :eESS(i)nSB(i) yESS(i_1jnSB(i) 

and 

~ CÖPT( z, i, S B(i)) = ~ ~ CÖPT( z, i, {y} ). 
:eESS(i) :eESB(i) YESS(i) 

In order to balance MO's extra cost and a possible increase in potential, we will charge additional 

costs to elements CbPT(Z,i,{y}) with z,y E SB(i)' 1 ::; j ::; fB(i)(Z) and CbPT(Z,i,{y}) = 1. 
H j = 1 and if z ft SB(i-l) or Y ~ SB(i-l), then we will charge an additional cost of at most 
1. H j > 1 or if z, y E SB(i-l), then we will charge a cost ofat most ~. In the same way 
we will balance the cost incurred by the term ~card(PB(i)) on the left-hand side of inequality 

(10). Some of thecost will also be cancelled by the negative terms -~card(PB(i_l)(SB(i))) and 

-~card({{z,y}lz E S1(i) and y E S~(i)})' Note that if we balance the cost in the described 
manner, then the inequality (10) must be satisfied. . 

For simplicity we define 

M = {{z,y}lz E S1(i) and y E S~(i)}' 

Consider any two items z, y E SB(i)' 

H z = y then {z} is contained in PB(i) and causes a cost of ~ on the left-hand side of 
inequality (10). Note that CMo(z,i,{z}) = CopT(z,i,{z}) = 1 and we can charge a cost of ~ 
to COPT(z, i, {z}). 

Hz :f y, then we distinguish between three main cases . 

Case 1: {z, y} represents an inversion at the beginning of the block. 
This inversion may create an extra cost of 1 when MO processes the current block. 

Case 1.1: {z, y} represents no inversion at the end of the block. 
In this case the extra cost of 1 cancels out with the decrease in potential. But the pair {z, y} is 

now contained in PB(i)' Note that CopT(z,i,{y})+ CopT(y,i,{z}) 2: 1. Hence we can charge 
a cost of ~ to either CopT(z,i,{y}) or COPT(y,i, {z}) (depending on which value is 1). 

Case 1.2: {z, y} represents an inversion at the end of the block. 

The inversion at the beginning of the block can only cause an additional cost of 1 if z E S~(i) or 

y E S~(i)' Note that CopT(z,i,{y}) = 1 or CopT(y,i,{z}) = 1. Hz ~ SB(i-l) or Y ~ SB(i-l), 
we charge an additional cost of 1 to either COPT(z, i, {y}) or COPT(y,i, {z}). Hz E SB(i-l) and 
y E SB(i-l), we use a slightly more complicated strategy. First suppose z E S1(i) and y E S~(i)' 

In this case {z, y} E M. Now ~ of MO's extra cost is cancelled out by the term -~card(M). 

In order to balance the other ~ of MO's extra cost, we charge an additional cost of ~ to either 

CopT(z,i,{y}) or CopT(y,i,{z}). Now suppose z,y E S~(i)' Without loss ofgenerality we 
assume that the last request to item z in block B( i) occurs later than the last request to item y 

in block B(i). Hence, z precedes item yin MO's list at the end of the block. Since y precedes 
item z in OPT's list, we have CÖPT(z, i, {y}) 2: 1. In order to balance MO's extra cost of 1, we 

charge a cost of ~ to COPT(z,i,{y}) or CopT(y,i,{z}) and a cost of ~ to CÖpT(z,i,{y}). 
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Case 2: {z, y} represents no inversion at the beginning of the block but immediately after MO 

has arranged the items in S1(i) and S1(~ at the front of the list. 
In this case suppose z E S1(i) and y E SB(i). The new inversion can cause MO to have an extra 
cost of 1. 

