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Abstract: We present an algorithm that takes as input a finite point set in Rm, and performs
a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point
set has quantifiable stability with respect to the metric and the point positions. There is also
a guarantee on the quality of the simplices: they cannot be too flat. The algorithm provides
an alternative tool to the weighting or refinement methods to remove poorly shaped simplices in
Delaunay triangulations of arbitrary dimension, but in addition it provides a guarantee of stability
for the resulting triangulation.
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Stabilité de la triangulation de Delaunay vis à vis de
perturbations

Résumé : On présente un algorithme qui prend en entrée un ensemble fini de points de
l’espace euclidien et les perturbent de façon à garantir que la triangulation de Delaunay des
points perturbés est stable de manière quantifiable vis à vis de perturbations de la métrique ou
de la position des points. L’algorithme offre également une garantie sur la qualité des simplexes
: ils ne peuvent pas être trop plats. L’algorithme propose une alternative simple aux techniques
de pondération ou de raffinement qui permettent d’éliminer les simplexes plats des triangula-
tions de Delaunay de dimension arbitraire, et fournit en plus une garantie sur la stabilité de la
triangulation construite.

Mots-clés : triangulation de Delaunay, stabilité, algorithme
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4 Boissonnat, Dyer, & Ghosh

1 Introduction

The main contribution of this paper is to provide a proof that, for a quantifiable δ, a δ-generic
point set may be obtained as a perturbation of an existing point set. In Euclidean space Rm,
a discrete point set P is said to be δ-generic if every Delaunay m-simplex has no other sample
points within a distance of δ from its circumsphere.

The Delaunay triangulation of such a point set is stable with respect to small perturbations
of either the points or of the metric [BDG13b]. This makes δ-generic sets important in various
contexts. The original motivation for this work is the desire to establish a general framework
for Delaunay triangulations on Riemannian manifolds. It was shown [BDG13a] that an intrinsic
Delaunay triangulation of a manifold can be established for a sufficiently dense sample set P̃
provided that there is an atlas of coordinate charts such that, when restricted to a given chart,
P̃ is δ-generic with respect to the Euclidean metric of that chart.

The stability issue with geometric structures also arises in the context of robust computation,
where a high precision may be demanded to resolve near degenerate configurations. Halperin and
Shelton [HS98] developed a general technique of controlled perturbation in this setting. Funke
et al. [FKMS05] presented a controlled perturbation algorithm for computing planar Delaunay
triangulations, which may be extended to higher dimensions. Their algorithm can also be seen
as seeking to produce a δ-generic point set, and in this respect, although the motivation and
context are different, our algorithm also shares some properties with theirs. However, in their
approach all the points are perturbed simultaneously with a probability of success that decreases
with the total size of the input point set. This makes the approach unworkable for our desired
application of triangulating general manifolds.

By contrast, in the algorithm we present here each point is perturbed in turn and is never
subsequently visited after a successful perturbation is found for that point. The probability of
success is independent of the total number of points or even the local sampling density. We
discuss the difference between our algorithm and the approach of Funke et al. [FKMS05] in more
detail when we conclude in Section 6.

A well known issue with higher dimensional Delaunay triangulations is the presence of poorly
shaped (flat) “sliver” simplices. This creates poorly conditioned systems in numerical applica-
tions, and technical problems in geometric applications such as meshing submanifolds. In fact,
the issue is related to the above mentioned problems with computing the Delaunay triangula-
tion itself; the existence of slivers is an indication that the point set is close to a degenerate
configuration [BDG13b].

Existing work on removing slivers from high dimensional Euclidean Delaunay triangulations
has been based on two main techniques. The first approach involves weighting the points to obtain
a weighted Delaunay triangulation with no slivers [CDE+00]. This technique was employed in the
first work on reconstructing a submanifold of arbitrary dimension in Euclidean space [CDR05],
as well as in more recent work which avoids the exponential cost of constructing a Delaunay
triangulation of the ambient space [BG11]. The other approach is to refine the point set [Li03].
This technique was used for constructing anisotropic triangulations based on locally defined
Riemannian metrics [BWY11], and also for meshing submanifolds in Euclidean space [BG10].
We have also extended the refinement algorithm to produce δ-generic point sets [BDG13a].

The algorithm presented here provides a third approach, and it guarantees a Delaunay trian-
gulation that is stable in addition to being sliver free. The perturbation approach enjoys the best
aspects of the other two methods. If the sample set is sufficiently dense, there is no need to add
more sample points. We also have the benefit of using the standard metric, rather than squared
distances where the triangle inequality no longer applies. This latter aspect of the weighting
paradigm becomes awkward when considering perturbations of the metric.

Inria



Delaunay stability 5

In spirit our algorithm is an extension of the algorithm presented by Edelsbrunner et al.
[ELM+00] for creating a sliver free Delaunay triangulation in R3. We extend this work in two
ways: We extend it into higher dimensions, and we also extend it to provide δ-genericity. It is
this latter aspect that embodies our primary technical contribution. In our context the concept
of sliver, and the existing extensions to higher dimensions, were inadequate; we need to eliminate
simplices that do not belong to a Delaunay triangulation, and have no upper bound on their
circumradius. We identify the hoop property as the property of sliver simplices that is important
for algorithmic purposes: every vertex lies close to the circumsphere of its opposing facet. The
configurations that our algorithm needs to destroy are shown to also have this property.

The algorithm itself is characterised by its simplicity. It is much simpler than the refinement
or weighting schemes. In essence, at each iteration we perturb a point p 7→ p′ in such a way as to
ensure that p′ does not lie too close to the circumsphere of any nearby m-simplex in the current
point set P′ \ {p′}. It is not immediately obvious that this should result in a δ-generic point set,
but the analysis reveals that no point that has previously been perturbed could lie too close to
a Delaunay sphere of an m-simplex that has p′ as a vertex.

