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Abstract We describe recent progress with a formulation of the Einstein equations
on constant mean curvature surfaces extending to future null infinity. Long-time
stable numerical evolutions of an axisymmetric gravitationally perturbed Schwarz-
schild black hole have been obtained. Here we show how matter can be included
in our formulation. We study late-time tails for the spherically symmetric Einstein–
Yang–Mills equations both for initial data that disperse and that collapse to a black
hole.

1 Introduction

The standard approach to numerical simulations of asymptotically flat spacetimes
is to adopt the Cauchy formulation of general relativity and truncate the spatial
slices at a finite distance, where boundary conditions must be imposed. Apart from
leading to a well-posed initial-boundary value problem, such boundary conditions
should also be absorbing, i.e. they should be consistent with the solution on the
unbounded domain. The problem is that the correct boundary conditions are not
known at a finite distance. At best one may appeal to linearised theory. Bad choices
of boundary conditions are known to destroy relevant features of the solution. A far
more elegant approach is to include future null infinity in the numerical domain,
which is the true physical boundary of spacetime. In order to do this, we follow
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Penrose’s approach and apply a conformal transformation to the spacetime metric,
combined with a compactifying coordinate transformation. Rather than Friedrich’s
regular conformal field equations [1], we work directly with the Einstein equations
in an ADM-like formulation on constant mean curvature (CMC) slices [2]. This
formulation is reviewed in Sect. 2 and extended here to include matter sources. In
Sect. 3 we review a first numerical implementation of this system, which achieved
long-time stable evolution of a perturbed Schwarzschild black hole for the vacuum
Einstein equations in axisymmetry. In Sect. 4 we include matter in the form of a
Yang–Mills field, and we perform numerical simulations of the late-time decay of
this field, restricted to spherical symmetry. Our evolutions include cases that form a
black hole from regular initial data.

2 General Formulation

We decompose the spacetime metric (4)gμν in ADM form,

(4)g = −N 2dt2 + gi j (dxi + Xi dt)(dx j + X j dt), (1)

where gi j is the induced metric on the t = const slices, N is the lapse function and X
the shift vector. The conformal spacetime metric (4)γμν = Ω2(4)gμν is decomposed
in a similar way,

(4)γ = −Ñ 2dt2 + γi j (dxi + Xi dt)(dx j + X j dt), (2)

wherewe identify γi j = Ω2gi j and Ñ = Ω N . The unit timelike normals of the phys-
ical and conformal spacetimes are related via nμ = Ω ñμ. The extrinsic curvature of
the slices is defined as

Ki j = − 1
2Lngi j , (3)

where L denotes the Lie derivative. We require constant mean curvature,

gi j Ki j ≡ −K = const, (4)

with K > 0 so that the slices approach future null infinity I +. Our fundamental
evolution variable is the traceless part of the ADM momentum

π tr i j = −μg

(
gik g jl − 1

3gi j gkl
)

Kkl , (5)

where μg = √
det(gi j ).

Before continuing, we show how matter can be included in our formalism. We
restrict ourselves to tracefree energy-momentum tensors, gμνTμν = 0. Examples
of matter models satisfying this condition include Maxwell and Yang–Mills fields
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and the conformally coupled scalar field. The tracefree condition insures that the
matter evolution equations are conformally invariant (and hence are regular atI +),
in particular,

(4)γ μν(4)∇̃μT̃νρ = Ω−4 (4)gμν(4)∇μTνρ = 0, (6)

where we have introduced a conformally rescaled energy-momentum tensor T̃μν ≡
Ω−2Tμν . For this conformal energy-momentum tensor we introduce the usual pro-
jections

ρ̃ ≡ ñμñν T̃μν, J̃ i ≡ −γ iμñν T̃μν, S̃i j ≡ γi
μγ j

ν T̃μν, S̃ ≡ γ i j S̃i j . (7)

We are now ready to write down the ADM equations. Let ∇̃ denote the Levi–
Civita connection of γ , R̃i j its Ricci tensor and R̃ the Ricci scalar. The (not generally
constant) mean curvature of the slices in the conformal spacetime is denoted by K̃ .
The evolution equations are

Lñγi j = 2μ−1
γ γikγ jlπ

tr kl − 2
3γi j K̃ , (8)

Lñπ tr i j = −2μ−1
γ γklπ

tr ikπ tr jl − 2
3Ω

−1Kπ tr i j

+ μγ

[
Ñ−1∇̃ i ∇̃ j Ñ − R̃i j − 2Ω−1∇̃ i ∇̃ jΩ + κΩ2 S̃i j

]tr
. (9)

