
Advanced LIGO’s ability to detect apparent violations of the cosmic censorship
conjecture and the no-hair theorem through compact binary coalescence detections

Madeline Wade1, Jolien D.E. Creighton1, Evan Ochsner1, and Alex B. Nielsen2

1Department of Physics, University of Wisconsin – Milwaukee,
CGCA, P.O. Box 413, Milwaukee, Wisconsin 53201

2Max-Planck-Institute for Gravitational Physics, 38 Callinstrasse, 30167 Hanover, Germany

We study the ability of the Advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair the-
orem. The cosmic censorship conjecture, which is believed to be true in the theory of general
relativity, limits the spin-to-mass-squared ratio of a Kerr black hole, χ ≡ j/m2 ≤ 1. The no-hair
theorem, which is also believed to be true in the theory of general relativity, suggests a particular
value for the tidal Love number of a nonrotating black hole (k2 = 0). Using the Fisher matrix for-
malism, we examine the measurability of the spin and tidal deformability of compact binary systems
involving at least one putative black hole. Using parameter measurement errors and correlations
obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied
by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding
unphysical areas of parameter space when determining the smallest detectable apparent violations,
and we examine the effect of different post-Newtonian corrections to the amplitude of the compact
binary coalescence gravitational waveform, as given in Arun et al. [Phys. Rev. D 79, 104023 (2009)].
In addition, we perform a brief study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit
corrections to the phase [Marset et al. Classical Quantum Gravity 30, 055007 (2013)] affect spin
and mass parameter measurability. We find that physical priors on the symmetric mass ratio and
higher harmonics in the gravitational waveform could significantly affect the ability of aLIGO to
investigate cosmic censorship and the no-hair theorem for certain systems.

I. MOTIVATION

The era of advanced gravitational-wave detectors is ex-
pected to provide the first direct observations of gravi-
tational waves. The inspiral portion of compact binary
coalescence (CBC) events are the most promising sources
for gravitational-wave detections in ground-based inter-
ferometers, such as the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO). Expected de-
tection rates for binary black hole (BBH) mergers range
from 0.4 to 1000 per year with a realistic rate of 20
per year, and expected detection rates for neutron-star–
black-hole (NS-BH) mergers range from 0.2 to 300 per
year with a realistic rate of 10 per year [3]. The form
of the gravitational-wave strain depends on the chosen
metric theory of gravity. The most accepted theory of
gravity is Einstein’s theory of general relativity. An im-
portant use of gravitational-wave detectors will be to test
the theory of general relativity and cosmological conjec-
tures associated with general relativity.

Even within the confines of general relativity, there are
conjectures that, while widely believed, have not been ab-
solutely established, and violations could be uncovered
by gravitational-wave observations. One such conjecture
that is believed to be true in general relativity is the
cosmic censorship conjecture, which states roughly that
all singularities in spacetime must have an event horizon
that conceals the singularity from a distant observer [4].
In the Kerr geometry of a spinning black hole, the event
horizon can only exist for mass and spin ratios that sat-
isfy the Kerr bound, j ≤ m2 in geometric units (adopted
throughout this paper), where j is the spin of the black

hole and m is the mass of the black hole. If the spin of
a compact object exceeds the value of its mass squared,
then the compact object violates the cosmic censorship
conjecture within the context of the Kerr geometry [5–
7]. This limit is often expressed in terms of the Kerr
parameter χ ≡ j/m2 ≤ 1.

The no-hair theorem is a consequence of the theory
of general relativity. The no-hair theorem states that
a regular black hole that has settled down to its final
stationary vacuum state is determined only by its mass,
spin and electric charge [6, 8–14]. Astrophysical black
holes are thought to be electrically neutral, and there-
fore would be categorized just by their mass and spin. It
is widely expected that black holes in binary systems will
be closely described by such simple states for most of the
inspiral phase. Although the black hole will be slightly
tidally distorted by its binary partner, it has been shown
that the relativistic tidal Love number of a nonrotating
black hole will still be zero [15]. While nothing in the
literature shows that the tidal Love number should be
zero for rotating black holes, we suspect it should still be
small for this scenario. Thus if the post-Newtonian tidal
Love number is found to deviate from zero for a nonro-
tating object, it can be seen as evidence that the require-
ments of the no-hair theorem are not fulfilled, since the
black hole is no longer uniquely defined by its mass, spin
and electric charge. If the object is too massive to be
a neutron star (i.e. mi > 3 M�)1, then it is likely to

1 Reasonably general arguments show that compact objects having
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be some exotic object far from the Schwarzschild solu-
tion. A more detailed discussion of the implications of
the no-hair theorem can be found in Sec. V B.

The gravitational-wave strain produced by the inspiral
portion of a CBC event depends on the system’s param-
eters, such as component masses, component spins, and
component tidal Love numbers. Once a gravitational-
wave detection is made by aLIGO, parameter estimation
techniques will be used to extract the system’s most likely
parameters from the raw data. This will be done using
full Bayesian analyses that involve techniques such as
Markov-chain Monte Carlo and nested sampling. An in-
depth discussion of LIGO parameter estimation can be
found in Ref. [17]. Based on the results of parameter
estimation, if at least one of the system’s measured com-
ponent masses indicates that a body should nominally
be a black hole, then the system can be used to test for
apparent violations of the cosmic censorship conjecture
and the no-hair theorem.

Many other authors have investigated the possibility of
using gravitational-wave observations to test aspects of
general relativity. These include measuring the deviation
of post-Newtonian coefficients from their predicted values
in general relativity [18–20], looking for alternative wave-
polarization states that do not occur in general relativ-
ity [21, 22], testing for a nonzero graviton mass [23–25],
and exploring whether the ringdown signal is consistent
with the quasinormal modes of a Kerr black hole [26–28].
For recent reviews of these techniques, see Ref. [29–31].
Rodriguez, Mandel and Gair look at aLIGO’s ability to
verify the no-hair theorem for intermediate-mass black
hole systems in Ref. [49]. Tests of the no-hair theorem
and cosmic censorship can also be conducted in the elec-
tromagnetic sector using a variety of techniques, includ-
ing accretion disk modeling [32], observations of orbiting
stars and gas [33], and pulsar orbit timing [34].

This paper is outlined in the following manner: In
Sec. II we provide background information pertinent to
our studies. In Sec. III we outline the gravitational wave-
form for CBC events. In Sec. IV we describe the Fisher
matrix formalism, discuss the validity of the Fisher ma-
trix approach, and describe a singular-value decomposi-
tion method that we use to assist in inverting the Fisher
matrix. In Sec. V we discuss the parameters used in each
gravitational waveform, and we outline known bounds on
the chosen parameter space. In Sec. VI, we discuss our
results for the ability of aLIGO to detect apparent viola-
tions of the cosmic censorship conjecture and the no-hair
theorem. In Sec. VII we discuss future implications of
our findings. In Sec. VIII we succinctly summarize our
results.

(Units convention: G = c = 1.)

m > 3 M� should be fully-collapsed black holes [16]. Though it
is possible that exotic objects will have masses with m > 3 M�.

II. BACKGROUND

The inspiral portion of the CBC gravitational wave-
form is well modeled by post-Newtonian (pN) expansions
to the phase and amplitude of the waveform [6, 35–40].
However, systematic biases due to the deviation of a post-
Newtonian waveform from the true waveform can signif-
icantly affect parameter estimation. Therefore, when us-
ing post-Newtonian waveforms, it is important to employ
the most up-to-date and accurate calculations. In this
paper, we use the waveforms provided in Arun et al. [1]
that include post-Newtonian expansions of the phase to
3.5 pN order and of the amplitude to 2.5 pN order. Spin
corrections are calculated for both the post-Newtonian
phase to 2.5 pN order and amplitude to 2.0 pN order in
Ref. [1]. When this work was near completion, the 3.0
pN- and 3.5 pN-order spin-orbit phase corrections were
calculated by Marsat et al. in Ref. [2]. We briefly in-
vestigate how these affect our results. For nonspinning,
tidal waveforms, we use the lowest-order tidal correction
to the phase of the waveform given in Ref. [41].

To estimate the measurability of parameters appear-
ing in the inspiral CBC gravitational waveform, we use
the Fisher matrix formalism for a single detector, de-
scribed in Sec. IV. The accuracy of measurement errors
produced by the Fisher matrix formalism is a function of
the signal-to-noise ratio (SNR). A noisier system will bias
parameter error estimates obtained with the Fisher ma-
trix formalism [42]. However, a more accurate Bayesian
approach to parameter estimation using techniques such
as Markov-chain Monte Carlo (MCMC) can be very com-
putationally expensive. For the purpose of preliminary
investigation, the Fisher matrix formalism does well to
indicate the effects that should be studied more closely
with a full Bayesian analysis.

Much work has been done on parameter measurability
for CBC systems using the Fisher matrix formalism and
post-Newtonian CBC inspiral waveforms. Cutler and
Flanagan [43] studied the measurability of spin parame-
ters, along with other parameters, for the gravitational
waveform with a Newtonian-amplitude (0.0 pN-order cor-
rection to the amplitude) and 1.5 pN-order corrections to
the phase. Poisson and Will [44] and Krolak et al. [45]
expanded the study for Newtonian-amplitude waveforms
with 2.0 pN-order phase corrections. Arun et al. [46]
studied parameter estimation for nonspinning waveforms
with a Newtonian-amplitude and phase corrections to 3.5
pN order. Van Den Broeck and Sengupta [47] included
post-Newtonian corrections to the amplitude of the wave-
form and kept corrections to 3.5 pN order in the phase of
the waveform, including spin effects in the phase. Nielsen
[48] studied a Newtonian-amplitude waveform with ad-
ditional spin-spin and spin-orbit corrections appearing in
the phase of the waveform as derived in Ref. [1].

