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Abstract. We study uncoordinated matching markets with additional
local constraints that capture, e.g., restricted information, visibility, or
externalities in markets. Each agent is a node in a fixed matching network
and strives to be matched to another agent. Each agent has a complete
preference list over all other agents it can be matched with. However,
depending on the constraints and the current state of the game, not all
possible partners are available for matching at all times.
For correlated preferences, we propose and study a general class of hedo-
nic coalition formation games that we call coalition formation games with
constraints. This class includes and extends many recently studied vari-
ants of stable matching, such as locally stable matching, socially stable
matching, or friendship matching. Perhaps surprisingly, we show that
all these variants are encompassed in a class of “consistent” instances
that always allow a polynomial improvement sequence to a stable state.
In addition, we show that for consistent instances there always exists
a polynomial sequence to every reachable state. Our characterization is
tight in the sense that we provide exponential lower bounds when each
of the requirements for consistency is violated.
We also analyze matching with uncorrelated preferences, where we ob-
tain a larger variety of results. While socially stable matching always
allows a polynomial sequence to a stable state, for other classes different
additional assumptions are sufficient to guarantee the same results. For
the problem of reaching a given stable state, we show NP-hardness in
almost all considered classes of matching games.

1 Introduction

Matching problems are at the basis of many important assignment and alloca-
tion tasks in computer science, operations research, and economics. A classic
approach in all these areas is stable matching, as it captures distributed control
and rationality of participants that arise in many assignment markets. In the
standard two-sided variant, there is a set of men and a set of women. Each man
(woman) has a preference list over all women (men) and strives to be matched
to one woman (man). A (partial) matching M has a blocking pair (m,w) if both
m and w prefer each other to their current partner in M (if any). A matching
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M is stable if it has no blocking pair. A large variety of allocation problems in
markets can be analyzed using variants and extensions of stable matching, e.g.,
the assignment of jobs to workers, organs to patients, students to dormitory
rooms, buyers to sellers, etc. In addition, stable matching problems arise in the
study of distributed resource allocation problems in networks.

In this paper, we study uncoordinated matching markets with dynamic match-
ing constraints. An underlying assumption in the vast majority of works on stable
matching is that matching possibilities are always available – deviations of agents
are only restricted by their preferences. In contrast, many assignment markets
in reality are subject to additional (dynamic) constraints in terms of informa-
tion, visibility, or externalities that prohibit the formation of certain matches (in
certain states). Agents might have restricted information about the population
and learn about other agents only dynamically through a matching process. For
example, in scientific publishing we would not expect any person to be able to
write a joint paper with a possible collaborator instantaneously. Instead, agents
first have to get to know about each other to engage in a cooperation. Alterna-
tively, agents might have full information but exhibit externalities that restrict
the possibility to form certain matches. For example, an agent might be more
reluctant to accept a proposal from the current partner of a close friend knowing
that this would leave the friend unmatched.

Recent work has started to formalize some of these intuitions in generalized
matching models with dynamic restrictions. For example, the lack of information
motivates socially [5] or locally stable matching [4], externalities between agents
have been addressed in friendship matching [3]. On a formal level, these are
matching models where the definition of blocking pair is restricted beyond the
condition of mutual improvement and satisfies additional constraints depend-
ing on the current matching M (expressing visibility/externalities/...). Conse-
quently, the resulting stable states are supersets of stable matchings. Our main
interest in this paper are convergence properties of dynamics that evolve from it-
erative resolution of such restricted blocking pairs. Can a stable state be reached
from every initial state? Can we reach it in a polynomial number of steps? Will
randomized dynamics converge (with probability 1 and/or in expected poly-
nomial time)? Is it possible to obtain a particular stable state from an initial
state (quickly)? These questions are prominent also in the economics literature
(for a small survey see below) and provide valuable insights under which condi-
tions stable matchings will evolve (quickly) in uncoordinated markets. Also, they
highlight interesting structural and algorithmic aspects of matching markets.

Perhaps surprisingly, there is a unified approach to study these questions
in all the above mentioned scenarios (and additional ones) via a novel class
of coalition formation games with constraints. In these games, the coalitions
available for deviation in a state are specified by the interplay of generation and
domination rules. We provide a tight characterization of the rules that allow to
show polynomial-time convergence results. They encompass all above mentioned
matching models and additional ones proposed in this paper. In addition, we
provide lower bounds in each model.



Contribution and Outline A formal definition of stable matching games, so-
cially stable, locally stable, and friendship matching can be found in Section 1.1.
In addition, we describe a novel scenario that we term considerate matching.

In Section 2 we concentrate on stable matching with correlated preferences,
in which each matched pair generates a single number that represents the utility
of the match to both agents. Blocking pair dynamics in stable matching with
correlated preferences give rise to a lexicographical potential function [1, 2]. In
Section 2.1 we present a general approach on coalition formation games with

constraints. These games are hedonic coalition formation games, where deviat-
ing coalitions are characterized by sets of generation and domination rules. We
concentrate on classes of rules that we term consistent. For correlated preferences
all matching scenarios introduced in Section 1.1 can be formulated as coalition
formation games with constraints and consistent rules. For games with consis-
tent rules we show that from every initial coalition structure a stable state can
be reached by a sequence of polynomially many iterative deviations. This shows
that for every initial state there is always some stable state that can be reached
efficiently. In other words, there are polynomial “paths to stability” for all con-
sistent games. Consistency relies on three structural assumptions, and we show
that if either one of them is relaxed, the result breaks down and exponentially
many deviations become necessary. This also implies that in consistent games
random dynamics converge with probability 1 in the limit. While it is easy to
observe convergence in expected polynomial time for socially stable matching,
such a result is impossible for all consistent games due to exponential lower
bounds for locally stable matching. The question for considerate and friendship
matching remains an interesting open problem.

In Section 2.2 we study the same question for a given initial state and a
given stable state. We first show that if there is a sequence leading to a given
stable state, then there is also another sequence to that state with polynomial
length. Hence, there is a polynomial-size certificate to decide if a given (stable)
state can be reached from an initial state or not. Consequently, this problem is
in NP for consistent games. We also provide a generic reduction in Section 2.2
to show that it is NP-complete for all, socially stable, locally stable, considerate,
and friendship matching, even with strict correlated preferences in the two-sided
case. Our reduction also works for traditional two-sided stable matching with
either correlated preferences and ties, or strict (non-correlated) preferences.

In Section 3 we study general preferences with incomplete lists and ties that
are not necessarily correlated.We show that for socially and classes of considerate
and friendship matching we can construct for every initial state a polynomial
sequence of deviations to a stable state. Known results for locally stable matching
show that such a result cannot hold for all consistent games.

Related Work For a general introduction to stable matching and variants of
the model we refer to textbooks in the area [26]. Over the last decade, there
has been significant interest in dynamics, especially in economics, but usually
there is no consideration of worst-case convergence times or computational com-



plexity. While the literature is too broad to survey here, a few directly related
works are as follows. If agents iteratively resolve blocking pairs in the two-sided
stable marriage problem, dynamics can cycle [25]. On the other hand, there is
always a “path to stability”, i.e., a sequence of (polynomially many) resolutions
converging to a stable matching [28]. If blocking pairs are chosen uniformly at
random at each step, the worst-case convergence time is exponential. In the case
of weighted or correlated matching, however, random dynamics converge in ex-
pected polynomial time [2,27]. More recently, several works studied convergence
time of random dynamics using combinatorial properties of preferences [20], or
the probabilities of reaching certain stable matchings via random dynamics [8].

In the roommates problem, where every pair of players is allowed to match,
stable matchings can be absent, but deciding existence can be done in polyno-
mial time [23]. If there exists a stable matching, there are also paths to stabil-
ity [13]. Similar results hold for more general concepts like P -stable matchings
that always exist [21]. Ergodic sets of the underlying Markov chain have been
studied [22] and related to random dynamics [24]. Alternatively, several works
have studied the computation of (variants of) stable matchings using iterative
entry dynamics [7,9,10], or in scenarios with payments or profit sharing [3,6,18].

