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Abstract. The Induced Disjoint Paths problem is to test whether a
graph G with k distinct pairs of vertices (si, ti) contains paths P1, . . . , Pk

such that Pi connects si and ti for i = 1, . . . , k, and Pi and Pj have nei-
ther common vertices nor adjacent vertices (except perhaps their ends)
for 1 ≤ i < j ≤ k. We present a linear-time algorithm for Induced

Disjoint Paths on circular-arc graphs. For interval graphs, we exhibit a
linear-time algorithm for the generalization of Induced Disjoint Paths

where the pairs (si, ti) are not necessarily distinct.

1 Introduction

A classic algorithmic problem on a graph G with k distinct pairs of vertices
(si, ti) is to find vertex-disjoint 1 paths P1, . . . , Pk such that Pi connects si
and ti. Known as the Disjoint Paths problem, it is NP-complete on general
graphs [14], but can be solved in O(n3) time for any fixed integer k [23] (i.e. it
is fixed-parameter tractable). A generalization of this problem is Induced Dis-

joint Paths: given k distinct pairs of vertices (si, ti) in a graph G, find paths
P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k and the paths are
mutually induced, that is, no two paths Pi, Pj have common or adjacent vertices
(except perhaps their end-vertices). The Induced Disjoint Paths problem in-
deed generalizes the Disjoint Paths problem, since the latter can be reduced
to the former by subdividing every edge of the graph. This makes the problem
much harder: Induced Disjoint Paths is NP-complete even for instances with
k = 2 [2, 5], and thus in particular is not fixed-parameter tractable unless P=NP.

The hardness of both Disjoint Paths and Induced Disjoint Paths on
general graphs inspired research on their complexity on structured graph classes.

⋆ This work is supported by EPSRC (EP/K025090/1) and Royal Society (JP100692).
The research leading to these results has also received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 267959.

1 There is also a version of the problem in which the paths are required to be edge-
disjoint. We do not consider that version in this paper.
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On the negative side, Disjoint Paths remains NP-complete on line graphs [18]
and split graphs [12], Induced Disjoint Paths remains NP-complete on claw-
free graphs [6], and both problems remain NP-complete on planar graphs [17, 7].
In these cases, however, fixed-parameter algorithms are known [8, 12, 15, 22, 23].
On the positive side, polynomial-time algorithms for Disjoint Paths exist on
graphs of bounded treewidth [21] and graphs of cliquewidth at most 2 [10], and
for Induced Disjoint Paths on AT-free graphs [7] and chordal graphs [1].

We focus on the complexity of Induced Disjoint Paths on circular-arc
graphs. Recall that a circular-arc graph G has a representation in which each
vertex of G corresponds to an arc of a circle, and two vertices of G are adjacent
if and only if their corresponding arcs intersect. Circular-arc graphs generalize
interval graphs, which have a representation in which each vertex corresponds
to an interval of the line, and two vertices are adjacent if and only if their corre-
sponding intervals intersect. The complexity of Disjoint Paths is known: it is
NP-complete already on interval graphs [20]. In contrast, for Induced Disjoint

Paths, the authors of the present work recently showed a polynomial-time al-
gorithm on circular-arc graphs [8], and a polynomial-time algorithm on interval
graphs is implied by that work, as well as by the polynomial-time algorithms
on AT-free graphs [7] and chordal graphs [1]. These algorithms, however, do not
fully settle the complexity of Induced Disjoint Paths on circular-arc graphs
(and interval graphs), because the question whether a linear-time algorithm ex-
ists has been left open.

In this paper, we exhibit a linear-time algorithm for Induced Disjoint

Paths on circular-arc graphs. This improves on the known algorithm on circular-
arc graphs as well as the known algorithms for interval graphs. We also introduce
a generalization of Induced Disjoint Paths called Requirement Induced

Disjoint Paths, which is to find ri paths that connect si and ti for i = 1, . . . , k,
such that all paths are mutually induced. We present a linear-time algorithm for
Requirement Induced Disjoint Paths on interval graphs. To solve these
problems, our algorithms first preprocesses the instance. Some of the prepro-
cessing rules build on our earlier work on Induced Disjoint Paths [7, 8], but
special care is required to adapt them for Requirement Induced Disjoint

Paths and to execute them in linear time. Most preprocessing rules, however,
are novel. After the preprocessing stage, the algorithms identify a set of candi-
date paths for each pair (si, ti). For each candidate path for a pair (si, ti), we add
an arc with color i that corresponds to the path to an auxiliary graph. Finally,
we show that it suffices to find an independent set in this auxiliary graph that
contains ri arcs of each color. We show that the algorithms perform all stages in
linear time.

2 Preliminaries

We only consider finite undirected graphs that have no loops and no multiple
edges. We refer to the textbook of Diestel [4] for any standard graph terminology
not defined here. Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S]
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denotes the subgraph of G induced by S, that is, the graph with vertex set S
and edge set {uv ∈ E | u, v ∈ S}. We write G − S = G[V \ S]. We denote
the (open) neighborhood of a vertex u by NG(u) = {v | uv ∈ E} and its
closed neighborhood by NG[u] = NG(u) ∪ {u}. We denote the neighborhood
of a set U ⊆ V by NG(U) = {v ∈ V \ U | uv ∈ E for some u ∈ U} and
NG[U ] = U ∪NG(U). We denote the degree of a vertex u by degG(u) = |NG(u)|.

We denote an unordered pair of elements x, y by {x, y} (i.e. {x, y} = {y, x}).