Case 2.1: {z, y} represents no inversion at the end of the block. 
If z ~ SB(i-l) or Y ~ SB(i-l), we balance MO's additional cost by charging a cost of 1 to either 
CopT(z,i,{y}) or CopT(y,i,{z}). Note that {z,y} E M and {z,y} E PB(i). Hence, {z,y}'s 
contributions in -icard(M) and icard(PB(i)) cancel out. If z E SB(i-l) and y E SB(i-l), then 
we only charge i to either CopT(z,i,{y}) or CopT(y,i,{z}). The other i ofMO's additional 
cost is cancelled by {z, y}'s contribution in -~card(PB(i-l)(SB(i))). Again, {z, y}'s contributions 
in -~card(M) and ~card(PB(i)) cancelout. 

Case 2.2: {z, y} represents an inversion at the end of the block. 
We have to balance MO's extra cost of 1 and the increase in potential of 1. Note that 
COPT(y, i, {z}) = 1. Suppose the request to z occurs later than the last request to y in the 
current block. Then z precedes item y in MO's list at the end of the block. Since {z, y} rep­
resents an inversion we have COPT(z, i, {y}) = 1. If the last request to y occurs later than the 
request to z, then item y precedes item z in MO's list at the end of the block. Since {z,y} 
represents an inversion at the end ofthe block we have cgPT(y, i, {z}) ~ 1. Suppose z ~ SB(i-l) 

or y ~ SB(i-l). Then we balance MO's extra cost of 1 by charging an additional cost of 1 to 
COPT(y, i, {z}). Furthermore, ~ of the increase in potential is balanced by charging a cost of 
~ to either COPT(z,i,{y}) or cgpT(y,i, {z}) . The other ~ ofthe increase in potential is can­
celled by {z, y}'s contribution in -~card(M). If z E SB(i-l) and y E SB(i-l), we balance MO's 
additional cost and the increase in potential in almost the same way as before. The difference 
is that we only charge a cost of ~ to COPT(y, i, {z}). The other ~ of the extra cost caused by 
the inversion is cancelled out by {z,y}'s contribution in ~card(PB(i-l)(SB(i))). 

Case 3: {z, y} represents an inversion neither at the beginning of the block nor after MO has 

arranged the items in S1(i) and S1(i) at the front of the list. 

Case 3.1: {z, y} represents no inversion at the end of theblock. 
In this case {z,y}'s contribution in card(PB(i)) is balanced by charging a cost of ~ to either 
CopT(z,i,{y}) or CopT(y,i,{z}). 

Case 3.2: {z, y} represents an inversion at the end of the block. 

If z ~ SB(i-l) or Y ~ SB(i-l), we balance the increase in potential by charging an additional 
cost of 1 to either CopT(z,i,{y}) or COPT(y,i, {z}). If z E SB(i-l) and y E SB(i-l), we only 
charge a cost of ~ to COPT(z, i, {y}) or COPT(y, i, {z}), because ~ of the increase in potential 
is cancelled out by {z, y} contribution in -!card(PB(i_l)(SB(i))). 

The proof of Claim 5 is complete. 0 

So far, we have shown part b) of the lemma. It is an easy exercise to modify the above proof 
in such a way that we can prove the inequalities of part a) for all 1 ::; 1 ::; n - 1. Claim 4 remains 
the same. Claim 5 changes to the following statement. 
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Claim 6 

L CMO(Z, i, SB(i») + ~(ti, SB(i)' SB(i») - ~(ti-l' SB(i)' SB(i») ~ 2 L COPT(Z, i, SB(i») 
zESB(i) ZESB(i) 

This claim can be proved in a similar way as Claim 5. However, the proof becomes much simpler, 

since we can neglect the cases z, y E S B(i-l) and {z, y} E PB(i). Adding the inequalities of Claim 
4 and Claim 6 we obtain part a) of the lemma. 0 

We finish the proof of Theorem 16 by adding one remark. In the beginning of the proof we 
assumed that the last block B(b) contains 1+1 items. If the last block contains requests to less 
than 1+1 items, then MO's cost on that block is at most !(n - 1)n higher than OPT's cost. 

