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Abstract

We describe a general approach of determining the distribution of spanning subgraphs in the
random graph G(n, p). In particular, we determine the distribution of spanning subgraphs of
certain given degree sequences, which is a generalisation of the d-factors, of spanning triangle-
free subgraphs, of (directed) Hamilton cycles and of spanning subgraphs that are isomorphic
to a collection of vertex disjoint (directed) triangles.

1 Introduction

The distributions of subgraphs with fixed sizes in various random graph models have been investi-
gated by many authors. A general approach by Ruciński [6, 7] showed that the numbers of subgraphs
with fixed sizes in the binomial model G(n, p) are asymptotically normal for a large range of p. On
the other hand, studies of distributions of subgraphs of sizes growing with n, for example, the span-
ning subgraphs, are much less common. The first breakthrough is perhaps due to Robinson and
Wormald [8, 9] on proving that random regular graphs are a.a.s. Hamiltonian. Based on their work,
Janson [3] deduced the limiting distribution of the number of Hamilton cycles in random regular
graphs. The distributions of some types of spanning subgraphs (perfect matchings, Hamilton cycles,
spanning trees) in random graphs G(n, p) and G(n,m) were determined by Janson [4]. These distri-
butions behave significantly differently in G(n,m) and G(n, p). It was shown that within a big range
of m, the numbers of these spanning subgraphs are asymptotically normally distributed in G(n,m),
whereas in the corresponding G(n, p) with p = m/

(
n
2

)
, these random variables are asymptotically

log-normally distributed. This is because the expectations of these variables in G(n,m) grow very
fast as m grows. Therefore, even though the number of edges in G(n, p) has small deviation, the
deviation of these random variables (e.g. the number of perfect matchings) can eventually be very
large. This same phenomena was observed by the author [2] while studying the distribution of the
number of d-factors in G(n, p).

In this paper, we extend and generalise the method in [2] and study additional types of span-
ning subgraphs. In Section 2, we describe the general method (Theorems 1 and 3) and give condi-
tions under which the distribution of the random variable under investigation will follow a pattern
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of concentration in G(n,m) and log-normal distribution in G(n, p), which we call the log-normal
paradigm in this paper. The method is also extended to cope with probability spaces of random
directed graphs (See Theorem 4). In Section 3, we study the distribution of certain types of span-
ning subgraphs (including spanning subgraphs with certain degree sequences, triangle-free spanning
subgraphs, undirected and directed Hamilton cycles, and spanning subgraphs isomorphic to a col-
lection of vertex disjoint triangles). Their distributions are determined by verifying the conditions
given in the theorems in Section 2. Note also that the method used by Janson in [4] is graph
decomposition and projection whereas the approach used in [2] and in this paper proceeds via com-
binatorial counting, making extensive use of the switching method developed by McKay [5]. The
proof of Theorem 1 is implicit in the proofs of [2, Theorem 2.3 and 2.4], which we abstract and
generalise to a general approach for proving concentration in G(n,m) and log-normal distribution
in G(n, p). The proof of Theorem 3 is essentially the same as the proof of [4, Theorem 6] with slight
adaptation and generalisation. Both proofs of Theorems 1 and 3 are presented in Section 4. The
specific problem on the number of Hamilton cycles has been studied in the past by a few authors.
The first investigation was done by Wright for the directed Hamilton cycles in [11] and then the
undirected Hamilton cycles in [10]. Even though both proofs in [11] and [10] are based on a similar
counting trick, the analysis for the undirected version is much more complicated. The proof for the
directed Hamilton cycles was redone by Frieze and Suen [1], probably unaware of the existing work
of Wrignt, using basically the same approach. In [4], Janson reproved the same result for both the
undirected and directed versions, using the method of graph decomposition and projection. In this
paper, we present a completely new proof for both the undirected and directed version, which is
indeed much simpler than the previous approaches.

2 A general approach

Let S denote a set of vertex-labelled graphs on a set S = [n] of n vertices. For two graphs H1 and
H2 both on vertex set S, let H1 ∩H2 (H1 ∪ H2) denote the set of edges contained in both (either
of) H1 and H2. For any integer j ≥ 0, let Fj(S ) denote the set of ordered pairs (H1, H2) ∈ S ×S

such that |H1 ∩H2| = j. Let fj = fj(S ) = |Fj(S )| and let rj = fj/fj−1 for any j ≥ 1, as long as
fj−1 6= 0. Let Xn = Xn(S ) denote the number of members of S that are contained in a random
graph (G(n, p) or G(n,m), defined on the same vertex set S) as (spanning) subgraphs. Here S, p
and m refer to sequences (S(n))n≥1, (p(n))n≥1 and (m(n))n≥1. Assume every graph in S has the
same number h(n) = Ω(n) of edges. Let N(n) =

(
n
2

)
. We drop n from all these notations when

there is no confusion. All asymptotics in this paper refer to n → ∞. For any real x and any integer
ℓ ≥ 0, define the ℓ-th falling factorial [x]ℓ to be

∏ℓ−1
i=0(x− i). Let

µn = |S |
(
N − h

m− h

)/(N
m

)
, λn = |S |ph. (2.1)

Clearly,
EG(n,m)Xn = µn, EG(n,p)Xn = λn.

A simplification of µn (readers can also refer to Lemma 19 by taking ℓ = h) gives

EG(n,m)Xn = |S | ·
(
N−h
m−h

)
(
N
m

) = |S | · [m]h
[N ]h

= |S |(m/N)h exp

(
−N −m

mN

h2

2
+O(h3/m2)

)
.(2.2)
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Theorem 1 Let µn be defined as in (2.1). Assume that h3 = o(m2), and for ρ(n) = h2/m and
some function γ(n), the following conditions hold:

(a) for all K > 0 and for all 1 ≤ j ≤ Kρ(n),

rj =
h2

Nj
(1 + o(m/h2));

(b) rj ≤ m/2N for all 4ρ(n) ≤ j ≤ γ(n);

(c) t(n) :=
∑

j>γ(n) fj = o(µn|S |);

(d) µn → ∞, as n → ∞.

Then in G(n,m),

Xn/EG(n,m)(Xn)
p−→ 1,

as n → ∞.

Remark: The ratio rj in condition (a) looks quite restrictive. However, as we will see in the next
section, this ratio appears naturally if the edges in S are distributed randomly (see examples in
Sections 3.1 and 3.2). In some cases, for instance, if we take S to be the set of graphs isomorphic
to a given unlabelled graph on n vertices, the edges in S are likely to still distribute in some kind
of “random-like” way and thus having rj as expressed in condition (a) is expected. If we are lucky,
we might have condition (b) satisfied for γ(n) = h. See the example in Section 3.4. But usually
this is not the case, as the sequence rj might decrease first and increase at its tail. Normally, in
these cases, condition (c) is not difficult to check. See examples in Sections 3.3, 3.5 and 3.6.

Theorem 1 and its proof also gives the following proposition.

Proposition 2 Assume all conditions (a)–(d) of Theorem 1 are satisfied. Then, for all j =
O(h2/m),

fj(n) ∼ |S |2 exp(−h2/N)(h2/N)j/j!.

The following theorem gives conditions under which Xn will be asymptotically log-normally
distributed in G(n, p) if all conditions in Theorem 1 are satisfied by taking m = pN .