Problem Definition Let P = v1 · · · vr be a path (we call such a path a v1vr-
path). The vertices v1 and vr are the ends or end-vertices of P , and the vertices
v2, . . . , vr−1 are the inner vertices of P . We say that an edge vivj , i + 1 < j, is
an inner chord of P if vi or vj is an inner vertex of P . Distinct paths P1, . . . , Pℓ

in a graph G are mutually induced if:

(i) each Pi has no inner chords;
(ii) any distinct Pi, Pj may only share vertices that are ends of both paths;
(iii) no inner vertex u of any Pi is adjacent to a vertex v of some Pj for j 6= i,

except when v is an end-vertex of both Pi and Pj .

Notice that condition (i) may be assumed without loss of generality. This defini-
tion is more general than the definition in Section 1, as it allows the end-vertices
of distinct paths to be the same or adjacent. We can now formally state our
decision problem (where a terminal is some specified vertex).

Requirement Induced Disjoint Paths

Instance: a graph G, k pairs of distinct terminals (s1, t1), . . . , (sk, tk) such
that {si, ti} 6= {sj , tj} for 0 ≤ i < j ≤ k, and k positive integers
r1, . . . , rk.

Question: does G have ℓ = r1 + . . .+ rk mutually induced paths P1, . . . , Pℓ

such that exactly ri of these paths join si and ti for 1 ≤ i ≤ k?

If r1 = . . . = rk = 1, then the problem is called Induced Disjoint Paths. The
paths P1, . . . , Pℓ are said to form a solution for a given instance, and we call
every such path a solution path.

The problem definition allows a vertex v to be a terminal in two or more pairs
(si, ti) and (sj , tj). For instance, v = si = sj is possible. This corresponds to
property (ii) of our definition of “being mutually induced”. In order to avoid any
confusion, we will view si and sj as two different terminals “placed on” vertex v.
Formally, we call v a terminal vertex that represents a terminal si or ti if u = si
or u = ti, respectively. We let Tv denote the set of terminals represented by v. If
Tv = ∅, we call v a non-terminal vertex. We say that the two terminals si and ti
of a terminal pair (si, ti) are partners of each other. If si is represented by u and
ti by v, then we also call a uv-path an siti-path. By our problem definition, each
terminal pair (si, ti) consists of two distinct terminals. Hence, two partners are
never represented by the same vertex.

By Property (i), each solution path P has no inner chords. It is an induced
path if and only if its ends are non-adjacent. If two adjacent vertices u and v
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represent terminals vertices belonging to the same pair (si, ti), then the path uv
is called a terminal path for si, ti. We need the following observation.

Observation 1 Any yes-instance of Requirement Induced Disjoint Paths

has a solution that contains all terminal paths. In particular, a terminal path for
a pair (si, ti) is the unique siti-path in this solution if ri = 1.

Graph Classes Recall the definition of circular-arc and interval graphs from the
introduction. Both graph types can be recognized in linear time and a corre-
sponding representation can be found in linear time:

Theorem 1 ([3], see also [11, 16]). An interval graph G with n vertices and
m edges can be recognized in O(n+m) time. In the same time, a representation
of G can be constructed with interval end-points 1, . . . , 2n.

The first linear-time recognition algorithm for circular-arc graphs was given
by McConnell [19] (see also [13]).

Theorem 2 ([19]). A circular-arc graph G with n vertices and m edges can be
recognized in O(n + m) time. In the same time, a representation of G can be
constructed with arc end-points clockwise enumerated as 1, . . . , 2n.

By Theorems 1 and 2, we always assume that an interval or circular-arc graph
is given both by its adjacency list and its representation. Moreover, we assume
that all the end-points of the intervals/arcs in the representation are distinct
integers 1, . . . , 2n. Notice that using a representation we can check adjacency in
O(1) time. By slight abuse of notation, we often do not distinguish between the
vertices and their corresponding intervals/arcs, e.g. we may speak of terminal
intervals/arcs instead of terminal vertices.

For a vertex u of an interval graph, lu and ru denote the left and right end-
point of u, respectively; note that the degree of u is at least (ru − lu − 1)/2.
For circular-arc graphs, we equate “left” to “counterclockwise” and “right” to
“clockwise”. Then, in the same way as for interval graphs, we let lu and ru denote
the left and right end-point of a vertex u, respectively. In this way we are able
to define similar terminology for both interval and circular-arc graphs. For two
points x, y on the line or circle, we write x ≤ y if y lies to the right with respect
to x, and x < y if x ≤ y and x 6= y. We say that a point z lies between points
x and y, if x ≤ z ≤ y. We say that a vertex u lies between points x and y if
x ≤ lu < ru ≤ y (recall that lu and ru are distinct integers). Finally, a vertex u
lies between two other vertices v, w if it lies between rv and lw; note that in that
case we have in fact that rv < lu < ru < lw by our assumption on the interval
representation.

An independent set in a graph G is a set of vertices that are pairwise non-
adjacent. At some stage, our algorithm for Induced Disjoint Paths on circular-
arc graphs needs to compute a largest independent set of a circular-arc graph.
This takes linear time:

Theorem 3 ([9]). If the arc end-points of a circular-arc graph G are sorted,
then a largest independent set of G can be found in O(n) time.
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3 Interval Graphs

In this section we develop a linear-time algorithm that solves Requirement

Induced Disjoint Paths on interval graphs. A possible approach would be
the following greedy algorithm: find a terminal vertex with the leftmost right
end-point, trace path(s) for the corresponding terminal pairs, greedily choose
the non-terminal vertex with the leftmost right end-point that does not create
conflicts with vertices already chosen, and proceed in a greedy way. However,
we do not elaborate on this approach for two reasons. Firstly, this approach
would require a thorough case analysis (just like our algorithm, and thus not be
substantially simpler). Secondly, and more importantly, the goal of this paper is
to design a linear-time algorithm for Induced Disjoint Paths on circular-arc
graphs, where we have no natural starting point for a similar greedy approach
and guessing such a starting point would irrevocably lead to a quadratic-time
algorithm. Therefore, we present a different approach already for interval graphs.