Locally stable matching was introduced by [4] in a two-sided job-market
model, in which links exist only among one partition. More recently, we studied
locally stable matching with correlated preferences in the roommates case [16],
and with strict preferences in the two-sided case [19]. For correlated preferences,
we can always reach a locally stable matching using polynomially many resolu-
tions of local blocking pairs. The expected convergence time of random dynam-
ics, however, is exponential. For strict non-correlated preferences, no converging
sequence might exist, and existence becomes NP-hard to decide. Even if they ex-
ist, the shortest sequence might require an exponential number of steps. These
convergence properties improve drastically if agents have random memory.

Friendship and other-regarding preferences in stable matching games have
been addressed by [3] in a model with pairwise externalities. They study existence
of friendship matchings and bound prices of anarchy and stability in correlated
games as well as games with unequal sharing of matching benefits. In friendship
matching, agents strive to maximize a weighted linear combination of all agent
benefits. In addition, we here propose and study considerate matching based on
a friendship graph, where no agent accepts a deviation that deteriorates a friend.
Such ordinal externalities have been considered before in the context of resource
selection games [17].

Our general model of coalition formation games with constraints is related
to hedonic coalition formation games [11, 12, 14]. A prominent question in the
literature is the existence and computational complexity of stable states (for
details and references see, e.g., a recent survey [29]).

1.1 Preliminaries

A matching game consists of a graph G = (V,E) where V is a set of vertices
representing agents and E ⊆ {{u, v} | u, v ∈ V, u 6= v} defines the potential



matching edges. A state is a matching M ⊆ E such that for each v ∈ V we
have |{e | e ∈ M, v ∈ e}| ≤ 1. An edge e = {u, v} ∈ M provides utilities

bu(e), bv(e) > 0 for u and v, respectively. If for every e ∈ E we have some
bu(e) = bv(e) = b(e) > 0, we speak of correlated preferences. If no explicit
values are given, we will assume that each agent has an order � over its possible
matching partners, and for every agent the utility of matching edges is given
according to this ranking. In this case we speak of general preferences. Note that
in general, the ranking is allowed to be an incomplete list or to have ties. We
define B(M,u) to be bu(e) if u ∈ e ∈ M and 0 otherwise. A blocking pair for
matching M is a pair of agents {u, v} 6∈ M such that each agent u and v is either
unmatched or strictly prefers the other over its current partner (if any). A stable

matching M is a matching without blocking pair.

Unless otherwise stated, we consider the roommates case without assump-
tions on the topology of G. In contrast, the two-sided or bipartite case is often
referred to as the stable marriage problem. Here V is divided into two disjoint
sets U and W such that E ⊆ {{u,w}| u ∈ U,w ∈ W}. Further we will consider
matchings when each agent can match with up to k different agents at the same
time.

In this paper, we consider broad classes of matching games, in which addi-
tional constraints restrict the set of available blocking pairs. The states that are
resilient to such restricted sets of blocking pairs are a superset of stable match-
ings. Let us outline a number of examples that fall into this class and will be of
special interest.

Socially Stable Matching In addition to the graph G, there is a (social)
network of links (V, L) which models static visibility. A state M has a social

blocking pair e = {u, v} ∈ E if e is blocking pair and e ∈ L. Thus, in a social
blocking pair both agents can strictly increase their utility by generating e (and
possibly dismissing some other edge thereby). A state M that has no social
blocking pair is a socially stable matching. A social improvement step is the
resolution of such a social blocking pair, that is, the blocking pair is added to
M and all conflicting edges are removed.

Locally Stable Matching In addition to G, there is a network (V, L) that
models dynamic visibility by taking the current matching into account. To de-
scribe stability, we assume the pair {u, v} is accessible in state M if u and v
have hop-distance at most 2 in the graph (V, L ∪M), that is, the shortest path
between u and v in (V, L∪M) is of length at most 2 (where we define the shortest
path to be of length ∞, if u and v are not in the same connected component).
A state M has a local blocking pair e = {u, v} ∈ E if e is blocking pair and
u and v are accessible. Consequently, a locally stable matching is a matching
without local blocking pair. A local improvement step is the resolution of such a
local blocking pair, that is, the blocking pair is added to M and all conflicting
edges are removed. We also consider locally stable matchings where instead of
the 2-hop-distance the l-hop-distance in (V, L ∪M) defines the accessibility.



Considerate Matching In this case, the (social) network (V, L) symbolizes
friendships and consideration. We assume the pair {u, v′} is not accessible in
state M if there is agent v such that {u, v} ∈ M , and (a) {u, v} ∈ L or (b)
{v, v′} ∈ L. Otherwise, the pair is called accessible in M . Intuitively, this implies
a form of consideration – formation of {u, v′} would leave a friend v unmatched,
so (a) u will not propose to v′ or (b) v′ will not accept u’s proposal. A state
M has a considerate blocking pair e = {u, v} ∈ E if e is blocking pair and it is
accessible. A stateM that has no considerate blocking pair is a considerate stable
matching. A considerate improvement step is the resolution of such a considerate
blocking pair.

Friendship Matching In this scenario, there are numerical values αu,v ≥ 0
for every unordered pair u, v ∈ V , u 6= v, representing how much u and v care
for each other’s well-being. Thus, instead of the utility gain through its direct
matching partner, u now receives a perceived utility Bp(M,u) = B(M,u) +∑

v∈V \{u} αu,vB(M, v). In contrast to all other examples listed above, this def-
inition requires cardinal matching utilities and cannot be applied directly on
ordinal preferences. A state M has a perceived blocking pair e = {u, v} ∈ E if
Bp(M,u) < Bp((M \ {e′ | e ∩ e′ 6= ∅}) ∪ {e}, u) and Bp(M, v) < Bp((M \ {e′ |
e∩e′ 6= ∅})∪{e}, v). A state M that has no perceived blocking pair is a perceived

or friendship stable matching. A perceived improvement step is the resolution of
such a perceived blocking pair.

2 Correlated Preferences

2.1 Coalition Formation Games with Constraints

In this section, we consider correlated matching where agent preferences are
correlated via edge benefits b(e). In fact, we will prove our results for a straight-
forward generalization of correlated matching – in correlated coalition formation
games that involve coalitions of size larger than 2. In such a coalition formation

game there is a set N of agents, and a set C ⊆ 2N of hyper-edges, the possible

coalitions. We denote n = |N | and m = |C|. A state is a coalition structure

S ⊆ C such that for each v ∈ N we have |{C | C ∈ S, v ∈ C}| ≤ 1. That is,
each agent is involved in at most one coalition. Each coalition C has a weight or
benefit w(C) > 0, which is the profit given to each agent v ∈ C. For a coalition
structure S, a blocking coalition is a coalition C ∈ C \ S with w(C) > w(Cv)
where v ∈ Cv ∈ S for every v ∈ C which is part of a coalition in S. Again, the
resolution of such a blocking coalition is called an improvement step. A stable
state or stable coalition structure S does not have any blocking coalitions. Cor-
related matching games are a special case of coalition formation games where C
is restricted to pairs of agents and thereby defines the edge set E.

To embed the classes of matching games detailed above into a more general
framework, we define coalition formation games with constraints. For each state
S we consider two sets of rules – generation rules that determine candidate
coalitions, and domination rules that forbid some of the candidate coalitions. The



set of undominated candidate coalitions then forms the blocking coalitions for
state S. Using suitable generation and domination rules, this allows to describe
socially, locally, considerate and friendship matching in this scenario.

More formally, there is a set T ⊆ {(T , C) | T ⊂ C, C ∈ C} of generation rules.
If in the current state S we have T ⊆ S and C 6∈ S, then C becomes a candidate
coalition. For convenience, we exclude generation rules of the form (∅, C) from T
and capture these rules by a set Cg ⊆ C of self-generating coalitions. A coalition
C ∈ Cg is a candidate coalition for all states S with C 6∈ S. In addition, there
is a set D ⊆ {(T , C) | T ⊂ C, C ∈ C} of domination rules. If T ⊆ S for
the current state S, then C must not be inserted. To capture the underlying
preferences of the agents, we assume that D always includes at least the set
Dw = {({C1}, C2) | w(C1) ≥ w(C2), C1 ∩ C2 6= ∅, C1 6= C2} of all weight
domination rules.