Theorem 3 Assume h3 = o(p2n4). Let βn = h
√

(1− p)/pN and λn as defined in (2.1). Assume

further that lim infn→∞ βn > 0. If for all m = pN +O(
√
pN), Xn/EG(n,m)(Xn)

p−→ 1, then

ln(eβ
2
n/2Xn/λn)

βn

d−→ N (0, 1), as n → ∞,

where N (0, 1) is the standard normal normal distribution.
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By Theorems 1 and 3, to show that a random variable has a log-normal distribution in G(n, p),
it is enough to check conditions (a)–(d) in Theorem 1 by taking m = pN . This method is particular
powerful if we can estimate rj without knowing fj . This is the case in most examples established
in Section 3. However, even in the case when rj is obtained by estimating fj first, Theorem 1
provides a guidance of which terms of fj are non-negligible terms in the analysis, and by verifying
the conditions in Theorem 1 we can make proofs very systematic. We will give one such example
in Section 3.5 (the second proof for Theorem 12).

We can generalise the results to random digraphs. Define D(n,m) to be the random digraph
on n vertices with m directed edges chosen uniformly at random from the 2N ordered pairs of
vertices. Define D(n, p) to be the random digraph on n vertices, which includes every directed edge
independently with probability p. In this paper, we again define D(n,m) and D(n, p) on the vertex
set S. With almost the same proofs of Theorems 1 and 3 we have the following theorem.

Theorem 4 The same conclusions of Theorems 1 and 3 hold if we replace G(n,m), G(n, p), N by
D(n,m), D(n, p) and 2N .

3 A few examples

3.1 A trivial example

Take S1 to be the set of all graphs on vertex set S with h edges. Then |S1| =
(
N
h

)
. The conclusion

of Theorem 1 should hold trivially in this case as Xn(S1) is constant (depending only on m and
h). Nevertheless we verify conditions (a) and (b), also for later use in the next section. For all
0 ≤ j ≤ h,

fj =

(
N

j

)(
N − j

h− j

)(
N − h

h− j

)
.

Then for all 1 ≤ j ≤ h,

rj =
(N − j + 1)(h− j + 1)2

j(N − h)(N − 2h + j)
=

h2

jN
(1 +O(j/h+ h/n2)).

This verifies conditions (a) and (b) (for γ(n) = h). With |S1| =
(
N
h

)
, we can easily check that

condition (d) is satisfied.

3.2 Another trivial example

Let 0 < p̂ < 1. Consider the set of graphs S2 that is obtained by including each element in S1

independently with probability p̂. Then we have the following.

Theorem 5 Assume 0 < p̂ ≤ 1, 0 < p < 1 are reals and h = Ω(n) is an integer that satisfy
m = p

(
n
2

)
, h3 = o(m2), m2p̂2Nh >> h3h+4 lnn. Let µn and λn be defined as in (2.1) and let

βn = h
√

(1− p)/pN . Then a.a.s. Xn(S2)/µn
p−→ 1 in G(n,m), and

ln(eβ
2
n/2Xn(S2)/λn)

βn

d−→ N (0, 1), in G(n, p),

provided lim infn→∞ βn > 0.
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Proof. By the definition of S2, we have s2 = |S2| ∼ B(
(
N
h

)
, p̂) and fj ∼ B(Mj , p̂

2), where

Mj =
(
N
j

)(
N−j
h−j

)(
N−h
h−j

)
. The Chernoff bound gives that

P(|fj − p̂2Mj | > 2
√
3 lnnp̂2Mj) < exp(−3 lnn) = n−3,

and

P

(
s2 >

(
N

h

)
p̂/2

)
= 1− o(1).

Therefore, with probability at least 1− hn−3 − o(1) = 1− o(1), for all 0 ≤ j ≤ h,

fj =

(
1 +O

(√
lnn/p̂2Mj

))
Mj .

Note that for all j, Mj > [n]h/(h!)
3 > (N/h3)h and p̂ satisfies

p̂2 >>
h4+3h lnn

m2Nh
.

Thus, a.a.s. for all 0 ≤ j ≤ h,
fj =

(
1 + o(m/h2)

)
Mj.

By the calculations in Section 3.1, a.a.s. both conditions (a) and (b) (for γ(n) = h) are satisfied
and a.a.s.

E(Xn(S2)) ≥ E(X(S1))p̂/2 ∼ p̂/2√
2πh

(em
h

exp(−h/2m)
)h

>>
h2
√
lnn

m

(
em
√

h/Ne−h/2m
)h

.

Since h = Ω(n) and h3 = o(m2), the above tends to ∞ as n → ∞ and so condition (d) is also
satisfied. The theorem thereby follows.

The following is a corollary of Theorem 5 by letting p̂ = 1/2.

Corollary 6 Assume 0 < p < 1 is a real and h = Ω(n) is an integer that satisfy m = p
(
n
2

)
,

h3 = o(m2), m2Nh >> h3h+4 lnn. Then for almost all subsets S ′
2 of S1, the same conclusions of

Theorem 5 (without “a.a.s.”) hold when S2 is replaced by S ′
2.

3.3 The number of spanning subgraphs with given degree sequences

In this section, we consider a non-trivial example where S is the set of graphs on S with a given
degree sequence.

Let d = (d1, . . . , dn) be a degree sequence and let dmax := max{di, 1 ≤ i ≤ n}. Let S3 denote
the set of graphs on S with degree sequence d. Thus, Xn(S3) counts all spanning subgraphs with
degree sequence d. The sequence d refers to (d(n))n≥1. We again drop n from the notation when
there is no confusion.

A special case when d is constant was studied by the author in [2]. The distribution of the
number of d-factors in G(n, p) was shown to follow the log-normal paradigm. The core part of the
proof in [2] is to estimate rj using the switching method. We will generalise this proof to cope with
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general degree sequences d. Let h =
∑n

i=1 di/2, d̄1 = 2h/n and d̄2 =
∑n

i=1 d
2
i /n. Let Mi = d̄in for

i = 1, 2.
Assume d4max = o(h). The following estimate of |S3| was first obtained by McKay [5].

|S3| =
M1!

(M1/2)!2M1/2
∏n

i=1 di!
exp

(
−M2 −M1

2M1

− (M2 −M1)
2

4M2
1

+O(d4max/h)

)
. (3.1)

The main theorem is as follows.

Theorem 7 Let 0 < p < 1 be a real and 0 < m < N an integer and d a degree sequence satisfying
m = pN , d3max = o(p2n), h3 = o(m2) and d4max = o(h). Assume further that d̄2 = d̄21(1 + o(m/h2)).
Let Xn,d denote the number of spanning subgraphs with degree sequence d. Let µn,d and λn,d be

defined as µn and λn in (2.1). Let βn = h
√

(1− p)/pN . Then Xn,d/µn,d
p−→ 1 in G(n,m), and

ln(eβ
2
n/2Xn,d/λn,d)

βn

d−→ N (0, 1), in G(n, p),

provided lim infn→∞ βn > 0.

Remark: The condition d̄2 = d̄21(1 + o(m/h2)) is rather restrictive. The degree sequences are re-
stricted to those that are very concentrated around their average. So the graphs under consideration
are “almost-regular”. The condition d4max = o(h) is probably not needed as we only need a lower
bound of |S3| to verify Theorem 1 (d). However, to avoid complication, we include d4max = o(h) in
the assumptions.

The following theorem, proved in [2], is a direct corollary of Theorem 7.