We describe the main constructs of our algorithm. Consider an instance of
Requirement Induced Disjoint Paths. Let P be an siti-path that is not
a terminal path, i.e. that has at least one inner vertex. Let IP be the interval
on the line obtained by taking the union of the intervals that correspond to
the inner vertices of P . We say that P covers the interval IP . Because P is an
siti-path, we say that IP has color i.

Lemma 1. Let P1, . . . , Pℓ form a solution. The following statements hold:

i) For 1 ≤ i ≤ k, any interval IPa
with color i intersects the intervals that

represent si and ti and does not intersect any other terminal interval;
ii) For 1 ≤ a < b ≤ ℓ, IPa

∩ IPb
= ∅;

iii) For 1 ≤ i < j ≤ k, there is no interval with color j that lies between two
intervals with color i, or vice versa.

Proof. Properties i) and ii) follow immediately from definition. In order to show
iii), assume that an interval IPc

with color j lies between two intervals IPa
and

IPb
, both with color i, for some i, j with i 6= j. Let u and v represent si and ti.

By i), IPa
and IPb

each intersect u and v. Then IPc
also intersects u and v. As

i 6= j, we find that u or v represents neither sj nor tj , contradicting i). ⊓⊔

We now outline our algorithm. Following Observation 1, we take all terminal
paths into the solution. This might reduce the requirement ri by 1 for some i.
To find the remaining paths for all i, we determine a set of “candidate paths”
that might or might not be used in the solution that we are constructing. The
set of candidate paths is constructed such that for any siti solution path P
there is a candidate path P ′ such that P ′ is also an siti-path and IP ′ ⊆ IP . We
guarantee that the set of candidate paths has size O(n). By Lemma 1, the paths
that are selected in a solution must cover distinct parts of the line. Therefore, we
create an auxiliary interval graph H that consists of all intervals covered by the
candidate paths. The intervals covered by candidate siti-paths all receive color
i, for i = 1, . . . , k. It then suffices to find an independent set with the required
number of vertices of each color in H .
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In the remainder of this section, we describe all steps of the algorithm in
detail. We say that a step is safe if it runs in time O(n+m+ k) and is correct
the following sense:

(i) a No-answer is given for no-instances only;
(ii) if a new instance is obtained, then it has a solution if and only if the original

instance has so.
(iii) if a set of intervals that are all colored with color i is added to H , then this

set has size O(n) and corresponds to a candidate set of candidate paths.

The algorithm assumes that an interval representation of G is known, as given
by Theorem 1. It also maintains an auxiliary interval graph H , initially empty.
Recall that any vertex that we add to H will correspond to a candidate path for
a solution. While adding vertices to H , we maintain an interval representation
of H . Finally, the algorithm maintains a set P of paths, initially empty, which
will form a solution for the instance (should it be a yes-instance). We let T =
{s1, t1, . . . , sk, tk} be the set of all terminals. A terminal pair (si, ti) is a multi-
pair if ri ≥ 2, and a simple pair otherwise. The algorithm roughly consists of
three stages: preprocess, construct H , and find an independent set.

3.1 Stage I: Preprocess

The only operations performed on G by our algorithm are vertex deletions.
Hence, the graph that we obtain after each step is still interval. For simplicity,
we denote this graph by G as well.

Step 1. Delete all non-terminal vertices that are adjacent to at least three
terminal vertices.

Lemma 2. Step 1 is safe.

Proof. Any internal vertex of a path of a solution is adjacent to at most two
terminal vertices, which are the end-vertices of the path. Hence, any non-terminal
vertex that is adjacent to at least three terminal vertices cannot be used in
any solution. Therefore, Step 1 is correct. In O(n +m) time, we can check the
neighborhood of each non-terminal vertex through the adjacency list and count
the number of terminals. ⊓⊔

Step 2. Check if there is a multi-pair that is represented by two non-adjacent
terminal vertices. If so, then return a No-answer.

Lemma 3. Step 2 is safe.

Proof. Step 2 is correct, because there must exist at least two solution paths
between the terminal vertices of a multi-pair. If the two terminal vertices are
not adjacent, the union of the vertices of these two paths induces a cycle on at
least four vertices in G. This is not possible in an interval graph. Using the list
of terminal pairs, Step 2 takes O(k) time. ⊓⊔
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Suppose that we have not returned a No-answer after performing Step 2. In
the next step, for each multi-pair, we identify a set of paths that together with
the terminal paths form all candidate paths.

Step 3. For each non-terminal vertex u adjacent to terminal vertices v and w
representing multi-pair terminals si and ti, add Ivuw with color i to VH , and
delete u from G.

Lemma 4. Step 3 is safe. Moreover, for any multi-pair (si, ti), if P is a solution
siti-path with at least one inner vertex, then there is a candidate siti-path P ′

with IP ′ ⊆ IP .

Proof. We first prove that Step 3 is correct. Let u be a non-terminal vertex
adjacent to terminal vertices v and w representing terminals si and ti from a
multi-pair (si, ti). By Lemma 2, we find that u is not adjacent to any other
terminal vertices. Hence, vuw may be considered as a candidate path for a solu-
tion. Moreover, because u is adjacent to both v and w, we deduce the following.
Firstly, every siti-path in a solution has at most one inner vertex; otherwise
its vertices would induce a cycle on at least four vertices in G, as v, w are ad-
jacent by Step 2. Hence, the set of intervals added to VH for each multi-pair
(si, ti) contains all possible solution paths for (si, ti), and as such corresponds
to a candidate set for (si, ti). Secondly, u may not be used in a solution path
for a terminal pair (sj , tj) with j 6= i. Hence, we can safely remove u from G.
Because we only added intervals to H that correspond to distinct vertices, we
added O(n) vertices to VH in total.

