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Abstract 

We give a distributed randomized algorithm to edge color a network. Given a graph G 
with n nodes and maximum degree .::l, the algorithm, 

• For any fixed >. > 0, colours G with (1 + >').::l colours in time O(logn) . 

• For any fixed positive integer s, colours G with .::l + (log!:.!:.)' = (1 + o(1».::l colours in 
time O(log n + log28 .::llog log .::l). 

Both results hold with probability arbitrarily elose to 1 as long as .::l(G) = O(log1+d n), 
for some d> O. 

The algorithm is based on the Rödl Nibble, a probabilistic strategy introduced by Vojtech 
Rödl. The analysis involves a certain pseudo-random phenomenon involving sets at the 
vertices of the graph. 

1 Introduction 

The edge coloring problem is a basic problem in graph theory and combinatorial optimization. Its 
importance in distributed computing, and computer science generally, stems from the fact that 
several scheduling and resource allocation problems can be modeled as edge coloring problems 
[7, 9, 12, 14]. In this paper, we give a distributed randomized algorithm that computes a near­
optimal edge coloring in time O(1ogn). By "near-optimal" we mean that the number of colors 
used is (1 + 0(1)).6. where .6. denotes the maximum degree of the network and the 0(1) term can 
be as small as 1/ logs .6., for any s > O. Both performance guarentees - the running time and the 
number of colours used - hold with high prob ability as long as the maximum degree grows at 
least logarithmically with n. Our algorithm can be implemented directly in the PRAM model 
of computation. 

Motivation and Related Work. The edge coloring problem can be used to model certain types 

·Presented at the 15th International Symposium on Mathematical Programming, August 1994, Ann Arbour, 
Michigan, USA 
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of jobshop scheduling, packet routing, and resource allocation problems in a distributed setting. 
For example, the problem of scheduling 1/0 operations in some parallel architectures can be 
modeled as follows [7]. We are given abipartite graph G = (P, 'R, E) where, intuitively, P is a 
set of processes and 'R is a set of resources (say, disks). Each processor needs data from a sub set 
of resources R(p) ~ 'R. The edge set is defined to be E = {(p, r) : r E R(p),p E P}. Due to 
hardware limitations each resource r E 'R can service only one processor at a time. Under this 
constraints it is not hard to see that optimal edge colorings of the bipartite graph correspond 
to optimal schedules that is, schedules minimizing the overall completion time. 

Clearly, if a graph G has maximum degree ß then at least ß colors are needed to edge color 
the graph. A classical theorem of Vizing shows that ß + 1 colors are always sufficient, and 
the proof is actually a polynomial time algorithm to compute such a coloring (see for example 
[4]). Interestingly, given a graph G, it is NP-complete to decide whether it is ß or ß + 1 edge 
colorable [6], even for regular graphs [5]. Efforts at parallelizing Vizing's theorem have failed; the 
best PRAM algorithm known is a randomized algorithm by Karloff & Shmoys that computes an 
edge coloring using very nearly ß +..;x = (1 + o(1))ß colors. The Karloff & Shmoys algorithm 
can be derandomized by using standard derandomization techniques [3, 13]. In the distributed 
setting the previously best known result was a randomized algorithm by Panconesi & Srinivasan 
that uses roughly 1.58ß + 10g2 n colors with high probability and runs in O(log n) time with high 
probability. For the interesting special case of bipartite graphs Lev, Pippinger & Valiant show 
that ß-colorings can be computed in Ne, whereas this is provably impossible in the distributed 
model of computation even if randomness is allowed (see [15]). 

Our solution. To state our results precisely, we reproduce below our main theorem: 

Theorem 1 For any fixed ). > 0, given a graph with n vertices and maximum degee ß, we can 
edge colour the graph with (1 +).)ß colours in time o (log n) where n is the number 01 vertices in 
the graph. For any fixed positive integer s, we can edge colour it with ß+ß/ logS ß = (1+0(1))ß 
colours in time 0 ((log ß )2s log log ß + log n). The results hold with lailure probability decreasing 
to 0 laster than any polynomial (in n) provided that ß = n(log1+d n) lor some d> O. 

