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Embedding the dual complex

of hyper-rectangular partitions

Michael Kerber∗

May 2, 2014

Abstract

A rectangular partition is the partition of an (axis-aligned) rectangle into interior-
disjoint rectangles. We ask whether a rectangular partition permits a “nice” drawing
of its dual, that is, a straight-line embedding of it such that each dual vertex is placed
into the rectangle that it represents. We show that deciding whether such a drawing
exists is NP-complete. Moreover, we consider the drawing where a vertex is placed
in the center of the representing rectangle and consider sufficient conditions for this
drawing to be nice. This question is studied both in the plane and for the higher-
dimensional generalization of rectangular partitions.

1 Introduction
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Problem statement and results We consider the partition of the
d-dimensional cube into axis-parallel d-dimensional hyper-rectangles (or
boxes) with disjoint interiors which we call hyper-rectangular partitions.
The dual complex of such a partition is an abstract simplicial complex of
dimension d and represents the connectivity of the boxes in the partition,
possibly after a slight distortion if more than d + 1 boxes meet in a
common point. Each vertex of the dual represents a box of the partition.

We pose the question of whether a partition permits a “nice” drawing
of its dual in R

d. We impose three conditions for niceness: First of
all, the drawing must be straight, that is, a face must be drawn as the
convex hull of the vertices that are on its boundary. That means that
the drawing is completely determined by the positions of the vertices.
Second, we disallow improper intersections of faces; for instance, edges are
not allowed to cross except at their endpoints. The first two conditions can be summarized
to that the drawing must yield a simplicial complex in R

d. The final condition is that each
vertex must be placed in the box that it represents; that guarantees some minimal amount
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of geometric closeness between a primary cell of the partition and its dual counterpart. If a
drawing with these three conditions is possible, we call it an embedding. See the figure on
the right for an illustration of a rectangular partition in R

2 and an embedding of its dual.
We will see that not every hyper-rectangular partition permits an embedding of the

dual, so a natural question to ask is how fast can the existence of an embedding be decided
for a given partition. Our first main contribution is to show that this decision problem is
NP-hard already in the planar case. More precisely, we restrict to the case that the boxes
of a partition and the vertices of the dual are snapped to a uniform grid, and we prove that
the problem is NP-complete under this constraint; see Section 3 for the precise statement.

The most natural choice for placing a vertex of the dual (for arbitrary dimension d) is the
center of the corresponding box. We call a partition center-embeddable if this vertex place-
ment extends to an embedding of the dual. For instance, if all boxes are d-dimensional cubes
of same size, the partition is center-embeddable because its dual is simply a triangulation of
the uniform grid defined by the box centers. We ask for simple, but less restrictive sufficient
conditions on a partition to be center-embeddable. We call a partition β-balanced (with
β ≥ 1), if for any intersecting pair of boxes, the ratio of the longest side of the boxes divided
by the shortest side of the boxes is at most β. As our second main contribution, we investi-
gate the relationships between β-balanced and center-embeddable partitions: In the planar
case, we show that center embeddability is guaranteed if the partition is (3 − ǫ)-balanced,
for any ǫ > 0. However, in R

3 (and higher dimensions) we can construct a (1 + ǫ)-balanced
partition that is not center-embeddable. The situation changes if we restrict to cubical par-
titions, consisting only of d-dimensional cubes: In this case, (3− ǫ)-balanced partitions are
center-embeddable in R

3, and we can construct a cubical β-balanced partition in R
d that is

not center-embeddable for any β > d/(d− 2). It remains open whether cubical β-balanced
partitions with β < d/(d− 2) are center-embeddable in dimensions larger than 3.

Related work Rectangular partitions in R
2 have a lot of applications, for instance in

VLSI design [13], cartography [15], and database-related applications [14]; we refer to the
survey by Eppstein [8] for more examples. In this context, rectangular partitions sometimes
appear as the rectangular dual of a triangulated planar graph. Linear-time algorithms have
been presented for the computation of such a rectangular dual [12]. Our situation, however,
is different as the rectangular partition is the input object and we ask for a straight-line
embedding of its dual where the vertices are constrained to lie inside rectangles. This can
be seen as an instance of planar graph embedding with constraints; NP-hardness has been
shown for other constraints, such as when fixing the length of each edge [5], and, more related
to our approach, when restricting the placement of each vertex to a disc [10]. Furthermore,
the problem of simultaneously embedding a planar graph and its dual on the integer grid
has received some interest, e.g. [9]. Most related to our approach is the variant where the
embedding of the primal graph is fixed and an embedding of the dual is sought for, such
that only primal-dual pairs of edges intersect. Bern and Gilbert [3] show that the problem is
linear-time solvable if all faces are convex and four-sided, and becomes NP-hard for convex
five-sided faces. The latter is proven with a reduction from planar 3SAT and is similar to
the proof presented in this work. However, although rectangular partitions can be seen as
planar graphs with convex faces, there is no direct reduction from our problem because we
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allow the dual graph to intersect the partition arbitrarily, not just at primal-dual pairs.
The higher dimensional equivalent of rectangular partitions (and their dual complexes)

apparently has not been investigated from a theoretical point of view. Our motivation
for this topic is originated in the approximation and simplification of d-dimensional image
data [2]. The idea is to identify rectangular regions in which the image looks “similar”. In
the simplest case, similarity means that the image values inside a region are similar, but
different measures can be defined. The regions define a hyper-rectangular partition which
can consist of substantially less elements than the original nd image cells. In some situations,
a piecewise linear approximation of the image is required, e.g., for computing a level set
of the image. Standard techniques like bilinear interpolation cannot be applied because
the non-uniformity of the partition leads to discontinuities; see [16] for a discussion with
references. The standard approach is to triangulate the rectangular regions separately, such
that triangulations of adjacent regions agree on their common boundary. This results in
many simplices for regions with a large number of neighbors. Our dual complex construction
constitutes an alternative to this standard approach; however, it does not necessarily embed
in the ambient space nicely, which leads to the question considered in this work.

A special case of rectangular partitions are hierarchical cubical subdivisions ; they arise
from the initial box by a sequence of subdivisions, where a box in the partition is replaced
with 2d sub-boxes of half the side length. In 2 and 3 dimensions, these subdivisions are called
quad-trees and oct-trees, respectively. A hierarchical cubical subdivisions is called balanced if
adjacent boxes differ at most by a factor of 2 in side length. Note that balanced subdivisions
are special cases of 2-balanced partitions in our notation. In [2], the dual complex of an
oct-tree is used to approximate the persistent homology (see [6] for a definition) of the
underlying image. It was also shown that the dual complex is center-embeddable, provided
that the oct-tree is balanced. In [7], that result is generalized to general hierarchical cubical
subdivisions; our results show that the hierarchical structure is crucial for obtaining this
result, as for all d ≥ 5, we can construct a non-hierarchical 2-balanced partition that is not
center-embeddable.

Outline We introduce hyper-rectangular partitions and their dual complexes formally in
Section 2. Section 3 is devoted to the NP-completeness proof of finding an embedding in the
planar case. We study center-embeddability in Section 4. Section 5 concludes the paper.