The undominated candidate coalitions represent the blocking coalitions for
S. In particular, the latter assumption on D implies that a blocking coalition
must at least yield strictly better profit for every involved agent. Note that in
an improvement step, one of these coalitions is inserted, and every coalition that
is dominated in the resulting state is removed. By assumption on D, we remove
at least every overlapping coalition with smaller weight. A coalition structure is
stable if the set of blocking coalitions is empty.

Note that we could also define coalition formation games with constraints
for general preferences. Then Dw = {({C1}, C2) | C1 ∩ C2 6= ∅, C1 6= C2, ∃v ∈
C1 : wv(C1) ≥ wv(C2)}. However, a crucial point in our proofs is that in a
chain of succeeding deletions no coalition can appear twice. This is guaranteed
for correlated preferences as coalitions can only be deleted by more worthy ones.
For general preferences on the other hand there is no such argument.

In the following we define consistency for generation and for domination
rules. This encompasses many classes of matching cases described above and is
key for reaching stable states (quickly).

Definition 1. The generation rules of a coalition formation game with con-

straints are called consistent if T ⊆ {({C1}, C2) | C1 ∩ C2 6= ∅}, that is, all

generation rules have only a single coalition in their precondition and the candi-

date coalition shares at least one agent.

Definition 2. The domination rules of a coalition formation game with con-

straints are called consistent if D ⊆ {(S, C) | S ⊂ C, C ∈ C, C /∈ S, ∃S ∈ S :
S∩C 6= ∅}, that is, at least one of the coalitions in S overlaps with the dominated

coalition. Note that weight domination rules are always consistent.

Theorem 1. In every correlated coalition formation game with constraints and

consistent generation and domination rules, for every initial structure S there

is a sequence of polynomially many improvement steps that results in a stable

coalition structure. The sequence can be computed in polynomial time.

Proof. At first we analyze the consequences of consistency in generation and
domination rules. For generation rules we demand that there is only a single pre-
condition coalition and that this coalition overlaps with the candidate coalition.



Thus if we apply such a generation rule we essentially replace the precondition
with the candidate. The agents in the intersection of the two coalitions would
not approve such a resolution if they would not improve. Therefore, the only
applicable generation rules are those where the precondition is of smaller value
than the candidate.

Now for domination rules we allow an arbitrary number of coalitions in the
precondition, but at least one of them has to overlap with the dominated coali-
tion. In consequence a larger set of coalitions might dominate a non-existing
coalition, but to remove a coalition they can only use the rules in Dw. That is
due to the fact that when a coalition C already exists, the overlapping coalition
of the precondition cannot exist at the same time. But this coalition can only
be created if C does not dominate it. Especially C has to be less worthy than
the precondition. Thus the overlapping precondition alone can dominate C via
weight.

The proof is inspired by the idea of the edge movement graph [15]. Given a
coalition formation game with consistent constraints and some initial coalition
structure S0, we define an object movement hypergraph

Gmov = (V, Vg, Tmov, Dmov).

A coalition structure corresponds to a marking of the vertices in Gmov. The
vertex set is V = {vC | C ∈ C}, and Vg = {vC | C ∈ Cg} the set of vertices
which can generate a marking by themselves. The directed exchange edges are
Tmov = {(vC1

, vC2
) | ({C1}, C2) ∈ E,w(C1) < w(C2)}. The directed domination

hyperedges are given by Dmov = D1 ∪ Dw, where D1 = {({vS | S ∈ S}, vC) |
(S, C) ∈ D}. This covers the rule that a newly inserted coalition must represent
a strict improvement for all involved agents. The initial structure is represented
by a marking of the vertices V0 = {vC | C ∈ S0}.

We represent improvement steps by adding, deleting, and moving markings
over exchange edges to undominated vertices of the object movement graph.
Suppose we are given a state S and assume we have a marking at every vC
with C ∈ S. We call a vertex v in Gmov currently undominated if for every
hyperedge (U, v) ∈ Dmov at least one vertex in U is currently unmarked. An
improvement step that inserts coalition C is represented by marking vC . For
this vC must be unmarked and undominated. We can create a new marking
if vC ∈ Vg. Otherwise, we must move a marking along an exchange edge to
vC . Note that this maps the generation rules correctly as we have seen, that we
exchange the precondition for the candidate. To implement the resulting deletion
of conflicting coalitions from the current state, we delete markings at all vertices
which are now dominated through a rule in Dmov. That is, we delete markings
at all vertices v with (U, v) ∈ D and every vertex in U marked.

Observe that Tmov forms a DAG as the generation of the candidate coalition
deletes its overlapping precondition coalition and thus the rule will only be ap-
plied if the candidate coalition yields strictly more profit for every agent in the
coalition.



Lemma 1 The transformation of markings in the object movement graph cor-

rectly mirrors the improvement dynamics in the coalition formation game with

constraints.

Proof. Let S be a state of the coalition formation game and let C be a blocking
coalition for S. Then C can be generated either by itself (that is, C ∈ Cg) or
through some generation rule with fulfilled precondition C′ ∈ S, and is not
dominated by any subset of S via D. Hence, for the set of marked vertices
VS = {vC | C ∈ S} it holds that vC can be generated either because vC ∈
Vg or because there is a marking on some vC′ with (vC′ , vC) ∈ Tmov, and is
further not dominated via D. Hence, we can generate a marking on vC . It is
straightforward to verify that if vC gets marked, then in the resulting deletion
step only domination rules of the form {({vS}, vT ) | S, T ∈ C, S ∩ T 6= ∅ and
w(S) ≥ w(T )} are relevant. Thus, deletion of markings is based only on overlap
with the newly inserted coalition C. These are exactly the coalitions we lose
when inserting C in S.

Conversely, let VS be a set of marked vertices of Gmov such that S = {C |
vC ∈ VS} does not violate any domination rule (i.e., for every (U , C) ∈ D,
we have U 6⊆ S or C 6∈ S). Then S is a feasible coalition structure. Now if
vC is an unmarked vertex in Gmov, then C /∈ S. Furthermore, assume vC is
undominated and can be marked, because vC ∈ Vg or because some marking
can be moved to vC via an edge in Tmov. Thus for every {SC , C} ∈ D vC being
undominated implies SC 6⊂ S. The property that vC can be marked implies that
C is self-generating or can be formed from S using a generation rule. Hence C
is a blocking coalition in S. The insertion C again causes the deletion of exactly
the coalitions whose markings get deleted when vC is marked. ⊓⊔

To show the existence of a short sequence of improvement steps we consider
two phases.

Phase 1 In each round we check whether there is an exchange edge from a
marked vertex to an undominated one. If this is the case, we move the
marking along the exchange edge and start the next round. Otherwise for
each unmarked, undominated v ∈ Vg we compute the set of reachable posi-
tions. This can be done by doing a forward search along the exchange edges
that lead to an unmarked undominated vertex. Note that the vertex has to
remain undominated when there are the existing markings and a marking on
the source of the exchange edge. If we find a reachable position that domi-
nates an existing marking, we create a marking at the associated v ∈ Vg and
move it along the exchange edges to the dominating position. Then we start
the next round. If we cannot find a reachable position which dominates an
existing marking, we switch to Phase 2.

Phase 2 Again we compute all reachable positions from v ∈ Vg. We iteratively
find a reachable vertex vC with highest weight w(C), generate a marking at
the corresponding v ∈ Vg and move it along the path of exchange edges to
vC . We repeat this phase until no reachable vertex remains.



To prove termination and bound the length, we consider each phase sepa-
rately. In Phase 1 in each round we replace an existing marking by a marking
of higher value either by using an exchange edge or by deleting it through dom-
ination by weight. Further the remaining markings either stay untouched or get
deleted. Now the number of improvements that can be made per marking is
limited by m and the number of markings is limited by n. Hence, there can be
at most mn rounds in Phase 1. Additionally, the number of steps we need per
round is limited m again, as we move the marking along the DAG structure of
exchange edges. Thus, phase 1 generates a total of O(n ·m2) steps.

If in Phase 1 we cannot come up with an improvement, there is no way
to (re)move the existing markings, no matter which other steps are made in
subsequent iterations. This relies on the fact that the presence of additional
markings can only restrict the subgraph of reachable positions. For the same
reason, iteratively generating the reachable marking of highest weight results
in markings that cannot be deleted in subsequent steps. Thus, at the end of
every iteration in Phase 3, the number of markings is increased by one, and all
markings are un(re)movable. Consequently, in Phase 2 there are O(m · n) steps.