Our algorithm is based on the Rödl Nibble, a beautiful probabilistic strategy introduced by 
Vojtech Röd! to solve a certain covering problem in hypergraphs [2, 17]. The method has subse­
quently been used very successfully to solve other combinatorial problems such as asymptotically 
optimal coverings and colorings for hypergraphs [2,8, 16, 18]. In this paper, we introduce it as 
a tool for the design and analysis of randomized algorithms.1 Although the main component of 
our algorithm is the Röd! nibble and the intuition behind it rather compelling, the algorithm re­
quires a non-trivial probabilistic analysis of aso called pseudo-random process. To explain what 
this is, it is perhaps best to give abrief outline of our algorithm. Starting with the input graph 
Go the algorithm generates a sequence Go, GI, ... , Gt of graphs. One can view each edge e as 
possessing a palette of available colors, starting with the whole set of [ß] colours initially. At an 
arbitrary stage, a small € fraction of uncolored edges is selected, and each selected edge chooses 
a tentative color at random from its current palette. If the tentative color is not chosen by any 
neighboring edge it becomes final. Palettes of the remaining uncolored edges are updated in the 
obvious fashion- by deleting colors used by neighboring edges. The process is then repeated. 

Like other proofs based on the same method our proof hinges on two key features of the 
Röd! nibble. The first key idea of the method is that if colors are chosen independently, the 

IThis research was originally prompted by a conversation that the second author had with Noga Alon and 
Joel Spencer, in which they suggested that the nibble approach should work. Noga Alon has recently informed 
us that he is already in possession of a solution with similar performance [1]. However, at the time of writing, a 
written manuscript was not available for comparison. 
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probability of color conftict is roughly €2, a negligible fraction of all edges attempting coloring at 
this stage. If the same "efficiency" is maintained throughout, the overall "wastage" will be very 
small. The second aspect of the Rödl nibble is a deeper mathematical phenomenon called quasi­
randomness or pseudo-randomness (see [2]). In our context, pseudo-randomness means that the 
palettes of available colors at the edges at any stage are "essentially" truly independent random 
subsets of the original full palette. The crux of the analysis is to show that despite the potential 
of a complicated interaction regulated by the topology of the underlying graph, the "nibbling" 
feature of the coloring process ensures that the palettes are evolving almost independently of 
each other. In all applications of the nibble method, it is the pseudo-random aspect which is 
mathematically challenging and which usually requires a quite laborious probabilistic analysis. 

2 Preliminaries 

A message-passing distributed network is an undirected graph G = (V, E) where vertices (or 
nodes) correspond to processors and edges to bi-directional communication links. Each processor 
has its unique 10. The network is synchronous, i.e., computation takes place in a sequence of 
rounds; in each round, each processor reads messages sent to it by its neighbors in the graph, 
does any amount of local computation, and sends messages back to all of its neighbors. The 
time complexity of a distributed algorithm, or protocol, is given by the number of rounds needed 
to compute a given function. If one wants to translate an algorithm for this model into one for 
the PRAM then computation locally done by each processor must be charged for. 

An edge coloring of a graph G is an assignment of colors to edges such that incident edges 
always have different colors. The edge coloring problem is to find an edge coloring with the aim 
of minimizing the number of colors used. Given that determining an optimal (minimal) coloring 
is an NP-hard problem this requirement is usually relaxed to consider approximate, hopefully 
even near-optimal, colorings. The edge coloring problem in a distributed setting is formulated 
as follows: a distributed network G wants to compute an edge coloring of its own topology. As 
remarked in the introduction such a coloring might be useful in the context of scheduling and 
resource allocation. 

The set {I, 2, ... , n} will be denoted by [n]. Given a graph G and a set of edges F, G[F] 
denotes the subgraph of G whose edge set is F. 

In the paper we will use the following approximations repeatedly: (1 - l/n)n ~ e-l, and 
e( ~ 1 + € or e( ~ 1 + € + €2/2, for small values of €. Whenever such an approximation is in 
effect, we will use the sign ~ in place of the equality sign. 

