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Abstract

A generalized greedy approximation algorithm for finding the light-
est base of a weighted k-polymatroid and its applications to the Steiner
tree problem is presented.

1 Introduction

We consider k-polymatroids which appear from matroids in the following
way. Let M = (X, r) be a matroid with a rank function r. Given a family P
of closed subsets of X, called coalitions, define the rank function f : 2P - N

such that
fW)y=r(U »)

PEW

Let every element of P has rank at most k, then (P, f) is k-polymaroid. The
set U{p|p € W} will be denoted W*



This is the well-known definition [5]. Now our goal is to assign weights
to elements of k-polymatroid (P, f) in the same way as for elements of the
underlying matroid (M,r) and to compare these weights. So further we
assume, that X C P.

Definition. A weighted k—polymatroid Mp = (P, f,d), is defined to be
a k—polymatroid (P, f) with a weight function d : 2F — R*, such that '

d U »p= > dp),

PEW) pEW)

for any W C P.

Let W be a subset of a weihgted polymatroid (P, f,d). We define the
span of W to be the largest subset of P which includes W and has the
same rank as W. We say that W is spanning if it spans the whole set
P, that is, if f(W) = f(P) = r(X), since we put X C P. We deal with a
problem of finding a minimum weighted spanning set (i.e. base) of a weighted
k—polymatroid (WPP). The weight of the WPP solution will be denoted
by w(Mp). If k = 1, then WPP requires the lightest base of a matroid.
The unweighted variant of this problem includes the famous Matroid Parity
Problem which requires a maximum set of coalitions W C P such that W*
is independent, where P consists of all elements of a given partition of X
into subsets of cardinality two. Since MPP is NP-hard (see [4]), WPP is
also NP-hard even for £ = 2. But the unweighted problem has an exact
polynomial solution if the matroid M is linear [5]. For k = 3, the unweighted
problem is NP-hard even for linear underlying matroids [3]. So approximation
algorithms for this problem may be investigated.

Since X C P, we may consider greedy algorithm for underlying weighted
matroid M (GAM) as an approximation algorithm for WPP. Let w(M) de-
note the weight of the resulted spanning set. It is known that it is the best
solution if P = X.

In this paper, we present an approximation algorithm for WPP which
generelizes and improves GAM by consideration of coalitions with rank more
than one (Section 1). Then an approximation bound of this algorithm is
considered in Section 2. The last section is devoted to applications of this
algorithm to the Steiner Tree Problem.



2 Algorithm

Let M = (X,r,d) be the weighted underlying matroid for Mp, to contract
an element {e} means to reduce’its weight to zero. We use M[e] = (X, r,d')
to denote the resulting weighted matroid. For any coalition p, define the
matroid M[p] to be the result of contraction of all elements of p.

Our algorithm goes as follows:

-Algorithm.
(1) F — M;W <0
(2) repeat forever

(a) find p € P which maximizes

win = w(F) - w(F[s) - d(z)

(b) if win < 0, then exit repeat

(c) F < Flp; W « WU {p}
(3) Find B, a minimum base of F, using GAM

- B*«~ BUW

In other words, Algorithm chooses a coalition, which can decrease the
weight of base produced by GAM by the value of win. Then the best coalition
is contracted and Algorithm is ready to look for the next such coalition. Note,
that the choice of a coalition is greedy, i.e. every time it looks for the greatest
win. So we can consider this Algorithm as generalized greedy algorithm.

3 The approximation bound

The following theorem compares approximations given by the usual greedy
algorithm and generalized one and shows that the latter is better.

Theorem 1. Let Mp be a weighted k-polymatroid, M be its underlying
matroid and B* be a base resulted by Algorithm. Then

nd(B*) < w(Mp) + (n — Dw(M)
where n is the maximum cardinality of a coalition in W.

Proof. Let F' = (P, f,d) be a a weighted k-polymatroid matroid and F
" be its underlying weighted matroid. For a subset A C X, we define F[A]
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recursively: F[0] = F, and F[AU e] = F[A][e]. (For brevity, we denote a
singleton {z} as z.) _

Let B = {by,...,b.} be a "greedy” order of a minimum base of F, i.e.,
d(b,) S d(b,'+1) foralli = 1', ceey P — 1. Put Bo = 0, B,' = {bl, ...,b,'}, E = F[B,]
fori=1,...,r.