For computation of the sequence, the relevant tasks are constructing the
graph Gmov, checking edges in Tmov for possible improvement of markings, or
constructing subgraphs and checking connectivity of single vertices to Vg. Obvi-
ously, all these tasks can be executed in time polynomial in n, m, |T | and |D|
using standard algorithmic techniques. ⊓⊔

Next, we want to analyze whether consistency of generation and domination
rules is necessary for the existence of short sequences or can be further relaxed.

Proposition 1 If the generation rules contain more than one coalition in the

precondition-set, there are instances and initial states such that every sequence

to a stable state requires an exponential number of improvement steps.

The proof uses a coalition formation game with constraints and inconsistent
generation rules obtained from locally stable matching, when agents are allowed
to match with partners at a hop distance of at most ℓ = 3 in (V, L∪M). For this
setting in [16, Theorem 3] we have given an instance such that every sequence to
a stable state requires an exponential number of improvement steps. Note that
the example is minimal in the sense that now we have at most 2 coalitions in
the precondition-set. The detailed proof can be found in the appendix.

Proposition 2 If the generation rules have non-overlapping precondition- and

target-coalitions, there are instances and initial states such that every sequence

to a stable state requires an exponential number of improvement steps.

The construction used for the proof exploits the fact that if precondition- and
target-coalition do not overlap the precondition can remain when the target-
coalition is formed. Then the dynamics require additional steps to clean up the
leftover precondition-coalitions which results in an exponential blow-up. The
entire proof as well as a sketch of the resulting movement graph can be found in
the appendix.



Proposition 3 If the domination rules include target-coalitions that do not

overlap with any coalition in the precondition, there are instances and starting

states such that every sequence cycles.

Proof. Consider the following small example with N = {1, . . . , 6}, C = {{1, 2},
{3, 4}, {5, 6}}, Cg = C, and weights w(C) = 1 for all C ∈ C. There are no
generation rules: T = ∅ (in addition to Cg = C). For the domination rules, we
consider non-overlapping coalitions in precondition and target:

D = {({{1, 2}}, {3, 4}), ({{3, 4}}, {5, 6}), ({{5, 6}}, {1, 2})} .

The initial state is Cstart = {1, 2}.
Now with {1, 2} existing, {3, 4} is dominated and cannot be formed although

it is a candidate coalition. The other candidate coalition {5, 6} is undominated
and represents the unique improvement step. As {5, 6} dominates {1, 2} (but
not vice versa), we lose {1, 2} when {5, 6} is formed. Now {4, 3} is the unique
undominated candidate coalition and is formed. Thereby, we lose {5, 6}, and
{1, 2} becomes undominated. Now {1, 2} is formed, {4, 3} is deleted, and the
cycle is complete. ⊓⊔

Consistent generation and domination rules arise in a large variety of settings,
not only in basic matching games but also in some interesting extensions.

Corollary 1. Consistent generation and domination rules are present in

– locally stable matching if agents can create k = 1 matching edges and have

lookahead ℓ = 2 in G = (V,M ∪ L).
– socially stable matching, even if agents can create k ≥ 1 matching edges.

– considerate matching, even if agents can create k ≥ 1 matching edges.

– friendship matching, even if agents can create k ≥ 1 matching edges.

Due to space restrictions we cannot give a detailed description of the em-
bedding into coalition formation games with constraints. In most cases the em-
bedding is quite straightforward. Agents and edge set are kept as well as the
benefits. The generation and domination rules often follow directly from the
definitions. However, we want to shortly discuss the more complex mapping of
k-matching for k > 1 into coalition formation games with constraints. By defi-
nition no agent is allowed to participate in more than one coalition at the same
time. Thus we cannot directly embed k-matching. Instead we have to map ev-
ery agent u to k copies u1, . . . , uk who can match one vertex each. With these
“independent” copies we now encounter the problem that {ui, vj} and {ui′ , vj′}
should not exist simultaneously. This issue can easily be handled via the domi-
nation rules, but, as {ui, vj} and {ui′ , vj′} do not share any agents, rules of the
form ({{ui, vj}}, {ui′, vj′}) would not be consistent. Thus for every edge {u, v}
we introduce an auxiliary vertex au,v. Potential coalitions then are given by
{ui, vj , au,v} instead of {ui, vj}. The exact embedding for every type of game
can be found in the appendix. Additionally an exemplar proof for correctness is
stated.



Unlike for the other cases, for locally stable matching we cannot guarantee
consistent generation rules if we increase the number of matching edges. The
same holds for lookahead > 2. In both cases the accessibility of an edge might
depend on more than one matching edge. There are exponential lower bounds
in [16, 19] for those extensions which proves that it is impossible to find an
embedding with consistent rules even with the help of auxiliary constructions.

2.2 Reaching a Given Matching

In this section we consider the problem of deciding reachability of a given stable
matching from a given initial state. We first show that for correlated coalition
formation games with constraints and consistent rules, this problem is in NP. If
we can reach it and there exists a sequence, then there always exists a polynomial-
size certificate due to the following result.

Theorem 2. In a correlated coalition formation game with constraints and con-

sistent generation and domination rules, for every coalition structure S∗ that is

reachable from an initial state S0 through a sequence of improvement steps, there

is also a sequence of polynomially many improvement steps from S0 to S∗.

For the proof we analyze an arbitrary sequence of improvement steps from S0

to S∗ and show that, if the sequence is too long, there are unnecessary steps, that
is, coalitions are created and deleted without making a difference for the final
outcome. By identifying and removing those superfluous steps we can reduce
every sequence to one of polynomial length. The detailed proof can be found in
the appendix.

For locally stable matching, the problem of reaching a given locally stable
matching from a given initial matching is known to be NP-complete [19]. Here
we provide a generic reduction that shows NP-completeness for socially, locally,
considerate, and friendship matching, even in the two-sided case. Surprisingly,
it also applies to ordinary two-sided stable matching games that have either
correlated preferences with ties, or non-correlated strict preferences. Observe
that the problem is trivially solvable for ordinary stable matching and correlated
preferences without ties, as in this case there is a unique stable matching that
can always be reached using the greedy construction algorithm [2].

Theorem 3. It is NP-complete to decide if for a given matching game, initial

matching M0 and stable matching M∗, there is a sequence of improvement steps

leading form M0 to M∗. This holds even for bipartite games with strict correlated

preferences in the case of

1. socially stable matching and locally stable matching,

2. considerate matching, and

3. friendship matching for symmetric α-values in [0, 1].

In addition, it holds for ordinary bipartite stable matching in the case of

4. correlated preferences with ties,

5. strict preferences.



3 General Preferences

In this section we consider convergence to stable matchings in the two-sided
case with general preferences that may be incomplete and have ties. For locally
stable matching it is known that in this case there are instances and initial
states such that no locally stable matching can be reached using local blocking
pair resolutions. Moreover, deciding the existence of a converging sequence of
resolutions is NP-hard [19].

We here study the problem for socially, considerate, and friendship matching.
Our positive results are based on the following procedure from [2] that is known
to construct a sequence of polynomial length for unconstrained stable matching.
The only modification of the algorithm for the respective scenarios is to resolve
“social”, “considerate” or “perceived blocking pairs” in both phases.

Phase 1 Iteratively resolve only blocking pairs involving a matched vertex w ∈
W . Phase 1 ends when for all blocking pairs {u,w} we have w ∈ W un-
matched.

Phase 2 Choose an unmatched w ∈ W that is involved in a blocking pair.
Resolve one of the blocking pairs {u,w} that is most preferred by w. Repeat
until there are no blocking pairs.

It is rather straightforward to see that the algorithm can be applied directly
to build a sequence for socially stable matching.

Theorem 4. In every bipartite instance of socially stable matching G = (V =
U ∪̇W,E) with general preference lists and social network L, for every initial

matching M0 there is a sequence of polynomially many improvement steps that

results in a socially stable matching. The sequence can be computed in polynomial

time.

For extended settings the algorithm still works for somewhat restricted social
networks. For considerate matching we assume that the link set is only within
L ⊆ (U × U) ∪ (U ×W ), i.e., no links within partition W .