We will make use of a slight modification of a well-known vertex coloring algorithm by Luby 
[11]. Luby's algorithm computes a (~+ 1)-vertex coloring of a graph in expected time O(1ogn), 
where n is the number of vertices of a graph of maximum degree~. The running time of the 
algorithm is O(logn) with high probability [10, 11]. When applied to the line graph of G the 
algorithm computes a (2~ - l)-edge coloring. In the original algorithm each vertex is initially 
given a palette of ~ + 1 colors; it can be easily verified that the algorithm still works in the 
same fashion if each vertex u is given a palette of deg( u) + 1 colors instead, where deg( u) is the 
degree of u. This modification is introduced for explanatory purposes. 

3 The Algorithm 

The algorithm is in two phases. The first phase is an application of the Rödl nibble and has 
the goal of coloring most of the edges using a palette of ~ colors. By the end of this phase we 
will be left with a graph whose maximum degree is at most K~ with high prob ability. In the 
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second phase the modified Luby's algorithm is used to color theremaining graph with at most 
2Kß fresh calors. As we shall see in section 4.1, the number of iterations needed to bring the 
degree down from ß to Kß is O(log(1/K)/K2). Hence, in order to get a (1 + )')ß, where). > 0 
is any fixed constant, the first phase takes constant time. To get a (1 + o(l»ß coloring takes 
O((logß)2sloglogß) time, where the 0(1) term is l/(logß)S, for any s > O. This holds with 
high prob ability. The exact probability of success will be determined in the section devoted to 
the analysis. We note here that an assumption on the maximum degree of the graph is needed, 
namely ß( G) = Q(1og n) (n denotes the number of vertices of G). Phase 2 takes O(log n) time, 
with high probability. 

The basic idea underlying the first phase of the algorithm is for each vertex to select a small 
"nibble" of edges incident upon it and assign tentative colors to them independently at random. 
Most of these edges are expected to avoid confiicts with other edges vying for coloring, and 
get successfully colored at this stage. This is because the nibble keeps the "efficiency" of the 
coloring elose to 1 at each stage. 

To describe the algorithm more precisely, we introduce some definitions that will also be used 
later in the analysis. At any stage k ~ 1, we have a graph Gk(V, Ek)' lnitially, Go(V, Eo) := 
G(V, E), the input graph. By ßk we denote the maximum degree of the graph Gk (note ßo = 
ß(G) initially). Each vertex has a palette of available colors, Ar with Aö = [ß) initially.2 The 
set of edges successfully colored at stage k is denoted by Gk. Then, Gk+1 := Gk[E - Gk) is the 
graph passed on to the next stage. In the algorithm., t( €, K.) denotes the number of stages needed 
to bring the maximum degree of the graph from ß to K.ß with high prob ability, and has value 

r 
In(l/K.) 1 

t(€,K.)= €(1-€)e-4f K.2 • 

The algorithm is moreprecisely described as follows 

Phase 1. RODL NIBBLE 

For k = 1,2, ... , t( €, K.) stages repeat the following: 

• Each vertex 'U randomly selects an € fraction of the edges incident on itself, and inde­
pendently at random assigns them a tentative color from its palette Ar of currently 
available colors. H an edge e = {'U, v} is selected by both its endpoints, it is simply 
dropped and not considered for coloring at this stage. 

• Let e = {'U, v} be a selected edge, and c( e) its tentative color. Color c( e) becomes 
the final color of e unless one of the following two conflict types arises: i) some edge 
incident on e is given the same tentative color, or ii) c( e) f/. Ar n At, i.e., the tentative 
color given to e is not available at the other endpoint of e. 

• The graph is updated by setting 

Ak+1 = Ak - {c: e incident on 'U, c( e) = c is the final color of e} 

and Gk+1 = Gk[Ek - Ck), where Ck is the set of edges which got a final color at stage 
k. 

Phase 2. Color Gt(f,lI:) with fresh new colors by using the modified Luby's algorithm.. 