Let e € X and b be an element of the maximum index such that eU B —

by € I. The index k will be denoted by ind(e). It is obvious, that the set
e U Byi_; can be chosen by the greedy algorithm by the first k steps. Since
the unique cycle in eU B belongs to eU By, the closure of eU By_; coincides
with the closure of Bj. Thus, e U B — by = {e, b1, ..., bg—1, bk 41, ..., b, } is the
greedy order of a minimum base of Fle]. _

For a set A C X, define sp(A) = w(F) — w(F[A]). Further we will often
use the following obvious equality

sr(aUb) = sr(a) + sr(q)(b). (1)

Lemma 1. The function sp has the following properties:
(i) For any e € X, srp(e) = d(bina(e));
(1) For any two elements a,b € X,

srp)(a) = sp(a) if ind(a) # ind(d),

srp)(a) < sr(a) if ind(a) = ind(b).

Proof. The first two equalities are obvious. Assume that ind(a) =
ind(b) = k. The closure of Bj contains a and coincides with the closure of
bU By_1. Therefore spp)(a) < d(be—1) < d(br) = sr(a). []

For a set of coalitions Z C P, we define

wing(Z) = sp(2) — d(Z) = w(F) — w(F[Z]) — d(2).

Lemma 2. For any A,BC X and Z C P,

3F[B](A) < sp(A),winp(Z) < winF[B](Z).

Proof. It follows directly from Lemma 1 (ii).[]



Lemma 3. Let Z be a nonempty set of coalitions. Then for every element
e, there exists z € Z such that

wing(Z — z) > winpy)(Z — z). (2)

Proof. We claim that Lemma 2 holds if e € Z*. Indeed, there exists a
coalition z € Z such that e € 2. Then the inequality (2) follows from Lemma
2. So we may assume that e ¢ Z*.

We will prove the existence of z € Z such that the value

winp(Z — z) — winpp)(Z — z) = sp(Z2” — 2) — sp(2° — 2) =
w(Fle]) —w(FleU Z* — 2]) — w(F(z]) + w(F[Z" — 2]) =
sp(eU Z* —z)-—sF(e)—sF(Z*—z)+sF(z) (3)

1s nonnegative.
It follows from Lemma 2 that value (3) equa.ls

$Fyy (e uz* - ‘z) — 8P, (e) ~ SFp (Z* - z) + P, (Z), (4)
where k = min{ind(a)la € Z* U e} .

Let Y = {y € Z* Uelind(y) = k}. Lemma 1 and the equality (1) 1mply
that for any nonempty subsets Y’ CY and A C X,

3Fk(Y’) = O,SF,‘(A U Y') = SFk(A),
SFr1 (Y’) = SFy1 (y) + 3Fk-1[y](Y’ - y) = d(bk)'

Now we can rewrite (4) as follows:
[st—1(Y —z)— $Fyy (e ny)- SFr (Y - (z Ue)) + $Fy (z n Y)]

+sr(eU Z" —z) — sp,(€) — sr.(Z27 — 2) + s, () ()
We claim that (5) is nonnegative if e € Y. Indeed, in this case (5) equals

S$Fi (z n Y) - 8Fk—1(Y - (z U e)) + s8R, (z)

Y NZ =90, then sp,_ (Y — (2Ue)) = 0. Otherwise, we can choose z such
that zNY # 0 and sp,_,(2NY) = d(be) = sk, _, (Y — (22U €)).
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We now turn to the case e ¢ Y. Then the expression in square brackets
(see (5)) equals sp,_,(2NY) > 0 and therefore (3) is no less than

sp(eU 2" — 2) — s (e) — sk, (2" — 2) + sr,(2).

Similarly, we may contract bei1,bk42,..., bind(e) Without increasing the
value of (3). Let F' = Fin4(.). As mentioned above,

sp(eUZ" — 2) — spi(e) — sp(Z" — 2) + sp(z) 2 0.[]

Let z,...,zn be a sequence of coalitions. We say that this sequence is
greedy in F if it satisfies the following conditions:
(1) if winp(z) < 0 for every z € P, then m = 0,
otherwise,win(z;) > win(z) for every coalition z;
(2) the sequence zg, ..., zn, is greedy in F[z].