The Hamiltonian and momentum constraints read

0 = −4Ω∇̃ i ∇̃iΩ + 6γ i jΩ,iΩ, j − Ω2 R̃ − 2
3 K 2

+ Ω2μ−2
γ γikγ jlπ

tr i jπ tr kl + 2κΩ4ρ̃, (10)

0 = ∇̃ j (Ω
−2π tr i j ) + κμγ J̃ i . (11)

We also have an elliptic equation for the lapse arising from the constant mean cur-
vature condition (4),

0 = −Ω2∇̃ i ∇̃i Ñ + 3Ωγ i j Ñ,iΩ, j − 3
2 Ñγ i jΩ,iΩ, j + 1

6 Ñ K 2

− 1
4 ÑΩ2 R̃ + 5

4 ÑΩ2μ−2
γ γikγ jlπ

tr i jπ tr kl + 1
2κ ÑΩ4(S̃ + 2ρ̃). (12)

In [2] we fixed the spatial coordinates by imposing a (spatial) harmonic gauge
condition. However, other choices are possible; for example, in Sects. 3 and 4 we
use coordinates adapted to the symmetry. There is also a residual conformal gauge
freedom inherent in the decomposition γμν = Ω2gμν . In [2] we fixed this by requir-
ing the conformal scalar curvature R̃ to be constant. For the explicit forms of the
conformal metrics used in Sects. 3 and 4 there is no remaining conformal gauge
freedom.

The evolution equation (9) is formally singular at I +, where Ω = 0. However
in [2] we showed how the offending terms can in fact be evaluated at I + in a
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regular way. This makes use of the fact that the constraints (10)–(11) and the CMC
slicing condition (12) are also degenerate atI +. On a given spatial slice, we choose
spherical polar coordinates such that the cut of the slice with I + corresponds to
r = r+ = const. We expand the fields in finite Taylor series in r about r+ and
substitute them in the degenerate elliptic equations. Thus we obtain the first three
radial derivatives of Ω and the zeroth and first radial derivative of π tr ri atI +. With
this informationwe can evaluate the formally singular terms in the evolution equation
(9) explicitly, provided that necessary conditions for smoothness ofI + are satisfied.
These include the condition that I + be shear-free and were obtained earlier in [3].
We show that these regularity conditions are preserved under the time evolution.
While our analysis in [2] assumed vacuum, it is easy to see that it is unaffected by
the addition of the matter sources, as will be shown in a forthcoming paper [4].

3 Axisymmetric Vacuum Gravity

The first numerical implementation [5] of the scheme presented in Sect. 2 assumed
vacuum and axisymmetry. The spatial conformal metric is written in quasi-isotropic
coordinates as

γ = e2η sin θ (dr2 + r2dθ2) + r2 sin2 θ dφ2, (13)

where η is a function of t , r and θ only, ∂/∂φ being the Killing vector. Preservation of
this form of the metric under the time evolution implies a first-order elliptic system
for the shift vector similar to the Cauchy–Riemann equations.

The numerical implementation is based on fourth-order finite differences on a
logically Cartesian grid in r and θ . The grid is allowed to be non-uniform in r in
order to better resolve the steep gradients occurring near the horizon of the black
hole spacetimes we consider. We use black hole excision, i.e. the inner boundary is
placed just inside the horizon. This boundary is spacelike, so evolution equations do
not require anyboundary conditions there.Theouter boundary is placed atI +,where
the regularised form of the evolution equations is used, as outlined at the end of the
previous section. One-sided derivatives are used at both boundaries. The constraint
equations, CMC slicing condition and spatial gauge condition are solved at each
time step using a nonlinear multigrid solver. The evolution equations are integrated
in time using the method of lines with a fourth-order Runge–Kutta method.

As a first test problem, we evolve Schwarzschild spacetime. We use the Schwarz-
schild metric in constant-mean-curvature coordinates derived in [6] with parameters
M = 1, K = 1

2 and C = 2. The Schwarzschild solution has a flat spatial conformal
metric, η = 0 in (13). We were able to evolve this solution for times as long as
103M (and potentially longer) without any signs of instability, with approximate
fourth-order convergence as expected.

Next, we include a gravitational wave perturbation. For this we choose η to be a
Gaussian centred at r = 0.5 with width σ = 0.05 and amplitude A = 10−4, initially
at rest. For comparison, the black hole horizon is at r = 0.0635 andI + is at r = 1.
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Fig. 1 
 = 2 contribution
to the Bondi news function
for a gravitationally perturbed
Schwarzschild black hole
(mass M = 1) as a function
of time. Numerical results for
two different resolutions are
shown, (Nr , Nθ ) = (64, 8)
(dashed line) and (128, 16)
(solid line)
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We stress that this perturbation is evolved using the full nonlinear Einstein equations
rather than linearised theory.