Theorem 5. In every bipartite instance of considerate matching G = (V =
U ∪̇W,E) with general preference lists and social network L such that {w,w′} /∈ L
for all w,w′ ∈ W , for every initial matching M0 there is a sequence of poly-

nomially many improvement steps that results in a considerate matching. The

sequence can be computed in polynomial time.

We also apply the algorithm to friendship matching in case there can be
arbitrary friendship relations αu,u′ , αu′,u ≥ 0 for each pair u, u′ ∈ U . Here we
allow asymmetry with αu,u′ 6= αu′,u. Otherwise, for all u ∈ U,w,w′ ∈ W we
assume that αu,w = αw,u = αw,w′ = 0, i.e., friendship only exists within U .

Theorem 6. In every bipartite instance of friendship matching G = (V =
U ∪̇W,E) with benefits b and friendship values α such that αu,u′ > 0 only for

u, u′ ∈ U , for every initial matching M0 there is a sequence of polynomially

many improvement steps that results in a friendship matching. The sequence

can be computed in polynomial time.



The algorithm works fine with links between partitions U and W for the
considerate setting, but it fails for positive α between partitions in the friendship
case. We defer a discussion to the full version of the paper.
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A Omitted Proofs

A.1 Proof of Proposition 1

In [16, Theorem 3] we have shown that such instances and starting states exist
for locally stable matching, when agents are allowed to match with partners at
a hop distance of at most ℓ = 3 in (V, L ∪M). This scenario can be embedded
into the context of coalition formation games with constraints, where we violate
only the above mentioned precondition in the generation rules. Note that the
violation is minimal in the sense that we increase from one to at most two sets
in the precondition.

Given an instance of locally stable matching with graph G = (V,E), (so-
cial) links L, correlated preferences based on edge benefits b(e), we define the
parameters of the framework as follows. The set of agents is N = V , the set of
possible coalitions is C = E. The coalitions that can always be generated are the
ones connected by at most 3 links, i.e., Cg = E ∩ {{u, v} | distL(u, v) ≤ 3}. The
benefit or coalition weight is obviously given by w = b. For the generation rules,
we have T = T1 ∪ T2 ∪ T3, where

T1 = {({{u, v}}, {u, v′}) | {u, v}, {u, v′} ∈ E, {v, v′} ∈ L}

T2 = {({{u, v}}, {u′, v′}) | {u, v}, {u′, v′} ∈ E, {u′, v}, {u, v′} ∈ L}

T3 = {({{u′, v}, {u, v′}}, {u, v}) | {u, v}, {u, v′}, {u′, v} ∈ E, {u′, v′} ∈ L}

Here T1 captures accessible pairs with 2 hops composed of one matching edge and
one link, T2 captures accessible pairs within distance of 3 hops composed of one
matching edge and two links, and T3 captures accessible pairs within distance
of 3 hops composed of two matching edges and one link. The latter generation
rules are obviously using two coalitions as precondition. The domination rules
implement only the necessary preference-based improvement of coalitions D =
Dw. ⊓⊔

A.2 Proof of Proposition 2

We will attach a sequence of gadgets that imply a unique exponential improve-
ment sequence. We use a gadget of size 9 and a starting state with the property
that to create coalition C6,i of gadget i we twice need to generate C1,i. Further
the gadget will not reach a stable state unless C6,i exists. Using this property
we will connect k such gadgets by allowing a creation rule {{C1,i+1}, C6,i} and
identifying 0i+1 with 8i. Then to create Ck,6 (without which the graph would
not be stable) C1,1 has to be created at least 2k times.
Now for gadget i we have Ni = {0i, . . . , 8i}, Ci = {C1,i, . . . , C6,i} with C1,i =
{0i, 1i, 2i}, C2,i = {1i, 3i}, C3,i = {3i, 4i, 5i}, C4,i = {4i, 6i}, C5,i = {2i, 6i, 7i},
C6,i = {5i, 7i, 8i}, weights w(C1,i) = xi + 1, w(C2,i) = xi + 2, w(C3,i) = xi + 4,
w(C4,i) = xi + 3, w(C5,i) = xi + 2 and w(C6,i) = xi + 5 with xi = 5(i− 1), and



generation rules

T1 = {{{C1,1}, C2,1}, {{C1,1}, C5,i}, {{C2,1}, C3,i}, {{C3,1}, C1,1}, {{C4,1}, C1,1},

{{C5,1}, C6,1}} ,

Ti = {{{C1,i}, C2,i}, {{C1,i}, C5,i}, {{C2,i}, C3,i}, {{C3,i}, C4,i−1},

{{C4,i}, C4,i−1}, {{C5,i}, C6,i}} if i > 1 .

The set D of domination rules is empty except for all rules of the form ({C}, C′)
such that w(C) ≥ w(C′) and C ∩C′ 6= ∅. As starting coalition structure we have
{C4,k}.

The dynamics are best understood when using the object movement graph
instead of dealing with the single vertices. In Figure 1 we give the object move-
ment graph of the first two gadgets to visualize the dynamics of the gadgets
themselves as well as their interaction. We will analyze the dynamics of gadget
1. The subsequent gadgets work similarly. In the beginning there are no coali-
tions in gadget 1 so we first have a look at how to get some coalition to start
from. Now every C4,i for i > 1 can only be used to generate C4,i−1. Note that
in this case C4,i is not deleted. Thus in the beginning those C4,i are one by one
created until we reach C4,1. With C4,1 we can only generate C1,1 (in gadgets
i > 1 in this situation we might generate C4,i−1 and then ”wait” for C1,i to
arrive). Next as C5,1 is blocked by C4,1 the only option is to generate C2,1 and
thus lose C1,1 again. From there we can only generate C3,1 while losing C2,1 and
C4,1. With the remaining coalition C3,1 we can recover C1,1 which now leads to
creating C5,1 and losing C1,1 a second time. Next we can only create C6,1 which
causes the deletion of C3,1 and C5,1. Finally C6,1 can now be used to create C1,2

which leaves gadget 1 empty. But at the latest after C3,2 has been created in the
next step C4,1 has to be created again and we can rerun the dynamics for the
gadget in the same manner. ⊓⊔

C1,1

C2,1 C3,1

C4,1

C5,1 C6,1 C1,2

C2,2 C3,2

C4,2

C5,2 C6,2 ...

...

...

Fig. 1. Object movement graph of gadget 1 and 2: the thick edges symbolize
domination rules and the dashed edges symbolize generation rules



A.3 Proof of Lemma 1

We will consider each setting individually. Further while we describe the embed-
ding for each case we will only give a proof of correctness for friendship matching
with k = 1 as the proofs for all cases are very similar and this is one of the most
complex ones.

Locally Stable Matching To embed an instance of locally stable matching
given by graph G, link set L, and edge benefits into our framework, we apply
the embedding indicated in Proposition 1. Note that for the standard case of
k = 1 matching edges and lookahead ℓ = 2, we obtain consistent generation and
domination rules. If we change to k > 1 matching edges or lookahead of ℓ > 2,
consistency of generation rules becomes violated, as two edges can appear in the
precondition. This follows from the exponential lower bounds in [16, 19].

Socially Stable Matching To embed an instance of socially stable matching
given by graph G = (V,E), link set L, and edge benefits b into our framework,
we use N = V , C = E, and Cg = L ∩ E. There are no additional generation
rules T = ∅, and the benefits are obviously given by w = b. The domination
rules implement only the necessary preference-based improvement of coalitions
D = Dw. Obviously, generation and domination rules are consistent.

If we change to k > 1 matching edges per agent, then, in principle, we violate
a condition of our framework – that in every state, every agent can be part of
at most one coalition. A simple way to embed the games correctly into the
framework is to represent each agent u by k auxiliary agents u1, . . . , uk, who can
match to one partner each. The edges between two agents become a complete
bipartite graph between the corresponding auxiliary agents. Note that in the
new game, ui, uj and vi′ , vj′ can now build two edges among u and v. This can
be prohibited using an auxiliary agent au,v for each matching edge {u, v} ∈ E,
and replacing every coalition {ui, vj} by {ui, vj , au,v}, for i, j = 1, . . . , k.