Theorem 8 Let 0 < p < 1 be a real and 0 < m < N and d > 0 be integers satisfying m = pN ,
d3 = o(p2n). Let Xn,d denote the number of d-factors in a random graph (G(n,m) or G(n, p)). Let

µn,d = EG(n,m)Xn,d, λn,d = EG(n,p)Xn,d and let βn = d
√

(1− p)/2p. Then Xn,d/µn,d
p−→ 1 in G(n,m),

and
ln(eβ

2
n/2Xn,d/λn,d)

βn

d−→ N (0, 1), in G(n, p),

provided lim infn→∞ βn > 0.

Proof of Theorem 7. We generalise the proof in [2] and adapt it to our case of general d. Recall
that Fj(S3) denotes the set of ordered pairs of graphs (G1, G2) ∈ S3×S3 such that |G1∩G2| = j.
The following two switchings operating on elements of S3 × S3 were first defined in [2].

s1-switching: Take an edge x ∈ G1 ∩ G2. Label the end vertices of x as u2 and u′
2. Then take

an edge y ∈ G1 \ G2 and label the end vertices of y as u1 and u′
1. Then take an edge z ∈ G2 \ G1

and label its end vertices as u3 and u′
3. An s-switching replaces x and y by {u1, u2} and {u′

1, u
′
2} in

G1 and replaces x and z by {u2, u3} and {u′
2, u

′
3} in G2. An s-switching is applicable on the chosen

triple {x, y, z} with the given labeling, if and only if

(i) x and y are not adjacent and x and z are not adjacent;

(ii) all of {u1, u2}, {u′
1, u

′
2}, {u2, u3}, {u′

2, u
′
3} are not in G1 ∪G2.
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inverse s1-switching: Choose a pair of 2-paths (u1, u2, u3) and (u′
1, u

′
2, u

′
3) such that

{u1, u2}, {u′
1, u

′
2} ∈ G1 \ G2 and {u2, u3}, {u′

2, u
′
3} ∈ G2 \ G1. The inverse s-switching replaces

{u1, u2} and {u′
1, u

′
2} by {u1, u

′
1} and {u2, u

′
2} in G1 and replaces {u2, u3} and {u′

2, u
′
3} by {u2, u

′
2}

and {u3, u
′
3} in G2. The s-switching is applicable on the chosen pair of paths only if

(i’) all vertices u1, u2, u3, u
′
1, u

′
2, u

′
3 are distinct;

(ii’) none of {u1, u
′
1}, {u2, u

′
2} and {u3, u

′
3} are contained in G1 ∪G2.

Figure 1 gives an example of the s-switching and its inverse, where the solid lines denote edges
in G1 and the dashed lines denote edges in G2.

Figure 1: s-switching and its inverse

For any j ≥ 1 and g ∈ Fj(S3), an s1-switching converts g into an element in Fj−1(S3). For
every g, let N(g) denote the number of s1-switchings applicable on g. There are j ways to choose
x and for each chosen x there are two ways to label its end vertices. For any chosen x, the
number of ways to choose y (or z) is h − j + O(d2max), where the error term j + O(d2max) counts
all edges in G1 ∩ G2 and all choices of y such that x and y are adjacent or u1, u2 are adjacent
or u′

1, u
′
2 are adjacent. For each chosen y (or z), there are two ways to label its end vertices. So

N(g) = 8j(h − j + O(d2max))
2. On the other hand, for any g′ ∈ Fj−1(S3), an inverse s-switching

converts g′ into an element in Fj(S3). Let N ′(g′) denote the number of inverse s1-switchings
applicable on g′. Recall that M2 = d̄2n. The number of 2-paths (u1, u2, u3) with {u1, u2} ∈ G1

and {u2, u3} ∈ G2 is M2 + O(jdmax), where O(jdmax) accounts for the miscount caused by edges
in G1 ∩ G2. Hence N ′(g′) = (M2 + O(jdmax))

2 + O(M2d
3
max + jM2dmax), where the error term

O(M2d
3
max) accounts for all miscounts that violate constraints (i’) and (ii’) while the error term

O(jM2dmax) accounts for the case that one of the two paths contains an edge in G1 ∩G2. Clearly,∑
g∈Fj(S3)

N(g) =
∑

g′∈Fj−1(S3)
N ′(g′). Thus,

rj =
M2

2 +O(M2d
3
max + jM2dmax)

8j(h− j +O(d2))2
.

Let α = 7/8. For all 1 ≤ j ≤ αh, the above ratio is

rj =
M2

2

8h2j
(1 +O(d3max/M2 + jdmax/M2 + j/h+ d2max/h)). (3.2)

7



Since d̄2 = d̄21(1+o(m/h2)), M2 = h2/n(1+o(m/h2)). Thus, we have M2
2 /8h

2 = h2/N(1+o(m/h2)).
Now we verify that for all j = O(h2/m), all error terms in (3.2) are bounded by o(m/h2). Note
that

d3max/M2

m/h2
= O(d3maxn/m) = O(d3max/pn) = o(1);

jdmax/M2

m/h2
= O(h2dmaxn/m

2) = o(dmaxn/m
2/3) = o(d/p2/3n1/3) = o(1);

(j + d2max)/h

m/h2
=

(j + d2max)h

m
= O(h3/m2 + d2maxh/m) = O(d2max/m

1/3) + o(1)

= O(d2max/p
1/3n2/3) + o(1) = o(1).

Thus, Theorem 1 (a) is verified. Next we verify that condition (b) holds by taking γ(n) = αh.
By (3.2) and the above calculation we have

rj =
h2

Nj

(
1 + o(m/h2) +O(jdmax/M2 + j/h)

)

=
h2

Nj

(
1 + o(m/h2)

)
+O(dmax/n+ h/N) =

h2

Nj
+ o(m/n2).

Thus, rj ≤ m/2N for all j ≥ 4h2/m. This verifies condition (b) by taking γ(n) = αh. Next, we
verify condition (d). By (3.1) and (2.2),

EG(n,m)(Xn,d) ∼
(2h)!ph

h!2h
∏n

i=1 di!
exp

(
−M2 −M1

2M1

− (M2 −M1)
2

4M2
1

− (1− p)h2

2m

)
.

Since M2 = O(h2/n), we have

exp

(
−M2 −M1

2M1

− (M2 −M1)
2

4M2
1

− (1− p)h2

2m

)
= exp(O(h2/m)).

We also have
n∏

i=1

di! ≤ (dmax!)
2h/dmax .

Hence

lnEG(n,m)(Xn,d) ≥ h ln p+ h ln(2h/e)− 2h

dmax
ln dmax!− O(h2/m)

≥ h

(
ln
(
2hd3/2max/e

√
n
)
− 2 ln dmax!

dmax
+O(h/m)

)
(since d3max = o(p2n))

≥ h
(
ln
(
2hd3/2max/e

√
n
)
− 2 ln dmax +O(h/m)

)
.

Since h = Ω(n), we further have 2hd
3/2
max/e

√
n = O(

√
n) and so

lnEG(n,m)(Xn,d) ≥ h

(
1

2
lnn− 1

2
ln dmax + O(1)

)
→ ∞, (3.3)
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which verifies condition (d). Lastly, we verify condition (c). Let G be a graph in S3, and let κj(G)
denote the number of graphs in S3 that share at least j edges with G. We estimate a uniform
upper bound of κj(G) for all G.