(The value !(n - 1)n is the number of possible inversions in MO's list.) Hence the assumption 
represents no restriction when evaluating MO's competitiveness. This completes the proof of 

Theorem 16. 

We conclude this section by presenting another lower bound for list update with lookahead. 

Consider an on-line algorithm A with strong lookahead 1 ~ I ~ n - 1 which serves the re­
quest sequence q in aseries of blocks. The algorithm partitions q into a sequence of blocks 

B(1),B(2), ... ,B(b) where B(1) =q(1),q(2), ... ,q(~(1)) and B(i) = q(ti_l + 1),q(ti_l + 
2), ... , q(~(ti_l + 1)) for i 2: 2. Again, ti_l denotes the end of block B(i - 1). While A serves 
requests in block B( i), it does not use information on requests in block BU), where j > i. In 
the beginning of this subsection we claimed that A cannot be better than 1.5-competitive if 
1= n - 1. Now we prove this statement. 

We let an adversary generate arequest sequence. The adversary has to serve the request 

sequence, too. The request sequence consists of aseries of blocks B(1), B(2), ... , where each 
block contains n distinct requests. Let LI be the list given initially. First we show how B(1) 
and B(2) are constructed. The adversary generates the first block B(1) by scanning the list 

LI from the front; each item is requested exact1y once. Let Lf be the configuration of the list 
after A has served B(1), and let LfDv be the conflguration of the list after the adversary has 

served B(1). While processing B(1), the adversary rearranges the items in its list such that 
LfDV is in the exact reverse order of Lf. Since B(l) requests the items in LI in increasing 

order, this rearrangement can be accomplished using free exchanges only. The second block 
B(2) is generated by scanning the list LfDV from the front. The first n - 1 items are requested 

twice, whereas the last item is requested only once. While processing the requests in B(2), the 
adversary moves an item to the front of its list each time it is accessed. The following blocks 

B(i) with i 2: 3 are constructed in the same way as B(1) and B(2). Let Lt be the configuration 
of the list after A has served B(i - 1), and let LfDv be the configuration of the list after the 
adversary has served B(i - 1). Based on LtDV , each oddnumbered block is generated in the 
same way as B(1), and each even numbered block is constructed in the same way as B(2). 

In any two successive blocks, the adversary incurs a cost of 

1 
2 . 2 . n( n + 1) + n - 1. 

Obviously, in any odd numbered block the algorithm A incurs a cost of at least !n(n + 1). It is 
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not hard to see that in any even numbered block A has a cost of at least 

Trus implies that if A is c-competitive, then 

c > 

= 

~n(n + 1) + n 2 + n - 1 

n(n + 1) + n - 1 
~n2 + ~n - 1 
2 2 

n 2 + 2n-1 

Trus fraction converges to 1.5 as n tends to infinity. 

6 The limits of strong lookahead 

In the previous sections on paging and the list update problem we have shown that strong look­
ahead can be a powerful means to improve the competitive factors ofon-line algorithms without 
lookahead. In particular, on-line algorithms with strong lookahead can perform much better 
than on-line algorithms with weak lookahead, for wruch the knowledge of future requests is only 
of minor advantage when an adversary replicates requests in the lookahead. 

In trus seetion we prove that these statements do not hold for more general on-line problems 
such as caching, the k-server problem and metrical task systems. Except for a few special cases, 
strong lookahead is basically not more powerful than weak lookahead and cannot reduce the 
competitive factors of deterministic on-line algorithms without lookahead. The reason is that in 
these more general problems, an adversary can simulate the effect of replication by posing very 
inexpensive requests in the lookahead. 