In this work, we investigate aLIGO’s ability to detect
apparent violations of the cosmic censorship conjecture
and the no-hair theorem. We study how different post-
Newtonian approximations to the amplitude of the grav-
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itational waveform affect parameter measurability. We
include the post-Newtonian phase corrections to 3.5 pN
order with spin-orbit and spin-spin2 phasing corrections
to 2.5 pN and 2.0 pN order respectively, and we vary the
post-Newtonian-amplitude corrections from 0.0 pN to 2.5
pN order. We also study the effect of spin corrections in
the amplitude of the waveform [1] and of the recent spin-
orbit corrections to the phase of the waveform at 3.0 pN
and 3.5 pN order [2].

We investigate how prior knowledge about unphysical
areas of parameter space can affect the measurability of
spin and tidal parameters appearing in the waveform.
We have not done this by incorporating a prior into the
Fisher matrix calculations. It is difficult to incorporate
flat priors into the Fisher matrix formalism, although this
has been studied by Nielsen [48]. Instead, in this work we
restrict some of the parameter space after a full Fisher
matrix calculation has been carried out.

III. COMPACT BINARY COALESCENCE
GRAVITATIONAL WAVEFORM

The gravitational-wave strain for the inspiral portion
of a compact binary coalescence event has the following
general form in the frequency domain

h̃(f) = A(f ; ~θ)eiΨ(f ;~θ) , (1)

where f is the gravitational-wave frequency and ~θ are the
parameters of the system producing the gravitational-
wave signal [6]. The amplitude A and the phase Ψ can be
expanded in a post-Newtonian (pN) approximation, and
the phase is found using the stationary phase approxi-
mation (SPA). The form for the pN expanded waveform
given in Ref. [1] is

h̃(f) =
M2

DM

√
5πη

48

N∑
n=0

K∑
k=0

v
n− 7

2

k C
(n)
k ei[kΨSPA(vk)−π/4] ,

(2)
where M = m1 +m2 is the total post-Newtonian mass of
the binary system, DM is the transverse comoving dis-
tance (see Ref. [50]), η = m1m2/M

2 is the symmetric
mass ratio, ΨSPA is the SPA for the phase of the wave-
form to some chosen pN order (see below), the index n
indicates twice the pN expansion order of the amplitude,
N is twice the highest included pN expansion order of the
amplitude, the index k indicates the kth harmonic, K is

the highest included harmonic, and the C
(n)
k coefficients

are given in Appendix D of Ref. [1]. The dimensionless

2 The “spin-spin” corrections include not only ~χ1 · ~χ2 corrections,
but also quadrupole-monopole and the so-called “self-spin” terms
∝ χ2

1.

pN expansion parameter vk for the kth harmonic is

vk =

(
2πM

f

k

)1/3

. (3)

The gravitational-wave frequency f is related to the or-
bital frequency F of the binary system through f = kF .

We restrict our studies to spin-aligned (or antialigned),
nonprecessing systems, where the spin is defined in the
standard post-Newtonian fashion. In reality, precession
should be included in the gravitational waveform model
[51, 52]. This is especially important for unequal-mass
systems, such as NS-BH binaries. The size of the pre-
cession cone scales with the mass ratio in such a way
that unequal-mass systems will precess more than equal-
mass systems. The effect of precession on parameter es-
timation has been studied in depth for space-based de-
tectors [53–55]. In these studies, it is found that preces-
sion improves parameter estimation by breaking parame-
ter degeneracies, but astrophysical systems may not have
enough precession to induce this effect. There are fewer
studies of parameter estimation that include precession
for ground-based detectors. The LIGO-Virgo Collabora-
tion performed parameter estimation for a few precess-
ing models in Ref. [17]. The effect of precession upon
detection, rather than parameter estimation, for ground-
based interferometers was recently studied in Ref. [56].
Recent studies of precession for LIGO parameter esti-
mation include Ref. [57–59], but there are no definitive
conclusions on how precession will affect parameter esti-
mation for ground-based detectors. Large-scale, system-
atic Bayesian inference analyses will likely be required
to develop a better understanding of how precession will
impact parameter estimation in the aLIGO era. For sim-
plicity, we have not investigated precessing systems in
this work.

We study waveforms with amplitude corrections up to
the 2.5 pN order (N = 5), which include up to seven
harmonics (K = 7) in the waveform. Post-Newtonian
corrections for spinning systems have been investigated
at length in, for example, Refs. [1, 2, 60–66]. We in-
clude spin corrections to amplitude and phase as found
in Ref. [1]. These include spin-orbit corrections calcu-
lated at 1.5 pN and 2.5 pN order in the phase, spin-spin
corrections at 2.0 pN order in the phase, spin-orbit cor-
rections appearing at 1.0 pN and 1.5 pN order in the
amplitude, and spin-spin corrections appearing at 2.0 pN
order in the amplitude. Separately, we also study spin-
orbit corrections that appear at 3.0 pN and 3.5 pN order
in the phase as recently calculated in Ref. [2]. We inves-
tigate both spinning waveforms with no tidal corrections
and nonspinning waveforms with the leading-order tidal
correction to the phase, which appears at 5.0 pN order.
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The general SPA phase ΨSPA used in Eq. (2) is

ΨSPA(vk) =
v3
k

M
tc − φc +

3

256

1

v5
kη

{
1 +

(
3715

756
+

55

9
η

)
v2
k + (4εβ − 16π) v3

k

+

(
15293365

508032
+

27145

504
η +

3085

72
η2 − 10εσ

)
v4
k +

(
38645π

756
− 65π

9
η − εγ

)(
1 + 3 ln

[
vk
vref

])
v5
k

+

[
11583231236531

4694215680
− 6848

21
γE −

640π2

3
+

(
2255π2

12
− 15737765635

3048192

)
η

+
76055

1728
η2 − 127825

1296
η3 −6848

21
ln (4vk) + α (160πβ − 20ξ)

]
v6
k

+

[
77096675π

254016
+

378515πη

1512
− 74045πη2

756
+ α

(
−20ζ + γ

(
−2229

112
− 99η

4

)
+β

(
43939885

254016
+

259205η

504
+

10165η2

36

))]
v7
k

}
, (4)

where ε and α are either 1 or 0 to turn on or off spin
corrections to the phase (ε turns on or off the 1.5 pN-
to 2.5 pN-order corrections and α turns on or off the
3.0 pN- and 3.5 pN-order corrections), tc and φc are the
time and phase of coalescence, M = Mη3/5 is the chirp
mass, γE = 0.577216... is Euler’s constant, and vref is an
integration constant, which we take to equal 1.

The five spin parameters appearing in ΨSPA and de-
rived in Refs. [1, 2]–β, σ, γ, ξ, and ζ–are

β =

2∑
i=1

(
113

12

(mi

M

)2

+
25

4
η

)
~χi · L̂N ,

σ = η

[
721

48

(
~χ1 · L̂N

)(
~χ2 · L̂N

)
− 247

48
(~χ1 · ~χ2)

]
2∑
i=1

{
5

2
qi

(mi

M

)2
[
3
(
~χi · L̂N

)2

− χ2
i

]
+

1

96

(mi

M

)2
[
7χ2

i −
(
~χi · L̂N

)2
]}

,

γ =

2∑
i=1

[(
732985

2268
+

140

9
η

)(mi

M

)2

+η

(
13915

84
− 10

3
η

)]
~χi · L̂N ,

ξ =

2∑
ı=1

[
75π

2

(mi

M

)2

+
151π

6
η

]
~χi · L̂N ,

ζ =

2∑
i=1

[(mi

M

)2
(

130325

756
− 796069

2016
η +

100019

864
η2

)
+η

(
1195759

18144
− 257023

1008
η +

2903

32
η2

)]
~χi · L̂N

where qi is a quadrupole-moment parameter, L̂N is the

unit vector in the direction of the binary’s orbital angu-

lar momentum, and ~χi = ~Si/m
2
i are the dimensionless

spins of the ith body. In the works that derive these pN
corrections, qi has been implicitly set to 1. This is the
value it takes for spinning black holes, but not the value
it takes for neutron stars and possibly other spinning ex-
otica [see for example Eq. (8) of Ref. [67]]. However, we
adopt the same simplification here since we will not be
considering spinning systems outside of the Kerr class.

We reparameterize the component spins χi into an an-
tisymmetric and a symmetric combination,

~χs =
1

2
(~χ1 + ~χ2) (5)

~χa =
1

2
(~χ1 − ~χ2) . (6)

Recall that we restrict ourselves to spin-aligned (or an-
tialigned), nonprecessing waveforms, which means ~χa ·
L̂N = ±|~χa| and ~χs · L̂N = ±|~χs|. The positive
sign corresponds to systems with (anti)symmetric spins
aligned with the orbital angular momentum of the bi-
nary, and the negative sign corresponds to systems with
(anti)symmetric spins antialigned with the binary’s or-
bital angular momentum.

We also study nonspinning waveforms that include the
5.0 pN-order tidal correction to the phase. Tidal correc-
tions are calculated for the phase beyond 5.0 pN order
[68]. However, we find that the tidal corrections beyond
5.0 pN order in phase are completely unmeasurable by
the Fisher matrix. Including these terms create a worse-
conditioned Fisher matrix and does not affect the mea-
surability of the 5.0 pN-order tidal correction. Therefore,
we omit all but the leading-order tidal correction in this
work.

The point-particle contributions to the phase of the
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waveform are only calculated through 3.5 pN order (v7
k

beyond leading order). The leading-order tidal correction
to the phase appears at 5.0 pN order (v10

k beyond leading
order). Therefore, the 5.0 pN-order term in the phase of
the waveform does not include point-particle effects. The
5.0 pN-order tidal term that adds linearly to Eq. (4) is

δΨtidal(vk) = −117Λ̃

16η
v5
k , (7)

with Λ̃ = λ̃/M5 and

λ̃ =
1

26

(
m1 + 12m2

m1
λ1 +

m2 + 12m1

m2
λ2

)
, (8)

where λi is the tidal deformability parameter for compo-
nent mass mi [41]. The tidal deformability parameter,
which in this post-Newtonian description describes the
ratio of the induced quadrupole moment to the perturb-
ing external tidal field, is written in terms of the dimen-
sionless tidal Love number k2 [41] as

λ =
2

3
k2r

5 , (9)

with r being the radius of the star. A fully relativistic
generalization of this was provided in Ref. [15], where
it was shown that for nonrotating black holes, the rela-
tivistic Love numbers all vanish. This remains true even
when the black hole is deformed by a tidal field.