There are
(
h
j

)
ways to choose h − j edges from G. Removing these h − j edges generates a

deficiency degree sequence d′, where d′i = di − ai, where ai is the number of edges incident with G
that are removed. Hence

∑n
i=1 d

′
i = 2(h− j) and for any G,

κj(G) ≤
(
h

j

)
max

{
g(d′) : d′ with

n∑

i=1

d′i = 2(h− j)

}
,

where g(d′) denotes the number of graphs with degree sequence d′. By (3.1), g(d′) < M !/2M/2(M/2)! <
(M/2)M/2, where M = 2(h− j). Therefore,

∑

j≥γ(n)

fj =
∑

G

κ(1−α)h(G) ≤ |S3|
(

h

(1− α)h

)
(hα)hα. (3.4)

Recall that α = 1/8. By (3.3), (3.4) and the assumption dmax = o(n1/3), it is straightforward to
check that ∑

j≥γ(n)

fj = o(|S3|µn),

which completes the proof of the theorem.

3.4 triangle-free subgraphs

In this section, we consider another example where S4 is the set of all triangle-free graphs on S
with h edges. Then Xn(S4) counts the number of triangle-free subgraphs with h edges.

Theorem 9 Let 0 < p < 1 be a real and 0 < m < N an integer satisfying m = pN , h3 = o(m2) (or
equivalently h3 = o(p2n4)) and h4 = o(pn5). Let Xn denote the number of triangle-free subgraphs

with h edges. Let µn and λn be defined as in (2.1) and let βn = h
√
(1− p)/pN . Then Xn/µn

p−→ 1
in G(n,m), and

ln(eβ
2
n/2Xn/λn)

βn

d−→ N (0, 1), in G(n, p),

provided lim infn→∞ βn > 0.

Proof. Recall that Fj(S4) = {(G1, G2) ∈ S4×S4 : |G1∩G2| = j}. Consider j ≥ 1 and the classes
Fj(S4) and Fj−1(S4). Let Kn denote the complete graph on S. We define two other switchings
operating on S4 × S4 as follows.

s2-switching: Let x be an edge in G1 ∩G2. Choose y and z from Kn \G1 ∪G2, such that G1 ∪ y
and G2 ∪ z are triangle-free. Replace x by y in G1 and replace x by z in G2.

inverse s2-switching: Let x be an edge inKn\G1∪G2 such that G1∪x andG2∪x are triangle-free.
Let y ∈ G1 \G2 and z ∈ G2 \G1. Replace y by x in G1 and replace z by x in G2.

Clearly, an s2-switching converts an element g ∈ Fj(S4) to an element g′ ∈ Fj−1(S4) and an
inverse s2-switching converts an element g′ ∈ Fj−1(S4) to an element g ∈ Fj(S4) for some j ≥ 1.

9



For any g ∈ Fj(S4), let N(g) denote the number of s-switchings that are applicable on g. There
are j ways to choose x. Given x, the number of ways to choose y and z is N − O(h + T1(g))
and N − O(h + T2(g)) respectively, where Ti(g) denotes the number of 2-paths in Gi. Let T (g) =
max{T1(g), T2(g)}. So N(g) = j(N −O(h+ T (g)))2. We have the following claim.

Claim 10 T (g) = O(h2/n).

Then N(g) = jN2(1 + O(h2/n3)). For any g′ ∈ Fj−1(S4), let N
′(g′) denote the number of inverse

s′2-switchings applicable on g′. Then N ′(g′) = (N − O((2h − j + 1) + T (g′)))(h − j + 1)2 =
Nh2(1 +O(h2/n3 + j/h)). Since

∑
g∈Fj(S4)

N(g) =
∑

g′∈Fj−1(S4)
N ′(g′), we have that for all j ≥ 1,

rj =
Nh2

jN2
(1 +O(h2/n3 + j/h)) =

h2

jN
(1 + o(m/h2) +O(j/h)). (3.5)

Note that O(h2/n3) = o(m/h2) because h4 = o(pn5). Next we verify conditions (a) and (b) of
Theorem 1. For all j = O(h2/m), j/h = O(h/m) = o(m/h2) since h3 = o(m2). Thus

rj =
Nh2

jN2
(1 +O(h2/n3 + j/h)),

which verifies condition (a). By (3.5), for all j ≥ 3h2/m,

rj =
h2

jN
(1 + o(1)) +O(h/N) ≤ m

2N
,

which verifies condition (b) (for γ(n) = h). Next, we verify condition (d). Obviously S4 is larger
than the set of bipartite graphs with h edges and with vertex-bipartition ([n/2], S − [n/2]). The

latter has size
(
n2/4
h

)
. Thus

EG(n,m)Xn(S4) ≥
(
n2/4

h

)
ph exp

(
−(1− p)h2

2m
+ o(1)

)

=
(n2p/4)h

h!
exp(−2h2/n2 +O(h3/n4)− (1− p)h2/2m+ o(1))

∼ 1√
2πh

(
en2p

4h

)h

exp(−2h2/n2 − (1− p)h2/2m)

≥ 1√
2πh

(emp

4h
exp(−3h/m)

)h
(as n2 > m),

where the second equality holds because [n2/4]h = (n2/4)h exp(−2h2/n2 +O(h3/n4)) and the third
asymptotics holds because h3 = o(n4) as h3 = o(m2) by the assumption. Since h3 = o(m2),
exp(−3h/m) → 1. Since h = Ω(n), we have m >> n3/2. We also have p = m/N = Θ(m/n2). Thus,

mp

h
= Θ

(
m2

n2h

)
>>

m4/3

n2
>> 1.

This implies that
EG(n,m)Xn(S4) → ∞, as n → ∞.
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It only remains to prove Claim 10.

Proof of Claim 10. It is sufficient to prove that for any graph G with h edges and n vertices,
the number of 2-paths it contains is bounded by O(h2/n). Let d = (d1, . . . , dn) denote the degree
sequence of G. Then G contains exactly

∑n
i=1 di(di − 1)/2 =

∑n
i=1 d

2
i /2− h 2-paths. On the other

hand, by the Cauchy-Schwarz inequality,

n∑

i=1

d2i ≥
(
∑n

i=1 di)
2

n
=

4h2

n
,

which completes the proof of the claim.

3.5 Hamilton cycles

The most interesting examples of S are perhaps taking S as the set of graphs that are isomorphic
to a given unlabelled graph H on a set of n vertices. However, counting fj(S ) or estimating rj is
normally difficult. In this and the next sections, we consider two such examples. In Section 3.3 we
have shown that the number of 2-factors follows the log-normal paradigm. In what follows, we pick
two extreme cases from the set of 2-regular graphs on n vertices, as candidates for H . One is the
longest possible cycle, the cycle with length n, whereas the other is a collection of shortest possible
cycles, i.e. the union of vertex disjoint triangles.

In this section we consider H (H ′) to be a cycle (directed cycle) with length n and S5 (S
′
5) to be

the set of graphs (directed graphs) on S that are isomorphic to H (H ′). Thus, Xn(S5) and Xn(S
′
5)

count the numbers of undirected and directed Hamilton cycles respectively. It is well known that

|S5| = (n− 1)!/2, and |S ′
5| = (n− 1)!. (3.6)

We have the following theorem for the undirected version.

Theorem 11 Let 0 < p < 1 be a real and 0 < m < N an integer satisfying m = pN and p >>
n−1/2. Let Xn denote the number of Hamilton cycles in G(n,m) (or G(n, p)). Let µn = EG(n,m)Xn

and let λn = EG(n,p)Xn. Then Xn/µn
p−→ 1 in G(n,m). Assume further that lim supn→∞ p(n) < 1,

then
ln(eβ

2
n/2Xn/λn)

βn

d−→ N (0, 1), in G(n, p),

where βn =
√

2(1− p)/p.

