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ABSTRACT:

In this paper we prove several fundamental theorems, concerning the multi-party
communication complexity of Boolean functions.

Let g be a real function which approximates Boolean function f of n variables with
error less than 1/5. Then — from our Theorem 1 — there exists a k = O(log(nL1(g)))-
party protocol which computes f with a communication of O(log®(nL;(g))) bits, where
Li(g) denotes the L; spectral norm of g.

We show an upper bound to the symmetric k—party communication complexity of
Boolean functions in terms of their L; norms in our Theorem 3. For k = 2 it was known
that the communication complexity of Boolean functions are closely related with the rank
of their communication matrix [Yal]. No analogous upper bound was known for the k-
party communication complexity of arbitrary Boolean functions, where k£ > 2.

For a Boolean function of exponential L; norm our protocols need n®) bits of com-
munication. However, if the Fourier—coefficients of a Boolean function f are unevenly
distributed, more exactly, if they can be divided into two groups: one with small L; norm
(say, L), and the other with small enough L, norm (say, ), then there exists a O(log(nL))-
party protocol which computes f with O(log*(Ln)) communication on the (1 —¢?) fraction
of all inputs.

In contrast, we prove that almost all Boolean functions of n variables has a k-party
communication complexity of at least n/k — 4logn. This result, along with our upper
bounds, shows that for almost all Boolean function no real approximating function of
small L; norm can be found, or: almost all Boolean function has exponential L; norm, or:
for almost all Boolean function the distribution of the Fourier—coefficients is “even”: they
cannot be divided into two classes: one with small L,, the other with small L, norms.

Our results suggest that in the multi-party communication theory, instead of the well-
studied degree of a polynomial representation of a Boolean function, its L; norm can be
an important measure of complexity.

Address: Max Planck Institute for Computer Science, Im Stadtwald, D-66123 Saar-
bruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de
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1. INTRODUCTION

1.1 Multi-party games

The multi-party communication game, defined by Chandra, Furst and Lipton [CFL], is an
interesting generalization of the 2-party communication game. In this game, k players:
P,,P,..., P, intend to compute a Boolean function f(z;,z2,...,z»): {0,1}* — {0,1}. On
set § = {z1,2Z2,...,2n} of variables there is a fixed partition A of k classes 4,, 42, ..., A,
and player P; knows every variable, ezcept those in A;, for 2 = 1,2,...,k. The players have
unlimited computational power, and they communicate with the help of a blackboard,
viewed by all players. Only one player may write on the blackboard at a time. The goal is
to compute f(z1,Z2,...,2Zn), such that at the end of the computation, every player knows
this value. The cost of the computation is the number of bits written on the blackboard for
the given z = (23,23, ...,2,) and A = (4;, 42,..., Ax). The cost of a multi-party protocol
is the maximum number of bits communicated for any z from {0,1}" and the given A.
The k-party communication complexity, Cf‘k)( f), of a function f, with respect to partition
A, is the minimum of costs of those k-party protocols which compute f. The k-party
symmetric communication complexity of f is defined as

c®(f) = max (),

where the maximum is taken over all k—partitions of set {z1,%2,...,Zn}-

The theory of the k—party communication games for k = 2 is well developed (see
[BFS] or [L] for a survey), but much less is known about the k > 2 case. As a general
upper bound both for two and more players, let us suppose that A, is one of the smallest
classes of A;,A,,...,Ax. Then P, can compute any Boolean function of S with |4;]| + 1
bits of communication: P, writes down the |A4;| bits of A; on the blackboard, P, reads it,
and computes and announces the value g(z;,z3,...,2,) € {0,1}. So

c®(f) < [%J + 1.

We show in Theorem 7 that this upper bound is nearly optimal for almost all Boolean
function.