2 Background

We work in m-dimensional Euclidean space Rm, where distances are determined by the standard
norm, ‖·‖. The distance between a point p and a set X ⊂ Rm, is the infimum of the distances
between p and the points of X, and is denoted d(p,X). We refer to the distance between two
points a and b as ‖b− a‖ or d(a, b) as convenient. A ball B(c, r) = {x | d(x, c) < r} is open, and
B(c, r) is its topological closure. Generally, we denote the topological closure of a set X by X,
the interior by int(X), and the boundary by ∂X. The convex hull is denoted conv(X), and the
affine hull is aff(X). The cardinality of a finite set P is #(P).

2.1 Sampling parameters

The structures of interest will be built from a finite set P ⊂ Rm, which we consider to be a set
of sample points. If D ⊂ Rm, then P is ε-dense for D if d(x,P) < ε for all x ∈ D. We say that
ε is a sampling radius for D satisfied by P. If no domain D is specified, we say P is ε-dense if
d(x,P ∪ ∂conv(P)) < ε for all x ∈ conv(P). Equivalently, P is ε-dense if it satisfies a sampling
radius ε for

Dε(P) = {x ∈ conv(P) | d(x, ∂conv(P)) ≥ ε}. (1)

A convenience of this definition is expressed in Lemma 2.2 below.
The set P is λ-separated if d(p, q) ≥ λ for all p, q ∈ P. We usually assume that λ = µ0ε for

some positive µ0 ≤ 1. Such a set is said to be a (µ0, ε)-net , and if µ0 = 1, then P is an ε-net . If P
is a (µ0, ε)-net for D, then the open balls of radius ε centred at the points of P cover D, and the
likewise centred open balls of radius µ0ε

2 are pairwise disjoint. The sampling radius is sometimes
called a covering radius, and µ0ε

2 is a packing radius for P. This consistent use of open balls to
describe packing and covering radii yields the strict and non strict inequalities in our definitions
of density and separation.

We work with (µ0, ε)-nets, but this should not be viewed as a significant constraint on the
point sets considered. Indeed any finite set of distinct points is a (µ0, ε)-net for a large enough
ε and a small enough µ0. Thus ε and µ0 are simply parameters that describe the point set.
However, our results only begin to become interesting when Dε(P) defined in Equation (1) is
non-empty; we cannot make stability claims about Delaunay simplices that are too close to the
boundary of the convex hull.

RR n° 8275



6 Boissonnat, Dyer, & Ghosh

2.2 Perturbations

Our algorithm will return a perturbation of a given (µ0, ε)-net. Here we define perturbations in
our context, and observe that a perturbed (µ0, ε)-net is itself a (µ′0, ε

′)-net.

Definition 2.1 (Perturbation) A ρ-perturbation of a (µ0, ε)-net P ⊂ Rm is a bijective appli-
cation ζ : P→ P′ ⊂ Rm such that d(ζ(p), p) ≤ ρ for all p ∈ P, and ρ < µ0ε

2 .
For convenience, we will demand a stronger bound on ρ and omit the explicit qualification:

unless otherwise specified, a perturbation will always refer to a ρ-perturbation, with ρ = ρ0ε for
some

ρ0 ≤
µ0

4
. (2)

We also refer to P′ itself as a perturbation of P. We generally use p′ to denote the point ζ(p) ∈ P′,
and similarly, for any point q′ ∈ P′ we understand q to be its preimage in P.

Given a perturbation constrained by Equation (2), we do not expect a close relationship
between the associated Delaunay complexes (defined in Section 2.5), but we can at least relate
the sampling parameters of the two point sets:

Lemma 2.2 If P ⊂ Rm is a (µ0, ε)-net, and P′ is a perturbation of P, then P′ is a (µ′0, ε
′)-net,

where

• ε′ = (1 + ρ0)ε ≤ 5
4ε, and

• µ′0 = µ0−2ρ0
1+ρ0

≥ 2
5µ0.

y

z

H

(P ′)conv

conv(P )

Figure 1: ∂conv(P ) and ∂conv(P ′) must be
close.

Proof The only non-trivial assertion is the
density bound. We will show that

Dε′(P
′) ⊆ Dε(P).

It follows that for any x ∈ Dε′(P
′), we have

d(x,P′) ≤ d(x,P) + ρ0ε < (1 + ρ0)ε = ε′.
We first observe that for any y ∈ conv(P),

we have
d(y, conv(P′)) ≤ ρ0ε. (3)

To see this, we use Carathéodory’s Theorem
to write y =

∑m
i=0 λipi, where pi ∈ P and the

λi are non-negative barycentric coordinates:∑m
i=0 λi = 1. It follows that the point y∗ =∑m
i=0 λip

′
i lies in conv(P′), and ‖y∗ − y‖ ≤∑m

i=0 λi‖p′i − pi‖ ≤ ρ0ε. Similarly, we have
that if z ∈ conv(P′), then

d(z, conv(P)) ≤ ρ0ε. (4)

This implies that if y ∈ ∂conv(P), then d(y, ∂conv(P′)) ≤ ρ0ε. Indeed, assume that y ∈
conv(P′), since otherwise the assertion is an immediate consequence of Equation (3). To reach
a contradiction, assume d(y, ∂conv(P′)) = R > ρ0ε. Then B = B(y,R) ⊆ conv(P′). Let H be
a hyperplane through y and supporting conv(P), and let z ∈ ∂B lie on a line through y and
orthogonal to H and in the open half-space that doesn’t contain conv(P), as shown in Figure 1.
Then d(z, conv(P)) = R > ρ0ε, contradicting Equation (4).