Manasse et al. [MMS88] have demonstrated that no deterministic on-line algorithm for the 
symmetrie k-server problem can be better than k-competitive. The same lower bound holds for 
caching problems. They have also conjectured that for every k there exists a k-competitive on­
line k-server algorithm. Trus conjecture is still open; see for instance [G91] for a comprehensive 
summary of the latest results on the k-server problem. We show that no deterministic on-line 
caching or k-server algorithm with strong or weak lookahead can generally be better than k­
competitive. Thus lookahead is of no advantage. Trus negative result carries over to metrical 
task systems. Borodin et al. [BLS87] have presented a lower bound and a matching upper 
bound of (2n - 1) on the competitive factor of any deterministic on-line algorithm for metrical 
task systems. We show that these bounds cannot be improved using strong or weak lookahead. 

It is an easy exercise to show that weak lookahead cannot reduce the competitive factors of 
deterministic on-line algorithms for caching, the k-server problem and metrical task systems. In 
the fol1owing we prove theorems for strong lookahead. When discussing caching problems, we 
use the terminology of the k-server problem. 

Theorem 17 Let s be a non-negative integer and let 0 < € < 1. There ezists a graph consisting 
of k + s + 1 vertices, for which no deterministic on-line caching algorithm with strong lookahead 
l::S; k + s - 1 can achieve a competitive factor of less than min{k, (k -l + sn - €. 
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Proof: Let S = x U Y be the set ofvertices ofthe graph. X = {Zl, Z2, ... , Zk} where W(Zi) = 1 

for i = 1,2, ... ,k, and Y = {Y1,Y2, ... ,Ys+1} where W(Yi) = 8 for i = 1,2, ... ,s + 1. Here 8 is 
a positive real. The weights W(Zi) and W(Yi) denote the cost ofmoving a server to vertex Zi or 

Yi, Le. the weights equal the cost that is incurred when loading an item Zi or Yi into the cache. 

let A be an on-line caching algorithm with strong lookahead 1 ~ k + s - 1. We assume 
that A's and OPT's servers initially cover vertices z}, Z2, ... , Zk. The request sequence which 
we are constructing consists of aseries of phases, each of which contains 1 + 2 requests to 

at least I + 1 distinct vertiees. Each phase has the following form. If s ~ 1, then the first 

1 + 1 requests equal Y}, Y2, .. . , Yl+1; otherwise, if s < I, then the first I + 1 requests equal 

Yl. Y2,···, Ys+1, Z}, Z2, .. ·, Zl-s. The (I + 2)nd request is made to a vertex in X that is vacated 
by A after the first request of the current phase. 

During each phase, the on-line algorithm A incurs a cost of at least 1. We estimate OPT's 
cost. OPT's strategy is to cover always at least k - 1 vertices in X. In particular, OPT always 

covers zl, z2, ... , Zl-s, if s < 1. If there occurs a fault on arequest to a vertex in X, then OPT 
vacates a vertex in Y and moves the corresponding server to the request. OPT then chooses a 

server covering a vertex that will not be requested during the next (k - 1) phases (if s ~ 1) or 
the next k - 1 + s - 1 phases (if s < 1). During these phases, all requests to vertices in Y will 
be served with that server. 

We conclude that if s ~ 1, then A's competitive factor cannot be less than 

k 
c = . 

1 + k(l + 1)8 

If s < 1, then A's competitive factor cannot be less than 

(k-l+s) 
c= 1+(k-l+s)(1+1)8' 

Choosing 8 sufficiently small, we obtain the theorem. 0 

Caching problems are examples of asymmetrie k-server problems in which the edges into a 
particular vertex all have the same length. Raghavan and Snir [RS89] have observed that these 
problems can be converted into instances of the symmetrie k-server problem. Therefore, an 
immediate consequence of the above theorem is 

Corollary 1 A statement analogous to Theorem 17 also holdsfor the symmetrie k-server prob­

lem. 

The two above theorems imply that a strong lookahead of size 1 can only reduce the com­
petitive factors of on-line caching and k-server algorithms, if the given graph contains less than 

(k + 1 + 1) vertices. Thus, in graphs consisting of a potentially infinite number of vertiees, 
lookahead is of no advantage. 