Using almost the same proof as in Theorem 11, we immediately obtain the following paralelling
theorem.

Theorem 12 If all assumptions with N , G(n, p) and G(n,m) replaced by 2N , D(n, p) and D(n,m)
in Theorem 11 hold, then the same conclusion of Theorem 11 holds (for βn =

√
(1− p)/p by the

definition of βn in Theorem 3).

The second moment of the number of directed Hamilton cycles was originally estimated by
Wright [11], which was later redone by Frieze and Suen [1] using basically the same approach.
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However, extending the proof to the undirected version, done in [10], is not trivial. Indeed, the proof
for the undirected version uses much more complicated counting and analysis. In this paper, we give
a completely new and much simpler proof for the undirected Hamilton cycles (Theorem 11), using
again the switching method. The same proof, with only slight modification of the switchings that
cope with directed edges, works for the directed version (Theorem 12). However, for the directed
version, we present a second proof instead, following the recursive functions obtained in [11, 1]. We
will verify the conditions in Theorem 1 by analysing these recursive functions, which is eventually
equivalent to the analysis in [11, 1]. We do so as this is an example to show that with the guidance
of Theorem 1, the analysis can become cleaner and more systematic.

We first prove Theorem 11 by defining another two switchings.

Proof of Theorem 11. We define another two switchings as follows.
h-switching: Choose an edge xy ∈ G1 ∩G2. Then choose edges x1y1 ∈ G1 \G2, x2y2 ∈ G2 \G1 such
that xyx1y1 and xyx2y2 are in a cyclic order in G1 and G2 respectively. Replace xy and x1y1 by
xx1 and yy1 in G1, and replace xy and x2y2 by xx2 and yy2 in G2. The h-switching is applicable if
and only if

(a) the six vertices x, y, xi and yi for i = 1, 2 are all distinct;

(b) the edges xx1 and yy1 are not in G2 and the edges xx2 and yy2 are not in G1.

inverse h-switching: Choose a pair of vertices {x, y} such that xy /∈ G1∪G2. For i = 1, 2, choose xi

and yi such that xxi ∈ Gi and yyi ∈ Gi and xxiyyi is in a cyclic order in Gi. The inverse h-switching
replaces xxi and yyi by xy and xiyi in Gi for i = 1, 2. The operation is applicable if and only if

(a’) the six vertices x, y, xi and yi for i = 1, 2 are all distinct;

(b’) the edges xxi and yyi are not in G1 ∩G2 for i = 1, 2;

(c’) x1y1 /∈ G2 and x2y2 /∈ G1.

For g ∈ Fj, let N(g) be the number of h-switchings applicable on g. There are 2j ways to choose
and label the end vertices of the edge xy ∈ G1 ∩ G2. For any chosen xy, there are n − j + O(1)
ways to choose and label the end vertices of the edge xiyi ∈ Gi, where j + O(1) accounts for the
case that xiyi ∈ G1 ∩ G2 and the case that condition (a) is violated. Thus, a rough estimation of
N(g) is 2j(n − j + O(1))2. The only miscounts are those xy and xiyi such that condition (b) is
violated. Clearly, the miscount due to the violation of condition (b) is O(jn) because for any chosen
xy, there are exactly two choices for x1y1 (equivalently x2y2), such that either xx1 or yy1 is in G2

(equivalently, either xx2 or yy2 is in G1). Thus, N(g) = 2jn2(1− j/n+O(n−1))2.
On the other hand, for g′ ∈ Fj−1, let N

′(g′) denote the number of inverse h-switchings applicable
on g′. There are n2 −O(n) ways to choose and label vertices x and y such that xy /∈ G1 ∪G2. For
any chosen xy, there are two ways to choose xi and yi from Gi for i = 1, 2 respectively, such that
xxi, yyi ∈ Gi and xxiyyi is in a cyclic order in Gi. Thus, N

′(g′) is approximately 4(n2−O(n)). The
only miscounts are those choices that violate conditions (a’) or (b’) or (c’). There are only O(n)
choices of xy so that (a’) or (c’) can possibly be violated, and there are only O(jn) choices of xy so
that (b’) can possibly be violated. Therefore, N ′(g′) = 4n2(1 +O(j/n)).

Hence for all 1 ≤ j ≤ n/2,

rj =
4n2

2jn2
(1 +O(j/n)) =

2

j
(1 +O(j/n)),
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from which we can easily verify Theorem 1 (a), (b) (for γ(n) = n/2) and condition (d) is trivially
true. The proof will be completed by verifying condition (c). Let G be a Hamilton cycle, and let
κj(G) denote the number of Hamilton cycles that share at least j edges with G. There are

(
n
j

)
ways

to choose j edges from G. These chosen edges form r ≤ j disjoint paths. Contract each path into
a special vertex. The total number of vertices including these special vertices is then n− j. There
are (n− j − 1)!/2 Hamilton cycles on these vertices. For every such Hamilton cycles, expand each
special vertex by its corresponding path (there are two ways to expand each special vertex). Then
each expanded Hamilton cycle corresponds to a Hamilton cycle that shares at least j edges with G.
Thus, for every G,

κj(G) ≤
(
n

j

)
(n− j − 1)!

2
· 2j < n!2j/j!.

It is then straightforward to verify that

∑

j≥n/2

fj ≤ |S5|n!2j/j! = o(|S5|µn).

A second proof of Theorem 12. For a given directed cycle H of length n, let f ′
j(n) denote the

number of directed Hamilton cycles on the same vertex set, which shares exactly j edges with H .
Then fj = |S ′

5|f ′
j(n) for all j. Thus, rj = f ′

j(n)/f
′
j−1(n). It was proved in [11, 1] that

f ′
0(n) =

n−1∑

k=0

(
n

k

)
(−1)k(n− k − 1)! + (−1)n, for all n ≥ 1; (3.7)

f ′
j(n) =

(
n

j

)
f0(n− j), for all j ≤ n− 1; (3.8)

f ′
n(n) = 1, for all n ≥ 0. (3.9)

We give a short sketch of (3.7)–(3.9). The last equation is trivial. The equation (3.8) is obtained by
contracting paths formed by edges contained in G1 ∩ G2 as described in the proof of Theorem 11.
The nice property for the directed version is that after contracting these paths, the resulting two
Hamilton cycles are edge disjoint, which is not the case for the undirected version. The equation (3.8)
follows by observing that there is a unique way to expand each path to obtain the original directed
Hamilton cycles. The equation (3.7) follows from an inclusion-exclusion argument.

Thus, by (3.7) and (3.8), for all j ≤ n− 1,

rj =

(
n
j

)
f ′
0(n− j)

(
n

j−1

)
f ′
0(n− j + 1)

=
n− j + 1

j
·
∑n−j−1

k=0

(
n−j
k

)
(−1)k(n− j − k − 1)! + (−1)n−j

∑n−j
k=0

(
n−j+1

k

)
(−1)k(n− j − k)! + (−1)n−j+1

=
n− j + 1

j
· (n− j)!

∑n−j−1
k=0 (−1)k/k!(n− j − k) + (−1)n−j

(n− j)!(n− j + 1)
∑n−j

k=0(−1)k/k!(n− j − k + 1) + (−1)n−j+1

=
1

j
·

∑n−j−1
k=0 (−1)k/k!(n− j − k) + (−1)n−j/(n− j)!∑n−j

k=0(−1)k/k!(n− j − k + 1) + (−1)n−j+1/(n− j)!(n− j + 1)
.
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Let

H(n, j) =

n−j−1∑

k=0

(−1)k

k!(n− j − k)
.