2 Hyper-Rectangular Partitions and Dual Complexes

This section introduces the most important concepts needed for the results of this work.
We call a point set of the form [a1, b1]×. . .×[ad, bd] with ai < bi and a1, . . . , ad, b1, . . . , bd ∈

Z an integral hyper-rectangle, or just a box, with lengths b1 − a1, . . . , bd − ad. An integral
hyper-square, or square box is a box where all lengths are equal. We can think of a box
to be composed out of hyper-pixels, or unit boxes which are integer translates of [0, 1]d.
Let B = [0, n]d be a square box with an arbitrary n > 0. A hyper-rectangular partition
C = (R1, . . . , Rm) (with m ≤ nd) of B is a collection of boxes Ri such that their union
equals B and their interiors are disjoint. If the union of the Ri is only a subset of B, we
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Figure 1: Left: A non-generic rectangular partition with 5 rectangles. Middle: The distorted
pixels and rectangles. Right: The dual complex of the partition.

call the collection a partial hyper-rectangular partition. We usually omit the term “hyper-
rectangular” and just talk about a partition. A partition is called generic if not more than
d+ 1 boxes intersect in a common point.

We associate an abstract d-dimensional dual complex D(C) to a partition C. For a
generic partition, D(C) is just the nerve of C, that is, each box Ri is represented by a
vertex vi, and the simplices of D(C) correspond to subsets of {R1, . . . , Rm} with non-empty
intersection. This construction fails for non-generic partitions because intersections of d+2
rectangles give rise to a (d + 1)-simplex in the nerve. To circumvent this problem, we
slightly perturb the boxes to obtain a generic situation, following the construction from [7]:
The union of unit boxes can be seen as the Voronoi diagram of the pixel centers P :=
{(x1 + 1/2, . . . , xd + 1/2) | x1, . . . , xd ∈ Z}. For an arbitrary ǫ ∈ (0, 1), we define the
distortion of a point p = (x1, . . . , xd) ∈ P as

Tǫp := (x1 − ǫ
Σxi

2
, . . . , xd − ǫ

Σxi

2
).

We consider the Voronoi diagram of the distorted pixel centers. For a pixel U , we define
its distortion Ũ as the Voronoi cell of its distorted pixel center. For a box consisting of
pixels U1, . . . , Uk, we define its distortion as the union of the distorted pixels Ũ1, . . . , Ũk.
Finally, we define the dual complex D(C) of a partition C to be the nerve of the distorted
boxes in the partition. See Figure 1 for an example in the plane. We remark that the dual
complex does not depend on the choice of ǫ. Informally, the distortion is a way to remove
high-dimensional simplices from the nerve in non-generic situations, thereby “preferring”
connections between hyper-rectangle in the diagonal direction (1, . . . , 1); we refer to [7] for
more details.

For a hyper-rectangular partition C = (R1, . . . , Rk), let vi denote the vertex of the dual
complex D(C) that represents Ri. We call a mapping from {v1, . . . , vk} to R

d a projection.
The barycentric refinement of the integer grid is the grid whose vertices are of the form
(a1/2, . . . , ad/2) with a1, . . . , ad ∈ Z. A projection is half-integral if each vi is mapped to a
vertex of the barycentric refinement of the integer grid. A projection is faithful if each vi is
mapped in the interior of Ri. We assume in this work that projections are half-integral and
faithful, unless otherwise stated. A projection π extends to the whole dual complex D(C)
by mapping a higher-dimensional simplex to the interior of the convex hull of the projected
boundary vertices. Abusing notation, we let π also denote the extended mapping. We call
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a projection an embedding, if this mapping is injective, or in other words, if the image is a
simplicial complex in R

d.

Seed configurations Consider a d-simplex σ of D(C), dual to the intersection point w
of the boxes R0, . . . , Rd. By definition of D(C), there is a unique collection of unit boxes
U0, . . . , Ud with Ui ⊆ Ri such that the distorted unit boxes Ũ0, . . . , Ũd intersect in a common
point as well. By definition, the Ui intersect in w. Let ui be the center of Ui. We call
(u0, . . . , ud) the seed configuration of σ.

In R
d, a sequence of d + 1 points p0 = (x0,1, . . . , x0,d), . . . , pd = (xd,1, . . . , xd,d) has the

orientation

O(p0, . . . , pd) = sign det







1 x0,1 . . . x0,d
...

. . .

1 xd,1 . . . xd,d






.
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�R1

R3

R2

R0

R4

p3

p1

p0

p4

p2

We say that a projection π of D(C) to R
d preserves the orientation

of the d-simplex σ, if O(π(v0), . . . , π(vd)) = O(u0, . . . , ud), where
u0, . . . , ud is the seed configuration of σ. For an equivalent formu-
lation in the plane, assume that R0, R1, R2 are arranged counter-
clockwisely around w. Then π preserves the orientation of σ, if the
cycle π(v0), π(v1), π(v2) is counterclockwisely arranged, too. In the
picture on the right, the seed configuration of the dual 2-simplices
{R0, R1, R2} and {R0, R3, R4} is illustrated; note that the given pro-
jection does not preserve the orientation of the former 2-simplex,
but does preserve the orientation of the latter.

The following result is a generalization of the “Geometric Realization Theorem” from [7].
In there, it was proven that for balanced hierarchical cubical subdivisions, the projection
that maps a vertex to the center of the cube is always an embedding. The main property
exploited in the proof is the “Orientation Lemma”, stating that the orientation of each
d-simplex is preserved for such subdivisions. This is no longer true for arbitrary partitions,
but the same proof idea can be used to show:

Theorem 1 (Embedding Theorem). Let C be a partition. Let π be a projection of D(C)
that preserves the orientation of at least one d-simplex. Then, π is an embedding if and only
if it preserves the orientation of each d-simplex.

The proof in [7] relies on some topological concepts; Appendix A repeats the argument
for the convenience of the reader. The constraint that π preserves at least one d-simplex
is required to rule out pathological cases such as a partition in R

2 with only 3 rectangles,
whose dual is always an embedding regardless of the orientation of the dual triangle (unless
the triangles degenerate to a line). All our results are eventually reduced to investigate the
orientation of projected d-simplices: Embedability results will be proved by showing that
each d-simplex preserves orientation, non-embedability results by constructing examples
where some d-simplex does not preserve orientation. In all these constructed examples, it
will be easy to verify that at least one d-simplex preserves orientation; therefore we will
tacitly ignore that assumption when applying Theorem 1.
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T1
T1

T2T2

U
U

T5

T2

T3

T4

T1

T0

Figure 2: Left: The two possible configurations of L-joints (up to rotations and reflections).
Right: A (partial) partition that does not permit an embedding.

3 NP-completeness

In this section, we concentrate on the planar case d = 2. We adapt our notation by leaving
out the prefix “hyper-” on all defined terms.

Thin rectangles and L-joints We call an integral rectangle thin if one of its side has
length 1, and the other side has length at least 4. The length ℓ of a thin rectangle is the
length of its longer side. Clearly, any projection has to map the vertex of a thin rectangle
to one of the ℓ pixel centers. Three intersecting rectangles are called an L-joint if two of the
rectangles are thin and their union is L-shaped (up to rotation and reflection), and the third
rectangle is the pixel in the bulge of the L-shape; see Figure 2 (left). If the L-joint belongs
to a partition, it induces a 2-simplex in D(C). An L-path is a sequence of thin rectangles
such that two consecutive elements form an L-joint. Such an L-path can be cyclic, in which
case we call it an L-cycle. It is convenient to think of the thin rectangles in an L-joint being
directed consistently towards one end of the L-shape. If the direction is fixed, it makes sense
to talk about the front rectangle and back rectangle of the L-joint, about the front half and
back half of each thin rectangle, and about the front pixel and the back pixel which are the
extremal pixels in a thin rectangle.