2This assumption is not strictly necessary hut it simplifies the analysis. It is sufficient to assume that Aö = 
[max"'E6(u) deg(w)]. 
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4 Analysis 

4.1 Intuitive Outline 

Intuitively, the palettes Ai: are morEM>r-less random subsets of the base set [.6.]. Let us assume 
they are indeed truly random subsets of [.6.], so let us also assume that the palettes of each 
vertex is a uniformly and independently chosen random subset of [.6.] of the same size .6.k at 
stage k ~ O. Then, at stage k, the size of the common palette between any two vertices is .6.t!.6.. 
So the prob ability that a colour chosen by avertex as a tentative colour for an incident edge is 
also valid at the other end-point is .6.kj.6.. Hence, the prob ability that an edge is successfully 
coloured at stage k is at least, roughly, €~ and we have the following recurrence for the vertex 
degree, 

.6.k .6.k 
.6.k+1 ::; (1 - €Lr ).6.k ::; exp( -€Lr ).6.k 

This recurrence implies that given a fixed 0 < A < 1, the vertex degree drops to A.6. within a 
constant number of stages, or that for any positive integer s > 0, the degree drops to .6.j(log .6.)8 
in a poly-Iogarithmic (in .6.) number of stages. This yields the required time complexity analysis 
for the algorithm. 

Unfortunately, neither of the two assumptions above are in fact valid. First, because the 
graph G can have a very complex, irregular topology, it is not true that vertex degrees and 
palettes are uniform, at the outset, and they are even less likely to remain so at subsequent 
stages. In addition, the palettes are not truly independent random subsets either, as they can 
interact over the stages in a potentially complicated fashion governed by the topology of the 
graph. However, we show in § 4.3 below, that despite the possibility of a complex interaction in 
the graph, the "nibbling" feature of the colouring process leads to an essentially local interaction 
ofthe palettes. So, while the palettes are not quite truly random subsets, they behave essentially 
as such, specifically, with regardto the relative size and composition of the common palettes 
and the palettes themselves. The crucial feature of the interaction is that the palettes of two 
neighbouring vertices are positively correlated, that is, the probability of a colour being present 
in one palette conditional on its presence in the other palette is no less than the unconditional 
probability. Given this one simple, but crucial feature of the interaction of the palettes, we show 
in § 4.2 below, that the decay law is essentially as given above, however, we do not require to 
make any assumptions of uniformity in the graph. 

4.2 Decay Rates with High Probability 

Given vertices u, v of the graph at stage k ~ 0, G k, and a colour c E [.6.], denote 

p~,c := Pr[c E Ai:] 

and 

qlU,v),c := Pr[c E Ai: I cE Ak] 

Now, we compute Pr[c E Ai:+1 I c E Ai:] for a vertex u E Gk+1' Assuming each vertex picks 
a €-fract~on "nibble" of neighbouring edges to which it assigns a tentative colour uniformly at 
random from its current palette, we have, 

Pr[c (j Ai:+1 I c E Ai:] L: Pr[ck( u, w) := c] 
(u,w)EEk 
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(1) 

where we introduce a := €(1 - €)e-4e , and denote the event that an edge (u, w) is assigned a 
colour c at stage k by "Ck( u, w) := c". We used the fact that Pr[c E Ar I C E Ak] = qiw,u),e in the 
second line. We also used the fact that the probability of a colour conflict at each endpoint of an 
edge is independently, very nearly e-2e • We prove below in § 4.3 that if the nibble is sufficiently 
smalI, 

• At every stage k 2: 0, for each cE [Ll], for every two vertices u, v, 

u,e < (u,v),e 
Pk - qk (2) 

That is, the events "c E Ak" and "c E Ar" are positively correlated for every two vertices 
u, v~ Hence 

qiw,u),e / Llr 2: p,/:,e / Llr (3) 

i,From symmetry, or the inductive proof in § 4.3, we also have that 

• At any stage k 2: 0, for any vertex u E Vk and any two colours c, c' E Ag, 

Llu , 
P

u,e _ ----1s.. _ pu,e 
k - LlU - k 

o 
(4) 

Using equations 3 and 4 in equation 1, we get 

.:l" (note Ll = maxuevo Ll~ and also use Pk = 3t.) Hence we have the recurrence 
o 

Llu Llu 
Pu,e < (1- a~pu,e)pu,e < exp(_a~pu,e)pu,e 

k+l - Ll k k - Ll k k (5) 

Given the above recurrence we can now determine the number of iterations needed to bring 
the degree down form Ll to ~Ll. For a vertex u E Vo such that Ll~/ Ll ~ ~, we get the recurrence, 

u,e < ( u,e) u,e 
Pk+l - exp -a~Pk . Pk 

Hence, for all such vertices u E Vk and for each colour c E [Ll~], we have 
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where TJ is den.ned via the recurrence 

TJo .- 1, 
TJk+1 • - e -OlltTJIc TJk. 