Next we estimate H(n, j). First consider j such that j ≤ n− 2 lnn. Let k∗ = max{⌈lnn⌉, ⌈m(n −
j)/n2 lnn⌉}.

H(n, j) =
1 +O(k∗/(n− j))

n− j

k∗∑

k=0

(−1)k

k!
+

n−j−1∑

k=k∗+1

(−1)k

k!(n− j − k)
.

By the choice of k∗, k∗/(n− 1) = o(m/n2). We also have

∞∑

k=k∗+1

(−1)k

k!
= O((k∗!)−1) = O((e/k∗)k

∗

) = O(n−3),

as k∗ ≥ lnn. Thus,

H(n, j) =
1 + o(m/n2)

n− j
(e−1 +O(n−3)) +O(n−3) = (1 + o(m/n2))

e−1

n− j
.

Hence, for all j ≤ n− 2 lnn,

rj =
1

j

H(n, j) + (−1)n−j/(n− j)!

H(n+ 1, j) + (−1)n−j+1/(n− j + 1)!
=

1

j
(1 + o(m/n2)).

This verifies conditions (a) and (b) (by taking γ(n) = n − 2 lnn) of Theorem 1. Condition (c)
follows in an analogous argument as in the proof of Theorem 11 and condition (d) holds trivially.

3.6 Collection of disjoint triangles

In this section, we assume n ≡ 0 (mod 3) and consider H (H ′) to be the unlabelled graph on n
vertices consist of n/3 vertex disjoint triangles (directed triangles). Let S6 (S ′

6) denote the set of
graphs on S that are isomorphic to H (H ′). Then

|S6| =
n!

6n/3(n/3)!
, |S ′

6| =
n!

3n/3(n/3)!
. (3.10)

The following theorem determines the limiting distribution of Xn = Xn(S6).

Theorem 13 Let 0 < p < 1 be a real and 0 < m < N an integer satisfying m = pN and
lim infn→∞ p(n) > 0. Let Xn denote the number of subgraphs that are isomorphic to a set of n/3

vertex disjoint triangles. Let µn = EG(n,m)Xn and let λn = EG(n,p)Xn. Then Xn/µn
p−→ 1 in G(n,m).

Assume further that lim supn→∞ p(n) < 1, then

ln(eβ
2
n/2Xn/λn)

βn

d−→ N (0, 1), in G(n, p),

where βn =
√

2(1− p)/p.
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Remark: Indeed, the condition of lim infn→∞ p(n) > 0 can be replaced by p(n) ≥ n−δ, for some
small constant δ. For instance, we checked that δ = 1/16 works and there is still room for further
improvement. However, p >> n−1/2 does not seem to be sufficient. For the purpose of a cleaner
presentation, we only consider lim infn→∞ p(n) > 0 in the proof. For readers who are interested in
improving the condition of p, we give quite tight bounds in Lemmas 15 and 16, and we also point
out here that there is plenty of room in the proofs of Lemma 18 and Theorem 13 to improve the
range of p.

Almost the same proof of the previous theorem, with slight modifications of the switchings
defined in the proof of Theorem 13, concerning the directions of edges, yields the following corre-
sponding theorem for the directed version.

Theorem 14 If all assumptions with N , G(n, p) and G(n,m) replaced by 2N , D(n, p) and D(n,m)
in Theorem 13hold, then the same conclusion of Theorem 13 holds (for βn =

√
(1− p)/p by the

definition of βn in Theorem 3).

For any (G1, G2) ∈ S6 × S6, the edges in G1 and G2 can intersect in two ways. We say
e ∈ G1 ∩G2 is of type 1 if the triangles Ti ∈ Gi with e ∈ Ti for i = 1, 2 are distinct. We say e is of
type 2 if T1 and T2 are on the same vertex set.

Let Fℓ,t denote the set of (G1, G2) ∈ S6 × S6 such that number of edges in G1 ∩ G2 of type
1 and 2 is ℓ and t respectively. Clearly Fℓ,t is non-empty only if t is a multiple of 3. Clearly

Fj(S6) = ∪kFj−3k,3k. Let fℓ,t = |Fℓ,t|. Then fj =
∑⌊j/3⌋

k=0 fj−3k,3k.

Lemma 15 For any t ≥ 0 and ℓ ≥ 1 such that n− 4ℓ− 3t− 1 > 0 and n− 3ℓ− 3t− 12 > 0,

2

ℓ

(n− 4ℓ− 3t− 1)2

(n− 3ℓ− 3t)2
≤ fℓ,3t

fℓ−1,3t
≤ 2

ℓ

(n− 4ℓ− 3t+ 4)2

(n− 3ℓ− 3t− 12)2
.

Proof. We define two switchings operating on S6 × S6 as shown in Figure 2.
t1-switching: Take an edge of type 1 in G1 ∩ G2 and label the end vertices x and y. Let u (v) be
the vertex that is adjacent to both x and y in G1 (G2). Take a triangle T1 (T2) in G1 (G2) that
is distinct from xyu (xyv) which does not contain any edge in G1 ∩ G2. Label the vertices of T1

(T2) as u1u2u3 (v1v2v3). Replace these four triangles in G1 ∪ G2 by xuu1, yu2u3 ∈ G1 and xvv1,
yv2v3 ∈ G2. The t1-switching is applicable only if v /∈ T1, u /∈ T2 and T1 ∩ T2 = ∅. See Figure 2.

inverse t1-switching: A vertex x is pure if both triangles containing x in G1 and G2 do not contain
any edge in G1 ∩ G2. Choose a pure vertex x and label its neighbours in G1 (G2) as u and u1 (v
and v1). Then choose another pure vertex y that is distinct from x, ui and vi for i = 1, 2. Label the
neighbours of y in G1 (G2) as u2 and u3 (v2 and v3). Replace these four triangles under consideration
by xyu, u1u2u3 ∈ G1 and xyv, v1v2v3 ∈ G2.

For any g = (G1, G2) ∈ Fℓ,3t, let N(g) be the number of t1-switchings that are applicable on g.
Clearly N(g) ≤ 2ℓ(6(n/3 − (ℓ + t)))2, as there are 2 ways to label x and y for a chosen edge from
G1 ∩G2, and in G1 (G2) there are at most n/3− (ℓ+ t) choices for the triangle u1u2u3 (v1v2v3) and
for each choice there are 6 ways to label the vertices. We also have

N(g) ≥ 2ℓ · 6(n/3− (ℓ+ t)− 1) · 6(n/3− (ℓ+ t)− 4),
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Figure 2: t1-switching and its inverse

because for any chosen xy, the number of triangles in G1 which contain no edges in G2 and do not
contain v is at least n/3−(ℓ+t)−1, whereas given the triangle u1u2u3, the number of triangles in G1

which contain no edges in G1 and do not contain any of u, ui, i = 1, 2, 3 is at least n/3− (ℓ+ t)−4.
On the other hand, for any g′ = (G1, G2) ∈ Fℓ−1,3t, let N

′(g′) be the number of inverse t1-switchings
applicable on g′. The number of pure vertices is exactly n − 4(ℓ − 1) − 3t. Hence the number of
ways to choose x is n− 4(ℓ− 1)− 3t and for any chosen x, the number of ways to label u, u1, v, v1
is 4. The number of ways to choose y is n− 4(ℓ− 1)− 3t− δ, where δ counts the number of pure
vertices among x, u, u1, v and v1. Therefore, 1 ≤ δ ≤ 5 always. Hence,

16(n− 4(ℓ− 1)− 3t− 5)2

2ℓ · (6(n/3− (ℓ+ t)))2
≤ fℓ,3t

fℓ−1,3t
≤ 16(n− 4(ℓ− 1)− 3t)2

2ℓ · 36(n/3− (ℓ+ t)− 4)2
.