We examine two scenarios: spinning systems with no
tidal corrections and nonspinning systems with tidal cor-
rections. For spinning systems we “turn on” the 1.5 pN-
to 2.5 pN-order spin corrections in the phase by setting
the parameter ε = 1 in Eq. (4), and we “turn on” the 3.0
pN- and 3.5 pN-order spin corrections in the phase by set-
ting the parameter α = 1. We also turn on or off the spin
corrections in the amplitude of the waveform as derived
in Ref. [1]. For nonspinning systems with tidal correc-
tions, we turn off all of the spin corrections in the phase
and the amplitude and add Eq. (7) linearly to Eq. (4) for
the phase of the waveform. We do not include any tidal
corrections in the amplitude of the waveform, because
they have not yet been calculated.

IV. PARAMETER ESTIMATION

A. Fisher matrix

We construct the covariance matrix using the Fisher
information matrix formalism for a single detector to de-
termine parameter errors and correlations. For a large
enough signal-to-noise ratio (SNR), the measurement er-

rors on the waveform parameters ~θ given a gravitational
waveform h̃(f) fall into a Gaussian probability density

function

p(∆~θ) =

√
det

(
Γ

2π

)
e(−

1
2 Γij∆θ

i∆θj) ,

where Γ is the Fisher information matrix [39, 43]. The
components of the Fisher matrix are defined as

Γij =

(
∂h

∂θi

∣∣∣∣ ∂h∂θj
)∣∣∣∣

~θmax

, (10)

where h is the gravitational waveform, θi is a waveform

parameter, ~θmax is the set of true parameters, and (· · · |
· · ·) is an inner product defined by

(a | b) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df (11)

for power spectral density Sn(f).

The root-mean-square error on a parameter θi is de-
rived from the inverse Fisher matrix, which is the covari-
ance matrix under certain assumptions [42],(

∆θi
)

rms
=
√

(Γ−1)ii (no summation over i) . (12)

The correlation between two parameters θi and θj is also
derived from the inverse Fisher matrix,

cij =

(
Γ−1

)ij√
(Γ−1)

ii
(Γ−1)

jj
(no summation over i or j) .

(13)

B. Validity of the Fisher matrix

The Fisher matrix provides an approximation to the
covariance matrix that represents the Cramer-Rao bound
[42]. Studies using the Fisher matrix in the context of
gravitational-wave parameter estimation are vast in the
literature (e.g. Refs. [41, 43, 44, 47, 48, 69]). However,
there are several drawbacks in employing the Fisher ma-
trix for parameter estimation studies. The derivation of
the Fisher matrix requires the linearized signal approxi-
mation (LSA), which is only valid in the high-SNR limit
[42]. Real gravitational-wave detections in the advanced-
detector era are not expected to fall into the high-SNR
limit [3]. In addition, the Fisher matrix assumes a Gaus-
sian, single-modal distribution of the likelihood function
[42, 70]. In reality, the likelihood could be very non-
Gaussian and multimodal. The Fisher matrix does not
fully explore the parameter space, but rather focuses on
one point in parameter space and assumes a Gaussian
likelihood about this point. In reality, a full Bayesian
calculation of the likelihood function starting from the
raw data and using techniques such as MCMC to ex-
plore parameter space is required for accurate parameter
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FIG. 1: The cumulative distribution function (CDF) for the quantity log10R where R ≡ | log r|. The quantity R, defined in Eq. (14),
is a measure of the self-consistency of the Fisher matrix. This quantity is calculated at 5000 random points on the 1σ-error surface, and
the CDF of these points is plotted here. The smaller values of R indicate a more self-consistent Fisher matrix. Therefore, the most self-
consistent Fisher matrix calculations have a CDF of R that rises quickly. Above we plot log10R for a spinning BBH system (m1 = 10 M�,
m2 = 11 M�), a spinning NS-BH system (m1 = 1.4 M�, m2 = 10 M�), and a tidal BBH system (m1 = 10 M�, m2 = 11 M�) all with
tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 100. For the spinning BBH system, the component
spins are χ1 = χ2 = 1, for the spinning NS-BH system the component spins are χ1 = 0 and χ2 = 1, and for the nonspinning, tidal BBH
system the tidal deformability parameter is Λ̃ = 0. The 1σ-error estimates employed in this calculation were obtained from a five- or
four-parameter Fisher matrix calculation with ~θ = {logM, η, tc, χa, χs} or ~θ = {logM, η, tc, Λ̃} for the spinning systems and the tidal
system, respectively. The plot shows results for the Newtonian-amplitude waveform (red triangles), the 0.5 pN order amplitude-corrected
waveform (blue X’s), and the 1.0 pN order amplitude-corrected waveform (green circles), with spin corrections included in the amplitude
for the spinning systems. The spinning-system plot titles indicate which spin corrections are kept in the phase of the waveform.

estimation, which has also been studied extensively in
the literature (e.g. Refs. [17, 70–75]). Rodriguez et al.
[70] perform an in-depth comparison of the Fisher ma-
trix with a full Bayesian MCMC study and find that the
Fisher matrix can be very ill suited to parameter estima-

tion for certain systems. Below, we perform some tests
to verify the validity of the Fisher matrix approach in
our work.

Vallisneri discusses a self-consistency check for the
Fisher matrix in Ref. [42]. To determine the level of
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self-consistency of the Fisher matrix, we calculate

|log r| = 1

2

(
(∆θj)rmshj −∆h

∣∣ (∆θk)rmshk −∆h
)

(14)

where hj = ∂h/∂θj |~θmax
, ∆h = h|~θ1σ−h|~θmax

, and ~θ1σ is a
point in parameter space that lies on the 1σ-error surface.
The value of | log r| will depend on the SNR, since the 1σ-
error surface and parameter root-mean-square errors are
a function of SNR.

Fig. 1 plots the cumulative distribution function of
log10R (R ≡ | log r|) calculated for a large number of
random points on the 1σ-error surface at a fixed SNR
of 100 for the Newtonian-amplitude waveform (red tri-
angles), the 0.5 pN-order amplitude-corrected waveform
(blue X’s), and the 1.0 pN-order amplitude-corrected
waveform (green circles), with spin corrections included
in the amplitude for the spinning systems. The 1σ-error
surface used in the calculation of | log r| came from a
five- or four-parameter Fisher matrix calculation with
~θ = {logM, η, tc, χa, χs} or ~θ = {logM, η, tc, Λ̃} for the
spinning systems and the nonspinning, tidal system, re-
spectively. Fig. 1 shows results for the spinning systems
both with and without the 3.0 pN- and 3.5 pN-order spin
corrections to the phase.

Fig. 1 indicates that the approximations necessary for
the Fisher matrix formalism to be self-consistent, such
as the linearized signal approximation (LSA), are more
valid for the 1.0 pN-order amplitude-corrected waveform
with spin corrections in the amplitude when compared
to the Newtonian-amplitude waveform and the 0.5 pN-
order amplitude-corrected waveform for the spinning sys-
tems. In addition, including the 3.0 pN- and 3.5 pN-
order spin corrections to the phase for the NS-BH system
leads to significant improvement in the self-consistency of
the Fisher matrix. However, the spinning BBH system
is either left unchanged or made slightly less valid by
including these higher-order spin-orbit corrections. For
the nonspinning, tidal BBH system, all of the waveforms
prove equally valid.

Vallisneri notes in Ref. [42] that the LSA will be
more valid for parameter spaces with weaker correla-
tions. As will be discussed in Sec. VI, the amplitude-
corrected waveforms cause certain parameters that are
strongly correlated in the Newtonian-amplitude wave-
form to decouple for the spinning BBH system. Pa-
rameter correlations are broken when moving both from
the Newtonian-amplitude waveform to the 0.5 p- order
amplitude-corrected waveform and from the 0.5 pN-order
amplitude-corrected waveform to the spin-dependent 1.0
pN-order amplitude-corrected waveform. Degeneracies
are also slightly decreased when including the 3.0 pN-
and 3.5 pN-order spin corrections in the phase for the
spinning NS-BH system but mostly unchanged for the
spinning BBH system.

Fig. 1 is a good reference for the self-consistency of the
Fisher matrix for different orders of the post-Newtonian
expansion. The scale of | log r| indicates that the Fisher

matrix may only be self-consistent for high SNR. There-
fore, we perform an additional investigation into the va-
lidity of the Fisher matrix below. The results of this in-
vestigation conclude that the Fisher matrix should give
fairly reliable results for the cases studied in this work,
even for a SNR of 10.

The Fisher matrix involves the partial derivative of the
waveform with respect to a set of parameters. In order
for the Fisher matrix approximation to be valid, the like-
lihood needs to be fairly Gaussian on scales appropriate
to the SNR being studied. One way to examine the Gaus-
sianity of the likelihood would be through the ambiguity
function P , defined in Ref. [58] as

P (~θmax, ~θ) = maxtc,ψ

(
h~θmax

∣∣∣h~θ)√(
h~θmax

∣∣∣h~θmax

) (
h~θ
∣∣h~θ) (15)

where maxtc,ψ means a maximization over coalescence
time and polarization angle, as described in Ref. [58].
The ambiguity function is a measure of the overlap be-

tween the true waveform with parameters ~θmax and a

waveform described by parameters ~θ.