Now, to get p~'c ~ K, it suffices to take TJk < K. For the latter, in turn, it suffices to take 
k > ~log(~). For equation 2 to hold, we will see in the analysis below in § 4.3 that the 
nibble must be taken sufficiently small. Taking € < 1/8 at least, a = a(€) ~ 1~€' so we need 
k > 7!~2ln(1/ K). These computations give us the expected number of stages by which the 
maximum degree is at most Kt::... We now argue that by stage k the maximum degree is around 
its expectation with high prob ability. In § 4.3, we will show that 

• For any vertex u E Vk, and any colours e E A~, 

Pr[e E A~ I Cf E A~, e" E A~,···] = Pr[e E A~] 

for any other set of coloUIs c', e", .. '. 

that is, the events "e E A~", "cl E A~", ... are independent. Rence, by an application of the 
Chernoff-Hoeffding bound, it follows that if we pick a k as above, then for any vertex u E Gk 

ß" 
such that T > K, and any C > 0, we have that, 

Of course, for the remaining vertices, namely those vertices u, for which ~ ~ K, this 
continues to hold for each stage k ~ 0 with prob ability 1! 

Hence, for any vertex, the degree drops to below Kt::.. with at least the prob ability stated 
above. The prob ability that all vertex degrees drop to below Kt::.. is then at least 1 - n . 
exp( - 8; Kt::..) We have proved: 

Theorem 2 For any fixed ). > 0, given a graph with n vertiees and maximum degee b.., we can 
edge colour the graph with (1+)')t::.. eolours in time O(logn) where n is the number of vertices in 
the graph. For any fixed positive integers, we can edge colour it with t::..+t::../logS t::.. = (1+0(1))t::.. 
colours in time 0 ((log t::.. )2s log log t::.. + log n). The results hold with failure probability decreasing 
to 0 faster than any polynomial (in n) provided that t::.. = !l(logl+d n) for some d > O. 

RE MARK 1: One can improve the above prob ability estimate somewhat by using the Lovasz 
Local Lemma, [2]. However ·this does not allow us to remove the restriction that t::.. grows with 
n as stated. 

REMARK 2: It is unlikely that one can improve theaoove analysis to get a colouring better 
than the t::..+t::../(log t::..Y bound above, while still retaining a poly-Iogarithmic running time (in n 
and t::..). One can show that for a wide dass of non-decreasing functions, namely those functions 
g, that satisfy the condition that g(n)/g(n + 1) is nondecreasing, the least k := k(n) such that 
TJk ~ 1/ g( n), is bounded below by the condition k( n) = !l(g( n)). So, if the shrinking of a vertex 
degree is governed by an equation of the form TJk+1 := e-a"TJIc TJk the number of iterations needed 
to bring the degree down to t::.. / g( t::..) is k( t::..) = !l(g( t::..)). 

7 



4.3 Pseudo-randomness in Nibbling 

In this sub-section, we will prove the claims used in the analysis of the previous sub-section. 
For simplicity of the analysis, we will assume here that .6.0 = .6. for all vertices u, initially 3 

We will prove that the palettes at the vertices, while not quite truly random subsets of [.6.] as 
assumed in § 4.1, are nevertheless pseudo-random in the precise sense specified by the following 
properties which we prove by induction on the stage k ~ 0: 

1. (U niformity of Colours): For any vertex u E Vk, and any colours c, c' E [.6.], 

2. (Independence of Colours): For any u E Vk and any set of distinct colours c, c', c", ... E 

[.6.], 
Pr[c E Ai: I c' E Ai:,c" E Ai:,···] = Pr[c E Ai:]. 

3. (Independence of Colours) For any two vertices u, w E Vk, and any set of distinct 
colours c, c', c",··· E [.6.], 

Pr[c E Ai: I c' E Ak',c" E Ak',···] = Pr[c E Ai:]. 