Lemma 16 For any ℓ ≥ 0 and t ≥ 1,

fℓ,3t
fℓ,3(t−1)

=
32(n− 4ℓ− 3t)3

3(n− 3ℓ− 3t)4
(1 +O(1/(n− 4ℓ− 3t))).

Proof. We define another two switching operations on S6 × S6 as shown in Figure 3.
t2-switching: Let xyz be a triangle that is contained in both G1 and G2. Take two distinct triangles
from G1 (G2) which do not contain any edge in G1 ∩ G2 and label the end vertices as x1y1z1 and
x2y2z2 (x

′
1y

′
1z

′
1 and x′

2y
′
2z

′
2) respectively. Replace the six triangles under consideration by aa1a2 ∈ G1

and aa′1a
′
2 ∈ G2, where a ∈ {x, y, z}. This switching is applicable only if all these fifteen vertices a,

ai, a
′
i for a ∈ {x, y, z} and i = 1, 2 are distinct.

inverse t2-switching: Recall from the definition of inverse t1-switching that a vertex x is pure if
both triangles containing x in G1 and G2 do not contain any edge in G1 ∩ G2. Choose three pure
vertices a, a ∈ {x, y, z} and label the neighbours of a in G1 (G2) by a1 and a2 (a′1 and a′2). The
inverse t2-switching replaces the six triangles under consideration by xyz, xiyizi ∈ G1 for i = 1, 2
and xyz, x′

iy
′
iz

′
i ∈ G2 for i = 1, 2. This switching is applicable only if all these fifteen vertices a, ai,

a′i for a ∈ {x, y, z} and i = 1, 2 are distinct.
For any g ∈ Fℓ,3t and g′ ∈ Fℓ,3t−3, define N(g) and N ′(g′) the same way as in the proof of
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Figure 3: t2-switching and its inverse

Lemma 15. Following an analogous argument of Lemma 15, it is not hard to show that

6t · 62
(
n/3− (ℓ+ t)− 6

2

)2

≤ N(g) ≤ 6t · 62
(
n/3− (ℓ+ t)

2

)2

(4(n− 4(ℓ− 1)− 3t− 10))3 ≤ N ′(g′) ≤ (4(n− 4(ℓ− 1)− 3t))3.

Thus,
32(n− 4ℓ− 3t− 6)3

3(n− 3ℓ− 3t)4
≤ fℓ,3t

fℓ,3(t−1)

≤ 32(n− 4ℓ− 3t+ 4)3

3(n− 3ℓ− 3t− 21)4
.

Corollary 17 For all j = o(n),

fj−3k−3,3k+3

fj−3k,3k
∼ 4[j − 3k − 1]3

3n
.

Proof. This follows by Lemmas 15 and 16 and

fj−3k−3,3k+3

fj−3k,3k
=

fj−3k−3,3k+3

fj−3k−3,3k

2∏

i=0

fj−3k−i−1,3k

fj−3k−i,3k
.

Lemma 18 Assume lim infn→∞ p(n) > 0. Let γ(n) = n/ ln lnn. Then

∑

j≥γ(n)

fj = o(|S6|µn).

Proof. Let G ∈ S6 and let κj(G) be the number of graphs in S6 which shares at least j edges
with G. We estimate an upper bound of κj(G). Let j = ℓ + 3t and we consider the number of
graphs G′ in S6 that shares at least ℓ and 3t edges of type 1 and 2 respectively with G. Then there
are

(
n/3
t

)
ways to choose the t triangles contained both in G and G′. Then there are

(
n/3−t

ℓ

)
3ℓ ways

17



to choose the ℓ triangles in G that contain the ℓ edges of type 1 and to locate these ℓ edges. Given
these ℓ edges in G′, there are at most [n− 3t− 2ℓ]ℓ ways to choose another ℓ vertices to form the ℓ
triangles in G′. Then there are at most

(n− 3t− 3ℓ)!

6n/3−t−ℓ(n/3− t− ℓ)!
≤ 9nn2(n/3−t−ℓ)

ways to partition the remaining n− 3t− 3ℓ vertices into vertex disjoint triangles in G′. Hence

κj(G) ≤
∑

ℓ

(
n/3

t

)(
n/3− t

ℓ

)
3ℓ[n− 3t− 2ℓ]ℓ9

nn2(n/3−t−ℓ) ≤ n ·max
ℓ

{ntn2ℓℓ−ℓ9nn2(n/3−t−ℓ)},

where t = (j − ℓ)/3. Thus,

ln(κj(G)) ≤ max
ℓ

{(2n/3− t) lnn− ℓ ln(ℓ)}+O(n).

We consider only j ≥ γ(n). So the maximum is achieved at ℓ = n1/3. Thus

ln(κj(G)) ≤ 2n

3
lnn− j

3
lnn+O(n),

We also have

lnµn = n ln p+
2n

3
lnn+O(n).

So

ln(κj(G))− lnµn ≤ −j

3
lnn− n ln p+O(n) → −∞,

as n → ∞ since lim infn→∞ p(n) > 0, which completes the proof of the lemma.

Proof of Theorem 13. For any j ≥ 0,

rj =

⌊j/3⌋∑

k=0

fj−3k,3k

/ ⌊(j−1)/3⌋∑

k=0

fj−1−3k,3k. (3.11)

By Corollary 17, for all j = o(n1/3), rj ∼ fj,0/fj−1,0. By Lemma 15, this ratio is asymptotic to
2/j. This verifies Theorem 1 (a). Let γ(n) = n/ ln lnn. Lemma 18 verifies condition (c) whereas
condition (d) is trivially true. The proof is completed by verifying condition (b). Since rj ∼ 2/j
for all j = o(n1/3), we only need to show that for all n1/3/ lnn ≤ j ≤ γ(n), rj ≤ m/2N . It follows
directly from the following two facts.

(a) Let k̂ = min{k : j − 3k ≤ lnn}. By Corollary 17,

⌊j/3⌋∑

k=0

fj−3k,3k ∼
k̂∑

k=0

fj−3k,3k,

⌊(j−1)/3⌋∑

k=0

fj−1−3k,3k ∼
k̂∑

k=0

fj−1−3k,3k.

(b) By Lemma 15, for all 0 ≤ k ≤ k̂, fj−3k,3k/fj−1−3k,3k = o(1).

18



4 Proofs of Theorems 1 and 3

Before approaching Theorems 1 and 3, we first prove a technical lemma.

Lemma 19 Let N =
(
n
2

)
and let p = m(n)/N , where 0 < m(n) < N . Then for any integer

ℓ = ℓ(n) ≥ 0 such that lim supn→∞ ℓ(n)/m(n) < 1,

(
N − ℓ

m− ℓ

)
/

(
N

m

)
= pℓ exp

(
−1 − p

pN

ℓ2 − ℓ

2
+O(ℓ3/m2)

)
.

Moreover, if ℓ = Ω(
√
m), then

(
N − ℓ

m− ℓ

)
/

(
N

m

)
= pℓ exp

(
−1− p

pN

ℓ2

2
+O(ℓ3/m2)

)
.