If the likelihood is Gaussian, the ambiguity function
should fit well to a quadratic curve [58]. The scale over
which the ambiguity function should be quadratic is de-
termined by the SNR. For a SNR of ρ, the ambiguity
function should be well fit to the same Gaussian over
scales up to P ≥ 1 − 1/ρ2 [58]. Throughout this work,
we mainly study a SNR of ρ = 10, so the scale of interest
for the ambiguity function is P ≥ 0.99. For completeness,
we examine the ambiguity function on scales P ≥ 0.95.
Fig. 2 shows the ambiguity function over the most rel-
evant parameters to this work, {M, η, χs, χa}. In each
plot, the parameter on the x axis is varied while all other
parameters are held fixed at fiducial values, which are
outlined for the previous validity test. Each plot also
shows quadratic fits over three different scales: P ≥ 0.95
(red dashed line), P ≥ 0.99 (green dot-dashed line), and
P ≥ 0.999 (blue solid line). The actual ambiguity func-
tion is shown with black dots. Although we only show
plots for the spinning BBH system in the Newtonian-
amplitude, the plots look very similar for the different
systems studied in this work and across different post-
Newtonian approximations to the amplitude and phase.
The quadratic fits across different scales match up well.
This test indicates that the likelihood is appropriately
Gaussian for the SNR studied in this work.

Fig. 2 also shows the quadratic fit as predicted by the
Fisher matrix (orange dotted line). The comparison be-
tween ambiguity and the Fisher matrix is most simply
seen by examining the logarithm of the Gaussian likeli-
hood, as retrieved from Eqs. (17) and (22) in Ref. [58], for
example. The one-dimensional ambiguity function over
parameter θi not maximized over tc or ψ, denoted be-
low as P̃ , is simply related to the relevant Fisher matrix



8

FIG. 2: The ambiguity function for different systems, as indicated by the title of each plot, over the most relevant parameters
to this work, {M, η, χs, χa}. The pN order in each title references the pN expansion order of the amplitude of each waveform.
In each plot, the parameter on the x axis is varied while all other parameters are held fixed at fiducial values (see Sec. V). Each
plot also shows quadratic fits over three different scales: P ≥ 0.95 (red dashed line), P ≥ 0.99 (green dot-dashed line), and
P ≥ 0.999 (blue solid line). The actual ambiguity function is shown with black dots. The fit lines are all fairly close to each
other, which indicates that the likelihood for these systems is fairly Gaussian over the relevant scale. In addition, the orange,
dotted line shows the quadratic fit predicted from the Fisher matrix, which is also in good agreement.

component Γii,

P̃ = 1− 1

2

Γii
ρ2

(∆θi)
2 (no summation over i). (16)

However, to make a more direct comparison with the nor-
malized ambiguity function maximized over tc and ψ, the
parameters DM, tc, and ψ should be projected out of the
Fisher matrix. Projecting out these three parameters is
achieved by computing a four-dimensional Fisher matrix
including the parameters of interest, DM, tc, and ψ, in-
verting this matrix, and taking the inverse of the relevant

component
[
(Γ−1)ii

]−1
. The orange dotted lines plotted

in Fig. 2 are for the quadratic fit,

P = 1− 1

2

[
(Γ−1)ii

]−1

ρ2
(∆θi)

2 (no summation over i),

where θi is either M, η, χs, or χa. These fits are very
consistent with the ambiguity function calculation in all
cases.

Qualitatively, we expect the Fisher matrix results to
be accurate. Quantitatively, the Fisher matrix results

will be most accurate for a high SNR. The results in this
paper are provided for a SNR of 10. The Fisher matrix
results scale very simply from a SNR of 10 if the reader
wishes to study different SNR scenarios. Other sources of
quantitative error that may exceed the errors introduced
by the Fisher matrix are errors associated with the inac-
curacies of the post-Newtonian waveforms. When work-
ing with real data, additional quantitative errors, such
as calibration errors, can also become significant. This
work is intended to give insight into the ability of aLIGO
to study tests of general relativity in a mainly qualitative
manner. This study should motivate full Bayesian stud-
ies that will be required to investigate low-SNR scenarios
quantitatively.

C. Singular-value decomposition

The parameter spaces that we investigate can be 11 or
10 dimensional; see Eqs. (18) and (20). In these multi-
dimensional parameter spaces, the Fisher matrix is often
singular or badly conditioned and therefore difficult to
invert. One way we address this is by using a singular-
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value decomposition (SVD) on the Fisher matrix [76].
The SVD of a matrix Γ is

Γ = USV† , (17)

where S is a diagonal matrix whose diagonal elements
contain the singular values, and U and V are unitary ma-
trices of the left and right singular vectors, respectively.
The covariance matrix in terms of its singular-value de-
composition is

Γ−1 = VS−1U† .

Since the Fisher matrix is real and symmetric by defini-
tion, for our case we have V = U and this matrix will be
an orthogonal matrix of the real eigenvectors of Γ.

If the Fisher matrix is singular or badly conditioned, its
singular values will be zero or very small. We remove the
singular or badly conditioned pieces of the Fisher matrix
by zeroing out the elements of S−1 that are very large or
infinite. These elements correspond to the zero or very
small singular values of the Fisher matrix, which become
infinite or very large upon inversion. Zeroing out these
elements is effectively removing the unmeasurable linear
combinations of parameters from the Fisher matrix. In
this way we are able to obtain error estimates for only the
measurable parameters, and we do not have to assume a
priori which are the measurable parameters.

V. PARAMETERS AND PARAMETER-SPACE
BOUNDS

A. Spinning waveform

For the spinning waveform described in Sec. III, the
full parameter space is 11 dimensional,

~θspin,full = {log(1/DM ), logM, η, tc, φc,

cos ι, χa, χs, cos θ, φ, ψ} (18)

where ι is the inclination angle of the binary, θ and φ are
the sky position polar coordinates, ψ is the polarization
angle, and χs and χa are the symmetric and antisym-
metric spin parameters described in Sec. III. We use true
values of tc = 0, φc = 0, ι = π/3, θ = π/6, φ = π/6, and
ψ = π/4 for all of the results reported here. All calcu-
lations are performed for a fixed SNR, which determines
the value of DM for each calculation. The component
masses and spins are varied as described in Sec. VI A.

We find that a smaller dimensional parameter space is
required to obtain reliable results from the Fisher ma-
trix when performing calculations with the Newtonian-
amplitude spinning waveform, even when employing the
SVD method described in Sec. IV. For the Newtonian-
amplitude spinning waveform calculations, we use a re-

duced six-dimensional parameter space:

~θspin,reduced = {log(1/DM ), logM, η, tc, χa, χs} . (19)

For this reduced parameter space, we use true values of
tc = 0, φc = 0, ι = π/3, θ = π/6, φ = π/6, and ψ = π/4,
and we vary component masses and spins as described in
Sec. VI A. Once again, the fixed SNR for each calculation
determines the value of DM for that system.

We exploit bounds on the symmetric mass ratio and
the Kerr parameter to reduce the acceptable parameter
space. The physical bounds on m1 and m2 and the defini-
tion of the symmetric mass ratio restrict η to be (0, 1/4].
For Kerr solutions, cosmic censorship requires |~χi| ≤ 1,
which restricts |~χs| and |~χa| to be less than or equal to 1.
The bounds on spin and the symmetric mass ratio create
a finite region of the two-dimensional spin-mass parame-
ter space that is both physical and consistent with a Kerr
black hole. Excluding the unphysical areas of η param-
eter space is not imposed as a flat prior in the Fisher
matrix calculation but is applied after the fact to the er-
ror ellipse that results from an unrestricted Fisher matrix
calculation. A more detailed discussion on the improved
measurability of spin by restricting the spin-mass param-
eter space can be found in Sec. VI A.

For amplitude-corrected waveforms, the 11-
dimensional parameter space given in Eq. (18) often leads
to a badly conditioned or singular Fisher matrix. We use
the singular-value decomposition method discussed in
Sec. IV to invert the Fisher matrix and discover the un-
measurable linear combinations of parameters. For the
Newtonian-amplitude waveform all of the parameters in

the reduced parameter space ~θspin,reduced are measurable.
For the lowest-order amplitude-corrected waveform (0.5
pN), the measurable parameters are M, η, tc, φc, cos ι,
χa, and χs. For the 1.0 pN order amplitude-corrected
waveform, the measurable parameters are M, η, tc, φc,
cos ι, χa, χs, and φ. In Sec. VI A we only report on the
measurement errors forM, η, χs and χa, since these are
the most pertinent to our study.

B. Nonspinning, tidal waveform

For the nonspinning, tidal waveform described in
Sec. III, we investigate a 10–dimensional parameter
space,

~θtidal = {log(1/DM ), logM, η, tc, φc,

cos ι, Λ̃, cos θ, φ, ψ
}
. (20)

We use true values of tc = 0, φc = 0, ι = π/3, θ = π/6,
φ = π/6, and ψ = π/4 for all of the results reported here.
All calculations are performed for a fixed SNR, which
determines the value of DM for each calculation. The
component masses and the tidal parameter are varied as
described in Sec. VI B.
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As was the case with the spinning waveform, the tidal
parameter space also has bounds with useful physical in-
terpretations. We explore how exploiting the physical
bound on the symmetric mass ratio (0 < η ≤ 1/4) affects
the measurability of the tidal parameter. In addition,
we place a bound on the tidal deformability parameter
(Λ̃ = 0) for the waveform to be consistent with expecta-
tions from the no-hair theorem, in the sense described in
Sec. I. Previous work on tidal deformability calculations
for compact systems [77] suggests that δΨtidal should be
zero or small for black holes. The closest matter analog
would be an incompressible star at maximum compact-
ness (c = m/r = 4/9), for which the tidal Love number
would be k2 = 0.0017103 [77]. For an equal mass, equal

radius binary system, the parameter Λ̃ is

Λ̃ =
λ̃

(2m)5
=

λ

(2m)5
=

1

48
k2

( r
m

)5

where the above follows from the definition of λ̃ (given
by Eq. (8)) for an equal mass system, λ is the tidal pa-
rameter for one component object as defined in Eq. (9),
r is the radius of one component object, and m is the
mass of one component object. Using the ratio of m/r
for maximum compactness in the above expression gives
Λ̃ ≈ 0.002. Therefore, it is reasonable to conclude that
the parameter Λ̃ should be small, if not identically zero,
for black holes. There could potentially be internal struc-
ture effects appearing at 5.0 pN order in the phase that
differ from the point particle approximation, but these
effects should be undetectable for a black hole to have
no hair. Therefore, we take δΨtidal = 0, which implies
Λ̃ = 0, for a nonspinning black hole with no hair. For the
most comprehensive aLIGO test of the no-hair theorem,
it would be more appropriate to use numerical relativity
waveforms with various realizations of internal structure
parameterized by Λ̃.