Inria
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Suppose x ∈ Dε′(P
′). Let y ∈ ∂conv(P) be such that d(x, y) = d(x, ∂conv(P)), and let

z ∈ ∂conv(P′) satisfy d(y, z) = d(y, ∂conv(P′)). Then

ε′ ≤ d(x, z) ≤ d(x, y) + d(y, z)

= d(x, ∂conv(P)) + d(y, ∂conv(P′))

≤ d(x, ∂conv(P)) + ρ0ε,

and we obtain d(x, ∂conv(P)) ≥ ε′ − ρ0ε = ε. Hence x ∈ Dε(P). �

2.3 Simplices

Although our problem setting is geometric in nature, it is convenient to work with the framework
of abstract simplices and complexes. A simplex σ is a non-empty finite set. The dimension of σ
is given by dimσ = #(σ)− 1, and a j-simplex refers to a simplex of dimension j. The dimension
of a simplex is sometimes indicated with a superscript: σj . The elements of σ are called the
vertices of σ. We do not distinguish between a 0-simplex and its vertex. If a simplex σ is a
subset of τ , we say it is a face of τ , and we write σ ≤ τ . A 1-dimensional face is called an edge.
If σ is a proper subset of τ , we say it is a proper face and we write σ < τ . A facet of τ is a face
σ with dimσ = dim τ − 1.

For any vertex p ∈ σ, the face oppposite p is the face determined by the other vertices of σ,
and is denoted σp. If σ is a j-simplex, and p is not a vertex of σ, we may construct a (j + 1)-
simplex τ = p ∗ σ, called the join of p and σ. It is the simplex defined by p and the vertices of
σ, i.e., σ = τp.

We will be considering simplices whose vertices are points in Rm, and this endows the simplices
with geometric properties, but we do not require the vertices to be affinely independent. If
σ ⊂ Rm and x ∈ σ, then x is a vertex of σ.

The length of an edge is the distance between its vertices. The diameter of a simplex σ is its
longest edge length, and is denoted ∆(σ). The shortest edge length is denoted L(σ). If σ is a
0-simplex, we define L(σ) = ∆(σ) = 0.

The altitude of p in σ is D(p, σ) = d(p, aff(σp)). A poorly-shaped simplex can be characterized
by the existence of a relatively small altitude. The thickness of a j-simplex σ is the dimensionless
quantity

Υ(σ) =

{
1 if j = 0

minp∈σ
D(p,σ)
j∆(σ) otherwise.

We say that σ is Υ0-thick, if Υ(σ) ≥ Υ0. If σ is Υ0-thick, then so are all of its faces. Indeed if
σj ≤ σ, then the smallest altitude in σj cannot be smaller than that of σ, and also ∆(σj) ≤ ∆(σ).

A circumscribing ball for a simplex σ is any m-dimensional ball that contains the vertices
of σ on its boundary. If Υ(σ) = 0, we say that σ is degenerate, and such a simplex may not
admit any circumscribing ball. If σ admits a circumscribing ball, then it has a circumcentre,
C(σ), which is the centre of the unique smallest circumscribing ball for σ. The radius of this
ball is the circumradius of σ, denoted R(σ). A degenerate simplex σ may or may not have
a circumcentre and circumradius; we write R(σ) < ∞ to indicate that it does. In this case
we can also define the diametric sphere as the boundary of the smallest circumscribing ball:
Sm−1(σ) = ∂B(C(σ), R(σ)), and the circumsphere: S(σ) = Sm−1(σ) ∩ aff(σ). Observe that if
σ ≤ τ , then S(σ) ⊆ S(τ). If dimσ = m, then S(σ) = Sm−1(σ).

RR n° 8275



8 Boissonnat, Dyer, & Ghosh

2.4 Complexes

An abstract simplicial complex (we will just say complex ) is a set K of simplices such that if
σ ∈ K, then all the faces of σ are also members of K. The union of the vertices of all the
simplices of K is the vertex set of K. We say that K is a complex on P if P includes the vertex
set of K. Our complexes are finite and the number of simplices in a complex K is denoted #(K).
The complete complex on P, denoted K(P), is set of all simplices that have vertices in P. If we
let 2P denote the set of subsets of P, then K(P) = 2P \ ∅. A complex K is the complete complex
on P if and only if P is the vertex set of K and P ∈ K.

A subset L ⊆ K is a subcomplex of K if it is also a complex. If K is a complex on P, and K′
is a complex on P′, then a map ζ : P→ P′ induces a simplicial map K → K′ if for every σ ∈ K,
ζ(σ) ∈ K′. Thus the image of the simplicial map is a subcomplex of K′. We denote the simplicial
map with the same symbol, ζ. If ζ is injective on K, and ζ(K) = K′, then ζ is an isomorphism.

Although we prefer to work with abstract simplices and complexes, the underlying motivation
for this work is centred in the concept of a triangulation, which demands traditional geometric
simplicial complexes for its definition. A geometric realisation of a complex K with vertex set P,
is a topological space |K| ⊂ RN such that there is a bijection g : P→ P̃ ⊂ |K| with the property
that

⋃
σ∈K conv(g(σ)) = |K|, and if τ, τ ′ ∈ K, then conv(g(τ)) ∩ conv(g(τ ′)) = X, where either

X = ∅, or X = conv(g(σ)) with σ = (τ ∩ τ ′) ∈ K.
If K is a complex on P ⊂ Rm, we say that K is embedded if the inclusion map ι : P ↪→ Rm

yields a geometric realisation of K. A triangulation of a connected set X ⊂ Rm is an embedded
complex K on P ⊂ X such that |K| = X. A triangulation of P ⊂ Rm is a triangulation of
conv(P).

2.5 Delaunay complexes

Our definition of the Delaunay complex is equivalent to defining it as the nerve of the Voronoi
diagram, however we do not exploit the Voronoi diagram in this work.

An empty ball is one that contains no point from P.

Definition 2.3 (Delaunay complex) A Delaunay ball is a maximal empty ball. Specifically,
B = B(x, r) is a Delaunay ball if any empty ball centred at x is contained in B. A simplex σ is
a Delaunay simplex if there exists some Delaunay ball B such that the vertices of σ belong to
∂B ∩ P. The Delaunay complex is the set of Delaunay simplices, and is denoted Del(P).