More formally, we define

N = {vi | v ∈ V, i = 1 . . . k} ∪ {au,v | {u, v} ∈ E}

C = {{ui, vj , au,v} | {u, v} ∈ E, i, j = 1 . . . k}

Cg = {{ui, vj , au,v} | {u, v} ∈ E ∩ L, i, j = 1 . . . k}

w({ui, vj , au,v}) = b(u, v) for {u, v} ∈ E, i, j = 1 . . . k

T = ∅

D = Dw

Obviously, generation and domination rules are consistent.

Considerate Matching To embed an instance of friendship matching given by
graph G = (V,E), link set L, and edge benefits b, we use N = V , C = Cg = E,



and, consequently, T = ∅. We set w = b. For the domination rules, let D =
D1 ∪Dw where

D1 = {({{u, v}}, {u, v′}) | {u, v}, {u, v′} ∈ E, {u, v} ∈ L or {v, v′} ∈ L} .

The case of k > 1 matching edges can be handled via auxiliary agents as ex-
plained for socially stable matching above. Again, this essentially affects only the
domination rules, which allow more flexibility with respect to consistency. More
formally, we define N , C, w and T as outlined above and change the remaining
definitions to

Cg = C

D = D1 ∪Dw with

D1 = {({{ui, vj , eu,v}}, {ui′ , v
′
j′ , eu,v}) |

{u, v}, {u, v′} ∈ E, {u, v} ∈ L or {v, v′} ∈ L, i, i′, j, j′ = 1 . . . k} .

Friendship Matching To embed an instance of friendship matching given
by graph G = (V,E), edge benefits b, symmetric friendship values α, we use
N = V , C = Cg = E, and, consequently, T = ∅. To model the perceived utilities,
we assume w({u, v}) = b({u, v}) + αu,vb({u, v}). For the domination rules, let
D = D1 ∪D2 ∪Dw where

D1 = {({{u, v}}, {u, v′}) |

αv′,vb({u, v}) + αv′,ub({u, v}) ≥ b({u, v′}) + αv′,ub({u, v
′})}

D2 = {({{u, v}, {u′, v′}}, {u, v′}) |

b({u′, v′}) + αv′,u′b({u′, v′}) + αv′,vb({u, v}) + αv′,ub({u, v})

≥ b({u, v′}) + αv′,ub({u, v
′})} .

The domination rules in D1 describe that v′ earns more from existing {u, v}
through friendship than from the candidate {u, v′}. In D2, agent v

′ earns more
from the combination of benefits from dropped agents than from the candidate
{u, v′}. Again, the case of k > 1 edges per agent can be included using auxiliary
agents and preserves consistency as it affects only the domination rules.

Regarding correctness we only prove the case of k = 1. The other cases are
very similar.

Let M be a matching in G. Now assume we have a perceived blocking pair
{u, v′} for M that we intend to resolve. Domination can only occur through
edges involving u or v′.

Firstly, if u and v′ are unmatched, there cannot be any edges dominating
{u, v′}, and we can generate all matching edges as candidate coalitions via
Cg = C. Hence, perceived blocking pairs between unmatched agents are also
undominated candidate coalitions. After adding {u, v′}, no edge is removed.
Hence, the set of coalitions resulting from the rules above exactly represents the
matching after resolving the perceived blocking pair {u, v′}.



Secondly, assume that agent u is matched to some agent v, but agent v′ is
unmatched. As {u, v′} is a perceived blocking pair, we know that u improves by
switching from v to v′, that is,

b({u, v}) + αu,vb({u, v}) +
∑

u′∈V \{u,v,v′}

αu,u′b(M,u′)

< b({u, v′}) + αu,v′b({u, v′}) +
∑

u′∈V \{u,v,v′}

αu,u′b(M,u′)

which cancels to b({u, v}) + αu,vb({u, v}) < b({u, v′}) + αu,v′b({u, v′}). Thus
{u, v′} is not dominated by {u, v} through Dw. Now {u, v} might still domi-
nate {u, v′} through D1. But then αv,v′b({u, v}) + αu,v′b({u, v}) ≥ b({u, v′}) +
αu,v′b({u, v′}), that is, the gain v′ receives through its friendships with v and u
from {u, v} is at least as large as the gain it would receive by matching with u
(directly and through friendship). This contradicts the assumption that {u, v′}
is a perceived blocking pair. Hence {u, v′} is an undominated candidate coali-
tion. After adding {u, v′}, {u, v} is dominated through weight and hence gets
dropped. Again, the set of coalitions resulting from our rules exactly correspond
to the matching after resolving the perceived blocking pair {u, v′}.

Thirdly, assume that {u, v} and {u′, v′} are present in M . The previous argu-
ments for edges that dominate {u, v′} through D1 or Dw can be applied again.
It remains to check whether domination via D2 is possible. But the domination
rules in D2 imply that the loss caused by giving up {u, v} and {v′, u′} for v′ is at
least as large as the gain generated from {u, v′}. Thus, as {u, v′} is a perceived
blocking pair, there is no rule in D2 pointing from {{u, v}, {u′, v′}} to {u, v′} and
we can simply generate {u, v′} again. Then {u, v} and {u′, v′} are dominated via
Dw and hence get dropped, which gives M \ {{u, v}, {u′, v′}}∪{{u, v′}}. Again,
the set of coalitions resulting from our rules exactly correspond to the matching
after resolving the perceived blocking pair {u, v′}.

Conversely, let S be a feasible coalition structure in our coalition formation
game with constraints. Observe that our rules imply that S corresponds to a
matching M . Further let {u, v′} 6∈ S be an unmarked, undominated edge. As-
sume for contradiction that {u, v′} is not a perceived blocking pair because v′

would not improve.

Firstly, if v′ is single, this is only possible if v′ gains at least as much through
u’s current matching edge than through directly matching to u. Then, a rule of
D1 would dominate {u, v′}.

Secondly, assume that v′ is matched to some u′ but u is unmatched. Then
{u, v′} is not a perceived blocking pair if b({u′, v′})+αu′,v′b({u′, v′}) ≥ b({u, v′})+
αu,v′b({u, v′}). But in that case {u′, v′} would dominate {u, v′} by Dw.

Thirdly, let v′ be matched to some u′ and u matched to some v. As before
we must have b({u′, v′}) + αu′,v′b({u′, v′}) < b({u, v′}) + αu,v′b({u, v′}) and
b({u, v})+αu,vb({u, v}) < b({u, v′}) +αu,v′b({u, v′}) as otherwise {u, v′} would
be dominated by Dw. {u, v′} is no improvement for v′ only if the combined
loss caused by {u, v} and {u′, v′} out-weights the gain through {u, v′}. In other



words,

b({u′, v′}) + αu′,v′b({u′, v′}) + αv,v′b({u, v}) + αu,v′b({u, v})

≥ b({u, v′}) + αu,v′b({u, v′}) .

Then there is an according rule in D2 and the combined existence of {u′, v′} and
{u, v} results in {u, v′} being dominated.

Hence, whenever {u, v′} is an undominated candidate coalition, it represents
a perceived blocking pair for the current matching. Further when it gets inserted,
any former matching edges of u and v′ get dominated by weight and dropped,
while all other edges remain unaffected. Hence, the new coalition structure rep-
resents exactly matching M after resolving {u, v′}. ⊓⊔

A.4 Proof of Theorem 2

The proof generalizes a similar result for locally stable matchings [19] and is
based on two observations:

1. Note that by design of T and D, if some generation rule ({C1}, C2) is finally
applied, we need to have w(C2) > w(C1) and the creation of C2 causes
the deletion of C1. Thus, within any sequence of improvement steps we can
identify a unique predecessor for each coalition C /∈ Cg whose presence is
necessary for creation of C. Furthermore, this predecessor has weight strictly
smaller than w(C). Hence the sequence of predecessors necessary to generate
any coalition C is limited by m.

2. Our second observation is that the only domination rules that are applied
in the deletion of an existing coalition are those based on weight domina-
tion. Thus, every deletion of a coalition is accompanied by the creation of a
worthier coalition. A chain of deletions again is limited in length by m.

Now let I be some sequence of improvement steps converting S0 into S∗.
If a coalition is created and deleted again but neither used to delete another
coalition nor marked as a predecessor to create one, then this coalition provides
no contribution for the transformation from S0 to S∗. Thus we can delete all these
coalitions from I and receive a sequence I1 which as well transforms S0 into S∗

via improvement steps. Now in I1 there might be coalitions which get created
and deleted again without use as they only deleted or created coalitions we
dropped from I1. Thus we can repeat this sequence truncation until all remaining
coalitions are of use. We claim that this sequence I∗ has to be of polynomial
length.

