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Abstract. We consider a model in which massive stars form in a self-gravitating accretion disk
around an active galactic nucleus. These stars may evolve and collapse to form compact objects
on a time scale shorter than the accretion time, thus producing an important family of sources for
LISA. Assuming the compact object formation/inspiral rateis proportional to the steady-state gas
accretion rate, we use the observed extra-galactic X-ray luminosity function to estimate expected
event rates and signal strengths. We find that these sources will produce a continuous low-frequency
background detectable by LISA if more than∼> 1% of the accreted matter is in the form of compact
objects. For compact objects withm ∼> 10M⊙, the last stages of the inspiral events should be
resolvable above a few mHz, at a rate of∼ 10−100 per year.

INTRODUCTION

One of the major challenges that will face gravitational wave (GW) astronomers is the
successful discrimination between instrumental noise, stochastic GW backgrounds, and
individual, resolvable GW sources. For example, the population of galactic white dwarf
binaries in close orbits will provide a major contribution to the LISA noise curve in
the 0.1−1 mHz band [1]. At the same time, this confusion “noise” can also be treated
as a signal, and its shape and amplitude will provide important information about the
distribution and properties of white dwarf binaries in the galaxy.

It has recently been proposed that, in the self-gravitatingaccretion disks of active
galactic nuclei (AGN), massive stars could form and evolve,eventually collapsing into
compact objects and merging with the central black hole [2, 3]. At different stages in
the inspiral evolution, this population will contribute tothe GW background confusion
or alternatively produce individual, resolvable chirp signals. It is therefore a matter of
theoretical and practical interest to understand the nature of such a population.

In this paper we derive a relationship between the observable electro-magnetic (EM)
emission and the predicted GW emission from AGN, following the procedures and
summarizing the results outlined in our longer paper [4]. Inparticular, we use the hard
X-ray luminosity function of Ueda et al. [5] to infer the accretion history of supermassive
black holes (SMBHs) out to redshifts ofz ∼ 3. Then we assume a few simple scaling
factors, such as the average (Eddington-scaled) accretionrate and the efficiency of
converting accretion energy to X-rays, and derive the GW spectrum that might be seen
by LISA.

Depending on the specific model parameters, we find this background could be an
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TABLE 1. Glossary of dimensionless parameters, with allowable and preferred values

symbol min max preferred description

facc 0 1 1 fraction of SMBH mass due to accreted gas
fco 0 1 0.01 fraction of SMBH mass due to accreted compact objects
fX 0 1 0.03 fraction of EM radiation in X-rays

fEdd 0 ∼> 1 0.1 typical fraction of Eddington luminosity/accretion rate

ηem 0 1 0.2 efficiency of converting accreting gas to EM radiation
ηgw 0 1 0.2 efficiency of converting compact objects to GW radiation

important class of LISA sources, similar in strength and event rates to extreme mass-ratio
inspirals from captured compact objects [6]. As in those sources, here too it is a matter
of preference as to whether the background should be thoughtof as signal or noise. But
for higher masses (perhaps as large asm ≃ 105M⊙ [2]), disk-embedded compact objects
should produce individual, resolvable inspiral events with high signal-to-noise over a
wide band of frequencies.

THE HARD X-RAY LUMINOSITY FUNCTION OF AGN

We begin with a short discussion of notation. The results derived below include a number
of dimensionless parameters, most of which can take values between 0 and 1. We
divide these parameters into two general classes: efficiencies and fractions. Efficiencies,
denoted byη, are believed to be determined by more fundamental physics,and typically
have more stringent lower- and upper-limits. Fractions, denoted by f , are more model-
dependent parameters and less-well known than the efficiency parameters, and thus have
a larger range of acceptable values. A summary of these modelparameters appears in
Table 1.

A growing consensus has been forming that SMBHs grow almost exclusively by
accretion, suggestingfacc≃ 1 (see, e.g. [7]). A corollary of this assumption is that most
AGN should be rapidly spinning, with dimensionless spin parameters ofa/M ≃ 0.9−
0.998, giving EM efficiencies for a radiative disk ofηem≃ 0.15−0.32 [8]. Similarly,
assuming the compact objects are on circular, adiabatic orbits, we setηgw = ηem,
ignoring any EM or GW emission from the plunging region.