If X ⊂ Rm, then the Delaunay complex of P restricted to X is the subcomplex of Del(P)
consisting of those simplices that have a Delaunay ball centred in X. We are interested in the
case where X = Dε(P) for a finite ε-dense sample set P. We denote the Delaunay complex
of P restricted to Dε(P) by Del|(P). Our interest in this subcomplex is due to the following
observation that is an immediate consequence of the definitions:

Lemma 2.4 If P is ε-dense, then every simplex σ ∈ Del|(P) has a Delaunay ball with radius less
than ε, and in particular R(σ) < ε.

A Delaunay simplex σ is δ-protected if it has a Delaunay ball B such that d(q, ∂B) > δ for
all q ∈ P \ σ. We say that B is a δ-protected Delaunay ball for σ. We say that σ is protected to
mean that it is δ-protected for some unspecified δ > 0.

A (µ0, ε)-net P ⊂ Rm is δ-generic if all the Delaunay m-simplices in Del|(P) are δ-protected.
The set P is simply generic if it is δ-generic for some unspecified δ > 0. If P is generic, then
Del|(P) is embedded, and with an abuse of language we call Del|(P) the restricted Delaunay
triangulation of P. It contains a triangulation of the points in P that are at a distance at

Inria



Delaunay stability 9

least 2ε from ∂conv(P) [BDG13b, Lemmas 3.5 and 3.6]. If P is a δ-generic (µ0, ε)-net, then the
Delaunay triangulation exhibits stability with respect to small perturbations of the points or of
the metric [BDG13b]. This is the primary motivation for the current work.

We will present an algorithm that, when given a (µ0, ε)-net, and a small positive parameter
Γ0 < 1, will generate a δ-generic (µ′0, ε

′)-net P′ such that all the m simplices in Del|(P
′) are

Γm0 -thick. As an example in this context, the stability with respect to the sample positions
[BDG13b, Theorem 4.14], can be stated as:

Theorem 2.5 (Delaunay stability) Suppose P′ ⊂ Rm is a (µ′0, ε
′)-net, and all the m-simplices

in Del|(P
′) are Γm0 -thick and δ-protected, where δ = δ0µ

′
0ε
′, with 0 ≤ δ0 ≤ 1. If ζ : P′ → P̃ is a

ρ-perturbation of P′ with

ρ ≤ Γm0 µ
′2
0 δ0

18
ε′,

then ζ : Del|(P
′)→ K ⊆ Del(P̃) is a simplicial isomorphism onto an embedded subcomplex K of

Del(P̃).

3 Forbidden configurations

Our goal is to produce a point set whose Delaunay triangulation has nice properties. In this
section we identify specific configurations of points whose existence in a (µ′0, ε

′)-net P′ implies
that P′ does not meet the requirements of Theorem 2.5. These configurations are a particular
family of thin simplices that we call forbidden configurations.

For a (µ0, ε)-net the Delaunay triangles automatically enjoy a lower bound on their thickness
due to the bounds on their circumradius and shortest edge. However, higher dimensional Delau-
nay simplices may have arbitrarily small thickness. The problem simplices in three dimensional
Delaunay triangulations have their vertices all near “the equator” of their circumsphere, and
were dubbed slivers [CDE+00]. They were characterised as simplices that had an upper bound
on both their thickness and the ratio of their circumradius to shortest edge length.

The essential property of slivers, that is exploited by many algorithms that seek to remove
them, is the fact that every vertex lies close to the circumcircle of its opposing facet. This
property is a consequence of the defining characteristics of a sliver, and it is demonstrated in a
“Torus Lemma” [ELM+00]. The Torus Lemma is important because it places a bound on the
volume of possible positions of a fourth vertex that would make a sliver when joined with a fixed
set of three vertices.

The concept of a sliver has been extended to higher dimensions in various works, and likewise
there is a higher dimensional analogue of the Torus Lemma [Li03]. In our current context,
we will be considering unwanted simplices that are not subjected to an upper bound on their
circumradius, because they are not Delaunay simplices. For this reason, we introduce flakes in
Section 3.1. Flakes have one of the important properties of slivers: there is an upper bound on
all of the altitudes, but flakes are not subjected to a circumradius bound.

A flake that appears in the Delaunay complex of a (µ0, ε)-net is necessarily a sliver in the
traditional sense, but the Torus Lemma does not apply to flakes in general. In Section 3.2 we
introduce the forbidden configurations, a subfamily of flakes that may be considered to be a
generalisation of slivers. In Section 3.3 we show that forbidden configurations will exhibit the
important property embodied in the Torus Lemma. We call this property the hoop property , and
the Hoop Lemma 3.9 is our extension of the Torus Lemma to the current context.

RR n° 8275
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3.1 Flakes

In dimensions higher than three, a simple upper bound on the thickness of a simplex is not
sufficient to bound all of the altitudes of the simplex. In order to obtain an effective bound on
all of the altitudes, a small upper bound on the thickness needs to be coupled with a relatively
larger lower bound on the thickness of the facets. For this reason we introduce a thickness
requirement that is gradated with the dimension. We exploit a positive real parameter Γ0, which
is no larger than one. In the following definition, Γj0 means Γ0 raised to the jth power.

Definition 3.1 (Γ0-good simplices and Γ0-flakes) A simplex σ is Γ0-good if for all j with
0 ≤ j ≤ dimσ, we have Υ(σj) ≥ Γj0 for all j-simplices σj ≤ σ. A simplex is Γ0-bad if it is not
Γ0-good. A Γ0-flake is a Γ0-bad simplex in which all the proper faces are Γ0-good.

Observe that a flake must have dimension at least 2, since Υ(σj) = 1 for j < 2. Also, since a
flake may be degenerate, but its facets cannot, the dimension of a flake can be as high as m+ 1,
but no higher.