Lemma 2 (L-joint lemma). Let (T1, T2, U) be a directed L-joint, with T1 being the back
rectangle, T2 being the front rectangle, and U being the bulge pixel. Let π be a projection
that preserves the orientation of the 2-simplex induced by the L-joint. Then, if π maps the
vertex of T1 to to its back half, it also maps the vertex of T2 to its back half.

Proof. Figure 2 (left) displays the two possible connections of T1 and T2, if both are of
length 4. Recall that π is assumed to be half-integral and, therefore, has only 4 choices to
place the vertex for both T1 and T2. We can see that, if π preserves the orientation and
maps the vertex of T1 into its back half it must map the vertex of T2 below the dashed line,
so this vertex must go into the back half in both cases. The situation does not change if we
extend T1 to the left or T2 to the top.

We can use L-joints to show that dual complexes cannot always be embedded: Consider
the (partial) rectangular partition in Figure 2 (right). Let π be any projection of D(C).

6



Assume for a contradiction that π preserves the orientation of all 2-simplices induced by
the partial partition. Assume w.l.o.g. that the vertex of T0 is projected to the left half of T0

(otherwise, the symmetric argument applies). Direct the thin rectangles according to the
arrows in the figure. By the L-joint lemma, the vertices of T1 and T2 must be placed in
their back halves, and by repeating the argument, the same holds for the rectangles T3 and
T4. Using the L-joint Lemma again, the vertex of T5 must be placed in the upper half of T5

(caused by the L-joint with T3) and also in the lower half of T5 (caused by the L-joint with
T4), a contradiction. Filling out the partial partition with pixels, we obtain a full partition C
such that no projection preserves the orientation of all triangles. The Embedding Theorem
(Theorem 1) asserts that there is no embedding.

The reduction We define the decision problem Faithful Embed as follows: For a parti-
tion C = (R0, . . . , Rm) of [0, n]× [0, n], is there an embedding of D(C)? Our goal is to show
NP-completeness of this problem.

First of all, the problem is clearly in NP: Given a partition C, we can compute D(C)
and check whether a specific projection causes an orientation switch for any triangle in
polynomial time.

For the reduction, we define the grid3sat problem in the same way as in [10]:

grid3sat: Given some N ×N grid (with N linear in n) in which some grid
points are labeled as clauses and some as variables. Variables are connected with
clauses by vertex-disjoint paths on the grid. A sign is associated to every such
path indicating whether the corresponding variable is negated in the clause or
not. Every clause is incident to exactly three paths. Is the formula described in
this way satisfiable or not?

See Figure 3 (left) for an example. A consequence of the formulation is that every
variable appears in at most four clauses. Therefore, the problem is a variant of the planar
3,4-SAT problem (see [10]) with the restriction that all paths follow grid edges.

As stated in [10], grid3sat is NP-complete. Consider an instance I of grid3sat, which
is a graph on the integer grid representing a formula F (in 3-CNF form). Based on this
graph, we will construct a rectangular partition C such that the existence of a satisfying
assignment for F is equivalent to the existence of an embedding of D(C).

We barycentrically refine (see Section 2) the grid given by I a constant number of times
(in fact 5 barycentric refinements suffice) and construct our partition inside this base grid.
For that, we first replace vertices representing variables or clauses by boxes of sufficient
size (which we fill later), and we replace paths connecting variables and clauses by disjoint
L-paths. Each path inherits the sign of the corresponding path in I. We think of L-paths
being directed from variables to clauses. See Figure 3 (right).

Inside each box representing a variable Xi, we place a variable gadget (Figure 4 (left)).
In its center, it has an L-cycle with 4 thin rectangles of length 8, which we direct in clockwise
direction. We call this cycle the variable cycle for Xi. Each L-path to a clause box that
starts at a boundary side of the gadget is extended into the interior of the box and forms
an L-joint with the corresponding side of the variable cycle. If the path is associated with
a plus sign (that is, the variable appears in non-negated form in the corresponding clause),

7
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Figure 3: Left: A graph presenting the formula (X1 ∨X2 ∨ X̄3) ∧ (X̄1 ∨X2 ∨X4) ∧ (X1 ∨
X̄3 ∨ X̄4) ∧ (X̄2 ∨ X3 ∨ X̄4). Right: A corresponding representation as a partial integral
rectangular partition, with L-path connections.
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R1 R2

R3

ℓ3

ℓ1

Figure 4: Left: The variable gadget for X1 from Figure 3. Right: The clause gadget for
X̄2 ∨ X3 ∨ X̄4 from Figure 3. Note that R1, R2, R3 are precisely of length 4; the dashed
lines and the red lines are drawn for illustration purposes in Lemma 3.
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the path is connected to the front pixel. If it is associated with a minus sign, it is connected
to the back pixel.

Inside each box representing a clause, we place a clause gadget (Figure 4 (right)). The
three L-paths arriving at the boundary of the gadget are extended to connect to the clause
rectangle (rectangle R0 in Figure 4 (right)), with the last rectangle being exactly 4 base
squares long. If the L-paths arrive at different sides than displayed in Figure 4, we can just
rotate the gadget by a multiple of 90◦. The gadget is designed to satisfy the following two
properties:

Lemma 3 (Clause Lemma). Let v0, v1, v2, v3 be the vertices of R0, R1, R2, R3, respectively, as
in Figure 4 (right), and let π be a partial projection that maps vi to a point pi for 1 ≤ i ≤ 3.

1. If p1, p2, and p3 are in the back half of R1, R2, and R3, respectively, then π cannot be
completed to an embedding.

2. If at least one of the pi is in the front pixel of Ri, for 1 ≤ i ≤ 3, then there exists an
extension of π to v0 such that π preserves the orientation of all triangles incident to
v0.

Proof. Consider Figure 4 (right); for the first part, let p0 be the projection of v0 in a
completion of π. If π is an embedding, p0 is left of ℓ1, right of ℓ2 and below ℓ3, which is
impossible. For the second part, if p1 or p2 are in the front pixel, we can set p0 to be the
center of the rightmost or leftmost dashed base square in Figure 4 (right), respectively. If p3
is in the front pixel, we can choose the center of the topmost blue base square for p0. From
the red line originating in R1 in Figure 4 (right), it can be seen that the triangle induced
by R0, R1, and the pixel adjacent to both has the correct orientation. The same is true for
the triangle spanned by R0, R2 and the pixel adjacent to both.

To summarize, we have constructed a partial integral rectangular partition, consisting
of variable cycles, clause rectangles, and L-paths connecting them. We finally complete
the partition by filling the empty spots with pixels. Let C denote this partition. We can
construct C in polynomial time in n. The following lemma is sufficient to prove NP-hardness
of Faithful Embed.

Lemma 4. There exists an embedding of D(C) if and only if F has a satisfying assignment.