Proof.

(
N − ℓ

m− ℓ

)
/

(
N

m

)
=

[m]ℓ
[N ]ℓ

=

ℓ−1∏

i=0

m− i

N − i

=
ℓ−1∏

i=0

m

N
exp

(
− i

m
+

i

N
+O(i2/m2)

)
(since lim sup

n→∞
ℓ(n)/m(n) < 1)

= pℓ exp

(
−1 − p

pN

ℓ2 − ℓ

2
+O(ℓ3/m2)

)
.

If we have further that ℓ = Ω(
√
m), then ℓ/pN = O(ℓ3/m2).

Proof of Theorem 1. In this proof, the probability space refers to the random graph G(n,m)
only. Let s = |S |. By (2.1) and (2.2),

EXn = s(m/N)h exp

(
−N −m

mN

h2

2
+O(h3/m2)

)
.

We also have

EX2
n =

h∑

j=0

fj

(
N − (2h− j)

m− (2h− j)

)
/

(
N

m

)
.

Let g(j) = fj
(
N−(2h−j)
m−(2h−j)

)
/
(
N
m

)
. By condition (a), for every K > 0 and any 1 ≤ j ≤ Kh2/m,

g(j)

g(j − 1)
= rj ·

N

m
(1 +O(h/m)) =

h2

mj
(1 +O(h/m) + o(m/h2)) =

h2

mj
(1 + o(m/h2)), (4.1)

where the last equality holds because h3 = o(m2). By condition (c) and the fact that for any integer
0 ≤ j ≤ h,

(
N−(2h−j)
m−(2h−j)

)
≤
(
N−h
m−h

)
, we also have that

∑

j>γ(n)

g(j) ≤ t(n)

(
N − h

m− h

)
/

(
N

m

)
= t(n)µn/s.
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Then for all sufficiently large K > 0,

EX2
n =

h∑

j=0

g(j) =

Kh2/m∑

j=0

g(j) +O(g(Kh2/m)) +O(t(n)µn/s)

=
(
1 +O

(
K−1

))Kh2/m∑

j=0

g(j) +O(t(n)µn/s), (4.2)

where the second equality holds because of condition (b) and the last equality holds by (4.1). Next,

we estimate
∑Kh2/m

j=0 g(j). By (4.1) and Lemma 19,

Kh2/m∑

j=0

g(j) = f0

(
N−2h
m−2h

)
(
N
m

)
Kh2/m∑

j=0

(h2/m)j

j!
(1 + o(jm/h2))

= f0 · (m/N)2h exp

(
−N −m

mN

(2h)2

2
+O(h3/m2)

)(
exp(h2/m+ o(K)) + Γ(K)

)
,

= f0 · (m/N)2h exp

(
−N −m

mN
2h2

)
exp(h2/m)

(
1 + o(K) +O(Γ(K) exp(−h2/m))

)
, (4.3)

where

Γ(K) = O

(
(h2/m)Kh2/m

(Kh2/m)!

)
= O

((
(eh2/m)

(Kh2/m)

)Kh2/m
)
.

Letting K → ∞ in both (4.2) and (4.3), we have Γ(K) → 0, since h2/m = Ω(1). Thus,

EX2
n = (1 + o(1))f0 · (m/N)2h exp

(
−N −m

mN
2h2

)
exp(h2/m) +O(t(n)µn/s). (4.4)

We also have

s2 =
h∑

j=0

fj = f0

h∑

j=0

j∏

i=1

ri.

With the same reasoning as before, it is enough to sum over the first Kh2/N terms, leaving a
negligible tail plus an error term O(t(n)), and then let K → ∞. This yields

s2 = (1 + o(1))f0 exp(h
2/N) +O(t(n)).

Since t(n) = o(µns) = o(s2) by condition (c), we obtain

f0 ∼ s2 exp(−h2/N).

Combining with (4.4) and again by condition (c), we obtain

EX2
n = (1 + o(1))s2(m/N)2h exp

(
−N −m

mN
2h2

)
exp(h2/m− h2/N) +O(t(n)µn/s)

= (1 + o(1))s2(m/N)2h exp

(
−N −m

mN
h2

)
+ o(µ2

n) ∼ (EXn)
2.
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By condition (d), EXn → ∞ as n → ∞. Then for every ǫ > 0,

P(|Xn/EXn − 1| > ǫ) → 0, as n → ∞,

by Chebyshev’s inequality.

Proof of Theorem 3. Let Yn denote the number of edges in G(n, p), then Yn ∼ Bin(N, p). Hence
we have

Yn − pN = Op(
√

p(1− p)N), (4.5)

where f(n) = Op(g(n)) for some g(n) ≥ 0 means P(|f(n)| > Kg(n)) → 0 as K → ∞ and n → ∞.
Similarly we use the notation f(n) = op(g(n)) meaning that for every ǫ > 0, P(|f(n)| > ǫg(n)) → 0

as n → ∞. Since Xn/EG(n,m)Xn

p−→ 1 in G(n,m) for all m = pN + O(
√
p(1− p)N) by assumption

and ln(EG(n,m)Xn) = ln |S | + h ln(m/N) + (N −m)h2/2mN + o(1) by (2.2), by conditioning on
Yn, we have

lnXn − ln |S | − h ln(Yn/N) +
1− Yn/N

Yn

h2

2

p−→ 0. (4.6)

By (4.5),

1− Yn/N

Yn

h2

2
=

h2(1− p)

2Np

(
1 +Op

(√
p

(1− p)N
+

√
1− p

pN

))
=

h2(1− p)

2Np
+ op(1), (4.7)

where the equality above holds because h3 = o(p2n4). We also have

ln(Yn/N) = ln p(1 + Y ∗
n

√
(1− p)/pN) = ln p+

√
(1− p)/pNY ∗

n +Op((1− p)/pN), (4.8)

where

Y ∗
n =

Yn − pN√
p(1− p)N

is the normalised variable of Yn. Recall that λn = |S |ph from (2.1) and EXn = λn. Combining
with (4.6)–(4.8), we have

ln(Xn/λn) +
β2
n

2
= βnY

∗
n + op(1). (4.9)

Since βn = Ω(1), (4.9) immediately yields

ln(eβ
2
n/2Xn/λn)

βn
= Y ∗

n + op(1).

Since Y ∗
n

d−→ N (0, 1), the theorem follows.

5 Concluding remarks

It was proved in [4] that m >> n3/2 is required for the concentration of Xn in G(n,m), where
Xn denotes the number of Hamilton cycles or perfect matchings or spanning trees, as the variable
will become asymptotically log-normally distributed when m = Θ(n3/2). We believe that most
of the ranges of p that we presented in the paper are tight, except for sets of vertex disjoint
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triangles. It is also a little surprising that the critical point of m when Xn changes from small
deviation (EX2

n ∼ (EXn)
2) to large deviation (lim supn→∞EX2

n/(EXn)
2 > 1) in G(n,m) seems to

be different for Hamilton cycles and for sets of vertex disjoint triangles. We guess m = n5/3 might
be the critical point for the latter case.

As explained in Section 3.5, the most interesting set S to be studied is perhaps the one con-
taining graphs isomorphic to an unlabelled graph H on n vertices. Unfortunately, for a general H ,
both fj and rj seem hard to compute. It will be interesting to know whether for all such graphs
H , the corresponding random variables Xn follow the log-normal paradigm. If not, is it possible to
characterise the class of H , for which the distribution of Xn follows this pattern?
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