We now show how to perform Step 3 in O(n + m + k) time. Construct 2n
buckets B1, . . . , Bn. We add every vertex u ∈ VG to buckets Blu , . . . , Bru . By the
definition of our interval representation, the degree of u in G is equal to ru−lu−1.
Hence, |B1|+. . .+|Bn| ≤

∑
u∈VG

(ru−lu+1) ≤
∑

u∈VG
(2 degG(u)+2) = 4m+2n,

implying that filling the buckets takes O(n+m) time in total. For any terminal
intervals v and w that represent terminals si and ti of a multi-pair, determine
the intersection interval [l, r] of v and w (by Step 2, v and w are adjacent). Then
remove every vertex u of G that is in Bl ∪ · · · ∪Br, color Ivuw with color i, and
add Ivuw to VH . This takes time O(n +m+ k) in total, and O(n) intervals are
added to H . ⊓⊔

In the next two steps, which are inspired by our earlier work on Induced

Disjoint Paths [7, 8], we get rid of all adjacent terminal vertices that represent
the same terminal pair. This includes (but is not limited to) all multi-pairs.

Step 4. Find the set Z of all terminal vertices v such that v only represents
terminals whose partners are in NG(v). Delete the vertices of Z and all non-
terminal vertices of NG(Z) from G. Delete from T the terminals of all terminal
pairs (si, ti) with si ∈ Tv or ti ∈ Tv for some v ∈ Z. Put all terminal paths
corresponding to deleted terminal pairs in P .

Lemma 5. Step 4 is safe.
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Proof. We first show that Step 4 is correct. Let {si1 , . . . , sip , tj1 , . . . , tjq} be the
union of all terminals represented by vertices in Z. By Observation 1, we may
assume that each terminal path for (sia , tia) for a = 1, . . . , p and each terminal
path for (sjb , tjb) for b = 1, . . . , q is in a solution, if our instance is a yes-instance.
Hence, we can safely put these terminal paths in P . Moreover, as we already
identified a candidate set for all multi-pairs in Step 3, we may safely remove
each of the two terminals of every pair (sia , tia) for a = 1, . . . , p and every pair
(sjb , tjb) for b = 1, . . . , q from T .

Let u be a non-terminal vertex in NG(Z). Then u is not adjacent to two
terminal vertices representing two terminals from a multi-pair, as otherwise we
would have removed u in Step 3 already. Moreover, u is not used as an inner
vertex of a solution path for a simple terminal pair (si, ti) either, for the following
two reasons. Firstly, if si or ti is represented by a vertex in Z, we would use the
corresponding terminal path for a solution due to Observation 1. Secondly, if
both si and ti are not represented by a vertex in Z, we could still not use u as
an inner vertex for an siti-path, as u is adjacent to some terminal vertex in Z.

We now show how to perform Step 4 in O(n + m + k) time. We “mark”
each terminal vertex. Then we go through the list of terminal pairs, and if a
pair (si, ti) is not represented by adjacent terminal vertices, then we “unmark”
these terminal vertices. The set Z is the set of all “marked” terminal vertices
that are left in the end. By using the interval representation, obtaining Z takes
O(k) time. By using the adjacency lists of the vertices of Z, we find all non-
terminal vertices of NG(Z). Each time we find such a non-terminal vertex, we
delete it from G. Afterward, we delete all vertices of Z. This takes O(n + m)
time. Finally, we go through the list of terminal pairs, and if a terminal si or ti
is in Z, we delete both si and ti from T and add its terminal path to P . This
takes O(k) time. We conclude that the total running time of performing Step 4
is O(n+m+ k). ⊓⊔

After Step 4, each terminal vertex represents at least one terminal whose
partner is at distance at least 2. There may still be terminal pairs whose terminals
are represented by adjacent vertices. We deal with such pairs in the next step.

Step 5. Delete all terminals si and ti represented by adjacent terminal vertices
from the terminal list, and delete all common non-terminal neighbors of the
terminal vertices that represent si and ti. Put all terminal paths corresponding
to deleted terminals in P .

Lemma 6. Step 5 is safe.

Proof. By using the interval representation, Step 5 can be done in O(n+m+ k)
time. Hence, it remains to show that Step 5 is correct.

First, we may assume without loss of generality that a solution contains all
terminal paths by Observation 1. Hence, we may safely put these terminal paths
in P , and delete terminals that are represented by adjacent terminal vertices if
(si, ti) is not a multi-pair; if (si, ti) is a multi-pair, then all candidate paths have
already been identified in Step 3, and thus si and ti may be deleted as well.
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Second, if a solution path contains an inner vertex u adjacent to a terminal
vertex v representing a terminal that we remove in Step 5, then the reason is
that u belongs to a solution path for a terminal pair (sj , tj) where sj or tj is
represented by v as well (note that v represents at least one terminal whose
partner is not represented by a neighbor of v, as otherwise we would have re-
moved v in Step 4). Hence, u is allowed to be adjacent to v by definition, except
if u is adjacent to both the terminal vertex that represents si and the terminal
vertex that represents ti. Since these common neighbors are removed in Step 5,
however, this is not possible. ⊓⊔

Call a terminal pair long if its two terminals are represented by vertices of
distance at least 2. After Step 5, all terminal pairs are long. Therefore, by Step 2,
there are no multi-pairs anymore. Assume that there are k′ ≤ k terminal pairs
left; note that k′ = 0 is possible.

Step 6. Check if there exists a terminal vertex that represents three or more
terminals. If so, then return a No-answer.

Lemma 7. Step 6 is safe.