Proof. “⇒”: Let π be an embedding. We define an assignment as follows: For every variable
Xi, consider its variable cycle (which is clockwisely arranged). Note that the L-joint Lemma
implies that π either projects all vertices of the variable cycle to the front half, or it projects
all vertices to the back half of the corresponding rectangles. We set Xi to True if π projects
to the front half and to False otherwise. We show that this assignment satisfies F :

Let C = Li ∨ Lj ∨ Lk be a clause of F where Li = Xi or Li = X̄i, and consider the
corresponding clause gadget. Let Ri, Rj , Rk the last rectangles of the L-paths connecting
the variable gadgets of Xi, Xj , and Xk, respectively, to the clause rectangle. Since π is an
embedding, at least one of the vertices of Ri, Rj , or Rk is placed in the corresponding front
half by the Clause Lemma. Assume w.l.o.g. that the vertex of Ri is placed in the front half.
By iteratively applying the L-joint Lemma, all vertices in the L-path from Xi to C must

9



therefore be placed in the front half. If Li = Xi, the path was associated with a plus sign,
and therefore, the L-path is connected with the variable cycle of Xi at a front pixel (as for
instance the left and right paths originating from the variable cycle in Figure 4 (left)). Since
π preserves orientations, it follows again from the L-joint Lemma that the vertices in the
variable cycle must also have been placed in the front half. Hence, our assignment sets Xi

to True and therefore, the clause is satisfied. If Li = X̄i, the argument is analogous.
“⇐”: We construct a projection based on a satisfying assignment. We start with the

variable gadgets: If Xi = 1, we place the vertices in its variable cycle at the front pixel,
otherwise at the back pixel. For every L-path that leaves a variable cycle, we distinguish
two cases: If the path has a plus sign and Xi = 1, or if the path has a minus sign and
Xi = 0, we place all vertices in the path in the front pixel; otherwise, we place all vertices in
the back pixel. It is straight-forward to verify that this projection preserves the orientation
for each 2-simplex induced by L-joints. Finally, let C = Li ∨ Lj ∨ Lk be a clause as above.
Consider the corresponding clause gadget and let Ri, Rj, Rk denote the connecting (thin)
L-path rectangles. By our construction, the vertex of Ri is in the front pixel if and only
if Li = 1, same for j and k. Since we have a satisfying assignment, at least one literal is
satisfied, so one of the vertices is in the front pixel. By the Clause Lemma, we can therefore
place the vertex of the clause rectangle such that all triangles preserve their orientation.

Our projection preserves all orientations of the constructed partial partition. It is not
difficult to see that the additional 2-simplices caused by filling the empty spots with base
squares preserve their orientation as well (in fact, any projection preserves their orientation).
Therefore, the constructed projection is an embedding by the Embedding Theorem.

In conclusion, we can summarize

Theorem 5. Faithful Embed is NP-complete.

A slight variation of our proof shows that the problem remains NP-hard when allowing
projections that are not half-integral (see Appendix B). However, it is unclear whether this
variant of the problem also remains in NP.

4 Center projections and β-balancing

We turn back to arbitrary dimensions. We define the center of a box [a1, b1]× . . .× [ad, bd]
to be the point ((a1 + b1)/2, . . . , (ad + bd)/2). The center projection is the projection of
D(C) that maps each vertex to the center of the corresponding box. Clearly, this projection
is half-integral and faithful. We call C center-embeddable if the center projection is an
embedding.

We define the balance of a set of boxes {R0, . . . , Rk} to be the length of the longest
side among all boxes R0, . . . , Rk divided by the length of the shortest side among all boxes
R0, . . . , Rk. We define the balance of a k-simplex σ of D(C) to be the balance of the set of
dual boxes. The aspect ratio of a box R is the balance of {R}. Obviously R has aspect ratio
1 if and only if R is a square box. We call D(C) β-balanced for some β ≥ 1, if each simplex

10
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Figure 5: Left: Illustrations of the proof of Theorem 6. The drawing assumes that β = 3.
In this case, we can find a line that touches C0, C1, and C2, leading to a counterexample
for center-embeddability. Right: Illustration of the construction in the proof of Theorem 7.

of D(C) has balance at most β.1 Informally, β-balanced partitions have the property that
boxes are not too skinny, but also neighboring boxes do not differ too much in side lengths.

The simplest sufficient condition for a partition to be center-embeddable is that all boxes
are square boxes of same size. We investigate several generalizations of this trivial criterion.

Planar results It is not hard to prove that a partition in R
2 consisting only of squares

is always center-embeddable, because the edge connecting the centers of two squares does
not leave the union of the squares. However, if we only bound the aspect ratio of any
rectangle by 1+ ǫ (with ǫ > 0), this property does not hold in general, and we can construct
a counterexample for center-embeddability. For β-balanced partitions, we prove a tight
bound for center-embeddability.

Theorem 6 (Planar Balancing Theorem). A β-balanced partition of R2 is center-embeddable
for β < 3, and there exists a 3-balanced partition that is not center-embeddable.

Proof. Consider a β-balanced partition. For the first part, it is enough to prove that the
center projection preserves the orientation of each 2-simplex for β < 3 according to the
Embedding Theorem. So, let σ be a 2-simplex, caused by the intersection of three rectan-
gles R0, R1, R2. W.l.o.g., we assume that the intersection point is the origin, that R0 is
completely contained in the lower-left quadrant, R1 is contained in the upper-left quadrant,
and R2 is contained in the halfplane x ≥ 0; all other cases are obtained by suitable rotations
and reflections. Let a denote the length of the shortest side among the Ri, and let b denote
the length of the longest side; we have b

a
≤ β. We let Ci denote the set of possible positions

of the center of Ri. By the imposed constraints, it is straight-forward to verify that Ci are

1This is equivalent to require that any edge in D(C) has balance at most β, which is the definition given
in the introduction.
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rectangles as illustrated in Figure 5 (left). Note that the lower side of C2 does not belong
to the set of possible centers, while the other boundary sides do.

Recall that the orientation of σ is preserved if O(p0, p1, p2) = O(u0, u1, u2), where the
ui define the seed configuration of σ; in our case, u0 = (−1/2,−1/2), u1 = (−1/2, 1/2),
and u2 = (1/2, 1/2). We scale each ui by a, obtaining the points a0, a1, a2; obviously,
O(u0, u1, u2) = O(a0, a1, a2). Assume that the orientation of σ is not preserved. Then, if we
continuously move the points ai to the points pi along the connecting line segment (which
lies in Ci), there must be a time where the three points become collinear. It follows that
there must be a line in R

2 which intersects each Ci. Such a line, however, exists if and only
if b ≥ 3a, as can be seen by elementary geometric arguments. It follows that the orientation
of σ is preserved if β < 3.

The construction also yields the counterexample for β = 3: Consider the rectangles
intersecting in the origin with centers p0 = (−3/2,−1/2), p1 = (−1/2, 1/2), p2 = (1/2, 3/2).
We can fill the bounding box by pixels to obtain a 3-balanced partition. The 2-simplex dual
to the origin is projected to a line segment because p0, p1, p2 are collinear. Therefore, the
partition is not center-embeddable.

The counterexample constructed in the proof of Theorem 6 yields a non-generic partition.
If we assume genericity, the set C2 defined in the proof loses the upper boundary side,
and a line intersecting each Ci can only be found if b > 3a. It follows that generic 3-
balanced partitions are center-embeddable. However, generic β-balanced partitions that are
not center-embeddable can be constructed for any β > 3.

Higher dimensions Restricting to square boxes (that is, aspect ratio 1) does not guar-
antee center-embeddability for any d > 2: In R

3, the triangle spanned by the centers of
three intersecting cubes might leave the union of the three cubes, and a counterexample can
be constructed; see [2] and [7]. We show that also restricting to β-balanced partitions does
not guarantee embeddability, unless β = 1:

Theorem 7. For any β > 1, there exists a β-balanced partition in R
d that is not center-

embeddable.

Proof. We restrict to d = 3 for the simplicity of presentation although our construction
generalizes to any dimension: For simplicity, we talk about cubes and voxels instead of
square boxes and unit boxes throughout the proof. Choose b ∈ Z such that β ≥ b+2

b
> 1.