For two players, the communication complexity of a function f is known to be between
the rank and the logarithm of the rank of the communication matriz of f [Yal], [L]. Better
upper bounds were given for special classes of functions by Lovdsz and Saks [LS], using
extensively lattice-theory and Moebius functions. For more than two players, no analogue
results were known.

Chandra, Furst and Lipton [CFL] proved non-trivial upper and lower bounds for
the k—communication complexity of a specific function, using intricate Ramsey-theoretic
arguments.

An important progress was made by Babai, Nisan and Szegedy, [BNS|, proving an
(%) lower bound for the k-party communication complexity of the GIP function. It is
proved in [G] that their lower bound is close to the optimal.
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We proved in [G3] that any function, computed by a depth-2 MOD p circuit of size
N can be computed with p players and O(p) bits of communication, and the number of
communicated bits do not depend on N.

In this paper we give several fundamental upper bounds to the symmetric multi-party
communication complexity of arbitrary Boolean functions. Our bounds depend on the L,
spectral norm of functions.

1.2 Spectral Norms

There is a vast literature on representing the Boolean functions by polynomials above
some field or ring (see, e.g. [ABFR], [BBR], [Be], [BRS], [BS], [LMN], [NS], [Sm]). One
reason for this may be that the polynomials offer a more developed machinery than the
“pure” Boolean functions. One tool in this machinery is the Fourier—expansion of Boolean
functions [LMN], [BS], [KKL], [NS]:

Let us represent Boolean function f as a function f: {—1,1}" — {—1,1} where —1 stays
for “true”. The set of all real valued functions over {—1,1}" forms a 2" dimensional
vector-space over the reals with an inner product:

<gh>=2"" Y g(2)h(z).
z€{-1,1}"
Let us define for a = (a3, a3, ...,a,) € {0,1}"

n
[- 2 (- 4
X —Hzi "

=1

The monomials X for a € {0,1}" form an orthonormal basis in this 2"-dimensional
vector space; consequently, any function A : {—1,1}" — R can be uniquely expressed as

(1) h(1,22, 0y 2n) = D, @aX®
ac{0,1}»

The right-hand-side of (1) is called the Fourier—ezpansion of h, and numbers a, for a €
{0,1}" are called the spectral (or Fourier-) coefficients of k.

The L; norm of A is:
Lit)= Y. laal
ac{0,1}n

The L; norm: )

Lz(h)=( > a§)§=<h,h>%.

a€{0,1}»

Example. The PARITY function in this setting is z1Z3...Zn, its Ly and L, norms are 1,
while its degree is n.

Linial, Mansour and Nisan [LMN] proved that if f is a Boolean function computed by a
bounded—-depth, polynomial-size Boolean circuit, then the L, norm of the end-segments
of the Fourier—expansion of f are decreasing exponentially fast.
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Bruck and Smolensky [BS] established a relation between the L; norm and the computabil-
ity of f by polynomial threshold functions. A generalization of one of their results plays a
main role in the present work (Lemma 9).

1.3 Our results

Our Theorem 1 shows, that if a Boolean function can be approximated by a real
function with small error, then there exists a k—party protocol which computes the Boolean
function, and the number of communicated bits in this protocol depends only on the L,
norm of the approzimating real function.

Theorem 1. Let f be a Boolean function: f : {-1,1}" — {-1,1}, and g be a real
function g : {—1,1}" — R. Suppose that for all z € {-1,1}",

l9(=) - £(=)] < 3.

Then the k—party symmetric communication complexity of f is

0 (kz log(nLa(s)) [”Lj,f”)] ) -

Specially:
Corollary 2. Suppose that the conditions of Theorem 1 are satisfied, and let k =
Q(log(nLi(g))). Then

cM(f) = O(log* (nL1(9)))-

In other words, if the L, spectral norm of g is bounded by a polynomial in n, then the
symmetric k-party communication complexity of f is at most O(log® n), with k = Q(log n).
Choosing f = g in Theorem 1, we shall get:

Theorem 3. [G2] Let f be an arbitrary Boolean function of n variables. Then the k—party
symmetric communication complexity of f,

c®(f) =0 (k2 log (nL1(f)) [“Lj,ff )D .