Just as with the spinning waveform, this 10–
dimensional parameter space often leads to a badly con-
ditioned or singular Fisher matrix. Using the method de-
scribed in Sec. IV, we determine the measurable param-
eters for each waveform. For the Newtonian-amplitude
waveform, the measurable parameters are M, η, tc, and
Λ̃. For the lowest-order amplitude-corrected waveform
(0.5 pN), the measurable parameters are M, η, tc, φc,

cos ι, and Λ̃. For the 1.0 pN order amplitude-corrected
waveforms, φ also becomes measurable. In Sec. VI B we
only report on the measurement errors for M, η, and Λ̃,
since these are the most pertinent to our study.

VI. RESULTS

A. Detectable apparent violations of the cosmic
censorship conjecture

We study two different spinning systems: a near equal
mass binary black hole (BBH) system with component

masses m1 = 10 M� and m2 = 11 M� and a neutron-
star–black-hole (NS-BH) system with component masses
m1 = 1.4 M� and m2 = 10 M�. The exactly equal
mass limit is avoided due to singularities in the Fisher
matrix at the equal mass limit when including amplitude
corrections. Both systems are parameterized as described
by Eq.s (18) or (19) and are subject to the parameter
space bounds discussed in Sec. V A. We use the spinning
waveform described in Sec. III with the phase kept to 3.5
pN order and the amplitude varied from 0.0 pN to 2.5
pN order. Spin corrections are always included in the
phase to 2.5 pN order. We study the effect of turning on
or off spin corrections in the amplitude of the waveform
and turning on or off the 3.0 pN and 3.5 pN order spin
corrections in the phase.

We use the zero detuning, high power aLIGO power
spectrum as given in [78] for the power spectral density
Sn(f). The inner product integrations are carried out
from fmin = 10 Hz to fmax = kFLSO where [39]

FLSO =
1

63/22πM
. (21)

We choose to only examine positive (aligned) spins
when determining the minimum detectable violation of
the Kerr spin bound. Negative (anti-aligned) spins are
not as well measured as positive spins, and therefore will
lead to a larger minimum detectable violation of the Kerr
bound. Fig. 3 shows the 1σ error ellipses as produced by
the Fisher matrix for both the spinning BBH system and
the spinning NS-BH system. Each ellipse is calculated for
different values of component spin. Fig. 3 demonstrates
how positive spins are more measurable than negative
spins and therefore more useful in determining the mini-
mum detectable violation. The figure also illustrates how
parameter measurability varies significantly for different
values of spin for the BBH system and the NS-BH sys-
tem.

One goal of our work with spinning black hole systems
is to investigate how much better aLIGO would be able to
detect a violation of the Kerr bound (χi > 1) when only
the physical area of η parameter space is considered (see
Sec. V A for a discussion of parameter space bounds). As
mentioned before, this is not done by imposing a flat prior
on the Fisher matrix. Rather, an unrestricted Fisher ma-
trix calculation is performed. We examine the 1σ error
ellipses in the η−χs or η−χa plane and determine if the
entire physical area of the ellipse is consistent or incon-
sistent with the Kerr bound. We explore the parameter
space until we find the minimum χi = ji/(mi)

2 that vio-
late the Kerr bound when considering only physical parts
of the error ellipse. As can be seen in Tables I– IV, the
parameter χs is better measured than the parameter χa.
As discussed above and shown in Fig. 3, positive spins
are also better measured than negative spins. Therefore,
we determine the minimum violation of the χs = 1 bound
in order to determine the minimum violation of the Kerr
bound.

Fig. 4 compares the minimally violating spin values for
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FIG. 3: These plots show 1σ error ellipses in the η − χs parameter space for a spinning Newtonian-amplitude waveform with spin
corrections in the phase to 2.5 pN order as described in Sec. III and with the reduced parameter space ~θspin,reduced described in Sec. V A.
These ellipses are calculated for a spinning BBH system with m1 = 10 M� and m2 = 11 M� (left plot) and a spinning NS-BH system
with m1 = 1.4 M� and m2 = 10 M� (right plot). Both systems have true parameters tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and
ι = π/3 and a fixed SNR of ρ = 10. For the BBH system, the component spins are varied from χ1 = χ2 = −4 (red dashed ellipse) to
χ1 = χ2 = 4 (purple solid ellipse). Each ellipse takes a step of 2 in component spins. For the NS-BH system, the component spins are
varied from χ1 = 0, χ2 = −8 (red dashed ellipse) to χ1 = 0, χ2 = 8 (purple, solid ellipse). Each ellipse takes a step of 2 in χs, which
corresponds to the black hole taking a step of 4 in its component spin. The neutron star spin is held fixed at zero. The numbers near each
ellipse indicate the χs value for that ellipse (color coded).

FIG. 4: These plots show 1σ error ellipses in the η − χs parameter space for a spinning Newtonian-amplitude waveform with spin
corrections in the phase to 2.5 pN order as described in Sec. III and with the reduced parameter space ~θspin,reduced described in Sec. V A.
These ellipses are calculated for a spinning BBH system with m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4
and ι = π/3 and with a fixed SNR of ρ = 10. The component spins for each ellipse are given as an inlay on the plot. The plot on the left
shows the minimum detectable violation of the Kerr bound when considering the entire parameter space. The plot on the right shows the
minimum detectable violation of the Kerr bound when only considering the parts of the error ellipse that are physical. The unphysical
areas of parameter space are shaded gray in the plot on the right. The vertical solid lines bound the region of parameter space that is
consistent with the Kerr bound (−1 ≤ χs ≤ 1).

a Newtonian-amplitude waveform when considering the
entire parameter space (left plot) versus considering only
the physical area of parameter space (right plot). The er-
ror ellipse on the right of Fig. 4 is consistent with the Kerr
bound when considering the entire parameter space, but
it is inconsistent with the Kerr bound when considering
only the area of the ellipse within the physically-allowed
region of η. Results are shown for only the spinning BBH
system. The spinning NS-BH system is not affected by
bounding values of η due to the error ellipse’s orientation
and placement in parameter space, as is evident in Fig. 6.

The strong correlation between the symmetric mass ra-
tio η and spin when using a Newtonian-amplitude wave-
form has been studied by [79] and [48], among others.
The correlation between mass and spin can be seen in

Fig.s 4, 5 and 6. As a result, the spin parameters are not
well measured with the Newtonian-amplitude waveform
when considering the full η − χs parameter space. How-
ever, by restricting the parameter space to only the phys-
ical region of η for the spinning BBH system, aLIGO’s
ability to detect violations of the Kerr bound increases
by about a factor of three. This result is also summarized
in Table I.

We examine how the measurability of spin is affected
by including spin-independent and spin-dependent am-
plitude corrections. The measurability of spin for wave-
forms with spin corrections included in the phase but only
spin-independent amplitude corrections was reported in
[47]. Since then, more accurate spin corrections to the
phase and spin corrections to the amplitude have been
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FIG. 5: These plots show 1σ error ellipses in the η − χs parameter space for various spinning, amplitude-corrected waveforms with spin
corrections in the phase to 2.5 pN order as described in Sec. III. The title of each plot indicates the pN order amplitude correction. For the
1.0 pN order amplitude-corrected waveform, the title also indicates whether spin corrections have been included in the amplitude. These
ellipses are calculated for a spinning BBH system with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6,
ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The component spins for the solid, blue ellipses are given as an inlay on the plot.
These spins indicate the minimum detectable apparent violation of cosmic censorship. The dashed, red ellipses are calculated with the
fiducial spin values of χ1 = χ2 = 1 in each plot. The plots on the left are all to the same scale for comparison purposes. The plots on the
right are shown to a scale appropriate for each ellipse. The unphysical areas of parameter space are shaded gray. The vertical solid lines
bound the region of parameter space that is consistent with cosmic censorship (−1 ≤ χs ≤ 1).
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FIG. 6: These plots show 1σ error ellipses in the η − χs parameter space for various spinning, amplitude-corrected waveforms with spin
corrections in the phase to 2.5 pN order as described in Sec. III. The title of each plot indicates the pN order amplitude correction. For the
1.0 pN order amplitude-corrected waveform, the title also indicates whether spin corrections have been included in the amplitude. These
ellipses are calculated for a spinning NS-BH system with true parameters m1 = 1.4 M�, m2 = 10 M�, tc = 0, φc = 0, θ = π/6, φ = π/6,
ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The component spins for the solid, blue ellipses are given as an inlay on the plot.
These spins indicate the minimum detectable apparent violation of cosmic censorship. The dashed, red ellipses are calculated with the
fiducial spin values of χ1 = 0 and χ2 = 1 in each plot. The plots on the left are all to the same scale for comparison purposes. The plots
on the right are shown to a scale appropriate for each ellipse. The unphysical areas of parameter space are shaded gray. The vertical solid
lines bound the region of parameter space that is consistent with cosmic censorship (−1 ≤ χs ≤ 1).
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TABLE I: Spinning BBH System This table shows results for the spinning BBH system with true parameters m1 = 10 M�,

m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The spins χ1 and χ2 for each

scenario are given in the tables. The tables show the 1σ measurement errors and correlation coefficients obtained from the Fisher matrix

using spinning waveforms as described in Sec. III with spin corrections in the phase to 2.5 pN order. Also given in the tables is the distance

DM of the system in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in the amplitude,

are given in different rows of the tables. The top table shows results for fiducial spin values of χ1 = χ2 = 1, and the bottom table shows

results for the minimum detectable violating spins for each waveform. The first row of the bottom table is for the minimum violating spin

when the entire η parameter space is considered, and the second row is when only the physical η parameter space is considered.