4. (Positive Correlation of Palettes): For any two vertices u, v in the same connected 
component of Gk and any colour c E [.6.], 

(u,v),c > U,c 
qk - Pk . 

The first two properties assert that a specific palette, by itself, is indeed a truly random 
subset of [.6.]: the colours in it are uniformly and independently distributed. The third property 
asserts that this is also true for different colours in different palettes. All of these are intuitively 
plausible and in fact follow by reasons of symmetry, since the algorithm does not distinguish 
between colours, and also treats them independently of each other. Nonetheless, we will give a 
brief inductive verification of these statements at the end. 

However, the key claim of this sub-section, and indeed of the whole analysis, is the fourth, 
namely that while the palettes of two different vertices are not necessarily independent, they are 
positively correlated for vertices in the same connected component, in that the probability of a 
colour being present in a given palette conditioned on its presence in a different palette is no 
less than the unconditional prob ability (when vertices are not in the same connected component 
we do not care). It is in this sense that the palettes are pseudo-random and not truly random 
as assumed in § 4.1. It is this claim that we set about to verify first. 

The inductive assumption clearly holds for k = 0 where each p~,c and each q~U,v),c is 1. Then 
we assume simultaneously all the statements of the inductive hypothesis for some k ~ 0 and 
prove the corresponding statements for k + 1. 

Let u, v be two vertices in the same connected component of G k+1. So, there exists a shortest 
path in Gk+l (hence also in Gk), 

u = XO,XI,·· ·,XI = v 

for some 1 ~ 1 and some distinct vertices Xo, •.• , x /. Note that since this is a shortest path, if in 
fact (u,v) E EHI, then 1 = 1 and Xl = v. 

3This assumption is strictly not necessa.ry for the claims in this section but it simplifies the exposition. 
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We start with some computations that give recurrences for the ps and qs. First, for any 
colour c E [.1.], 

P~~l .- Pr[c E Ai:+1] 
= Pr[c E Ai:+1 leE Ai:]Pr[c E Ai:] 

(1 - Pr[c {j. Ai:+l leE Ai:])Pr[c E Ai:] 

= (1 - Pr[c (j. Ai:+l leE Ak])P~'C (6) 

We will derive a similar recurrence for qlU.,v),c. First observe that if Pr[D I A AC], Pr[D I 
C], Pr[ B I A A C] are sufficiently small:4 

Pr[AAB I CAD]:::::: Pr[A I C](l+(Pr[D I C]-Pr[D I AACD-Pr[B I AAC]+Pr[BAD I AAC]). 

To see this, 

Pr[ABICD] 

Hence, with 

= 
Pr[ABCD] 

Pr[CD] 

= 
Pr[C]Pr[AIC]Pr[BDIAC] 

Pr[C]Pr[DIC] 

= Pr[AIC] 1- Pr[B V DIAC] 
1- Pr[DIC] 

:::::: Pr[AIC](l + Pr[DIC] - Pr[[B V DIAC]) 

= Pr[AIC](l + Pr[DIC] - Pr[[DIAC] - Pr(BIAC] + Pr[BDIAC]). 

we get for vertices u, '17, colour c and stage k ?: 0, 

(u.,v),C", (u.,v),C(l + 8) 
qk+1 '" qk 

where 

(7) 

8 = Pr[c {j. Ak+1 leE Ak] - Pr[c {j. Ak+1 leE Ai:, cE Ak] - Pr[c {j. Ai:+l leE Ai:, cE Ak] 
+Pr[c {j. Ai:+1' C {j. Ak+1 leE Ai:, cE Ak] (8) 

z.From equations (6), (7) and (8), we see that using the induction hypothesis that qlU.,v),c ?: P~'c, 
it suffices to prove that (1 + 8) ?: 1 - Pr[c {j. Ai:+l leE Ai:]. For this, it suffices to prove 