Proof. We first prove that Step 6 is correct. For contradiction, assume that a
terminal vertex u represents at least three terminals sh, si, sj. Due to Step 5,
these terminals belong to long pairs. Let v1, v2, v3 denote the terminal vertices
that represent th, ti, tj , respectively. Because u is not adjacent to any of v1, v2, v3,
every solution has shth, siti, and sjtj-paths that each contain at least one inner
vertex x1, x2, x3, respectively. Assume without loss of generality that x1, x2, x3

are adjacent to u. The intervals x1, x2, x3 do not intersect each other but they
do intersect u. Assume without loss of generality that x2 lies between x1 and x3.
Then all the vertices of the siti-path except u lie between x1 and x3. Therefore,
u and v2 are adjacent. This contradicts with the fact that the pair (sj , tj) is
long. Hence, our instance is a no-instance if this situation occurs.

Step 6 can be performed in O(n + k) time by going through the list of
terminals and counting how often each terminal vertex occurs. ⊓⊔

By Step 6, a terminal vertex may represent at most two terminals (which
must belong to different terminal pairs). We now observe that terminals should
be ordered, and we let our algorithm find this ordering.

Step 7. Check if there exist three terminal vertices u, v, w such that u and w
represent terminals from the same pair such that lu ≤ lv < lw. If so, then return
a No-answer. Otherwise, order and rename the terminals such that rui

< lvi and
lvi ≤ lui+1

for i = 1, . . . , k′ − 1, where ui, vi are the vertices representing si, ti,
respectively.

Lemma 8. Step 7 is safe.

Proof. We first prove that Step 7 is correct. Suppose that there exist three
terminal vertices u, v, w such that u and w represent terminals from the same
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pair and lu ≤ lv < lw. Assume that u, v, w represent si, sj, ti, respectively, and
let x represent tj . Let P1 and P2 be the siti-path and sjtj-path, respectively, in
a solution. Because (si, ti) and (sj , tj) are long, both P1 and P2 contain at least
one inner vertex. By Lemma 1, IP1

∩ IP2
= ∅. However, this is not possible as

lu ≤ lv < lw. Hence, our instance is a no-instance.
We now show how to perform Step 7 in O(n + k) time. Recall that each

end-point of an interval is an integer between 1 and 2n. Construct 2n buckets
B1, . . . , B2n. Then go through the list of terminal pairs T and put a terminal in
bucket Blu if u is the vertex of G that represents the terminal. Go through the
non-empty buckets among B1, . . . , B2n in increasing order and verify whether
the partner of a terminal of a terminal pair not seen before is in the next non-
empty bucket. Stop and return a No-answer if this does not hold. Otherwise, as
each bucket contains at most two terminals due to Step 6, this gives the desired
ordering of the terminal pairs in O(n + k) time. ⊓⊔

Step 8. For i ∈ {1, . . . , k′−1}, if ti and si+1 are represented by distinct vertices
u and v, delete all non-terminal vertices adjacent to both u and v.

Lemma 9. Step 8 is safe.

Proof. Any non-terminal vertex deleted in Step 8 can never be used as an inner
vertex of a solution path by the definition of the Requirement Induced Dis-

joint Paths problem. Step 8 runs in O(n+m+k) time by the same arguments
as in the proof of Lemma 4. ⊓⊔

3.2 Stage II: Construct H

We now construct the auxiliary H . Note that some intervals were already added
to H as part of our preprocessing stage (see Step 3).

Step 9. For each i ∈ {1, . . . , k′}, perform steps 9a–9d (where u and v are terminal
vertices that represent si and ti, respectively).

9a. For every common neighbor w of u and v, add the interval Iuwv to H with
color i, and delete w from G.

9b. For each neighbor x of u not adjacent to v, determine whether there exists a
neighbor y of v adjacent to x. If so, then choose y such that the right end-point
of y is leftmost amongst all such neighbours of v. Add the interval Iuxyv to H
with color i.

9c. Determine the connected components C1, . . . , Cp of G− (N [u]∪N [v]) whose
vertices lie between ru and lv. For each Cj , determine the vertex l(Cj) with the
leftmost left end-point and the vertex r(Cj) with the rightmost right end-point.
Then among the neighbors that l(Cj) and u have in common, let si(Cj) be the
one with the rightmost left end-point (if it exists). Similarly, let ti(Cj) be the
neighbor that r(Cj) and v have in common and that has the leftmost right end-
point (if it exists). Add the interval between the left end-point of si(Cj) and the
right end-point of ti(Cj) to H with color i, if it has not been added already in
Step 9b (which might be the case if si(Cj) and ti(Cj) intersect).
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Lemma 10. Step 9 is safe. Moreover, for i = 1, . . . , k′, if P is a solution siti-
path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. We first prove that Step 9 is correct. Let i ∈ {1, . . . , k′}. Let u and v be
the (non-adjacent) vertices of G representing si and ti, respectively. Let P be a
solution path for (si, ti).

Suppose that P has length 2. Then P has exactly one inner vertex w, which
is adjacent to both u and v. By Step 9a, H contains the interval IP .

Suppose that P has length 3. Then P has exactly two inner vertices x and
y′ that are adjacent to u and v, respectively. Let y be the neighbor of v that is
adjacent to x and has the leftmost right end-point among all such vertices. Then
P ′ = uxyv is an siti-path. Notice that IP ′ ⊆ IP by the choice of y and by the
fact that u and v have no common neighbors after Step 9a. Therefore, in any
solution that contains P , P can be replaced P ′. By Step 9b, H contains IP ′ .

Finally, suppose that P has length at least 4. Because P is an induced path,
there is a connected component Cj of G − (N [u] ∪ N [v]) whose vertices all lie
between ru and lv, such that all inner vertices of P except two neighbors of u
and v are in Cj . Let x′ and y′ be the neighbors of u and v on P , respectively.
Let x = si(Cj) and y = ti(Cj). Then from P we can construct an siti-path
P ′ by replacing x′ and y′ with x and y, respectively. Notice that IP ′ ⊆ IP by
the choice of y and by the fact that u and v have no common neighbors after
Step 9a. Therefore, in any solution that contains P , P can be replaced P ′. By
Step 9c, H contains IP ′ .