We write the X-ray luminosityLX as a fractionfX of the bolometric luminosity, which
in turn is a fractionfEdd of the Eddington luminosityLEdd:

LX = fX fEddLEdd(M) = fXηemṀaccc
2. (1)

The Eddington limit is a function only of the SMBH mass:LEdd(M) = 1.3 ×
1038(M/M⊙). Over the range of redshifts and luminosities we are probing, typical
accretion rates are estimated to befEdd ∼ 0.1, but could conceivably be even greater
than unity [9]. Since the energy density in the cosmic infrared background (also
dominated by AGN) is about 30 times greater than the X-ray background, we set
fX = 0.03 [10]. Lastly, the parameterfco is the fraction of total mass accreted in the
form of compact objects. Since the astrophysical mechanisms that actually determine



this fraction are not yet well understood, we set it to a conservative value of 0.01. If it
were much higher, the disk would be entirely fragmented and thus not efficiently emit
EM radiation. And as we will see below, a value much below 0.01 would result in a GW
signal undetectable by LISA.

We approximate the intrinsic (i.e. directly produced by theaccretion process, and
before reprocessing and/or partial absorption within the host galaxy) X-ray luminosity
function per comoving volume after Ref. [5], roughly givinga broken power-law dis-
tribution with higher average luminosities at higher redshift. The fiducial values for the
model parameters and the observed range of luminosities correspond to SMBH masses
in the range 106M⊙ ∼< M ∼< 1010M⊙, consistent with the masses inferred from observa-
tions of velocity dispersions.

THE GRAVITATIONAL WAVE SPECTRUM

We begin by considering the inspiral of a single compact object of massm onto a SMBH
of massM ≫ m and specific angular momentuma. Using geometrized units such that
G = c = 1, a particle on a circular, equatorial orbit around a Kerr black hole has an
orbital frequency (as measured by an observer at infinity) of

forb(r) =

√
M

2π(r3/2 +a
√

M)
(2)

and specific energy
E(r)

m
=

r2−2Mr +a
√

Mr

r(r2−3Mr +2a
√

Mr)1/2
. (3)

Thus the total energy emitted in gravitational waves down toa radiusr is Egw(r) =
m−E(r). The GW energy emitted between frequencyf and f +d f for such an event is

dEgw

d f
=

dEgw

dr

(

d f
dr

)−1

. (4)

Here, we restrict the GW emission to the quadrupole formula for circular geodesic orbits,
thus we consider only GW frequencies at twice the orbital frequencies( f = 2 forb).

We will generally want to restrict equation (4) to a range of frequenciesfmin ≤ f ≤
fmax, where fmin is determined by the LISA sensitivity andfmax is the GW frequency at
the inner-most stable circular orbit (ISCO). The ISCO frequency in turn is determined
solely by the SMBH mass and spin, givingfmax ≃ 4− 30 mHz for M = 106M⊙. In
Figure 1 we show the characteristic strain spectrum for a single inspiral event for a
range of black hole masses and spins.

Integrated over redshiftz, the observed GW energy density per logarithmic frequency
is given by (e.g. [11])

dρgw( f )

d ln f
=

∫ ∞

0
dz

R(z)
1+ z

∣

∣

∣

∣

dt
dz

∣

∣

∣

∣

dEgw

d ln fz
( fz), (5)



FIGURE 1. Characteristic GW strain amplitudes for individual inspiral events, where a black hole with
m = 10M⊙ merges with a SMBH of massM = 106,107,108M⊙ at a redshift ofz = 1. For each value ofM,
we show the spectra for two spin values,a/M = 0 (solid) and 0.95 (dashed). Thedot-dashed anddotted
lines are the sky-averaged LISA noise curves with and without the contributions from galactic binaries,
respectively.

where fz ≡ (1+ z) f , and R(z) is the rate of inspiral events per comoving volume.
Cosmology enters with the term|dt/dz|= [(1+ z)H(z)]−1, where for a flat geometry,

H(z) = H0
[

ΩM(1+ z)3+ΩΛ
]1/2

. (6)

Throughout this paper we will assume a standardΛCDM universe withΩM = 0.3,
ΩΛ = 0.7, andH0 = 72 km s−1 Mpc−1.