First assume state S0 is the empty coalition structure. Then we do not have
to delete any unfitting coalitions but simply create the needed ones. As not all
of S∗ might be in Cg we possibly have to use generation rules of T but by (1) we
know that for each desired coalition we need at most m steps. Thus, overall we
need at mostm2 steps. Now for an arbitrary starting coalition structure we might
also have to delete certain coalitions to reach S∗. Thus each of coalition of S0

might generate a chain of coalitions deleting each other throughout the sequence,



but (2) tells us that this chain is limited in length by m. Also, (1) again tells
us that the number of steps it takes to generate the coalition which is used for
the deletion is limited by m as well. The only remaining issue is to argue why
additional deletion of coalitions during this procedure does not create problems.
Now if such a coalition was part of S0 it does not create any additional costs.
If it was part of some deletion chain, its cost was already accounted towards
the coalition of S0 which had to be deleted. In all other cases, the creation of
this coalition was of no use in the first place, that is, it would not be part of
the truncated sequence I∗. Hence, overall we have a sequence of length at most
|S0| ·m2 + |S∗| ·m ∈ O(m2n) steps. ⊓⊔

A.5 Proof of Theorem 3

The proof is done via reduction from 3Sat . We will use the same idea and
central construction for all cases and only adapt the structure of the clause-
gadgets to the specific settings. Each clause gadget will have the property that
one particular vertex xC has be matched to a vertex of the central construction
at some (arbitrary) point during the dynamics and has to be left single again.
Otherwise the clause gadget cannot be transformed into the state it has in the
desired final matching.

We first outline the universal proof approach including only this one partic-
ular vertex xC per clause C (and the central construction). We show that it is
NP-hard to decide whether there is a sequence of improvement steps such that
each of the clause vertices gets matched and dropped at least once. Afterwards,
for every setting we will give the exact clause gadget and explain why it is nec-
essary to match xC to some vertex outside the clause gadget to reach the final
state.

Given a 3Sat formula with k variables x1, . . . , xk and l clauses C1, . . . , Cl,
where clause Cj contains the literals l1,j , l2,j and l3,j , for our central construction
we have

U = {uxi
|i = 1 . . . k} ∪ {uxi

|i = 1 . . . k} ∪ {xCj
|j = 1 . . . l},

W = {wxi
|i = 1 . . . k} ∪ {wxi

|i = 1 . . . k}.

Further E = E1 ∪ E2 ∪ E3 with E1 = {uxi
, wxi

}, {uxi
, wxi

} | i = 1 . . . k},
E2 = {uxi

, wxi
}, {uxi

, wxi
} | i = 1 . . . k}, and E3 = {{xCj

, wli,j} | j = 1 . . . l, i =
1 . . . 3}, and benefits in Table 1.

For a small example see Figure 2. In the case of locally and socially stable
matching we will have social links between all vertices of U and W to make
sure that all edges of E are available for matching at all times. In the case of
friendship matching we set all α to 0 to ensure that utility is also perceived
utility.

We start from M0 = E2 and want to reach M∗ = E1 which also is the only
stable state of this graph. This transformation is always possible, but we now



Table 1. Table of edge benefits

U W b({u,w})

xCj
wli,j i · l + j j = 1 . . . l, i = 1 . . . 3

uxi
wxi 4l + i i = 1 . . . k

uxi
wxi

4l + k + i i = 1 . . . k

uxi
wxi

4l + 2k + i i = 1 . . . k

uxi wxi 4l + 3k + i i = 1 . . . k.

want to decide whether we can construct a sequence which involves all vertices
xCj

.

First, let us build an intuition what has to happen to match each xCj
. Note

that we have to create some edge {xCj
, wli,j} of E3 for every clause Cj , but in

the beginning all those edges are blocked through E2. During the dynamics per
variable we can switch one edge of E2 to E1 freeing the other w-vertex. Then this
vertex can be used to “visit” all the adjacent clauses in increasing order before
creating the second edge of E1. But the w-vertex which switched first remains
blocked and thus can be used for none of the clauses. Thus, the choice whether
to create {uxi

, wxi
} or {uxi

, wxi
} first can be seen as the choice whether to set

xi true or false (by creating the opposite edge first). All clauses that include
the variable in the corresponding assignment then can be matched using wxi

respectively wxi
. We will now formally prove the correctness of the reduction.

Assume that the 3Sat formula is satisfiable. Then we pick a satisfying as-
signment and for each variable generate the edge of E1 which symbolizes the
inverses of the assignment. Now the w-vertex in the assigned value of every vari-
able is unmatched and we one by one generate the incident edges leading to the
clause variables in increasing order starting from the smallest unblocked edge.
As for every clause at least one literal is satisfied and the edges are created in
increasing order and thus cannot block each other, by the end of this phase all
vertices xCj

were matched at least once. It remains to generate the second edge
for every variable, and we have reached M∗ with a sequence of the desired form.

Assume that we can reach M∗ from M0 with a sequence matching each
xCj

at least once. For each clause Cj pick a vertex wli,j which was matched to
xCj

. We claim that for no variable xi both vertices wxi
and wxi

are picked: In
the beginning both vertices are matched through an edge larger than any edge
leading to a clause vertex. Thus to match one of these vertices to some xCj

it
first has to become single, that is, its matching partner uxi

respectively uxi
has

to leave for a better partner. But the only better partner for uxi
is wxi

and the
only better partner for uxi

is wxi
. Further, both edges then are stable as they are

the top choice of both partners. Hence, to make wxi
available we have to block

wxi
for the rest of the dynamics and to make wxi

available we have to block wxi

for the rest of the dynamics. Now as at most one w-vertex of each variable is
picked, we can assign each variable the value of the picked vertex and further
assign a random value to each variable with no w-vertex picked. Then for each
clause at least one literal is fulfilled, that is, the formula is satisfied. Finally, we
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Fig. 2. Central gadget with variables x, y, z and clause Cj = x ∨ y ∨ z

design appropriate clause gadgets for each case:

1. For socially and locally stable matching we add a vertex yCj
to W and an

edge {xCj
, yCj

} of benefit j to E for every clause Cj . Further we also add all
the edges {xCj

, yCj
} to the starting state M0 but keep M∗. Note that we did

no add any social links for yCj
. Thus M∗ is stable and can be reached if and

only if we rematch every yCj
at least once (and hence delete {xCj

, yCj
}).

2. For considerate matching we add two vertices yCj
and y′Cj

to W and edges

{xCj
, yCj

} of benefit j − 1

2
and {xCj

, y′Cj
} of benefit j to E for every clause

Cj . Further we also add all the edges {xCj
, yCj

} to the starting state M0 and
all the edges {xCj

, y′Cj
} to M∗. Finally we introduce a social link between

yCj
and y′Cj

. Now xCj
cannot switch from yCj

to y′Cj
as y′Cj

is friends with

yCj
and would thus reject xCj

. But, if xCj
is single, y′Cj

does not reject xCj
.

Hence again we need to make sure that for every clause xCj
is matched to

some vertex outside the clause-gadget and dropped to reach M∗.

3. For friendship matching we add two vertices yCj
and y′Cj

to W and edges

{xCj
, yCj

} of benefit j− 1

2
and {xCj

, y′Cj
} of benefit j to E for every clause Cj .

The only friendship value 6= 0 is αxCj
,yCj

= 1

2j−1
. Again we add all the edges

{xCj
, yCj

} to the starting state M0 and all the edges {xCj
, y′Cj

} to M∗. Note

that by the choice of αxCj
,yCj

the perceived value for xCj
from {xCj

, yCj
}

now is (1+αxCj
,yCj

)(j− 1

2
) = j− 1

2
+(j− 1

2
) 1

2j−1
= j = b({xCj

, y′Cj
}), that

is, there is a tie in xCj
’s preference list regarding yCj

and y′Cj
. Hence M∗

is stable but xCj
will not switch directly from yCj

to y′Cj
. But once xCj

is

single we can match it with y′Cj
as desired.