Observe that the above arguments prove that for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

We now show how to perform Step 9 in O(n+m) time. In Step 9a, we add all
the intervals that correspond to common neighbors of si and ti for i = 1, . . . , k′,
and delete these common neighbors from G. Common neighbors of si and ti
are not common neighbors of terminals of any other pair by Step 8. Therefore,
Step 9a takes O(n + m) time in total, and O(n) intervals are added to H . In
Step 9b, for i = 1, . . . , k′, we find for each neighbor x of si (recall that x is
not adjacent to ti after Step 9a), the neighbor y of ti such that x and y are
adjacent and the right end-point of y is leftmost. By using the adjacency lists
for the neighbors of u, Step 9b takes O(n+m) time in total, and O(n) intervals
are added to H . In Step 9c, we first find the connected components C1, . . . , Cℓ.
This can be done by performing a breadth-first search. Because the connected
components that we consider (and their vertices) are unique to a terminal pair,
Step 9c takes O(n+m) time in total. Again, O(n) intervals are added to H . ⊓⊔

3.3 Stage III: Find Independent Set

It remains to find a particular independent set in H .

Step 10. Find an independent set in H that, for i = 1, . . . , k, contains exactly
ri−1 or ri vertices colored i depending on whether (si, ti) is a multi-pair or not.
If such a set exists, add the corresponding candidate paths to P and return P .
Otherwise, return a No-answer.

11



Lemma 11. Step 10 is safe.

Proof. We first prove that Step 10 is correct. We do this by proving that our
instance is a yes-instance if and only if H has an independent set as described in
Step 10. First, suppose that H has such an independent set I. For each interval
u of color i, we can find an siti-path in G with inner vertices that are used to
construct u. Taking into account the terminal paths that are already included
in P , we obtain ri siti-paths for each i ∈ {1, . . . , k}. We have to show that these
paths are mutually induced. Because I is an independent set, distinct paths
have no adjacent inner vertices. It remains to show that each u ∈ I does not
intersect any terminal vertex (interval) of G except the vertices representing
si, ti. If u is added to H in Step 3, then it follows immediately from the fact that
all non-terminal vertices that are adjacent to at least three terminals are deleted
in Step 1 and from the description of Step 3. If u is added to H in Step 9, then
notice u does not intersect any terminal vertex deleted in Step 4, because we
delete them together with adjacent non-terminal vertices. Similarly, it does not
interfere with any terminal deleted in Step 5, as proved in Lemma 6. Moreover,
each interval added in Step 9 intersects exactly two remaining terminal vertices
that are partners by Step 8. Hence, the instance is a yes-instance.

Now suppose that our instance is a yes-instance. Let ℓi = ri − 1 if (si, ti)
is a multi-pair, and let ℓi = ri otherwise. By Observation 1, we can assume
that the solution includes all terminal paths. Therefore, the solution contains
exactly ℓi siti-path with inner vertices. By Lemma 4 and Lemma 10, for each
such solution siti-path P , there is a candidate siti path P ′ such that IP ′ ⊆ IP .
Therefore, we can replace each solution path by a candidate path, and obtain
a solution that uses only candidate paths. Let I denote the set of intervals
covered by these paths. By Lemma 1, the intervals of I do not intersect each
other. Moreover, by construction, I contains ℓi intervals with color i. Therefore,
H has an independent set as described in Step 10.

We now show how to perform Step 10 in O(n + m) time. We do this by
performing the following procedure, which is a modification of the well-known
greedy algorithm for finding a largest independent set in an interval graph.

1. Construct 2n buckets L1, . . . , L2n and 2n buckets R1, . . . , R2n.

2. For each vertex u of H , put u in the buckets Llu and Rru .

3. Set I = ∅ and h = 2n. For i = 1, . . . , k, set ℓi = ri−1 if (si, ti) is a multi-pair,
and set ℓi = ri otherwise.

4. Scan the buckets Lh, . . . , L1 until we find a bucket Lj that contains a vertex
u of H of some color i such that ℓi > 0. Then u is included in I. Find the set
of vertices X from the buckets Rj , . . . , Ri, and delete them from H . Then set
ℓi = ℓi − 1, h = j, and repeat the procedure. We stop as soon as we cannot find
the next bucket Lj .

If I contains less than ℓi vertices of color i for some i ∈ {1, . . . , k}, then stop
and return a No-answer. Otherwise, return I. This procedure takes O(|V (H)|) =
O(n) time, and the corresponding paths can be found in O(n+m) time. Hence,
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it remains to show that the procedure is correct. We need the following claim,
which implies that between the left endpoints of two intervals with a color i
there can be no left endpoint of an interval with color j 6= i.

Claim 1. Let Ui, Uj be the set of vertices (intervals) of H colored by distinct
colors i and j respectively. Then for any u ∈ Ui and v ∈ Uj, lu 6= lv. Moreover,
if lu < lv for some u ∈ Ui and v ∈ Uj, then lx < ly for any x ∈ Ui and y ∈ Uj.

Proof: Let u ∈ Ui and v ∈ Uj . Suppose that u and v are added to H in Step 3 of
the algorithm. Then lu 6= lv, because u and v are distinct vertices of G. Without
loss of generality, lu < lv. Note that the intervals of Ui correspond to the non-
terminal vertices of G that are adjacent to two adjacent terminal vertices w1, z1
of G representing si, ti and that are not adjacent to other terminal vertices,
by Step 1 and 3. Similarly, the intervals of Uj correspond to the non-terminal
vertices of G that are adjacent to two adjacent terminal vertices w2, z2 of G
representing sj , tj and that are not adjacent to other terminal vertices. Consider
the interval I = w1 ∩ z1. Because lu < lv, the left end-point of any x ∈ Ui lies to
the left of the right end-point of I and the left end-point of any y ∈ Uj lies to
the right of the right end-point of I. Hence, lx < ly for any x ∈ Ui and y ∈ Uj .