Earlier definitions of slivers in higher dimensions [Li03, CDR05] correspond to flakes together
with the additional requirement that the circumradius to shortest edge ratio be bounded. The
dimension-gradated requirement on simplex quality (altitude bound) is implicitly present in these
earlier works.

Ensuring that all simplices in a complex K are Γ0-good is the same as ensuring that there
are no flakes in K. Indeed, if σ is Γ0-bad, then it has a j-face σj ≤ σ that is not Γj0-thick. By
considering such a face with minimal dimension we arrive at the following important observation:

Lemma 3.2 A simplex is Γ0-bad if and only if it has a face that is a Γ0-flake.

We obtain an upper bound on the altitudes of a Γ0-flake through a consideration of dihedral
angles. In particular, we observe the following general relationship between simplex altitudes:

Lemma 3.3 If σ is a j-simplex with j ≥ 2, then for any two vertices p, q ∈ σ, the dihedral angle
between σp and σq defines an equality between ratios of altitudes:

sin∠(aff(σp), aff(σq)) =
D(p, σ)

D(p, σq)
=

D(q, σ)

D(q, σp)
.

Proof Let σpq = σp∩σq, and let p∗ be the projection of p into aff(σpq). Taking p∗ as the origin,
we see that p−p∗

D(p,σq) has the maximal distance to aff(σp) out of all the unit vectors in aff(σq), and

this distance is D(p,σ)
D(p,σq) . By definition this is the sine of the angle between aff(σp) and aff(σq).

A symmetric argument is carried out with q to obtain the result. �

The usefulness of the definition of flakes lies in the following observation:

Lemma 3.4 (Flakes have small altitude) If τ is a Γ0-flake, then for any vertex p ∈ τ ,

D(p, τ) <
2∆(τ)2Γ0

L(τ)
.

Proof Recalling Lemma 3.3 we have

D(p, τ) =
D(q, τ)D(p, τq)

D(q, τp)
,
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Delaunay stability 11

and taking q to be a vertex with minimal altitude, we have

D(q, τ) = kΥ(τ)∆(τ) < kΓk0∆(τ),

and

D(q, τp) ≥ (k − 1)Υ(τp)∆(τp) ≥ (k − 1)Γk−1
0 L(τ),

and

D(p, τq) ≤ ∆(τq) ≤ ∆(τ),

and since k ≤ 2(k − 1), the bound is obtained. �

3.2 Properties of δ-generic point sets

p
τp

δ

B

Figure 2: A forbidden configura-
tion is a flake τ that has a vertex p
that lies within a distance δ from
a small circumscribing ball of the
opposing facet τp.

In order to ensure a δ-generic point set P′, we need to con-
sider simplices that may not appear in any Delaunay trian-
gulation. Specifically, we do not have a circumradius bound
on the problem configurations. This makes their description
more complicated than the traditional definition of a sliver.
As schematically depicted in Figure 2, we have the following
characterisation of the configurations that we need to avoid:

Definition 3.5 (Forbidden configuration) Let P′ ⊂ Rm
be a (µ′0, ε

′)-net. A (k + 1)-simplex τ ⊆ P′, is a forbidden
configuration in P′ if it is a Γ0-flake, with k ≤ m, and there
exists a p ∈ τ such that τp has a circumscribing ball B =
B(C,R) with R < ε′, and |d(p, C)−R| ≤ δ, where δ = δ0µ

′
0ε
′.

We say that the forbidden configuration is certified by p and
B.

We remark that the definition of a forbidden configuration
depends on two parameters, Γ0, and δ0, as well as on the pa-
rameters which we associate with the sample set P′, namely
µ′0, and ε′.

In order to guarantee that the (µ′0, ε
′)-net P′ is δ-generic,

with δ = δ0µ
′
0ε
′, it is sufficient to ensure that there is no

forbidden configuration with vertices in P′:

Lemma 3.6 Suppose P′ ⊂ Rm is a (µ′0, ε
′)-net. If there exists an m-simplex σm ∈ Del|(P

′) which
is not δ-protected, with δ = δ0µ

′
0ε
′, then K(P′) contains a forbidden configuration. Likewise, if

any σm ∈ Del|(P
′) is not Γ0-good, then K(P′) contains a forbidden configuration.

Proof Suppose σm ∈ Del|(P
′) is not δ protected. Then there exists a p ∈ P′ \ σm such that

0 ≤ d(p, C(σm)) − R(σm) ≤ δ. The (m + 1)-simplex τ̃ = p ∗ σm is necessarily degenerate,
therefore, by Lemma 3.2, there is a Γ0-flake τ ≤ τ̃ . If p belongs to τ , then τ is necessarily a
forbidden configuration certified by p and B = B(C(σm), R(σm)), because δ ≤ δ0µ′0ε′. If p does
not belong to τ , then it is a forbidden configuration certified by any one of its vertices and B.

A similar argument reveals a forbidden configuration if σm is not Γ0-good. �
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12 Boissonnat, Dyer, & Ghosh

3.3 The Hoop property

We characterise the property of forbidden configurations that is important for algorithmic pur-
poses as follows:

Definition 3.7 (Hoop property) A simplex τ ⊂ Rm has the α0-hoop property if there is a
constant α0 > 0 such that for every p ∈ τ , the opposing facet has a circumcentre and

d(p, S(τp)) ≤ α0R(τp) <∞.

3.3.1 The Hoop Lemma

We emphasise that the symmetric nature of the hoop property is essential for our purposes.
The hoop property says that every vertex is close to the circumsphere of the opposing facet.
We obtain this bound in two steps. First we exploit the thickness of the facets to show that
forbidden configurations have a natural symmetry in that every vertex lies close to some small
circumscribing sphere of its opposing facet:

Lemma 3.8 (Symmetry of forbidden configurations) Suppose τ = q ∗ σ is a (k + 1)-
simplex certified by q and B(C,R) as a forbidden configuration in a (µ′0, ε

′)-net. If δ0 ≤ 1
4 ,

then for any p ∈ τ there exists a ball B = B(Cp, Rp) circumscribing τp and such that

Rp ≤
(

1 +
3δ0
µ′0Γk0

)
R,

and

d(p, ∂B) ≤
(

6δ0
µ′20 Γk0

)
L(τp).