Or, in another setting:

Corollary 4. Suppose that L,(f) > n® for some ¢ > 0. Then there exists a multi—party
protocol with Q(log Ly(f)) players and of O(log® L1(f)) communication which computes

i

Another corollary of Theorem 1:



Corollary 5. Let

v =inf {Li(g)lg : {~1,1" = &, and Vz € {~1,1}": lg(e) ~ f(&)] < 3 }.

Then ,
C(")(f) =0 (k2 log(nv) [121—.') .

Suppose that f is a Boolean function of large (say, exponential in n) L; norm. Our
Theorem 3 can guarantee only a communication protocol with too many communicated
bits: the trivial |%| protocol is usually better. Suppose now, that the set of Fourier—
coeflicients of f can be divided into two parts: one with small L;, the other with small L,
norms.

Example. Let |a;| = |az| = 1 — §, and

jas| = lag| = ... = [aga| = 273",

where § = (2"~! — 1)/2(4/3)* = O(2~%). Then the L, norm

2“
z |a;| > 23
i=1
is exponentially large, while

2'!

1
zaf e )
£ 23
=3

is exponentially small, and
|a.1| + |¢12| <1.
When the Fourier coeflicients are so unevenly distributed, then we can give a much

better protocol to compute f. The price: the computation will not be correct on a small
fraction of the inputs.

Theorem 6. Let

f(z) = E as X%,

a€{0,1}*

Y a <e,

a€S

and let S C {0,1}" such that

1
for some € < T Let

g9(z) = Z a. X

a€{0,1}»-S
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Then for all k > 2 and for all k—partition of the inputs, there exists a k—party protocol

with 2
o) (k2 log(nL1(g)) {%] )

bits of communication, and this protocol computes f correctly on at least on the (1—25¢) >

- fraction of the inputs.

The following results of [G4] show the power of our upper bounds in Theorems 1, 3 and 6,
proving that almost all Boolean function has very high communication complexity:

Theorem 7. [G4] Let f be a uniformly chosen random member of set

{fIf : {-1,1}" - {-1,1}}.

Then the probability, that for some A k—equipartition of X = {z;,23,...,Zn}, there exists
a k—party protocol, which computes f with communication of at most || — 4logn bits,
is less than

2_2“(‘)

The communication complexity remains high even if we compute f on most of the inputs:

Theorem 8. [G4] Let f be a uniformly chosen random member of set

{flf : {_l’l}n —* {_1’1}}'

Then the probability, that for some A k—equipartition of X = {z;,z3,...,2n}, there exists
a k—party protocol, which correctly computes f on a fraction of at least -;— + ¢ of inputs,
with communication of at most | %] — 4log 2 bits, is less than

2_20(“)

The proofs of Theorems 7 and 8 need a thoughtful analysis of the underlying structure of
cylinder intersections, and have been appeared in [G4]. ]

Comparing Theorems 1, 3 with Theorem 7, and Theorem 6 with Theorem 8, we have got
that for almost all Boolean function f:

~ f has exponential L;—norm,

- If f is approximated by a real function g with error less than 1/5, then the L; norm of
g is exponential in n,

— the Fourier—coefficients of f are “evenly distributed”: they cannot be divided into two
sets, one with subexponential L; norm, the other with a small L, norm.

In some fields of complexity theory, the degree of the polynomial, which approximates,
or represents a Boolean function f, has been proved to be a good characterization of the
hardness of f (e.g. [NS], [Sm]). In the multi-party communication theory, as we show in
this work, instead of the degree, the L; norm can be an important measure of complexity.
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3. THE PROOF OF THEOREM 1.
The following lemma is a generalization of a lemma of Bruck and Smolensky [BS].