Lemma 4. If H is the set of elements of a greedy sequence of coalitions
and n is the maximum cardinality of elements of H, then for every set of
coalitions Z, .

nwinp(H) > wing(Z). (6)

Proof. We shall prove (6) by induction on #H. If H = 0, then
winp(Z) < 0. Indeed, in this case for every coalition z, winp(z) < 0 and
winp(Z — z) = wing(Z) — wing(2).

In the inductive step, let A be the first element of a greedy sequence. The
cardinality of A, say m, is at most n. By Lemma 2, there exists a subset ¥
of Z with at most m elements, such that '

winpp)(Z2) > winpy)(Z —Y) = winp(Z) — winpiz_y)(Y) >

wing(Z) — winp(Y) > wing(Z) — nwing(h).

The last inequality follows from trivially if Y is empty or a singleton set. If
Y = {y1,92,---;Ym}, then, by Lemma 2,

winp(Y) = winp(y,) + winpy(y2) + ... + WInFY —yu)(Ym) <

wing(y1) + winp(y — 2) + ... + winp(ym) = mwing(h) < nwing(h).
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Note that H — h is the set of elements of a greedy sequence in F[k]. By
inductive hypothesis and inequality winpp)(Z) > wing(Z) — nwing(k), we
conclude

nwinp(H) = nwinpp(H — k) + nwinp(h) >

winpp)(Z) + nwinp(h) > winp(Z).[] Lemmas

Theorem follows from Lemma 3 and the next two equalities:
maz{win(Z)|Z C P} = w(M) — w(M),

winy(W) = w(M) — d(B*).

Since W is the greedy sequence of coalitions (see Algorithm), the last
equality holds.]]

If Algorithm was applied to a k-polymatroid, then the weight of the re-
sulted base is denoted by gam; and we may put gam; = w(M). Denote the
weight of the minimum base of K-polymatroid by opts.

Corollary 1. kgam; < opti + (k — 1)gam;

4 Steiner Tree Problem

At first, we formulate the Steiner Tree Problem (SP). Given a distance graph
G = (V,E,d) and a set S of distinguished vertices, SP requires the short-
est tree within G which spans S. We denote this minimum Steiner tree by
SMT(S).

To show the connection between WPP and SP let consider a complete
graph G' = (S, E',d') in which the length of every edge equals to the weight
of the shortest path between its ends in G. This graph is the underlying
matroid. The subsets of vertices correspond to the closed sets of the family
P. The Steiner length of a set of vertices A € S is defined to be the length of
the shortest tree within G which spans A. Thus, SP requires the minimum
length base of this weighted polymatroid. '

Note, that this formulation gives nothing, since we cannot find the Steiner
length of large sets. So we restrict our attention to small Steiner trees and
introduce some additional notations.

SMT(S) may in general contain vertices of V\S. So SMT(S) contains
the set S of given vertices and and some additional vertices. The Steiner
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tree is called a full Steiner tree if all given vertices are the leaves of SMT(S).
If SMT(S) is not full, then we can split it into the union of edge-disjoint full
Steiner components. SMT(S) is called k—restricted if the size of full Steiner
components is at most k. We may consider the problem of finding the shortest
k—restricted Steiner tree for the set S, i.e., component-size bounded Steiner
Problem (SPk). For example, the 2-restricted Steiner tree coinsides with the
minimum length spanning tree of the graph G'.

Thus, we have an important example of a weighted k—polymatroid (cor-
responding to the graph G’) with the Steiner length as a weight function.
Note, that the rank of k-subset of S equals to ¥ — 1. Theorem 1 has the
obvious following

Corollary 2 [1]. Let sp. be the length of the exact solution of SPk.
Then '

kgamy < spry1 + (kK — 1)gam,

Let sp denotes the length of SMT(S). Note, that gam; = sp,, since GAM
finds the exact minimum base of a weighted matroid. It was proved that
spz/sp < 2 [4] and sps/sp < 5/3 [6].

Corollary 3 [6]. The approximation bound for Algorithm applied to
SP3 equals to
gamy/sp < 11/6

If the graph G arises from the rectilinear metrics (Rectilinear Steiner
Problem), then denote the length of SMT(S) by rsp. The correspondig con-
stants are [2,7] :

gamy [rsp < 3/2
rsps/rsp < 5/4
gamg/rsp < 11/8
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