Suppose now that u is added to H in Step 3 and v is added to H in Step 9.
The intervals of Ui correspond to the non-terminal vertices of G that are adjacent
to two adjacent terminal vertices w1, z1 of G representing si, ti and that are not
adjacent to other terminal vertices. The intervals of Uj are the unions of non-
terminal vertices of G and these intervals intersect two non-adjacent terminal
intervals w2, z2 of G representing sj, tj . Observe that the intervals of Ui could not
be used for construction of the intervals of Uj because all non-terminal vertices
that are adjacent to w1, z1 are deleted in Steps 4 and 8. Moreover, the intervals
of Uj do not intersect any terminal vertex of G except w2, z2. Hence, lu 6= lv.
Consider the interval I = w1 ∩ z1. Without loss of generality, lu < lv. Then the
left end-point of any x ∈ Ui lies to the left of the right end-point of I and the
left end-point of any y ∈ Uj lies to the right of the right end-point of I. Hence,
lx < ly for any x ∈ Ui and y ∈ Uj .

Finally, suppose that u and v are added to H in Step 9 of the algorithm.
The intervals of Ui intersect two non-adjacent terminal intervals w1, z1 of G
representing si, ti and they do not intersect other terminal vertices of G, and
the intervals of Uj intersect two non-adjacent terminal intervals w2, z2 of G
representing sj , tj and they do not intersect other terminal vertices of G. Recall
that the terminals are ordered in Step 7. Hence, we can assume without loss of
generality that rw1

< lz1 ≤ lw2
< rz2 . It remains to observe that each interval

of Ui has its left end-point to the left of rw1
and each interval of Uj has its left

end-point to the right of rw1
. This proves Claim 1.

Claim 1 implies that between the left endpoints of two intervals with a color i
there can be no left endpoint of an interval with color j 6= i. Then, similar as the
correctness of the well-known greedy algorithm for finding a largest independent
set in an interval graphs, we can argue that the above procedure outputs the
required independent set. ⊓⊔

13



As each step in our algorithm is safe, we obtain the following result.

Theorem 4. The Requirement Induced Disjoint Paths problem can be
solved in time O(n+m+ k) for interval graphs on n vertices and m edges with
k terminal pairs.

4 Circular-Arc Graphs

In this section, we modify the algorithm of the previous section to work for the
Induced Disjoint Paths problem on circular-arc graphs. The general idea
of the approach remains the same, but some preprocessing steps are no longer
needed, and some steps need modification. In particular, we do not need colors
here. We will again show that each step of the algorithm is safe, where the
definition of a safe step remains the same, mutatis mutandis. The algorithm
assumes that an arc representation of G is known, as given by Theorem 2. It
maintains an auxiliary circular-arc graph H , initially empty, in a similar manner
and function as before. It also maintains a set P of paths, initially empty.

The algorithm first performs Step 1. Note that Step 2 and 3 are not necessary,
as there are no multi-pairs now, and thus we do not apply them. We then continue
with Step 4 and 5.

Lemma 12. Step 1, 4, and 5 are safe.

The proof of this lemma is obtained in the same way as the proofs of Lemmas 2,
5, and 6.

After Step 5, for each remaining terminal pairs (si, ti), si and ti are repre-
sented by vertices at distance at least two, and as before, we call such pairs long.
Let k′ be the number of remaining terminal pairs. Notice that it can happen
that k′ ≤ 1 after Step 5. It is convenient to handle this case separately.

Step 5+. If k′ = 0, then stop and return the solution P . If k′ = 1, then consider
the terminal vertices u and v representing the terminals of the unique pair of T .
Find a shortest uv-path P if it exists. If P exists, then add P to P , and return
the solution P . Otherwise, stop and return a No-answer.

Lemma 13. Step 5+ is safe.

Proof. It is clear that Step 5+ can be executed in O(n + m) time. The cases
that k′ = 0 and that k′ = 1 and P does not exist are trivially correct. If k′ = 1
and P does exist, then P cannot have any inner (non-terminal) vertices that
are adjacent to the terminal vertices that are deleted in Step 4, because any
such non-terminal vertices are deleted as well. Moreover, P cannot have any
inner (non-terminal) vertices that are adjacent to the terminals that are deleted
in Step 5, as any such non-terminal vertex would either be adjacent to three
terminals and thus removed in Step 1, or be adjacent to a terminal vertex of the
single remaining terminal pair. ⊓⊔
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Now we can assume that k′ ≥ 2. Since all pairs are long and k′ ≥ 2, there is
only one direction around the circle that a solution path can go, and therefore,
intuitively, the problem starts to behave roughly as it does on interval graphs.
We perform Step 6, 7, 8, and 9, where in Step 9 we do not color the vertices.

Lemma 14. Steps 6, 7, 8, and 9 are safe. Moreover, for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. The lemma follows immediately from Lemmas 7, 8, 9, and 10. Notice
that in the proof of Lemma 8, we need to be slightly careful: if the first two
non-empty buckets contain terminals from different terminal pairs, then since
we are dealing with circular-arc graphs, this does not immediately mean that
we should return a No-answer. Instead, we should restart the procedure with the
second non-empty bucket, and move the first non-empty bucket to the end of
the list (as bucket B2n+1). ⊓⊔

Finally, we execute the following simplified version of Step 10.

Step 10∗. Find a largest independent set in H using Theorem 3. If such a set
exists, add the corresponding candidate paths to P and return P . Otherwise,
return a No-answer.

Lemma 15. Step 10∗ is safe.

Proof. A largest independent set can be found in O(n) time using Theorem 3.
Then the corresponding paths can be found in O(n + m) time. To prove that
Step 10∗ is correct, we prove that the instance is a yes-instance if and only if H
has an independent set of size at least k′.