pN order in amplitude χ1 = χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 1 938 0.0367 2.06 522.2 30.8 –0.9998 0.9989
0.5 pN 1 938 0.00420 0.0411 42.2 2.66 –0.3543 0.9197
1.0 pN 1 879 0.00328 0.00704 28.8 1.84 –0.1541 0.8777
1.5 pN 1 879 0.00339 0.00807 30.5 1.94 –0.1422 0.8844
2.0 pN 1 851 0.00360 0.00752 34.3 2.18 –0.1646 0.8979
2.5 pN 1 851 0.00329 0.00766 29.4 1.87 –0.1491 0.8790
1.0 pN + spin 1 879 0.00164 0.00709 2.84 0.159 0.1568 0.3184
1.5 pN + spin 1 935 0.00168 0.00882 2.56 0.167 0.2238 0.3168
2.0 pN + spin 1 901 0.00167 0.00809 2.44 0.159 0.1734 0.3169
2.5 pN + spin 1 902 0.00166 0.00825 2.44 0.159 0.1741 0.3201

pN order in amplitude χ1 = χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN (w/o η bound) 4.81 938 0.00609 0.129 103.2 3.81 –0.9998 –0.9452
0.0 pN (w/ η bound) 1.43 938 0.00918 0.936 226.3 11.8 –0.9994 0.9757
0.5 pN 2.33 938 0.00377 0.0411 23.6 1.51 –0.5014 0.8082
1.0 pN 2.08 879 0.00304 0.00709 15.0 1.07 –0.1851 0.8390
1.5 pN 2.12 879 0.00316 0.00810 15.7 1.12 –0.1737 0.8479
2.0 pN 2.21 850 0.00335 0.00755 16.7 1.21 –0.1995 0.8652
2.5 pN 2.09 851 0.00307 0.00769 15.2 1.09 –0.1809 0.8409
1.0 pN + spin 1.16 879 0.00165 0.00708 2.40 0.159 0.1693 0.3344
1.5 pN + spin 1.18 945 0.00170 0.00891 2.57 0.172 0.2471 0.3383
2.0 pN + spin 1.17 909 0.00169 0.00815 2.45 0.163 0.1891 0.3339
2.5 pN + spin 1.17 909 0.00168 0.00831 2.45 0.164 0.1916 0.3381

TABLE II: Spinning BBH System with 3.0 pN and 3.5 pN Spin-Orbit Phase Terms This table shows results for the
spinning BBH system with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, χ1 = χ2 = 1, θ = π/6, φ = π/6, ψ = π/4 and
ι = π/3 and with a fixed SNR of ρ = 10. The table shows the 1σ measurement errors and correlation coefficients obtained from the Fisher
matrix using spinning waveforms as described in Sec. III with spin corrections in the phase to 3.5 pN order. Also given in the table is the
distance DM of the system in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in the
amplitude, are given in different rows of the table.

pN order in amplitude χ1 = χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 1 938 0.00431 0.0681 14.9 1.09 0.9173 0.8811
0.5 pN 1 938 0.00419 0.0358 20.9 1.14 0.1460 0.9062
1.0 pN 1 879 0.00309 0.00697 16.8 1.13 0.1315 0.8686
1.5 pN 1 879 0.00324 0.00798 17.5 1.17 0.1155 0.8788
2.0 pN 1 850 0.00356 0.00742 19.4 1.30 0.1271 0.9000
2.5 pN 1 851 0.00314 0.00757 17.4 1.16 0.1237 0.8736
1.0 pN + spin 1 879 0.00165 0.00707 2.42 0.166 0.1995 0.4112
1.5 pN + spin 1 935 0.00172 0.00880 2.55 0.176 0.2628 0.4319
2.0 pN + spin 1 901 0.00172 0.00806 2.44 0.168 0.2106 0.4303
2.5 pN + spin 1 902 0.00169 0.00822 2.43 0.168 0.2140 0.4224

calculated. As described in Sec. III, here we use the
waveforms given in [1], which include spin corrections
in the amplitude to 2.0 pN order and spin corrections in
the phase to 2.5 pN order. Later in this Sec. we address

the more recent spin-orbit corrections at 3.0 pN and 3.5
pN order in the phase.

The results for different order amplitude corrections,
with and without spin corrections in the amplitude, are
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TABLE III: Spinning NS-BH System This table shows results for the spinning NS-BH system with true parameters m1 = 1.4 M�,
m2 = 10 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The spins χ1 and χ2 for
each scenario are given in the tables. The tables show the 1σ measurement errors and correlation coefficients obtained from the Fisher
matrix using spinning waveforms as described in Sec. III with spin corrections in the phase to 2.5 pN order. Also given in the table is the
distance DM of the system in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in the
amplitude, are given in different rows of the tables. The top table shows results for fiducial spin values of χ1 = 0 and χ2 = 1, and the
bottom table shows results for the minimum detectable violating black hole spin for each waveform. The first row of the bottom table
is for the minimum violating spin when the entire η parameter space is considered, and the second row of the bottom table is for the
minimum violating spin when only the physical η parameter space is considered.

pN order in amplitude χ1 χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 1 383 0.00199 0.0399 3.30 2.66 –0.9929 0.9981
0.5 pN 0 1 391 0.00164 0.0340 2.76 2.22 –0.9879 0.9964
1.0 pN 0 1 364 0.00156 0.0329 2.64 2.12 –0.9875 0.9965
1.5 pN 0 1 361 0.00159 0.0335 2.68 2.16 –0.9869 0.9963
2.0 pN 0 1 356 0.00159 0.0336 2.68 2.16 –0.9474 0.9965
2.5 pN 0 1 355 0.00158 0.0336 2.68 2.15 –0.9868 0.9964
1.0 pN + spin 0 1 363 0.00150 0.0316 2.53 2.04 –0.9864 0.9962
1.5 pN + spin 0 1 376 0.00154 0.0322 2.59 2.09 –0.9859 0.9958
2.0 pN + spin 0 1 371 0.00154 0.0323 2.59 2.08 –0.9861 0.9960
2.5 pN + spin 0 1 370 0.00154 0.0323 2.59 2.08 –0.9859 0.9959

pN order in amplitude χ1 χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 4.98 383 0.000469 0.0118 2.33 1.49 –0.99996 –0.7490
0.5 pN 0 4.72 391 0.000381 0.0115 2.11 1.35 –0.9998 –0.6461
1.0 pN 0 4.72 364 0.000357 0.0115 2.11 1.35 –0.9998 –0.6148
1.5 pN 0 4.78 362 0.000359 0.0115 2.14 1.37 –0.9998 –0.6162
2.0 pN 0 4.84 358 0.000361 0.0116 2.19 1.41 –0.9998 –0.6277
2.5 pN 0 4.84 356 0.000360 0.0117 2.21 1.42 –0.9998 –0.6232
1.0 pN + spin 0 4.60 365 0.000337 0.0115 2.03 1.30 –0.9997 –0.5566
1.5 pN + spin 0 4.52 435 0.000382 0.0114 1.97 1.26 –0.9995 –0.6175
2.0 pN + spin 0 4.50 430 0.000372 0.0113 1.94 1.24 –0.9995 –0.5960
2.5 pN + spin 0 4.50 429 0.000371 0.0113 1.94 1.24 –0.9994 –0.5914

TABLE IV: Spinning NS-BH System with 3.0 pN and 3.5 pN Spin-Orbit Phase Terms This table shows results for the
spinning NS-BH system with true parameters m1 = 1.4 M�, m2 = 10 M�, tc = 0, φc = 0, χ1 = 0, χ2 = 1, θ = π/6, φ = π/6, ψ = π/4
and ι = π/3 and with a fixed SNR of ρ = 10. The table shows the 1σ measurement errors and correlation coefficients obtained from the
Fisher matrix using spinning waveforms as described in Sec. III with spin corrections in the phase to 3.5 pN order. Also given in the table
is the distance DM of the system in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in
the amplitude, are given in different rows of the table.

pN order in amplitude χ1 χ2 DM (Mpc) ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 1 383 0.000452 0.00527 1.05 0.900 0.8153 0.9208
0.5 pN 0 1 390 0.000396 0.00480 0.956 0.822 0.7442 0.9138
1.0 pN 0 1 364 0.000387 0.00462 0.968 0.831 0.7350 0.9181
1.5 pN 0 1 361 0.000394 0.00469 0.991 0.850 0.7251 0.9192
2.0 pN 0 1 356 0.000397 0.00465 1.01 0.868 0.7222 0.9222
2.5 pN 0 1 355 0.000399 0.00466 1.02 0.876 0.7182 0.9229
1.0 pN + spin 0 1 363 0.000385 0.00461 0.963 0.827 0.7324 0.9173
1.5 pN + spin 0 1 376 0.000390 0.00474 0.954 0.819 0.7295 0.9137
2.0 pN + spin 0 1 371 0.000392 0.00471 0.969 0.832 0.7293 0.9162
2.5 pN + spin 0 1 370 0.000393 0.00472 0.976 0.838 0.7251 0.9167

shown in Fig. 5 and Table I for the BBH system and in
Fig. 6 and Table III for the NS-BH system. The plots
in Fig.s 5 and 6 show 1σ error ellipses for fiducial spin
values of χ1 = χ2 = 1 for the BBH system and χ1 = 0,
χ2 = 1 for the NS-BH system (red, dashed ellipses). In

addition, the plots show 1σ error ellipses for the mini-
mum detectable violation of the Kerr bound (blue, solid
ellipses). The top table in Tables I and III show param-
eter root-mean-square errors and correlation coefficients
for the fiducial spin values. The bottom table in Tables I
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and III show parameter errors and correlation coefficients
for the systems that provide the minimum detectable vi-
olation of the Kerr bound with each waveform.