Now we turn to metrical task systems. 

Theorem 18 Let A be a deterministie on-line algorithm with strong lookahead 1 for solving 

seheduling problems in metrieal task systems. Then A 's eompetitive faetor eannot be less than 

(2n - 1). 
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ProoC: The request sequence we will present is an augmentation of the request sequence given 
by BorO(lin et al. [BLS87]. In the following we briefly sketch their proof. 

BorO(lin et al. construct an infinite request sequence CF = Tl, T 2, T 3, ... , where Tt is the 

requested task at time t. Let s(t) denote the state of the metrical task system at time t, and let 
E> 0 be areal number. Task Tt is defined as 

Tt(s(t - 1)) = E 

and Tt(s) = 0 for all s # s(t - 1). 

Borodin et al. show that on this request sequence any deterministic on-line algorithm incurs a 
cost of at least c times the optimal cost, where 

E 
C = (2n - 1) / (1 +. d(.). 

ID.lIl.i;e j ~, J 
(13) 

Choosing E arbitrarily small, they obtain the desired lower bound. The equation (13) is derived 
as follows. 

Let Sl,S2,S3, ... and t1 < t2 < t3 < ... denote the state transitions and transition times 
prescribed by the on-line algorithm. At times tJe = tk + 1 the adversary changes tasks. Let 
CA(k) be the cost incurred by the on-line algorithm during the interval [1, t~), and let COPT(k) 
be the cost incurred by optimal algorithm during the interval[l, t~el- Furthermore, let COPT(k, s) 
denote the cost incurred by OPT during the interval [1, t~], given that the task system is in state 

s at time tie. 
Borodin et 01. prove the following equations and inequalities. 

1. 

2. 

CA(k) = D(k) + P(k), 

where D(k) = ~=1 d(Si-1, Si) is the costincurred by A for state transition and P(k) = 
E· (tk - k) is the task processing cost during [1, t~). 

3. For all k ~ 1, 

2( L COPT(k, s)) + COPT(k, Sk) ::; D(k) + E· tk + (2n - 2) maxd(i,j) 
1I;e 11 Ir. 

and 

minCoPT(k,s)::; 2 1 1·(1+ . E
dC 

.)).(D(k)+P(k)+(2n-2)maxd(i,j)). 
liES n - ID.lIli;ej~, 1 

Then, they conc1ude 

minllEs COPT(k, s) 

> (2n - 1)· (1 + E/~;ej d(i,j))· (D(k) + P(~~)(;n~(~~maxd(i,j))· 
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Taking the limsup as k tends to infinity, they obtain the desired lower bound of 

c == (2n - 1) . (1 + ~*: d(i,j)). 

Our modified request sequence for on-line algorithms with strong lookahead is as follows. 

We assume, without 1055 of generality, that IIÜni*i d( i, j) > o. Let 0 < € :S miD#i d( i, j). Mter 
each task T t we insert a block of I different lookahead tasks Tl, T2 , . •• , T" where 

1 . (!)i . € Ti(S) = K-(2-n _ 1) 2 for all states s. 

K > 1 is an arbitrary constant. These tasks canse the lookahead to be of no advantage, since it 
makes no difference in which state theyare processed. 

When analyzing our request sequence, we assume for simplicity that a complete block of 

tasks 

T t
, Tl! T2 , •• ·, Ti 

is processed at time t. Furthermore, we assume without 1055 of generality that the task system 
only changes states immediately preceding a non-lookahead task T t . We now proceed along the 
lines of the proof by Borodin et al. Let C, denote the cost incurred in processing a block of 

lookahead tasks Tl! T2 , •• • , T,. Note that C, < €/(K(2n - 1)). 

It is easy to show that the following equations and inequalities hold. 

1. 

2. 