Lemma9. LetU C {—1,1}" such that |U| > (1— 135)2". Let g : {—1,1}" — R. Suppose
that for all z € U, £ < |g(z)| < £ is satisfied. Then there exists polynomial Go(z) with

integer coeflicients and with L; norm

L1(Go) < 400nL(g)

such that
sgn(Go(z)) = sgn(g(2))
forallz € U.
Proof. The Fourier—expansion of g:
g(z) = Z e X*
ae{o,1}»

where a4 for a € {0,1}" are the Fourier—coeflicients of g. Then by definition

Lig)= Y laal.

a€{0,1}"

and

Ly(g) =<g,9>=2" Y @)= ) d,

ze{-1,1} ac{0,1}®
using the Parseval-identity.
Since |g(z)| > £ for z € U, and |U| > (1 — #5)2",

1

Lo(9) 2 (1 - 755)

E
25°
Our next step is giving a lower bound to the L; norm of g.
Case I. Suppose that there exists an a: |aq| > 3. If sgn(X*) = sgn(g(z)) for all z € U, then
we are done, Go(z) = X suffices. Otherwise, for some z € U, sgn(X*) # sgn(g(z)).

Then the other terms of g must compensate X<, so the sum of the absolute values of
their coefficients should be greater than . So

L 13

4
> = ¢
Ll(g) —_ 5 + Iaal —_— 10

Case II. If all |aq| < 3, then

N =

1\16
—_— ) —< 2 <
(1 100) 25 = > @3 ) lal

ae{0,1}= ae{0,1}*
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SO

(1—1%)§S Z laa| = Li(g).

ac{0,1}"

Consequently, either we have found a suitable Go(z), or we have concluded that

1 )32>1_27.
25 — 100

3) Li9) 2 (1 - 155

Let us define random monomials Z; as follows:

|aq |

Li(g)

Let G(z) random polynomial be the sum of N = |400nL2(g)| monomials Z;:

Z; = sgn(aqa)X* with probability

N
G(z) =) _Z.

=1

Computing the expectation of Z;:

() = Ms a a i(_:f)_
BEE) = 3 gt = {0

where we used the fact that sgn(v)|v| = v.
The expectation of G(z)

Ng(=)
L1(9) .

(4) E(G(=)) =

The variance of Z;:

ar( Z:(z)) = 2\ _ 2 _:_92("’).
Var(Zi(z) = B(Z}) ~ B*(Z) =1~ [z

The variance of G(z):

(Gl = N1 L)
Var(G(z)) N(l Li(g))'

Since |g(z)| < ¢, and because of (3):

2 2
gz(:c) < (120) < i,
Li(g) 127 10
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SO

N
oS Var(G(z)) <N

or

() \/g < D(G(z)) < VN,

where D(G(z)) = 1/Var(G(z)), the standard deviation of G(z).

From (4), the sign of E(G(z)) is the same as the sign of g(z). Consequently,
Pr(sga(G(=)) # sgn(9(2)) =Px(sgn(G(=)) # sen(E(G(2))) <

< Pr(jo(e) - B(G(e)| > L)) <Pe(j00e) - BN 2 57.75))

From the Bernstein—inequality (see [Rel] or [Re2]), (or from the Central Limit Theorem),
with D = D(G(z)), we have got:

(6) Pr(|G(z) — E(G(z))| = pD) < 2exp (— 2(1—:‘_2%?),

D
where 0 < u < 3.

For p = 34/n, N = |400nL2(g)| we got that the probability in (6) is less than e~™. On
the other hand,

4N
D< ,
s 5L1(9)

SO

Pr(sgn(G(2)) # sga(g(z)) <™.

Consequently,
Pr(3z € U : sgn(G(a)) # sgn(g(=)) <
< ) Pr(sgn(G(z)) # sen(g(=))) < [Ule™ < 2"e™™ <1,
ze€U

and since this probability is less than one, there exists a polynomial Gy(z) for which
sgn(Go(z)) = sgn(g(z)) for all ¢ € U. The coefficients of this Gy are integers, and its
L;—norm is at most N.