The BBH system is strongly affected by including am-
plitude corrections in the waveform and spin corrections
in the amplitude. There is about a factor-of-ten im-
provement in the measurability of the spin parameters
when the lowest-order amplitude correction (0.5 pN) is
included in the waveform and the spin terms in the phase
are kept to 2.5 pN order. Van Den Broeck and Sengupta
also report on improved measurability of spin when am-
plitude corrections are included in the waveform in [47].
A notable effect in our calculations is that the symmetric
mass ratio decouples from spin and many other waveform
parameters when the first-order amplitude correction is
included in the waveform.3 There is additional improve-
ment in spin and mass measurability when the 1.0 pN or-
der amplitude correction is included in the waveform, and
there is a slight decrease in the degeneracy between spin
and chirp mass for this waveform. Furthermore, when
spin corrections are included in the amplitude, which oc-
curs at lowest-order at 1.0 pN, the measurability of spin
improves by an additional factor of about ten. In this
case, including spin corrections in the amplitude breaks
the correlation between chirp mass and spin even further.

The spinning NS-BH system is not strongly affected
by including spin-dependent or nonspinning amplitude
corrections. There is a slight improvement in param-
eter measurability when moving from the Newtonian-
amplitude waveform to the amplitude-corrected wave-
form, but this effect is not nearly as significant as with
the spinning BBH system. There is an even less sig-
nificant improvement in parameter measurability for the
spinning NS-BH system when moving from nonspinning
amplitude corrections to spin-dependent amplitude cor-
rections. Overall, the Newtonian-amplitude spinning NS-
BH waveform performs equally well as the amplitude-
corrected waveforms when it comes to parameter mea-
surability.

We do a brief study of how parameter measurability
is affected by the 3.0 pN and 3.5 pN order spin-orbit
corrections to the phase [2]. Tables II and IV show the 1σ
errors and correlation coefficients from the Fisher matrix
for the spinning BBH system and the spinning NS-BH
system, respectively, with spin corrections in the phase
to 3.5 pN order and the amplitude corrections varied as
described in the table.

The BBH system and the NS-BH system are both af-
fected in some way by the 3.0 pN and 3.5 pN order spin-
orbit terms in the phase. For the BBH system, there

3 Since the correlation between symmetric mass ratio and spin is
decreased when using amplitude-corrected waveforms, restricting
the error ellipse to only the physical area of η parameter space
does not significantly improve aLIGO’s ability to detect apparent
violations of cosmic censorship with these waveforms. This is
evident from the plots in Fig. 5.

is more than a factor-of-ten improvement in the sym-
metric mass ratio and spin parameter measurability for
the Newtonian-amplitude waveform, and there is about a
factor-of-ten improvement in the chirp mass measurabil-
ity. The degeneracy between the chirp mass and the spin
is slightly decreased when the 3.0 pN and 3.5 pN order
spin terms in the phase are included in the Newtonian-
amplitude waveform, which may be what leads to the im-
proved measurability of mass and spin. The amplitude-
corrected waveforms without spin in the amplitude show
improved measurability of about a factor of two for the
spin but not the mass parameters, and the amplitude-
corrected waveforms with spin corrections in the ampli-
tude are minimally affected by the 3.0 pN and 3.5 pN
order spin-orbit corrections to the phase.

For all of the different amplitude-corrected waveforms,
the spinning NS-BH system shows about a factor-of-ten
improvement in the measurability of the mass parameters
when the 3.0 pN and 3.5 pN order spin-orbit corrections
are included in the phase and about a factor of three
improvement in the measurability of the spin parame-
ters. The 3.0 pN and 3.5 pN order spin-orbit phase cor-
rections decrease the degeneracy between the symmetric
mass ratio and the spin parameters, which may lead to
the improved parameter measurability in this case.

B. Detectable deviations from the no-hair theorem

In this Sec. we discuss aLIGO’s ability to detect devi-
ations from the no-hair theorem using nonspinning, tidal
waveforms, as described in Sec. III. We keep the phase to
5.0 pN order, where point particle calculations are known
to 3.5 pN order and the leading order tidal correction ap-
pears at 5.0 pN order. We vary the amplitude corrections
from 0.0 pN to 2.5 pN order. We do not include any tidal
corrections in the amplitude of the waveform, since they
are not yet calculated. We only investigate heavy sys-
tems, nominally BBH systems, without spin. We look at
a near equal mass BBH system with component masses
m1 = 10 M� and m2 = 11 M�. As with the spinning sys-
tem, the exactly equal mass limit is avoided due to sin-
gularities in the amplitude-corrected waveforms at this
limit. The BBH system is parameterized as described in
Sec. V B. We use the zero detuning, high power aLIGO
power spectrum [78] for the power spectral density, and
we perform inner product integrations from fmin = 10
Hz to fmax = kFLSO, where FLSO is defined in Eq. (21).

We investigate how both excluding the unphysical val-
ues of the symmetric mass ratio and including differ-
ent order amplitude corrections to the waveform affect
aLIGO’s ability to detect deviations from the no-hair the-
orem expectations, as described in Sec. V B. The bounds
on the symmetric mass ratio parameter space do not de-
crease the minimum detectable deviation from the no-
hair theorem due to the orientation of the 1σ error ellipses
in the η – Λ̃ plane, as illustrated in Fig. 7. The amplitude
corrections do have a noticeable affect on the measura-
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FIG. 7: These plots show 1σ error ellipses in the η − Λ̃ parameter space for nonspinning, tidal waveforms, as described in Sec. III. The
title of each plot indicates the pN order amplitude correction. These ellipses were calculated for a BBH system with true parameters
m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The tidal parameter
Λ̃ for the solid, blue ellipses is given as an inlay on the plot. These tidal deformability parameters indicate the minimum detectable
deviation from the no-hair theorem for each waveform. The dashed, red ellipses are shown for the fiducial tidal value of Λ̃ = 0 in each
plot. The unphysical areas of parameter space are shaded gray. The Λ̃ = 0 axis indicates the area of parameter space that is consistent
with the no-hair theorem. Both plots above are shown to the same scale for comparison purposes.

TABLE V: Nonspinning Tidal BBH System This table shows results for the nonspinning BBH system with true parameters
m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The tidal
deformability parameter Λ̃ for each scenario is given in the tables. The tables show the 1σ measurement errors and correlation coefficients
obtained from the Fisher matrix using the tidal waveform as described in Sec. III. Also given in the table is the distance DM of the system
in order to achieve the fixed SNR of 10. The phase is kept out to 3.5 pN order and different order amplitude corrections are given in
different rows of the tables. The top table shows results for a fiducial tidal parameter value of Λ̃ = 0, and the bottom table shows results
for the minimum detectable violating tides for each waveform.

pN order in amplitude Λ̃ DM (Mpc) ∆M/M ∆η ∆Λ̃ cηΛ̃ cMΛ̃

0.0 pN 0 938 0.00281 0.0200 15.7 0.9326 0.8305
0.5 pN 0 938 0.00234 0.0102 13.1 0.9019 0.7575
1.0 pN 0 879 0.00115 0.00649 7.26 0.6090 0.1241
1.5 pN 0 879 0.00123 0.00723 7.64 0.6569 0.2192
2.0 pN 0 851 0.00118 0.00694 7.77 0.6375 0.1778
2.5 pN 0 851 0.00118 0.00693 7.71 0.6331 0.1758

pN order in amplitude Λ̃ DM (Mpc) ∆M/M ∆η ∆Λ̃ cηΛ̃ cMΛ̃

0.0 pN 18.4 938 0.00281 0.0200 18.4 0.9512 0.8581
0.5 pN 14.4 938 0.00232 0.0160 14.3 0.9193 0.7809
1.0 pN 7.61 879 0.00115 0.00649 7.61 0.6537 0.1723
1.5 pN 8.13 879 0.00123 0.00730 8.12 0.7039 0.2747
2.0 pN 8.19 850 0.00118 0.00698 8.18 0.6831 0.2308
2.5 pN 8.16 851 0.00118 0.00697 8.15 0.6811 0.2305

bility of tidal deformability. While the lowest-order am-
plitude correction (0.5 pN) does not lead to a dramatic
improvement in the measurability of the tidal parameter
Λ̃, the 1.0 pN order amplitude correction does give about
a factor of two improvement in the measurement error
on Λ̃. The tidal parameter is strongly correlated to both
the symmetric mass ratio and the chirp mass, but these
correlations are decreased, especially between chirp mass
and Λ̃, when using the 1.0 pN order amplitude-corrected
waveform. The results are summarized in Fig. 7 and Ta-
ble V for both the fiducial tidal parameter value of Λ̃ = 0
and for the minimum detectable violating Λ̃.

VII. DISCUSSION

Applying physical limits on the symmetric mass ratio
can have a noticeable impact on aLIGO’s ability to mea-
sure spin. When considering a near equal mass, spin-
ning BBH system, aLIGO’s ability to test the cosmic
censorship conjecture is improved by about a factor of
three by excluding unphysical values of the symmetric
mass ratio for a Newtonian-amplitude waveform, as can
be seen in Fig. 4 and Table I. The frequency domain
waveform given in Eq. (2) with a Newtonian-amplitude
is commonly used for detection and parameter estimation
efforts. The strong correlations between the symmetric
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mass ratio and spins result in poor measurability of the
spin parameters when using this waveform. However,
our results imply that including a prior on the symmet-
ric mass ratio can lead to a significant improvement of
spin measurability for near equal mass, spinning BBH
systems. However, we find that a prior on the symmetric
mass ratio will not affect unequal mass systems, as can
be seen in Fig. 6, nor will it affect near equal mass sys-
tems when amplitude-corrected waveforms are employed,
as can be seen in Fig. 5.