CA(k) = D(k) + P(k), 

where D(k) = 2:f=l d(Si-l! Si) and P(k) = €. (tk - k) + C,tk . 

€ 
€·tk:SD(k). dC .)+P(k)-Cltk 

ßllDi*i ~,1 

3. For all k 2: 1, 

2( L: COPT(k,s)) + COPT(k,Sk):S D(k) + €. tk + (2n -1)C,tk + (2n - 2)maxd(i,j)) 
~*~" 

and 

minCoPT(k, s) :S 2 1 1 . (1 + . € dC .)). (D(k) + P(k) + 
~ES n - ID1Di*i~, 1 

(2n - I)C,tk + (2n - 2)maxd(i,j)). 

It follows that A cannot be better than c-competitive, where 

c = CA(k) 
COPT(k) 

CA(k) 
min~ES COPT(k, s) 

1 · D(k) + P(k) > (2n - 1) . ( ) . ( ) 
1 + €/ ~*i d(i,j) D(k) + P(k) + (2n - I)C,tk + (2n - 2) maxd(i,j) . 
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Note that D(k) + P(k) ~ €. t1c and that (2n - l)Cltk ::; (1/ K)(t1c + 1) . €. Taking the limsup as 
k tend to infinity, we obtain 

· 11 
c > (2n - 1) . ( ) . ( ) 

- 1 + €/IIÜni;i:j d(i,j) 1 + l/K . 

Choosing € arbitrarily small and K arbitrarily large, we obtain the theorem. 0 

7 Open problems 

One open problem is to prove that the proposed variant of the algorithm MTF /OPT(l) is in 

fact (2 -l' ~t; )-competitive if a strong lookahead 1 ::; 1 ::; n - 1 is given, or to present another 
competitive on-line algorithm with lookahead for the list update problem. 

Another important problem is to develop general properties of on-liD.e alorithms with look­
ahead. We have the impression that this problem is quite difficult because the on-line problems 
considered in this paper behave completely differently when lookahead is added. One approach 
might be to study metrical task systems, which generalize a large dass of on-line problems, under 
an even stronger model of lookahead. Borodin et al. [BffiS91] have considered paging problems 
with locality of reference. They have introduced the access graph model: each time a page is 
requested, the next page to be requested comes from a restrided set that is determined by the 
access graph. The access graph can be viewed as some kind of lookahead. A stronger lookahead 
for metrical task systems can be construded by combining our model of strong lookahead with 

the idea of locality of reference. 
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Appendix 

Proof of Theorem 9: Part a): For a fixed 2 $ h $ k - 1 consider (nll n2, ... , nh). Note that 

Thus 

nh < 1 
k _ ~h-1 . - . 

L.Ji=l n, 

Imax(h) - Imax(h - 1) $ Imax(h) - /h-1(nll n2,···, nh-2, nh-1 + nh) $ 1. 

Part b): Let 1 $ h $ k - 1. First we prove the inequality 

1 
Imax(h) $ h(1 - k1/ h )· 

Let (Zl, Z2, ... , Zh) E m.h be the h-tupel which maximizes the fuction 

subject to the constraints 

h Zi 

/h(Zl, Z2,···, Zh) = L k _ 2:i._1
1 

Z,. 
i=l ,-

h 

LZi - k+ 1 = 0 
i=l 

Zi is a non-negative real for i = 1,2, ... , h. 

(14) 

In the following we determine (Zl, Z2, ... , Zh) and show I(Zll Z2,· .. , Zh) = h(1 - kl~h). This 
proves inequality (14). 