Consider four cubes of length b having the origin as a corner, such that the centers lie in a
common plane (the black boxes in Figure 5 (right)). Then, extend the cubes by a layer of
voxels at two opposite faces, such that all voxels around the origin are covered by the four
boxes (the blue boxes in Figure 5 (right)). This ensures that the 3-simplex induced by the
four boxes belongs to the dual complex of the partition. The extension does not change the
centers, consequently, the center projection cannot preserve the orientation of that simplex.
Moreover, all boxes have side length b and b+ 2. It remains to show that the arrangement
of the four boxes can be completed to a partition without destroying β-balancing. We give
details of this step in Appendix C.
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The cubical case We finally consider β-balanced partitions in R
d where all boxes are

square boxes. We call such partitions cubical. We first construct counterexamples in arbi-
trary dimension to show:

Theorem 8. For d ≥ 3 and β > d
d−2

, there exists a β-balanced cubical partition in R
d that

is not center-embeddable.

Proof. For d ≥ 3, a, b ∈ Z positive, and δ ∈ {0, 1} consider the (d+ 1)× (d+ 1)-matrix

M
(δ)
d :=



















1 −a
2

. . . −a
2

1 b
2

− b
2

. . . . . . − b
2

1 − b
2
+ δ b

2
− b

2
. . . − b

2
...

...
. . .

. . .
. . .

...
1 − b

2
+ δ . . . − b

2
+ δ b

2
− b

2

1 − b
2
+ δ . . . . . . − b

2
+ δ b

2



















.

It can be shown by elementary row operations (Appendix D) that

detM
(0)
d =

1

2
bd−1(da− (d− 2)b).

In particular, note that the determinant is positive if b
a
< d

d−2
, vanishes if b

a
= d

d−2
, and is

negative if b
a
> d

d−2
.

Let a and b be such that β > b
a
> d

d−2
, so that detM

(0)
d < 0. If we choose a and b

large enough, it follows that detM
(1)
d < 0 as well, just because M

(1)
d constitutes a small

perturbation of M
(0)
d for large a and b. The rows of M

(1)
d define d + 1 points p0, . . . , pd in

R
d (ignoring the first column). We define the square box Ri with center pi and side length

a for R0, and length b for R1, . . . , Rd. By this choice, it can be seen easily that all 2d unit
boxes around the origin are covered by the Ri, so R0, . . . , Rd form a d-simplex σ in the
dual complex. Moreover, u0 := (−1/2, . . . ,−1/2) ∈ R0, u1 := (1/2,−1/2, . . . ,−1/2) ∈ R1,
u2 := (1/2, 1/2,−1/2, . . . ,−1/2) ∈ R2, and so on, thus u0, . . . , ud form a seed configuration
and it is easily seen to that O(u0, . . . , ud) > 0. Because O(p0, . . . , pd) < 0 by construction,
the center projection does not preserve the orientation of σ.

The last step of the proof is to show that we can complete the initial configuration
R0, . . . , Rd to a complete β-balanced cubical partition in R

d. The details of this step are
skipped for brevity. See Appendix C for details.

We are able to show that the constructed counterexample is the worst case in R
3. Pre-

cisely, we state:

Theorem 9. Cubical β-balanced partitions in R
3 are center-embeddable for β < 3.

Proof. For simplicity, we restrict to generic partitions in the proof; the general case works
with the same methodology, but requires closer investigation of the distortion defined for
the dual complex construction. As in Theorem 7, we use the terms cube and voxel instead
of square box and hyper-pixel.
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Consider 4 cubes R0, . . . , R3 intersecting in a point p. Let a be the length of the shortest
and b be the length of the longest side among the R0, . . . , R3. Assume w.l.o.g. that p =
(0, 0, 0). By genericity, the union of the Ri covers all 8 voxels adjacent to p, and each cube
covers at least one voxel. Represent these voxels by the 3-bit numbers 0, . . . , 7 where the
1st/2nd/3rd bit of voxel j is set to 1 if and only if the x-/y-/z-coordinate of the voxel
is positive. Assign to each Ri a subset of {0, . . . , 7}, denoting the voxels that it occupies.
Only three cases are possible, namely that Ri covers a single voxel, that Ri covers two voxels
which are face adjacent, or four voxels which lie in a common halfspace. We consider Ci, the
set of possible centers for Ri. If Ri covers only one voxel adjacent to the origin, say voxel 0,
then Ci is the line segment connecting (−a/2,−a/2,−a/2) and (−b/2,−b/2,−b/2). If Ri

covers two voxels which are face adjacent, say voxels 0 and 1, Ci is the trapezoid spanned
by the four points (±a/2,−a/2,−a/2), (±b/2,−b/2,−b/2); more precisely, the center can
not lie on either of the two non-parallel lines because this would prevent the cube to span
over both voxels, so Ci is the trapezoid with those two sides excluded. Finally, if Ri covers
four voxels in a common hyperplane, say voxels 4, . . . , 7, Ci is the polytope spanned by the
8 points (±a/2,±a/2, a/2), (±b/2,±b/2, b/2); the polytope has 6 faces, two of them being
parallel. More precisely, the center can not lie on a boundary face except for the two parallel
sides, so Ci is that polytope with the other 4 faces excluded.

Assume for a contradiction that the center projection does not preserve the orientation
of the simplex spanned by R0, . . . , R3. Scaling the seed configuration of the simplex by a
factor of a, we obtain a simplex spanned by a0, . . . , a3 with ai in the closure of Ci with
the same orientation as the seed configuration. Because this orientation is not preserved,
there are points p0, . . . , p3 with pi ∈ Ci such that the orientation is different. It follows that
there are points p′0, . . . , p

′

3 with p′i ∈ Ci whose orientation is zero. In other words, there
exists a plane which intersects C0, . . . , C3. However, C0, . . . , C3 are completely determined
by the way of how the boxes Ri decompose the voxels {0, . . . , 7} adjacent to the origin,
and there are only two configurations possible, up to rotations and reflections: the regular
configuration

{0}, {1}, {2, 3}, {4, 5, 6, 7},

and the singular configuration

{0, 1}, {2, 3}, {4, 6}, {5, 7}.

Consequently, there must be a plane intersecting the two line segments, the trapezoid and
the polytope defined by the regular configuration, or a plane intersecting the four trapezoids
defined by the singular configuration. It can be verified, however, that such a plane does
not exist by formulating the statement in terms of a quantified system of inequalities and
using a quantifier elimination program [4]2 (see Appendix E). Hence, the center-projection
preserves the orientation of every simplex and is an embedding.

The proof idea can in principle be extended to higher dimensions. However, there are
two problems: First, the number of configurations to check increases; for instance, there are
already 3 configurations to check in R

4. Second, and more seriously, the complexity of the

2We used qepcad: http://www.usna.edu/cs/~qepcad/B/QEPCAD.html
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quantifier elimination increases dramatically for higher dimensions; in fact, we were not able
to verify that β-balanced cubical partitions in R

4 are center-embeddable for β < d
d−2

= 2.

5 Conclusion

We have proven positive and negative results about partitions and their duals in this paper;
it is NP-hard to decide whether an embedding exists already in the plane; if we project
vertices to centers of rectangles, there are some simple balancing conditions that ensure
embeddability in the plane, namely, if all rectangles are squares or if the partition is (3− ǫ)-
balanced with ǫ > 0. In higher dimensions, however, we need to combine both properties,
that means, consider cubical (3 − ǫ)-balanced partitions to get a guarantee that partitions
can be embedded. We are posing the question whether another simple condition could
guarantee center-embeddability as well.

Quad-tree decompositions and their higher-dimensional analogues have the nice property
that they can be balanced with a greedy strategy, without granulating the partition too
much. It seems unclear, however, how a planar partition can be turned into a 3-balanced
partition efficiently by subdividing rectangles.