Proof The idea is that C is “almost” a circumcentre for τp in that the distances between C
and the vertices of τp are all very close. Since τp is thick, we can exploit a result [BDG13b,
Lemma 4.3] that says that τp must have a circumscribing ball with a centre near C. The bounds
then follow from a consideration of the triangle inequality, and the fact that τp and σ must have
a vertex in common.

We observe that for any u, v ∈ τp we have∣∣d(u,C)− d(v, C)
∣∣ ≤ δ0L(σ).

It follows then, from [BDG13b, Lemma 4.3], that there is a circumscribing ball B = B(Cp, Rp)
for τp with

d(Cp, C) ≤ (R+ δ0L(σ))δ0L(σ)

Υ(τp)∆(τp)
.

Since τ is a Γ0-flake, Υ(τp) ≥ Γk0 . Thus, using L(σ)
∆(τp) ≤ 2

µ′0
, and R ≤ 1

µ′0
L(τp) and δ0 <

1
4 , we find

d(Cp, C) ≤ 2(R+ 2δ0R)δ0
µ′0Γk0

≤ 3δ0R

µ′0Γk0
≤ 3δ0L(τp)

µ′20 Γk0
.

We have k ≥ 1, since τ is a flake, so σ and τp must share a common vertex. Thus the bounds
follow from the triangle inequality. �
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In the next step we arrive at the α0-hoop property by exploiting the altitude bound on every
vertex that is guaranteed by Lemma 3.4 because a forbidden configuration is a Γ0-flake. The
Symmetry Lemma 3.8 allows us to exploit an argument similar to the traditional demonstration
of the torus lemma. The full proof is described in Appendix A. We arrive at the following Hoop
Lemma, which is a restatement of Lemma A.1:

Lemma 3.9 (Hoop Lemma) If

δ0 ≤
µ′20 Γm0

6
,

then a forbidden configuration τ in a (µ′0, ε
′)-net has the α0-hoop property with

α0 =

(
6

µ′0

)3(
Γ0 +

δ0
Γm0

)
.

Furthermore, the facets of τ are subject to a circumradius bound:

R(τp) <

(
1 +

3δ0
µ′0Γm0

)
ε′,

for all p ∈ τ .

The definition of forbidden configurations is cumbersome, but the Hoop Lemma 3.9 provides
us with a symmetric property of forbidden configurations that is easy to exploit. In particular,
when we perturb a point p 7→ p′, then for any nearby simplex σ, we are able to check whether
τ = p′ ∗ σ is a forbidden configuration simply by examining the distance between p′, and the
circumsphere for σ; we do not have to check this for all the vertices of τ .

3.3.2 The perturbation setting

Although we have described forbidden configurations and the Hoop Lemma in terms of a (µ′0, ε
′)-

net P′, rather than a (µ0, ε)-net P, the notation is simply a convenience for our current purposes.
Until now we have not supposed that P′ was a perturbation of a (µ0, ε)-net. We now review the
results in this setting.

If we constrain Γ0 and constrain δ0 relative to Γ0, we observe that, for a forbidden configu-
ration that appears in a perturbed point set, the properties expressed in the Hoop Lemma 3.9
can be simplified and, by using Lemma 2.2, they can be expressed in terms of the parameters of
the original (µ0, ε)-net:

Lemma 3.10 (Hoop Lemma for perturbed points) Suppose P′ is a perturbation of the
(µ0, ε)-net P, and τ ⊂ P′ is a forbidden configuration. If

δ0 ≤ Γm+1
0 and Γ0 ≤

2µ2
0

75
,

then τ has the α0-hoop property, with

α0 = 2

(
16

µ0

)3

Γ0.

Also, for all p ∈ τ ,

R(τp) < 2ε.
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14 Boissonnat, Dyer, & Ghosh

For convenience, we restate the consequences of Lemma 3.6 in terms of the algorithmically
convenient property guaranteed by Lemma 3.10, together with a couple of other properties that
are a direct consequence of Definition 3.5. In particular, if τ is a forbidden configuration, then
it follows directly from Definition 3.5 that

∆(τ) < (2 + δ0µ
′
0)ε′.

From this observation, and Lemma 2.2, we obtain the diameter bound P3 below.

Theorem 3.11 (Properties of forbidden configurations) Suppose that P ⊂ Rm is a (µ0, ε)-
net and that P′ is a perturbation of P such that there is no simplex τ ⊂ P′ that satisfies all of
the following properties:

P1 Simplex τ has the α0-hoop property, with α0 = 2
(

16
µ0

)3

Γ0.

P2 For all p ∈ τ , R(τp) < 2ε.

P3 ∆(τ) < 5
2 (1 + 1

2δ0µ0)ε.

P4 Every facet of τ is Γ0-good.

If

δ0 ≤ Γm+1
0 and Γ0 ≤

2µ2
0

75
, (5)

then P′ contains no forbidden configurations and thus all the m-simplices in Del|(P
′) are Γ0-good

and δ-protected, with δ = δ0µ
′
0ε
′.

4 Algorithm

In this section we present the algorithm. We start, in Section 4.1, by announcing the guarantees
of the algorithm as our main theorem.

4.1 Main result

The goal and primary contribution of this paper is the presentation of the perturbation Algo-
rithm 1, and the demonstration of its guarantees.

In our analysis we employ three positive parameters, δ0, Γ0, and ρ0, which are logically
distinct. The parameter δ0 specifies the protection that will be guaranteed for the Delaunay m-
simplices in Del|(P

′), and Γ0 is a bound on the quality of these simplices. The analysis places an
upper bound on δ0 with respect to Γ0, and so for the statement of our results, and the description
of Algorithm 1, it is convenient to combine the parameters by setting δ0 to be equal to this upper
bound:

δ0 = Γm+1
0 .