4. For correlated matching with ties we add two vertices yCj
and y′Cj

to W and

edges {xCj
, yCj

} and {xCj
, y′Cj

}, both of benefit j, to E for every clause Cj .

Further we also add all the edges {xCj
, yCj

} to the starting state M0 and all
the edges {xCj

, y′Cj
} to M∗. Then xCj

does not switch from yCj
to y′Cj

as it

yields no improvement. But, if xCj
is single, we can choose to match to y′Cj

.



5. For matching with strict preferences we first note that, as all edge values in
the central gadget are distinct, we can derive a strict preference order over all
possible matching partners for each vertex. Now for each clause Cj we add
one vertex x′

Cj
to U and two vertices yCj

and y′Cj
to W and edges {xCj

, yCj
},

{xCj
, y′Cj

}, {x′
Cj
, yCj

} and {x′
Cj
, y′Cj

} to E. For xi we add yCj
>xCj

y′Cj
to

the bottom of the preference list, that is, all vertices of the central gadget
are preferred. For the other preferences we have y′Cj

>x′

Cj
yCj

, x′
Cj

>yCj
xCj

and xCj
>y′

Cj
x′
Cj
. To M0 we add {xCj

, yCj
} and {x′

Cj
, y′Cj

} and to M∗ we

add {xCj
, y′Cj

} and {x′
Cj
, yCj

}. Now the clause gadget has two stable states:

{{xCj
, yCj

}, {x′
Cj
, y′Cj

}} and {{xCj
, y′Cj

}, {x′
Cj
, yCj

}}. To switch again we
first have to break open the stable starting state by matching xCj

to some
vertex of the central gadget and then leave xCj

single. Then y′Cj
can switch

to its preferred choice xCj
which frees x′

Cj
for yCj

resulting in the desired
final state.

⊓⊔

A.6 Proof of Theorem 4

The proof is almost identical to the proof for the general case. The only modi-
fication is the limitation to pairs that represent social links for the rematching
process.

In Phase 1 each matched w ∈ W increases in terms of utility (or becomes
unmatched) and the number of matched w only goes down. Thus, after at most
|U | · |W | steps Phase 1 is over.

For Phase 2 we maintain the invariant that no matched w ∈ W is part of a
social blocking pair in any step of the phase. Assume conversely that at some
point in Phase 2 there is some matching edge {u,w} where w ∈ W is part
of a social blocking pair {u′, w}. As Phase 1 ends only when no matched w
can improve further, this situation has to occur after some social blocking pair
{w′, u′′} has been resolved in Phase 2. But as w is still matched, this matching
edge does not influence w’s utility. Also, u′′ did improve and no vertex in U
drops in terms of utility as w′ was unmatched before and thus did not leave
an agent when matching to u′′. Hence, all vertices in U which did not want to
match to w before still do not want to match w. Therefore no matched w can be
involved in a social blocking pair during Phase 2. As no matched w ∈ W ever
rematches, no u ∈ U becomes unmatched and decreases in utility during Phase
2. Thus, in Phase 2 there can be at most |U | · |W | steps. The output is a socially
stable matching, as there is no social blocking pair for matched (invariant) and
unmatched (Phase 2 terminates) w ∈ W .

A.7 Proof of Theorem 5

Observe that if an edge {u,w} ∈ L forms in M , then there are no further
considerate blocking pairs for u and w throughout. Hence, if this happens, {u,w}



remains fixed throughout the run of the algorithm. This does not harm any of
the subsequent arguments.

In Phase 1, we again observe that the number of matched w ∈ W can only
decrease. Also, no w ∈ W ever rematches with some u ∈ U to which it had
been matched before as each matched w ∈ W only switches partner if it can
improve utility by doing so. Once an agent of W loses its partner (due to some
other vertex of W matching to it), it will not be considered in Phase 1 anymore.
Hence, overall Phase 1 terminates after at most |U | · |W | steps.

For Phase 2 we again maintain the invariant that no matched w ∈ W is
involved in a considerate blocking pair. This claim holds directly after Phase 1
ended. We show that if this holds before some considerate blocking pair {u,w}
is resolved, then in the resulting matching it holds again. Assume conversely
that after {u,w} is resolved some matched vertex becomes part of a considerate
blocking pair. As w was single, he does not leave any partner in U when matching
with u. So w’s choice was not constrained by the links, and hence {u,w} was
an ordinary blocking pair. By picking the most preferred one, w is not part of
any blocking pair afterwards. Now u matching with w of course opens up the
possibility for his former partner w′ (if any) to move to u′ with {u, u′} ∈ L, but
this former partner is now unmatched. As there are no links between vertices in
W , inserting matching edge {u,w} alters only the accessible partners for w and
w′. Since u increases in utility, there are also no additional (considerate) blocking
pairs involving u. Thus, every considerate blocking pair that evolves must have
been present before. This proves that Phase 2 also terminates after at most
|U | · |W | steps. The output is a considerate matching, as there is no considerate
blocking pair for matched (invariant) and unmatched (Phase 2 terminates) w ∈
W . ⊓⊔

A.8 Proof of Theorem 6

Note that in the case of matching with friendship the term most preferred block-

ing pair refers to a perceived blocking pair whose resolution provides the largest
perceived welfare.

In phase 1 the number of matched w ∈ W can only decrease and no w ∈ W
ever rematches with some u ∈ U it has been matched to before. Once an agent
of W loses its partner (due to some other vertex of W matching to it), it will
not be considered in Phase 1 anymore. Also, each matched w ∈ W only switches
partner if it can improve perceived utility by doing so. Due to the structure of
α, the perceived benefit for w does only result from its direct matching partner.
Thus w only switches u to u′ if bw(u,w) < bw(u

′, w). Hence, w can only be
involved in at most |U | resolutions of perceived blocking pairs. Overall, Phase 1
again terminates after at most |U | · |W | steps.

Phase 2 becomes slightly more complicated to analyze. We maintain the
invariant that no matched w ∈ W is involved in a perceived blocking pair. This
claim holds directly after Phase 1 ended. We show that if this holds before
some perceived blocking pair {u,w} is resolved, then in the resulting matching
it holds again. Assume conversely that after {u,w} is resolved some matched



vertex becomes part of a perceived blocking pair. We know that w′ 6= w as u
was w’s most preferred blocking pair partner. Thus, w′ was already matched
to some u′ 6= u before {u,w} was resolved but only becomes involved in a
perceived blocking pair {u′′, w′} now. Let M be the matching before {u,w}
is resolved and M ′ the matching resulting resolving {u,w}. Also, let M ′′ be
the matching resulting from M ′ when resolving {w′, u′′}, and M̃ ′′ the matching
resulting from M if we add {u,w} and delete all adjacent edges (that is, resolve
{u,w} although it might not be a blocking pair). As for w′ we have Bp(M,w′) =

Bp(M
′, w′) and Bp(M

′′, w′) = Bp(M̃
′′, w′), w is already willing to switch in M .

Thus u′′ must not want to switch in M but in M ′. First assume that u′′ = u.
Then Bp(M,u) < Bp(M

′, u) and further M ′′ = M̃ ′′. Hence, if u′′ is willing
to switch in M ′, the same holds for M . Now assume that u′′ 6= u. Then u′′

might receive perceived benefit from u which changes from M to M ′. Note that,
as w was unmatched before (that is, w did not leave some benefit-providing ũ
for u) and u′′ does not receive perceived benefit from any vertex in W , this is
the only perceived benefit that changes for u′′ between M and M ′. But then
Bp(M

′) − Bp(M
′′) = bu′′({u′′, w′}) − αu′′,u′bu′({u′, w′}) = Bp(M) − Bp(M̃

′′).
Thus, again u′ has the same incentive to switch in M as in M ′. Next, we realize
that if some u ∈ U is matched to some w, it is only willing to switch to some
unmatched w′ if bu({u,w′}) > bu({u,w}). Thus, once a vertex u ∈ U is matched
in Phase 2, it never becomes unmatched again (as no matched w ∈ W wants to
switch). In every rematching step u increases its direct benefit, so u can only be
involved in at most |W | resolutions of perceived blocking pairs. This proves that
Phase 2 also terminates after at most |U | · |W | steps. The output is a friendship
matching, as there is no perceived blocking pair for matched (invariant) and
unmatched (Phase 2 terminates) w ∈ W . ⊓⊔
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