This work has considered hyper-rectangular partitions in general – can better embed-
dability results be derived for certain restrictions, in particular for partitions that arise from
a sequence of hyperplane cuts (sometimes also called guillotine constructions)? We expect
the answer to be negative in the plane; however, the situation might be different in higher
dimensions.

On a technical side, a natural improvement would be to replace the computer-assisted
proof in Theorem 9 with a geometric argument; this would hopefully extend into higher
dimensions and prove our conjecture that β-balanced partitions in R

d are center-embeddable
for β < d

d−2
. A second question is about a variant of Faithful embed: while it is clear that

deciding the existence of an embedding remains hard in three dimensions, it is not clear
whether the restriction to cubical partitions simplifies the problem.
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A The Embedding Theorem

Theorem 1 (Embedding Theorem). Let C be a partition. Let π be a projection of D(C)
that preserves the orientation of at least one d-simplex. Then, π is an embedding if and only
if it preserves the orientation of each d-simplex.

We give some more details about its proof which is based on [7]. A set is called con-
tractible if it is can be reduced to a single point by a continuous deformation [11].

Lemma 10. Any intersection of k distorted boxes of C is either empty or contractible.
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Proof. The proof given in the “Fractual Distortion Lemma” in [7] extends to arbitrary
partitions (it is neither exploited that the boxes are cubes, nor that they are arranged
hierarchically).

We now give a proof of the Embedding Theorem which works similar to the proof of the
“Geometric Realization Theorem” from [7].

Assume first that π preserves the orientation of all d-simplices of D(C). Let B ⊂ R
d be

the box that is partitioned by C. We attach two layers of unit boxes at the boundary of B,
obtaining an extended box B̄. Note that this yields a partition C̄, which is an extension of
C. We extend the projection π of C to π̄ of C̄ by mapping vertices in the new layers to the
corresponding box centers.

We compactify Rd to the d-dimensional sphere Sd by adding a vertex at infinity. Similarly,
we compactify the dual complex D(C̄) by adding a new vertex at infinity and connecting
it to every simplex of the boundary of D(C̄). Because of the Lemma 10, we can apply the
Nerve Theorem [6] to D(C̄), which states that D(C̄) triangulates a d-dimensional ball, and
therefore, its compactification triangulates Sd. Hence, the extended projection π̄ defines a
continuous mapping g : Sd → S

d. The degree of g at a point x not in any (d − 1)-simplex
is the number of d-simplices that contain g−1(x), counting a d-simplex positive or negative
depending on the orientation of its image under g. This degree is 1 in between the two
outside layers, because all boxes are of unit size and therefore, the orientation of all d-
simplices can be chosen positive. However, the degree of a map is a global property that
does not depend on the specific location of x. Hence, it is 1 for any x.

We can assume that the orientation of all seed configurations is positive; because all
orientations are preserved by π, the orientation of all d-simplices is positive. Because the
degree of g is 1, it follows that every point is in the interior of exactly one projected d-
simplex. This implies injectivity, so π is an embedding.

u2 v0

v1

u0 v2
u1

ℓu ℓv

Figure 6: Illustration for the fact that the orientations of (u0, u1, u2) and (v0, v1, v2) are not
the same; indeed, if we map ui to vi for 0 ≤ i ≤ 2, the line ℓu is mapped to the line ℓv, but
the halfspace left of ℓu is mapped to the halfspace right of ℓv. The same kind of argument
can be applied in higher dimensions, replacing the dashed lines by hyperplanes and defining
a notion of “left” and “right” by a common direction, for instance the vector from the center
of v0 to the center of u0.

For the opposite direction, assume that π does not preserve the orientation of some d-
simplex of D(C). Because there exists at least one d-simplex whose orientation is preserved,
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T1

U

T2

U
T1

T2

Figure 7: The two possible configurations of L-joints (up to rotations and reflections). If
the vertex of T1 is set in the back half, the pixel of T2 must also be set in the back half,
regardless of where the vertex of U is placed.

there exists some (d − 1)-simplex τ in D(C) incident to one simplex σ1 whose orientation
is preserved and to one simplex σ2 whose orientation is not preserved. It suffices to prove
that σ1 and σ2 are mapped to the same side of the supporting (d− 1)-hyperplane of τ .

To see that, let u0, . . . , un and v0, . . . , vn denote the seed configurations of σ1 and σ2, re-
spectively. W.l.o.g., we assume that the seed configurations are ordered such that u1, . . . , un

and v1, . . . , vn are the pixels that belong to boxes in τ , and furthermore, for all 1 ≤ i ≤ n,
ui and vi belong to the same box of the partition. By these choices, we have that

O(u0, . . . , un) = −O(v0, . . . , vn).

See Figure 6 for an illustration in R
2; the general case can be derived with an argument

similar to [1, p.167]. Now, let w1, . . . , wn denote the projections of the boxes of τ , and let u
and v denote the projections of the boxes corresponding to u0 and v0, respectively. W.l.o.g.,
let σ1 be spanned by u and w1, . . . , wn and σ2 be spanned by v and w1, . . . , wn. Because the
orientation of σ1 is preserved, and the orientation of σ2 is not preserved, we have that

O(u, w1, . . . , w2) = O(v, w1, . . . , w2).

It follows that u and v are mapped to side of the hyperplane spanned by w1, . . . , wn.

B Non-integral projections

In this section, we reconsider the decision problem Faithful Embed without the restriction
that our projections are half-integral. We show that the problem remains NP-hard in this
relaxed setup.

The proof strategy follows the same steps as in Section 3. We require, however, slightly
more skinny rectangles: We call a rectangle thin if one of its sides has length one, and the
other has length at least 8 (as opposed to length 4 in Section 3). The definitions of L-path,
L-joint, front pixel, front half etc. directly carry over. Also, the L-joint lemma remains true
for arbitrary projections; see Figure 7.

The NP-hardness proof uses the same gadgets as in the half-integral case, with minor
modifications: The variable gadget now consists of rectangles of length 8, and all paths to
clauses are also formed by rectangles of at least this length. The clause gadget is modified as
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ℓ1ℓ2

ℓ3

Figure 8: The modified clause gadget: If the vertices of all three incoming rectangles are
placed in the back half, the projection of the clause triangle must be left of ℓ1, right of
ℓ2 and below ℓ3, which is impossible. If the projection is integral and at least one of the
incoming rectangles has its vertex in the front pixel, we can choose the center of one of the
dashed pixels as projection for the clause rectangle.

illustrated in Figure 8. It has three incoming paths, connecting variables to the clause, and
the last rectangle is of length 14. The gadget is designed to satisfy the following properties
similar to the Clause Lemma in Section 3:

1. If all three incoming thin rectangles have their vertices in the back half, the projection
cannot be completed to an embedding.

2. If the projection is half-integral, and at least one of the incoming rectangles has its
vertex in the front pixel, we can place a vertex in the clause rectangle such that the
orientation of all incident triangles is preserved.

We can show that a formula encoded in a grid3sat instance is satisfiable if and only
if the corresponding partition has an embedding. The proof is the same as for Lemma 4:
Given an embedding, all vertices in a variable cycle must be either mapped to the front
half or the back half, and we set the variable to 1 or 0 accordingly. This is a satisfying
assignment, because for any clause, one of the incoming rectangles must have its vertex in
the front half, and applying the L-joint lemma backwards ensures that the corresponding
literal satisfies the clause. Vice versa, given a satisfying assignment, we can construct a
half-integral projection in exactly the same way as in the proof of Lemma 4 which yields an
embedding.