Our primary interest is in δ0, but it is more convenient to express the results in terms of Γ0.
The analysis also places an upper bound on Γ0 with respect to the parameter ρ0 that governs
the amount of perturbation the input points may be subjected to. We fix Γ0 with respect to this
upper bound, and let ρ0 be the only free parameter for the algorithm.

The following theorem is demonstrated in Section 5 and is stated in full generality as Theo-
rem 5.6:
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Delaunay stability 15

Theorem 4.1 (Main result) Taking as input a (µ0, ε)-net P ⊂ Rm, where µ0 and ε are known,
and a positive parameter ρ0 ≤ 1

4 , Algorithm 1 produces a (µ′0, ε
′)-net P′ that is a ρ0ε-perturbation

of P such that all the Delaunay m-simplices in Del|(P
′) are Γ0-good and δ-protected, with

Γ0 =
ρ0

C
, and δ = Γm+1

0 µ′0ε
′,

where C =
(

2
µ0

)3m2+5m+17

, and µ′0 = µ0−2ρ0
1+ρ0

, and ε′ = (1 + ρ0)ε.

The expected time complexity is

O(m)(#(P))2 +

(
2

µ0

)O(m2)

#(P),

where the constant in the big-O notation is an absolute constant.

Although we require knowledge of two sampling parameters, µ0, and ε, in practice one is easily
deduced from the other by finding the minimum distance between two points in P, and using the
relation d(p, q) ≥ µ0ε.

We recall that by itself δ0 = Γm+1
0 guarantees a lower thickness bound proportional to

δ2
0 = Γ2m+2

0 on the Delaunay m-simplices [BDG13b, Theorem 3.11], but this is much smaller
than the Γm0 thickness guaranteed by Theorem 4.1. If we were to set δ0 = 0 we would have
a “sliver exudation” algorithm which would not guarantee any δ-genericity, but Γ0 would only
increase by a factor of two.

4.2 Algorithm overview

We present an algorithm that will perturb an input (µ0, ε)-net P to obtain a (µ′0, ε
′)-net P′

which contains no forbidden configurations. The algorithm takes as input a finite (µ0, ε)-net
P = {p1, . . . , pn} ⊂ Rm. The output is obtained after n iterations, such that at the ith iteration
a perturbation Pi = {p′1, . . . , p′i, pi+1, . . . , pn} is produced by perturbing the point pi 7→ p′i in a
way that ensures that there are no forbidden configurations incident to p′i in Pi. Thus we have
a sequence of perturbations

P = P0 → P1 → · · · → Pn,

such that for all i ∈ [1, . . . , n], Pi is a perturbation of P as well as of Pi−1, and Pi−1 \ {pi} =
Pi \ {p′i}. Thus all the sets Pi are (µ′0, ε

′)-nets.
At the ith iteration of the algorithm, all the points p1 to pi−1, have already been perturbed,

and the points pi to pn have not yet been perturbed. Using a uniform distribution, we pick a
random point x ∈ B(pi, ρ0ε).

Definition 4.2 We say that x is a good perturbation of pi if for all simplices σ ∈ Pi−1 \ {pi},
the simplex x ∗ σ is not a forbidden configuration.

If x is a good perturbation of pi, we let p′i = x and go on to the next iteration, otherwise
we choose a new random point from B(pi, ρ0ε). The algorithm for determining if x is a good
perturbation is discussed in Section 4.3, and the existence of good perturbations is established in
Section 5. The essential ingredient is the α0-hoop property, and especially the symmetric nature
of this property.

The algorithm is shown in pseudocode in Algorithm 1. Since a good perturbation p 7→ p′

ensures that there are no forbidden configurations incident to p′ in the current point set, and in
particular that no new forbidden configurations are created, the output of the algorithm cannot
contain any forbidden configurations:
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16 Boissonnat, Dyer, & Ghosh

Lemma 4.3 After the ith iteration of the algorithm, there are no forbidden configurations in
K(Pi) incident to p′j ∈ Pi for any j ∈ [1, . . . , i]. In particular, when the nth iteration is completed,
Pn contains no forbidden configurations.

Proof By the definition of a good perturbation, there is no forbidden configuration incident
to p1 ∈ P1 after the first iteration has completed. Assume that at the ith iteration there are no
forbidden configurations in Pi−1 incident to any p′j ∈ Pi−1 for all j < i. At the completion of the

ith iteration Pi−1 \ {pi} = Pi \ {p′i}, so if there is a forbidden configuration τ ⊂ Pi that includes
a p′j with j < i, then τ must also include p′i, since otherwise we would have τ ⊂ Pi−1. But this
contradicts the fact that p′i was chosen to be a good perturbation of pi, thus establishing the
claim. �

Algorithm 1 Randomized perturbation algorithm

Input: (µ0, ε)-net P0 = {p1, . . . , pn} ⊂ Rm and ρ0

for i = 1 to n do
Flag← 0
x← pi
while Flag 6= 1 do

if good perturbation(x, pi,Pi−1) then
p′i ← x
Pi ← (Pi−1 \ {pi}) ∪ {p′i}
Flag← 1

else
// random point(B(pi, ρ0ε)) outputs a point from the uniform distribution on B(pi, ρ0ε)

x← random point(B(pi, ρ0ε))
end if

end while
end for
// Pn = {p′1, . . . , p′n}, a δ-generic (µ′0, ε

′)-net, as described in Theorem 4.1
Output: Pn

4.3 Implementation of good perturbations

The geometric computations of the algorithm occur in the good perturbation procedure, which
is outlined in Algorithm 2. The check for a good perturbation is a local operation. We first
establish a bound on the number of possible distinct forbidden configurations incident to p′ in a
perturbation P′ of P. The first step is to bound the radius of a ball centred on p that contains
all such forbidden configurations:

Lemma 4.4 Suppose P′ is a perturbation of P, and τ ⊂ P′ is a forbidden configuration, with
δ0 ≤ 2

5 . If p ∈ P and p 7→ p′ ∈ τ , then all the vertices of τ originate from elements of P contained
in the ball B(p, r), with r = (3 + µ0

2 )ε.