Proof of Theorem 1. Function g satisfies the requirements of Lemma 9, for U =
{—1,1}". Then there exists a polynomial G(z) with integer coefficients and an L; norm
of at most 400nL3, such that

sgn(g(z)) = sgn(Go(z))
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for all z € {—1,1}"™. Since sgn(g(z)) = f(z), we have got that sgn(Go(z)) = f(z), for
all z € {-1,1}". And, by the following Theorem 10, Go¢(z) has the needed symmetric
k-party communication complexity. [

Theorem 10. Let N
G(z) =)z,
=1

where Z; = X or Z; = —X*, for some o € {0,1}", and for z € {—1,1}". Then the
symmetric k—party communication complexity of G is

o (k2 log(nN) [ngz ] ) .

Proof. Let Gi(z) be the sum of Z;’s with positive sign, and let G2(z) be the sum of
(—Z;)’s, where Z; has a negative sign. So:

G(z) = Gi(z) — G2(z),

and G; has N; terms, G2 has N, terms, N; + N, = N.

Let us observe that G;(z) is the sum of N; terms of form

X“:ﬁzf“= H z;

=1 ta;=1

for j =1,2.
Clearly,
X = {—1, if |{i:2; =—1,0; =1} is odd

1 otherwise

For j = 1,2 let b; the number (counting the possible multiplicity) of those terms X* in
G;(z) for which |{z : z; = —1,a; = 1}| is odd . Then G;(z) = (N; — b;) — b; = N; — 2b;,

SO:

(2) G(:B) =G1(z) —Gz(z) =N1 —N2+2b2 -—2b1.
Let us denote
e =-1
= 0, fz;=1
then n
X% = -1 < Ey,-a,- =1 mod 2.

=1

Let us form a matrix M) with N; rows and n columns, for j = 1,2. Each row is

corresponded to a term X® in G;(z), and the i** entry of that row is y;a;.
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Obviously, the number of those rows of M) which have odd sum is equal to b;.

Suppose now that we are given polynomial G(z), players Py, P,..., P, and a k-partition
A = (Ay,A,,...,Ay) of the set {z;,22,...,2,}. We assume that player P, knows function
G(z), partition A, functions G1(z), G2(z), and the values of all variables, except those in
Ay, for £=1,2,...,k. Then the players, without any communication can compute privately
matrices M) and M(®, and exactly those entries of these matrices will be not known for
player P, which were corresponded to variables in class A;. The set of these entries will be
called By, for £=1,2,...,k. The following lemma shows a protocol by which the players
can first compute b, and then b;, and consequently, G(z), by equation (2).

Lemma 11. Let M € {0,1}™**, M = {m;;}, and let B = {B1, Ba, ..., Bx} a partition of
the set {m;; : 1 < i <m,1 < j < n}, such that player P; knows every m;; except those in
By, for £ =1,2,...,k. Then there exists a k—party protocol which computes the number of
the rows with odd sum in M with communicating

o{ruer)

Proof. First, the players compute a matrix Q € {0,1}™** from M, with no communica-
tion: for each row of M a row of Q is corresponded; the first element of row 7 of Q is the
mod 2 sum of those entries of the j** row of M which are the elements of B; at the same
time. Analogously, the i** element of row j of Q is the mod 2 sum of those entries of the
j"‘ row of M which are the elements of B; at the same time.

Clearly, the number of rows with odd sum in M and in Q is the same. Moreover, player

P, knows every column of matrix @, except column £, for £ = 1,2,..., k.

bits.

With an additional assumption Lemma 12 gives a protocol with O(k? log m) communica-
tion:

Lemma 12. Let 8 € {0,1}*. Suppose it is known to each player that 8 does not occur
as a row of Q. Then there exists a k—party protocol which computes the number of the
odd rows with a communication of O(k*logm) bits.