We find that switching from the Newtonian-amplitude
waveform to the amplitude-corrected waveform signifi-
cantly affects parameter measurability for the near equal
mass, spinning BBH system, but not for the unequal
mass, spinning NS-BH system. Amplitude corrections
add multiple harmonics to the gravitational waveform.
The Newtonian-amplitude waveform only includes the
second harmonic. However, the 0.5 pN order amplitude-
corrected waveform adds the lowest-order point particle
correction to the first and third harmonics. The 1.0 pN
order amplitude-corrected waveform adds a spin correc-
tion to the first harmonic, a point particle correction to
the second harmonic and the lowest-order point particle
correction to the fourth harmonic. Parameter measura-
bility for the spinning BBH system is most significantly
affected by the 0.5 pN order point particle correction
terms in the first and third harmonics and the 1.0 pN
order spin correction terms in the first harmonic. The
higher order amplitude correction terms above 1.0 pN
order minimally affect parameter measurability.

For the spinning BBH system, the lowest-order ampli-
tude correction improves the measurement error for chirp
mass and spin parameters by about a factor-of-ten and
for the symmetric mass ratio by about a factor of fifty
when compared to the Newtonian-amplitude waveform.
This translates to about a factor of two improvement on
the minimum detectable spins that violate the cosmic
censorship conjecture when compared to the Newtonian-
amplitude waveform using the full symmetric mass ratio
parameter space. The improved measurability may be
due to the breaking of the degeneracy between the sym-
metric mass ratio and the spin parameters.

The spinning BBH system shows significant improve-
ment in parameter measurability again when the lowest-
order spin corrections are added to the amplitude, but
the spinning NS-BH system shows no significant change
by including spin terms to the amplitude, as is seen in
Tables I and III and Fig.s 5 and 6. For the spinning
BBH system, the lowest-order spin corrections to the am-
plitude result in more than a factor-of-ten improvement
in the measurability of both spin parameters when com-
pared to the 1.0 pN order amplitude-corrected waveform
without spin corrections in the amplitude. The improved
measurability may be a result of decoupling chirp mass
from spin. There is also about a factor of two improve-
ment in the measurability of chirp mass when the lowest-
order spin corrections are included in the amplitude. In-
cluding spin corrections in the amplitude leads to about

a factor of two improvement in the ability of aLIGO to
detect violations of cosmic censorship for a near equal
mass BBH system.

A brief study of how the 3.0 pN and 3.5 pN or-
der spin-orbit phase corrections affect parameter mea-
surability, summarized in Tables II and IV, indicates
that these corrections can have a noticeable impact on
the spinning BBH system and the spinning NS-BH sys-
tem. For the spinning BBH system, including the newer
spin-orbit phase corrections leads to significant improve-
ment in mass and spin measurability and a decrease
in the degeneracy between spin and chirp mass for the
Newtonian-amplitude waveform. There is also some im-
provement in the measurability of the spin parameters for
the amplitude-corrected waveforms without spin terms in
the amplitude. However, the amplitude-corrected wave-
forms with spin terms in the amplitude are mostly unaf-
fected by the 3.0 pN and 3.5 pN order spin-orbit phase
terms.

The spinning NS-BH system demonstrates improved
measurability for all different orders of amplitude correc-
tions in the mass and spin parameters when the 3.0 pN
and 3.5 pN order spin-orbit phase terms are included in
the waveform. More follow-up studies should be done to
see how the 3.0 pN and 3.5 pN order spin-orbit phase
corrections affect aLIGO’s ability to detect apparent vi-
olations of the cosmic censorship conjecture.

In summary, aLIGO can theoretically detect spin vio-
lations of the cosmic censorship conjecture at 1σ for an
SNR of 10 (or 3σ for an SNR of 30) for a near equal
mass BBH system with component spins as small as
χ1 = χ2 = 1.16 when using 1.0 pN order amplitude-
corrected waveforms with spin corrections in the ampli-
tude. In addition, aLIGO can theoretically detect a spin
violation at 1σ for an SNR of 10 (or 3σ for an SNR of
30) for a spinning NS-BH system with m1 = 1.4 M�,
m2 = 10 M�, χ1 = 0 and χ2 = 4.50 when using the 2.0
pN or 2.5 pN order amplitude-corrected waveform with
spin corrections in the amplitude.

As discussed in Sec. VI B, excluding unphysical values
of the symmetric mass ratio does not affect aLIGO’s abil-
ity to test whether the requirements of the no-hair the-
orem are fulfilled. However, including amplitude correc-
tions in the waveform does noticeably affect the measur-
ability of the tidal deformability parameter Λ̃, as shown
in Table V and Fig. 7, which improves aLIGO’s ability
to detect deviations from the no-hair theorem. There
is some small improvement in parameter measurability
when including the 0.5 pN order amplitude correction.
However, there is about a factor of two improvement
in measurement error for both mass parameters and
the tidal parameter when moving to the 1.0 pN order
amplitude-corrected waveform. Note that for the non-
spinning BBH system examined in Sec. VI B, no spin
corrections were included in the amplitude. Therefore,
the 1.0 pN order amplitude correction only adds a point
particle correction to the second and fourth harmonic.
The tidal parameter Λ̃ is coupled to both the symmetric
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mass ratio and the chirp mass for waveforms including
up to the 0.5 pN order amplitude correction. The 1.0 pN
order amplitude correction decouples Λ̃ from chirp mass
and decreases the strength of the coupling between Λ̃ and
the symmetric mass ratio.

The minimum detectable deviation from the no-hair
theorem for a near equal mass BBH system with m1 = 10
M� and m2 = 11 M� is Λ̃ = 7.61 at 1σ for an SNR of
10 (or 3σ for an SNR of 30). For comparison, a typical

value for Λ̃ for a binary neutron star system is about
40, but the value of Λ̃ is strongly dependent on the Eq.
of state [80]. For an incompressible star at maximum

compactness, the tidal parameter would be Λ̃ ≈ 0.002
[77].

It is worth making a brief mention of what could be
causing an apparent violation of cosmic censorship or the
no-hair theorem. There could be exotic objects, such
as boson stars, that do violate cosmic censorship or the
no-hair theorem and therefore lead to an apparent vio-
lation through their gravitational waveform. However,
observing an apparent violation of cosmic censorship or
the no-hair theorem does not necessarily mean these con-
jectures are false. Rather, it could be the theory of grav-
ity, general relativity, that is wrong, or it could be post-
Newtonian theory that is wrong. The post-Newtonian
waveforms employed in this paper are based on assump-
tions in standard general relativity, which could be vio-
lated for systems such as a naked singularity. However,
in the case of a naked singularity, the quantum gravity
effects that are fixing the singularity should only mini-
mally affect the surrounding spacetime on which post-
Newtonian waveforms are based. In addition, the as-
sumptions of the Kerr solution, such as axial-symmetry
and asymptotic flatness, could not be satisfied. How-
ever, detecting a nominal black hole that violates the
Kerr bound or detecting internal structure in a nominal
black hole would be inconsistent with the current post-
Newtonian framework of general relativity and cosmolog-
ical conjectures in the Kerr geometry.

VIII. CONCLUSIONS

We explore ways to improve aLIGO’s ability to test
cosmic censorship and the no-hair theorem by improving
the measurability of spin and tidal deformability. We find
several methods for improving parameter measurability
that affect different systems and different amplitude-
corrected waveforms in different ways. Table VI sum-
marizes our findings for how to improve parameter mea-
surability for each astrophysical system that we examine.
The pN orders in the table all refer to pN order in the
amplitude of the waveform, except when indicated di-
rectly.

Our studies indicate that both a prior on the sym-
metric mass ratio and including higher harmonics in the
waveform can have a significant effect on aLIGO’s ability
to test whether expectations from the cosmic censorship

conjecture and the no-hair theorem are satisfied for some,
but not all, systems.

For near equal mass spinning BBH systems, both a
prior on the symmetric mass ratio and including higher
harmonics could lead to significant improvement in spin
and mass parameter measurability, and therefore signifi-
cant improvement in aLIGO’s ability to test cosmic cen-
sorship. In addition, including spin corrections in the
amplitude, specifically the lowest-order spin correction to
the first harmonic, could lead to even further improved
measurability of spin and mass parameters. For the
Newtonian-amplitude waveform or the waveforms with
nonspinning amplitude corrections, the 3.0 pN and 3.5
pN order spin-orbit phase terms should lead to improved
mass and spin measurability as well.

For the spinning NS-BH system, a prior on the sym-
metric mass ratio should not lead to much improvement
in aLIGO’s ability to test cosmic censorship. Higher har-
monics should also not improve spin or mass parameter
measurability for this system. However, the 3.0 pN and
3.5 pN order spin-orbit phase corrections should lead to
improved mass and spin measurability for both Newto-
nian and amplitude-corrected waveforms.

For near equal mass nonspinning BBH systems with
tidal corrections, a prior on the symmetric mass ratio will
not improve aLIGO’s ability to investigate the no-hair
theorem, but including higher harmonics in the waveform
will improve mass and tidal measurability.

A final benefit of using amplitude-corrected waveforms,
which include higher harmonic effects, is discussed briefly
in Sec. V. Certain angle parameters, φc, ι, and φ, are
unmeasurable for a single detector with the Newtonian-
amplitude waveform. However, including the lowest-
order amplitude correction in the waveform allows both
φc and ι to become measurable, even for a single detec-
tor. Including spin corrections in the amplitude further
allows the azimuthal angle φ to become measurable for
a single detector. Therefore, higher harmonics can play
a significant role in the measurability of some of the sys-
tem’s angle parameters, on top of the benefits to mass
and spin measurability discussed above.

Overall, using a flat prior on the symmetric mass ratio
and including higher harmonics in the waveform could
provide aLIGO with a keen ability to test the theory of
general relativity with gravitational-wave detections from
black hole compact binary coalescence events in the near
equal mass limit.
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TABLE VI: Advanced LIGO’s ability to measure spin and tidal deformability, and therefore test cosmic censor-
ship and the no-hair theorem, improves by...

restricting η including higher including spin including the 3.0 pN, 3.5 pN
parameter space harmonics in the amplitude spin-orbit phase terms

spinning BBH yes, only yes, starting yes, starting yes, mostly
at 0.0 pN at 0.5 pN at 1.0 pN at 0.0 pN

spinning NS-BH no no no yes, for all
pN orders

tidal BBH no yes, starting N/A N/A
at 1.0 pN
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