The event rate for a single AGN is simply the X-ray luminositydivided by the total
X-ray energy emitted between inspiral events:EX = Egw fX/ fco. Integrating over the
luminosity distribution function, we get

R(z) =
fco

fX

∫

dLX
dn(LX,z)

d lnLX

1
Egw

, (7)

where dn(LX,z)/d lnLX is the intrinsic luminosity distribution function in unitsof
Mpc−3. Combining equations (5) and (7), the total (time-averaged) gravitational wave
spectrum is

dρgw( f )

d ln f
=

fco

fX

∫ ∞

0

∣

∣

∣

∣

dt
dz

∣

∣

∣

∣

dz
1+ z

∫ Lmax

Lmin

dLX
dn

d lnLX

1
Egw

dEgw

d ln fz
( fz). (8)

The GW spectrumEgw( f ) from each individual AGN is a function of the SMBH mass,
which in turn is determined by the X-ray luminosity through equation (1). Note that the
integrated spectrum is independent ofm, as long asm is small enough so that the inspiral
waveform cannot be individually resolved. One measure of this resolvability is theduty
cycle, described in the next section.



FIGURE 2. Dependence of the GW background on the model parametersfEdd (le f t) and fco (right).
The fiducial values for the model give a background signal comparable to the LISA noise curve, including
unresolved galactic white dwarf binaries.

Following Refs. [6, 12], we will want to compare directly thebackground defined
in equation (8) to the spectral density of the detector noiseSn( f ), which has units of
inverse frequency. In this case,

√

f Sn( f ) will be a dimensionless strain. Averaging over
the entire sky, weighted by the LISA antenna pattern, gives

Sh( f ) =
4
π

1
f 3

dρgw( f )

d ln f
. (9)

Throughout the paper we use the so-called sky and detector averaged instrumental
spectral density for LISA, augmented by the white-dwarf galactic confusion noise, as
given in [6].

In Figure 2 we plot the nominal GW background from equation (8) with the model
parameters listed in Table 1. Also shown are the effects of varying the accretion rate
fEdd (Fig. 2a) and the fraction of accreted mass in compact objects fco (Fig. 2b). By
increasingfEdd, the effect is to reduce the AGN mass inferred from equation (1) and
thus increase the GW frequency of the signal, shifting the curves to the right. From the
leading term in equation (8), it is clear that the total GW power is simply proportional
to fco, so increasing this parameter linearly increases the totalamplitude of the GW
spectrum.

EVENT RATES AND RESOLVABLE SIGNALS

The GW spectra calculated from equation (8) represent thetime-averaged signal from
all the AGN in the universe, but at any single time, there may only be a few sources that
are emitting at a given frequency. This can be seen from comparing Figures 1 and 2:
while the signal-to-noise ratio of a single inspiral can be very large around 1−10 mHz,



FIGURE 3. Duty cycleD( f ) for the nominal parameter values and a range of compact object masses
m. WhenD( f ) ∼< 1, the inspiral signals should be individually resolvable.

a relatively small fraction of the inspiral time is spent in that band, significantly reducing
the time-averaged strain amplitude.

One way of estimating the number of individual signals at a given frequency is by
calculating the duty cycleD( f ):

D( f ) =
fco

fXmηgw

∫

dz
dV
dz

∫ Lmax

Lmin

dLX
dn

d lnLX
tcoh( fz), (10)

where the cosmological volume element isdV/dz = 4πr2(z)/H(z) and the “coherence
time” tcoh( f ) is approximated by the Newtonian limit of the radiation reaction formula
(e.g. [13]):

tcoh( f ) ≡ f
d f/dt

≃ 5
144

m−1M−2/3(π f )−8/3. (11)

In Figure 3 we show the duty cycle for the fiducial model parameters and a range of
compact object massesm. The sharp cutoff around 40 mHz is not physical, but rather
due to the somewhat artificial low-end cutoff in the luminosity function, corresponding
to a minimum value forM and thus maximum attainable frequency. Note thatD( f )
is proportional tom−2, since smallerm means more compact objects, and also slower
inspiral rates, thus each source spends more time around a given f .

It is important to understand thatD( f ) represents the total number of sources in the
observable universe, not all of which would be individuallyresolvable with LISA. To
estimate the subtractable portion of the signal, we integrate the total signal-to-noise ratio
(SNR) for a three-year mission lifetime (see, e.g., [12]). For a givenm, M, and source
distanced, we can calculate the minimum frequency above which the source would be
detectable with SNR above a certain threshold (here we use 15). Any contribution to
equation (8) above that frequency is ignored, resulting in an unresolvable GW spectrum,



FIGURE 4. The fiducial time-averaged signal (top curve), along with the unresolvable portions of the
GW spectra, after subtracting out individual events with integrated SNR above a threshold of 15.

plotted in Figure 4. As expected, with increasingm, more inspiral events are detectable
and the remaining background confusion noise is diminished.
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