Proof. Without restricting the generality we may suppose that 3 is the all-1 vector of
length k.

Let ODD(7172..-v¢) and EVEN(v172...7¢) denote the number of those rows of Q
which have odd (respectively, even) sums, and they begin with v;17;...7¢, £ < k, v; € {0,1}.
For example, P, do not know the first column of Q, but he can communicate ODD(0) +
EVEN(1) if P, counts those rows which has odd sum in its second through kth position.
Similarly P, can communicate ODD(10)+EV EN(11) if he counts those rows which begins
with 1, and the sum of their first, 3rd, 4th,...,kth elements is odd.

This observation motivates the following protocol:

PROTOCOL ODDCOUNT
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The goal: to compute b, the number of rows with odd sum in Q. Number b will be the
sum of values u; announced by player P;, i =1,2,...,k.

P, announces u; = ODD(0) + EVEN(1).
remark: b =u; + ODD(1) — EVEN(1).

P, announces u; = ODD(10) + EVEN(11) — EVEN(10) — ODD(11).
remark: b = u; + u; —2EVEN(11) + 20DD(11)

P; announces us = 20DD(110) + 2EVEN(111) — 2EVEN(110) — 20DD(111).
remark: b =u; + up + us —4EVEN(111) 4+ 30DD(111)

P; announces u; = 2:"20DD(11...10) + 2¢-2EVEN(11...11) — 2¢"2EVEN(11...10) —
2-20DD(11...11)

i times i times
remark: b= 3., u; — 2°"'EVEN(11..1) + (2~ ~1)ODD(11...1).

After P; announces u, the players privately add up the %;’s from 7 = 1 through k. Let us
remark that

k k times k times
b= u;—2¢'EVEN(11..1) + (2*' —1)ODD(11...1).

i=1

However, as we assumed at the beginning, there are no all-1 rows in Q, so

k
b=Zu,’

i=1

and we are done. Each u; can be communicated using O(klogm) bits, so the total com-
munication is O(kZlogm). [

Now we return to the proof of Lemma 11. Let us divide the rows of matrix @ into
blocks of 2! — 1 contiguous rows plus a leftover of at most 2*~* — 1 rows. The players
cooperatively determine the number of the odd rows in each block, and then privately add
up the results.

Next we show how to obtain the number of the odd rows for a single block at the cost
of O(k%logm) bits of communication. P; knows all the columns, except the first, so he
knows at most 2¥~! — 1 rows of length k£ — 1 in a block, so he can find an 8' € {0,1}*2,
B' = (B2,Bs,.-.,Pr) which is not a row of the £ — 1 column wide part of the block seen
by P,. Let 8 = (1,82,Bs,---,0%)- Then B does not occur as a row in this block. So if
Py communicates 3, and they play protocol ODDCOUNT of Lemma 12 for a given block.

12



They use k2 log m bits for a block, and, since there are at most [5,,_",'—_1} blocks, the total
2 m
O(k logm|'§-|) :

4. PROOF OF THEOREM 6.

communication is

Lemma 13. Let f be a Boolean function and let h : {~1,1}™ — R such that
Li(f—h)=<f—-h,f—h>LZe.

Then
Pr.(|f(e) - h(e)| > 3) < 25,

where Pr, is the probability measure associated with the uniform distribution over

{-1,1}".
Proof.

¢ 2< f(z) ~ hz), f(z) — h(z) >= Ba(f(z) — h(@))* 2 5zPr. (|f(2) ~ h(z)| > £)-

|
Now we prove Theorem 6. Let U be defined as

U={ee{-1,1)": |f(e) - s(e) < 3 }.

From Lemma 13, |U| > (1 — 25¢)2". f e < 251W then we can apply Lemma 9 for g. The

proof proceeds exactly as in the proof of Theorem 1.
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