C Details of the counterexample constructions

We have created configurations in Theorems 7 and 8 which lead to a simplex whose ori-
entation is not preserved under the center projection. We have to show that those initial
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configurations can be completed to a β-balanced partition. For Theorem 7, this is relatively
straight-forward. For the proof, we need the following definition: Let C be a partition in
R

d, B a box in the partition with corners (q1, . . . , qD) (with D = 2d), and p a point in the
interior of B. Splitting B at p means to replace B in C with D boxes defined by the corners
p and qi, with 1 ≤ i ≤ D.
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Figure 9: A part of the complete partition, after the split of one of the B̃i.

Lemma 11. The partial partition R0, . . . , R3 from Theorem 7 can be completed to a β-
balanced partition in R

3.

Proof. Let b ∈ Z as in Theorem 7, such that β > b+2
b−2

. We will construct a partition of
B := [−2b, 2b]3, consisting of exactly 64 = 8 · 8 boxes, with R0, . . . , R3 among them. Fix a
corner ai of B (with 1 ≤ i ≤ 8). It lies in an octant of R3 with respect to the origin, and
there is exactly one box Rj (with 0 ≤ j ≤ 3) that extends into this octant. Let cj denote
the corner of Rj that is closest to the origin (by construction, it is one unit length away
from the origin). Note that cj does not necessarily lie in the same octant as ai. We consider
the box B̃i with (opposite) corners ai and cj . Observe that the side lengths of B̃i are 2b−1,
2b, or 2b + 1. Also, B1, . . . , B8 form a partition of B, and each Rj (with 0 ≤ j ≤ 3) lies in
the corner of some Bi.

We split each B̃i into 8 boxes: If B̃i contains some Rj (with 0 ≤ j ≤ 3), we let c∗j denote

the corner of Rj opposite to cj , and split B̃i at c
∗

j ; clearly, one of the 8 created boxes is Rj .

See Figure 9 for an illustration. If B̃i does not contain any Rj , we simply split at an integer
point closest to its center. It is simple to verify that all boxes created by these operations
have side lengths of at least b−2 and at most b+2. Since b+2

b−2
by assumption, the rectangular

partition is β-balanced, but not center-embeddable, because it contains R0, . . . , R3.

For Theorem 8, the completion of the initial configuration is technically more challenging
than in Theorem 7 because we can only use square boxes to fill the empty space. Indeed,
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our construction needs much more filling space to “balance out” the differences between the
square boxes, and it requires square boxes of many different size, all close to b.

The construction needs two preparatory lemmas. The first is a basic fact from elementary
number theory

Lemma 12. Let z0 := 1 and z1, . . . , zk be the first k prime numbers (starting with z1 = 2).
Let b ∈ Z such that b = λ · (z1 · · · zk) + 1 with some λ ∈ Z. Then, the (k + 1) numbers
b+ z0 − 1, . . . , b+ zk − 1 are pairwise coprime.

Proof. Assume for a contradiction that b+zi−1 and b+zj −1 have a common prime factor
p. Then p = zℓ for 1 ≤ ℓ ≤ k, because the two numbers differ by less than zk. Moreover,
b−1 is a multiple of zℓ. It follows that zℓ divides both zi and zj , which is a contradiction.

The next lemma proves that we can fill arbitrary large boxes in R
d just using square

boxes with 2d pairwise coprime side lengths.

Lemma 13. Let D := 2d and let b1 < . . . < bD be pairwise coprime integers. Then there
exists some L0 ∈ Z such that every box with smallest side length at least L0 can be partitioned
into square boxes of side lengths b1, . . . , bD. Moreover, the partition can be chosen such that
a box of side length b1 is in one of its corners.

Proof. Set B := {b1, . . . , bD}. Choose L0 such that for any integer L ≥ L0, and any two
disjoint subsets B1, B2 of B, L can be represented as

L = λ1

∏

b∈B1

b+ λ2

∏

b∈B2

b

with λ1, λ2 non-negative numbers. We prove inductively that any box with minimal side
length at least L0 can be partitioned. If d = 1, the statement is trivial. Let B be such
a box in R

d with d > 1 and let B̃ denote the same box projected into R
d−1. Using the

induction hypothesis with the numbers b1, . . . , bD/2, we can partition B̃ with square boxes
in R

d−1. If we carry this partition into R
d with the lower side of every box being in the

plane xd = 0, this does not yield a box because the square boxes have different heights
in xd-direction; however, we can stack up boxes to match their heights. Formally, define
P1 = b1 · · · bD/2 and place P1/bi vertical copies for a square box of length bi. In this way, we

construct a box whose projection to R
d−1 is B̃, and whose length in xd-direction is P1. We

can do exactly the same construction using the integers bD/2+1, . . . , bD, which yields a box
of length P2 = bD/2+1 · · · bD in xd-direction. Let Ld be the length of B in xd-direction. By
assumption, we can find non-negative integers λ1, λ2 with λ1P1 + λ2P2 = Ld. Thus, placing
λ1 copies of the box of first type and λ2 copies of the box of second type gives the desired
box.

Lemma 14. The partial partition R0, . . . , Rd from Theorem 8 can be completed to a β-
balanced cubical partition in R

3.

Proof. The first step is to choose a and b appropriately. Note that the proof of Theorem 6
requires that β > b

a
≥ d

d−2
, and such that detM

(1)
d is negative. We impose additional
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conditions: Let D := 2d and z1, . . . , zD−1 be the sequence of the first D − 1 prime numbers
(note that the magnitude of zD−1 only depends on d). We choose a and b such that b =
λz1 · · · zD−1 + 1 for some λ ∈ Z, such that

β >
b+ zD−1 − 1

a
>

b

a
≥

d

d− 2
,

and such that detM
(1)
d is negative. In particular, applying Lemma 12 yields D pairwise

coprime integers b := b1 < . . . < bD = b+ zD−1 − 1.
Lemma 13 applied on the sequence b1, . . . , bD asserts the existence of some L0 such that

any box with side lengths at least L0 can be filled. We choose some L ≥ L0 + 1 that is a
multiple of a, and set B := [−L, L]d. We have to show that we can construct a partition of
B containing R0, . . . , Rd with square boxes of sizes a, b1, b2, . . . , bD only. By our choice of a
and b, the so-obtained cubical partition is β-balanced, and the claim is proven.

The construction works similar as in Lemma 11. We first partition B into D boxes
B̃j (which are not square boxes in general), each anchored at one corner of B, and with
d + 1 of them containing one of the initial square boxes Ri. Each B̃j has side lengths of
at least L − 1 ≥ L0; therefore, it can be filled with squares boxes of lengths b1, . . . , bD
according to Lemma 13. If B̃j contains some Ri, we can enforce that Ri is in the corner of
the filling, as required. A special case is that B̃j contains R0 which is of length a. However,
by construction, this B̃j is a square box of length L, and we can simply fill it with square
boxes of length a because L is a multiple of a.

D Determinant bound

We prove in this section that for the (d+ 1)× (d+ 1) matrix

M
(0)
d :=



















1 −a
2

. . . −a
2

1 b
2

− b
2

. . . . . . − b
2

1 − b
2

b
2

− b
2

. . . − b
2

...
...

. . .
. . .

. . .
...

1 − b
2

. . . − b
2

b
2

− b
2

1 − b
2

. . . . . . − b
2

b
2



















,

it holds that

detM
(0)
d =

1

2
bd−1a−

1

2
(d− 2)bd =

1

2
bd−1(da− (d− 2)b).