Pr[c {j. Ak+1 leE Ak] ?: Pr[c {j. Ak+1 leE Ai:, cE Ak] 

and, symmetrically, 

olIn the next sequence of equations leading upto equation (8), we use ~:; :::::: 1 - (z - y), which holds for 
sufficiently small z and y. Whenever this approximation is in effect, we use ::::::j this is consistent with our 
conventions in the preliminaries. 
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Pr[c ~ Ak+1 I cE Ak] ~ Pr[c ~ Ak+1 I cE Ak,c E Ak] 

(the term Pr[c ~ Ak+1' c ~ Ak+1 I cE Ak, cE Ak] is ignored). Reealling that 

Pr[c ~ Ak+1 I cE Ak] = L Pr[ck(u,W):= c I cE Ak], 
wE6(u) 

it suffiees to prove: 

Lemma 1 For any two vertices u, v connected by a shortest path 

U = Xo, XI, ... , Xl = v 

for avertex w :/: Xl, 

Pr[ck(U,W):= c I cE Ak] ~ Pr[ck(u,W):= cl cE Ak,c E Ak], 

and symmetrically, for avertex w :/: Xl-b 

Pr[ck(v,W):= c I cE Ak] ~ Pr[ck(v,W):= cl cE Ak,c E Ak]. 

PROOF. We sketch the proof of the statement for u, that for v being symmetrical. If c ~ A~, 
then the statement holds as both sides are o. So suppose c E A~. Denote the event that the 
edge (u, w) is assigned a tentative eolour c at stage k by tk ( u, w) := c. Beeause each vertex 
chooses a eolour uniformly and independently at random from its palette, we have 

1 1 
Pr[tk(u,W):= c I cE Ak] = €(1- €)(ßu + ßW) = Pr[tk(u,W):= c I cE Ak,Ak]· 

k k 

Henee the only possible change oeeurs in the prob ability of eolour eonftiet at u and w. Now, 
suppose 

u =: yo,yI,·· ·,YI:= W 

is a shortest path in Gk. For each Yi,Yi+1,i ~ 0, we have, by the induetive hypothesis that 
Pr[ c E A~'+l I At'] ~ Pr[ c E A~i+l]. Moreover this is the only manner in which the effeet of 
eonditioning at u ean propagate to w. Henee Pr[c E A~I-l I cE Ak, Ak] ~ Pr[c E Arl

-
1 I c E Ak] 

which ean only increases the eonfiiet at w. Henee the eonclusion of the lemma. 

Finally, we give an induetive verifieation of the claim of the independenee of different eolours 
in palettes. In essenee the reason is that each ver tex treats different eolours independently of 
each other, and that if two different vertices use two different eolours, this interaetion has no 
dependeney either. 

Lemma 2 Let A, B, C, D be events such that 

1. Band D are conditionally independent of A 1\ C, that is, 

Pr[B 1\ DIA 1\ C] = Pr[B I A 1\ C] . Pr[D I A 1\ C] 

2. B is conditionally independent of C and D of A, that is 

Pr[B I A 1\ C] = Pr[B I A],and Pr[D I A 1\ C] = Pr[D I C]. 
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Then 
Pr[A 1\ B I C 1\ D] = Pr[A I C] . Pr[B I A]. 

PaOOF. We have 

Pr[A 1\ B I C 1\ D] = P [A I C]. Pr[B 1\ DIA 1\ C] 
r Pr[D I C] 

= P [A I C]. Pr[B I AI\C] ·Pr[D I AI\C] . (1) 
r Pr[D I C] , usmg 

P [A I C] . Pr[B I A] . Pr[D I C] . (2) 
r Pr[D I C] , usmg 

= Pr[A I C] . Pr[B I A]. 

For a vertex u, colours c, c' E [Ll] and a stage k ~ 0, let 

Since a vertex chooses a tentative colour for a selected edge independently of the colours chosen 
at other edges, and using the inductive hypothesis of independence of different colours in different 
palettes, it can be verified by straightforward computations that the conditions of the lemma 
are satisfied. Applying the lemma and using the inductive hypothesis (in the second line) we 
have 

Pr[c E Ai:+1 I c' E Ai:+1] Pr[c E Ai: I c' E Ai:] . Pr[c E Ai:+1 I c E Ai:] 
Pr[c E Ai:] . Pr[c E Ai:+1 I c E Ai:] 

= Pr[c E Ai:+1]. 
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