We extract the gravitational radiation emitted by the system by evaluating the
Bondi news function [7] at I + in Fig. 1. The quasi-normal mode ringing phase is
clearly visible. The decay rate and frequency are consistent with the analytical result
from linearised theory. At later times the numerical solution has not yet converged
for the resolutions used here so we are currently unable to resolve the expected
power-law tail.

4 Spherically Symmetric Einstein–Yang–Mills

In this section, we include matter in the form of a Yang–Mills field. This is confor-
mally invariant; we choose to work in the conformal spacetime here. The energy-
momentum tensor is

T̃μν = F̃ (a)
μρ F̃ν

ρ(a) − 1
4
(4)γμν F̃ (a)

ρσ F̃ρσ(a), (14)

where the field-strength tensor F̃ (a)
μν is given in terms of the connection Ã(a)

μ by

F̃ (a)
μν = ∂μ Ã(a)

ν − ∂ν Ã(a)
μ + fabc Ã(b)

μ Ã(c)
ν . (15)

Greek indices refer to the internal Yang–Mills gauge group, and the symbol fabc

is totally antisymmetric. Here we choose the gauge group to be SU(2), so Greek
indices range over 1, 2, 3 and we may write fabc = g[abc], where g is the Yang–
Mills coupling constant (taken to be g = −2 in the following) and [abc] is totally
antisymmetric with [123] = 1.
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Fig. 2 The Yang–Mills
potential F and electric field
DF at I + (solid lines) and
at the origin (dashed lines) in
a subcritical evolution. The
initial Bondi mass is 0.63
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We now restrict ourselves to spherical symmetry. In this case we may always
choose isotropic coordinates such that the spatial conformal metric is flat. This
implies a first-order ordinary differential equation for the shift vector, which now
has a radial component only. For the Yang–Mills connection we make the ansatz

Ã(a)
i = [ai j]x j F(t, r), Ã(a)

0 = 0. (16)

A more general spherically symmetric ansatz will be considered in [4]. Energy-
momentum conservation implies a nonlinear wave equation for F .

Thenumericalmethodused for this system is similar to theonedescribed inSect. 3.
One difference is that in spherical symmetry, the traceless momentum π tr i j only has
one independent component, and we choose to solve the momentum constraint for it
rather than its evolution equation. Hence the system is fully constrained and the only
evolution equation used is the one for the Yang–Mills field. Also, our implementation
allows for both regular and excised centres so that we may start from regular initial
data until a black hole forms, which is then excised.

TheYang–Mills field F is taken to be aGaussian centred at r = 0.5with σ = 0.05
(again, I + is at r = 1) and variable amplitude. The time derivative of F is chosen
such that the pulse is approximately ingoing initially.

First we take the amplitude to be sufficiently small such that the field disperses.
Figure2 shows F at the origin and at I + as a function of coordinate time. For the
higher numerical resolution used in this (1+1)-dimensional simulation (Nr = 4000)
the tail is now well resolved. At the origin (and in fact at any finite distance) the
decay is approximately F ∼ t−4 whereas at I +, we find F ∼ t−2. This agrees
with the results in [8], and the same decay exponents were found in the test field
approximation [9].
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Fig. 3 The Yang–Mills
potential F and electric field
DF at I + (solid lines) and
at the horizon (from when
it forms, dashed lines) in a
supercritical evolution. The
initial Bondi mass is 3.0 and
the final Bondi mass (which
agrees with the final black
hole mass) is 2.5
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Let us also evaluate the electric field

D̃ i(a) =
√

−(4)γ F̃0i(a) ≡ [ai j]x j DF (t, r), (17)

also shown in Fig. 2. While this decays at the same rate as F at the origin, it decays
more slowly atI +, DF ∼ t−1. Thismay seem surprising at first but can be explained
by looking at the evolution equation for F ,

F,t = Xr F,r + 2r−1Xr F − Ñ DF . (18)

At I + the r -derivative of F appearing on the right-hand side must decay more
slowly than F itself because F decays faster away from I +. From (18) we infer
that DF must also decay at the slower rate.

For sufficiently high amplitudes, the field collapses and a black hole forms (Fig. 3).
Interestingly, the Yang–Mills potential F does not decay to zero in this case but
approaches F = 2/(gr2), which is another vacuum state (the field strength tensor
vanishes). The electric field shows the same power-law decay as in the subcritical
evolution.
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