Indeed, we subtract the (i− 1)-st row from the i-th row for i = n+ 1, . . . , 2 to obtain

detM
(0)
d = det



















1 −a
2

. . . −a
2

a+b
2

a−b
2

. . . . . . a−b
2

0 −b b
0 −b b
...

. . .
. . .

0 −b b



















= det















a+b
2

a−b
2

. . . . . . a−b
2

−b b
−b b

. . .
. . .

−b b















,

21



where empty spots are zero. We simplify further by factoring out 1/2 in the second row,
factoring out b in rows 3, . . . , d + 1, and shifting the second row to the bottom, thereby
changing the sign of every row that goes up. With these steps, we obtain

detM
(0)
d = det















a+b
2

a−b
2

. . . . . . a−b
2

−b b
−b b

. . .
. . .

−b b















=
1

2
bd−1 det















1 −1
1 −1

. . .
. . .

1 −1
a + b a− b . . . . . . a− b















.

It is straight-forward to verify that the determinant of the rightmost (d× d)-matrix equals
the sum of its last row, which is da− (d− 2)b.

E Details on quantifier elimination

The proof of Theorem 9 relies on the non-existence of planes that intersect certain point sets
in R

3. We will give some details on how we prove this non-existence. Recall from the proof
that we defined a and b to be the shortest and longest sides among the cubes R0, . . . , R3.
By scaling, we can just assume that a = 1. Because of the assumption, it follows that
b ≤ β < 3.

Regular case The regular configuration

{0}, {1}, {2, 3}, {4, 5, 6, 7},

induces the point sets

C
(b)
0 := hull{(−1,−1,−1), (−b,−b,−b)}

C
(b)
1 := hull{(1,−1,−1), (b,−b,−b)}

C
(b)
2 := hull{(−1, 1,−1), (−b, b,−b), (1, 1,−1), (b, b,−b)}

−hull{(−1, 1,−1), (−b, b,−b)} − hull{(1, 1,−1), (b, b,−b)}

C
(b)
3 := hull{(−1,−1, 1), (−b,−b, b), (−1, 1, 1), (−b, b, b), (1,−1, 1), (b,−b, b), (1, 1, 1), (b, b, b)}

−hull{(−1,−1, 1), (−b,−b, b), (−1, 1, 1), (−b, b, b)}

−hull{(−1,−1, 1), (−b,−b, b), (1,−1, 1), (b,−b, b)}

−hull{(−1, 1, 1), (−b, b, b), (1, 1, 1), (b, b, b)}

−hull{(1,−1, 1), (b,−b, b), (1, 1, 1), (b, b, b)},

where hull stands for the convex hull of a point set. Assume for a contradiction that e is a
plane intersecting C

(b)
0 , . . . , C

(b)
3 . Since C

(b)
i ⊂ C

(3)
i , e intersects C

(3)
0 , . . . , C

(3)
3 as well. Let e

be defined by t0, . . . , t3 ∈ R via the equation

(t0, t1, t2) · (x, y, z) + t3 = 0.
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We first claim that t0 6= 0. Indeed, if t0 = 0, the projection of e into the yz-plane is a line.
This line has to intersect the projections of the C

(3)
i . However, these projections give the

subsets of the rectangles defined in Figure 5 (left), and it can be seen with similar methods
as in Theorem 6 that no such line exists for β < 3. Moreover, it can be easily verified that
e is not parallel to any coordinate plane.

Since t0 6= 0, we can normalize such that t0 = 1. We define the induced mapping

E : R3 → R, (x, y, z) 7→ (1, t1, t2) · (x, y, z) + t3.

Clearly, e = E−1(0), and if for two points p1, p2 ∈ R
3, E(p1) ·E(p2) < 0, then p1 and p2 are

separated in different halfspaces by e. From this property, we can immediately deduce

Lemma 15. e intersects each C
(3)
i , 1 ≤ i ≤ 4 if and only if E satisfies the following four

formulas

E((−1,−1,−1)) · E((−3,−3,−3)) ≤ 0

E((1,−1,−1)) · E((3,−3,−3)) ≤ 0

E((−1, 1,−1)) · E((3, 3,−3)) < 0 ∨ E((1, 1,−1)) · E((−3, 3,−3)) < 0

(E((−1,−1, 1)) · E((3, 3, 3)) < 0 ∨ E((1,−1, 1)) · E((−3, 3, 3)) < 0

∨ E((−1, 1, 1)) · E((3,−3, 3)) < 0

∨ E((1, 1, 1)) · E((−3,−3, 3)) < 0)

Proof. The ⇐-direction is simple to proof. For the ⇒-direction, note that the first two
statements are trivially satisfied. For the third statement, note first that e cannot contain the
whole line segment from (−1, 1,−1) to (1, 1,−1), neither the line segment from (−3, 3,−3)

to (3, 3,−3) (because this would contradict t0 6= 0). Let f be the plane that contains C
(3)
2 .

The intersection of e and f is a line on f that intersects the boundary of C
(3)
2 in exactly two

points. It is therefore clear that this line separates two opposite vertices in two halfplanes.
Thus, this pair is separated into two halfspaces by e and this is precisely what is checked
by the third statement.

For the last statement, note that e cannot completely contain any boundary face of C
(3)
3 ,

because this would mean that e is parallel to a coordinate plane which is easily checked to
be impossible. Therefore, e intersects through the interior of C

(3)
3 . Therefore e separates at

least one of the four pairs of opposite vertices of the polytope, and this is checked in the
forth statement.

With Lemma 15, we can formulate a quantified formula in the real variables t1, t2, t3
which is true if and only if a plane e as required exists. However, using a quantifier elimi-
nation program, we can easily compute that the formula is in fact false.
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Singular case This case is completely analogous. For completeness, we write down the
sets:

C
(b)
0 := hull{(−1,−1,−1), (−b,−b,−b), (1,−1,−1), (b,−b,−b)}

−hull{(−1,−1,−1), (−b,−b,−b)} − hull{(1,−1,−1), (b,−b,−b)}

C
(b)
1 := hull{(−1, 1,−1), (−b, b,−b), (1, 1,−1), (b, b,−b)}

−hull{(−1, 1,−1), (−b, b,−b)} − hull{(1, 1,−1), (b, b,−b)}

C
(b)
2 := hull{(−1,−1, 1), (−b,−b, b), (−1, 1, 1), (−b, b, b)}

−hull{(−1,−1, 1), (−b,−b, b)} − hull{(−1, 1, 1), (−b, b, b)}

C
(b)
3 := hull{(1,−1, 1), (b,−b, b), (1, 1, 1), (b, b, b)}

−hull{(1,−1, 1), (b,−b, b)} − hull{(1, 1, 1), (b, b, b)}.

Defining e and E as above, we obtain:

Lemma 16. e intersects each C
(3)
i , 1 ≤ i ≤ 4 if and only if E satisfies the following four

formulas

E((−1,−1,−1)) · E((3,−3,−3)) < 0 ∨ E((1,−1,−1)) · E((−3,−3,−3)) < 0

E((−1, 1,−1)) · E((3, 3,−3)) < 0 ∨ E((1, 1,−1)) · E((−3, 3,−3)) < 0

E((−1,−1, 1)) · E((−3, 3, 3)) < 0 ∨ E((−1, 1, 1)) · E((−3,−3, 3)) < 0

E((1,−1, 1)) · E((3, 3, 3)) < 0 ∨ E((1, 1, 1)) · E((3,−3, 3)) < 0.

Again, it can be proven with a quantifier elimination program that the induced quantified
formula is false.
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