Suppose that I is an independent set of H of size at least k′. By the construc-
tion of H , the set of vertices of H can be partitioned into k′ sets X1, . . . , Xk′

such that for each i ∈ {1, . . . , k′}, Xi contains only intervals that intersect the
vertices u, v representing si, ti, respectively, in ru and lv. Hence, I has exactly
one vertex from each X1, . . . , Xk′ . For each interval w in I from Xi, we can find
an siti-path in G with inner vertices that are used to construct w. Taking into
account the paths that are already included in P , we obtain siti-paths for each
i ∈ {1, . . . , k}. We have to show that these paths are mutually induced. Because
I is an independent set, distinct paths have no adjacent inner vertices. It re-
mains to show that each w ∈ I does not intersect any terminal vertex (interval)
of G except the vertices representing si, ti. Notice that w does not intersect any
terminal vertex deleted in Step 4, because we delete them together with adja-
cent non-terminal vertices. Similarly, as argued in Lemma 6, w does not interfere
with any terminals deleted in Step 5. Recall that non-terminal vertices that are
adjacent to at least three distinct terminal vertices are deleted in Step 1. By
Step 8 and the fact that the common neighbors of two terminals are deleted in
the first phase of the construction of H in Step 9a, we obtain that w does not
intersect any terminal except si, ti. Hence, the instance is a yes-instance.

Suppose now that we have a yes-instance of Induced Disjoint Paths and
consider a solution to the instance. By Observation 1, we can assume that the
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solution includes all terminal paths from P . We consider remaining k′ paths
that have inner vertices. By Lemma 14, for each solution siti-path P , there is
a candidate siti-path with IP ′ ⊆ IP . Hence, we may assume that each solution
path is a candidate path. Let I be the set of intervals covered by these paths.
Because the paths are mutually induced, the intervals of I do not intersect each
other. Hence, H has an independent set of size k′. ⊓⊔

As each step in our algorithm is safe, we obtain the following result.

Theorem 5. The Induced Disjoint Paths problem can be solved in time
O(n+m+ k) for circular-arc graphs on n vertices and m edges with k terminal
pairs.

5 Conclusion

We gave a linear-time algorithm for the Requirement Induced Disjoint

Paths problem on interval graphs, and for the Induced Disjoint Paths prob-
lem on circular-arc graphs. It can be observed that by the application of the
same ideas, we can solve Requirement Induced Disjoint Paths on n-vertex
circular-arc graphs in time O(n2). We leave it as an open question, whether
Requirement Induced Disjoint Paths can be solved in linear time for this
graph class.

Another interesting question is whether the multicolored independent set
problem that we solve in Step 10 of the algorithm can be solved in polynomial
time on interval graphs when no order on the colors is known. In the appendix,
we answer this question negatively.
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16. N. Korte and R.H. Möhring. An incremental linear–time algorithm for recognizing
interval graphs SIAM J. Computing 18 (1989) 68–81.

17. M. Kramer, J. van Leeuwen. The complexity of wirerouting and finding minimum
area layouts for arbitrary VLSI circuits Adv. Comput. Res. 2 (1984), 129–146.

18. J.F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsletter 5 (1975) 31–36.

19. R.M. McConnell. Linear-Time Recognition of Circular-Arc Graphs. Algorithmica

37 (2003) 93–147.

20. S. Natarajan, A.P. Sprague. Disjoint paths in circular arc graphs. Nordic Journal

of Computing 3 (1996) 256–270.

21. B.A. Reed. Tree width and tangles: A new connectivity measure and some appli-
cations. In: Surveys in Combinatorics Cambridge University Press, (1997) 87–162.

22. B.A. Reed, N. Robertson, A. Schrijver, P.D. Seymour. Finding disjoint trees in
planar graphs in linear time. In: Contemp. Math. vol. 147, Amer. Math. Soc. (1993)
295–301.

23. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63 (1995) 65–110.

A Multicolored Independent Set

In Step 10 of the algorithm for interval graphs, we solve an instance of a gener-
alization of the following problem:

Multicolored Independent Set

Instance: a graph G, an integer k, and a function c : V (G) → {1, . . . , k}.
Question: does G have an independent set I with

⋃
v∈I c(v) = {1, . . . , k}?
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In Step 10, we essentially show that such an instance can be solved in polynomial
time on interval graphs if for any two vertices u,w with c(u) = c(w) = i there is
no vertex v with c(v) = j and lu < lv < lw. However, on general interval graphs,
this problem becomes NP-complete.

Theorem 6. Multicolored Independent Set on interval graphs is NP-
complete.

Proof. We show in fact that the problem is already NP-complete on disjoint
unions of double stars (i.e. graphs obtained from two disjoint stars by joining
the central vertices), which form a subclass of interval graphs. We reduce from 3-

SAT. Consider an instance of 3-SAT with n variables x1, . . . , xn and m clauses
C1, . . . , Cm. We construct a graph G and a function c as follows. For each xi, we
create two adjacent vertices xi and x̄i with c(xi) = c(x̄i) = i. For each Cj , we
create three vertices and set c(·) of these vertices to j + n. We then make these
three vertices adjacent to the corresponding literal vertices (for example, if Cj

contains xi, x̄j , xl, then we join the first vertex with the vertex xi, the second
with x̄j and the third with xl). This completes the construction. Note that it is
indeed a disjoint union of double stars. The correctness can be seen as follows:
we set xi to true if and only if the vertex xi is not in the independent set. ⊓⊔

It is easy to show that Multicolored Independent Set is fixed-parameter
tractable on interval graphs: guess an ordering of the colors, and for each choice,
run a procedure similar to the one described for Step 10. A faster algorithm can
be obtained using dynamic programming.
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