Define g( zl, z2, . .. , Zh) = 2:7=1 Zi - k + 1. The Lagrange multiplier rule implies the existence 
of a constant A such that 

81 (- - -) \ 8g (- - -) 0 -8 Zl,Z2,···,Zh -A-
8 

ZllZ2,···,Zh = 
Zi Zi 

for i = 1,2, ... , h. Thus, the h-tupel (Zll Z2, ... , Zh) satisfies the following equations: 

h _ 

1 +" zi _ A = 0 
- ~ i 1 2 
k i=2 (k - 2:1'=1 zv) 

1 h -
" zi A o for i == 2,3, ... , h - 1 -k-~"""i--:1--- + ~ (k ~i-1-)2-

- L.Jv:=l Zv i=i+1 - L.Jv=l Zv 

1 -A 
k ~h-1-

- L.Jv:=l Zv 
o 

Hence A = 1/( k - 2:~:~ zv). Fwthermore, subtracting the (i + 1 )st equation from the ith 
equation we obtain 

i-1 
Zi = k _ " . - (k - ~i-1 - )2 ~ Zv _ L.Jv- 1 Zv 

1'=1 k - ~i-2 -L.Jv=l Zv 

für i = 2,3, ... , h. 
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This implies 

, for i = 2,3, . .. , h. Since 

we have 

Thus 

for i = 1,2, ... , h, and 
, 1 

A(Zl, Z2, ... , Zh) = h(l - k l / h)' 

Obviously, Zi ~ 0 for all i = 1,2, ... , h. 

We now prove the second inequality 

1 1 
h(l- kl / h ) - (1- k) < fmax(h). (15) 

Let (Zl, Z2,"" Zh) be the h-tupel computed above. We show how to construct an h-tupel 

(nb n2,' .. , nh), where each ni is a non-negative integer, such that 

and 

h 

Lni - k + 1 = 0 
i=l 

1 
A(Zl, Z2,"" Zh) - A(nb n2,"" nh) < 1 - k' 

This implies inequality (15). 

The h-tupel (nb n2,"" nh) is constructed as follows. Set rh+1 = O. Then for i = h, h-
1, . , . , 2, 1 set 

ni lZi + ri+1J 

ri Zi + ri+l - ~. 

Roughly speaking, starting with Zh, we round each component in (:tl, Z2,"" :th) down and add 

the difference to :ti-I. Note that rl = 0, which implies L:?=l ni - k + 1 = O. 

For i = 1,2, ... , h, define 

Then, for i = 2,3, ... , h, we have 

~i _ p-l < __ r.....,i:--::-_ 
Jh Jh - k _ "i,-l- , 

L.,,3=1 Z3 

r' 1 
J < __ -:--:--_ 

k "i-2 - k _ "i-l-, 
- L."j=l Zj L."j=l Z3 
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k "i-2 - . 
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S11mming up these inequalities for i = 2,3, ... , h weobtain 

A(zl. Z2, · .. , Zh) - A(nl, n2,· .. , nh) 

This completes the proof of part b) of the theorem. 0 
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= fr - fl 
< 

1 

k "h-lzo 
- LJj=l 3 

1 < 1--. 
k 

1 

k 




	92-1430001
	92-1430002
	92-1430003
	92-1430004
	92-1430005
	92-1430006
	92-1430007
	92-1430008
	92-1430009
	92-1430010
	92-1430011
	92-1430012
	92-1430013
	92-1430014
	92-1430015
	92-1430016
	92-1430017
	92-1430018
	92-1430019
	92-1430020
	92-1430021
	92-1430022
	92-1430023
	92-1430024
	92-1430025
	92-1430026
	92-1430027
	92-1430028
	92-1430029
	92-1430030
	92-1430031
	92-1430032
	92-1430033
	92-1430034
	92-1430035
	92-1430036
	92-1430037
	92-1430038
	92-1430039
	92-1430040
	92-1430041
	92-1430042
	92-1430043
	92-1430044
	92-1430045
	92-1430046
	92-1430047
	92-1430048
	92-1430049
	92-1430050
	92-1430051
	92-1430052
	92-1430053
	92-1430054
	92-1430055
	92-1430056
	92-1430057
	92-1430058
	92-1430059