Proof Suppose q′ ∈ τ originates from q ∈ P. Then, using Property P3 and the perturbation

Inria



Delaunay stability 17

bound (2), the triangle inequality yields

d(p, q) ≤ ∆(τ) + d(p, p′) + d(q, q′)

<
5

2
(1 +

1

2
δ0µ0)ε+ 2ρ0ε

≤ (3 +
1

2
µ0)ε.

�

We exploit Lemma 4.4 to define the local structures in which we check for forbidden config-
urations. For any point p ∈ P, let

Np = B(p, (3 +
µ0

2
)ε) ∩ P \ {p},

and define Sp to be the m-skeleton of the complete complex on Np. In other words, Sp consists
of all j-simplices with vertices in Np and j ≤ m.

We let Spi(Pi−1) denote the simplices in Pi−1 that correspond to simplices in Spi . If σ′ ∈
Pi−1 \ {pi} is such that it forms a forbidden configuration with x ∈ B(pi, ρ0ε), then σ′ belongs
to Spi(Pi−1).

Algorithm 2 good perturbation(x, p,P′)

1: // Test if x is a good perturbation of p in P′.
2: // Sp(P′) is defined in Section 4.3, and α0 is defined by Property P1 of Theorem 3.11.
3: compute Sp(P′)
4: for each σ ∈ Sp(P′) do
5: if R(σ) <∞ then
6: if |d(x,C(σ))−R(σ)| ≤ α02ε then
7: return false
8: end if
9: end if

10: end for
11: return true

Algorithm 2 reveals that Algorithm 1 uses two geometric predicates: (1) a distance compar-
ison (to compute Sp(P′)), and (2) the in-sphere tests implicit in Line 6 of Algorithm 2. The
complexity of the algorithm will be discussed in Section 5.2.

Remark 4.5 We observe that good perturbation does not explicitly exploit Property P4 of
forbidden configurations. Also, Property P2 is only really used for the bound on the right
hand side of the inequality of Line 6. The volumetric analysis presented in Section 5 counts all
simplices σ that could be a facet of a simplex with diameter bounded by Property P3, without
consideration of the circumradius or thickness of σ. However, Properties P4 and P2 may be
important in applications, and Line 5 serves as a reminder that they may be taken into account.

5 Analysis of the algorithm

In this section we will prove Theorem 4.1. We begin with a calculation of the number of simplices
contained in the local complexes Sp(P′). Then in Section 5.1 we perform the volume calculations
that show the existence of good perturbations, and the probability of finding one with a random
point. Then in Section 5.2 we analyse the complexity and precision required by the algorithm.
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18 Boissonnat, Dyer, & Ghosh

Lemma 5.1 Let P ⊂ Rm be a (µ0, ε)-net. For all p ∈ P, we have #(Np) ≤ E1
def
=
(

8
µ0

)m
, and

#(Sp) < E
def
= 2

(
8

µ0

)m2+m

.

Proof In order to bound #(Np) we will use a packing argument in the ball B(p, (3 + µ0

2 )ε)
described in Lemma 4.4. We extend the radius by the packing radius r = µ0ε

2 of P. Thus let
R = (3 + µ0)ε. It follows then that for any p ∈ P

#(Np) ≤
(
R

r

)m
=

(
2

µ0
(3 + µ0)

)m
≤
(

8

µ0

)m
= E1.

This implies that for all p ∈ P,

#(Sp) ≤
m+1∑
j=1

Ej1 < 2Em+1
1 ≤ 2

(
8

µ0

)m2+m

= E.

�

5.1 Existence of good perturbations

Recall that for any simplex σ with R(σ) <∞ the circumsphere S(σ) is contained in the diametric
sphere Sm−1(σ). Thus if d(x, Sm−1(σ)) > α0R(σ), then d(x, S(σ)) > α0R(σ), and τ = x ∗ σ
cannot have the α0-hoop property. As discussed below, it is convenient to use Sm−1(σ) instead
of S(σ), and there is little cost since these objects coincide when σ is an m-simplex, and this
dominates the calculation we are about to describe.

The good perturbation procedure uses this sufficient criterion to filter for good perturba-
tions. The probability of successfully finding a good perturbation by choosing a random point is
based on a volume calculation. Specifically, exploiting Properties P1 and P2 of forbidden con-
figurations described in Theorem 3.11, we define the forbidden volume Fp(σ) for p contributed
by σ as the volume occupied in the perturbation ball B(p, ρ) for p consisting of those points that
are within a distance α02ε from Sm−1(σ), as depicted in Figure 3.

We let Vj denote the volume of a j-dimensional Euclidean unit ball. The following lemma
yields a bound on the forbidden volumes Fp(σ):

Lemma 5.2 (Forbidden volume) If Sm−1 is a sphere of radius R in Rm, then for any p ∈ Rm,
and ρ < R− β, the volume Fp(ρ, β, S

m−1) of points contained in B(p, ρ), and within a distance
β from Sm−1 is bounded by

Fp(ρ, β, S
m−1) ≤ Vm−1(

π

2
ρ)m−12β.

Proof Consider an (m− 1)-sphere S, concentric with Sm−1 and with radius R̃ with R − β ≤
R̃ ≤ R + β. The intersection of B(p, ρ) with S will be a geodesic ball B ⊂ S. Since ρ < R̃,
the geodesic radius of B, say r = R̃θ, is subtended by an angle θ that is less than π/2, and
2
π θ ≤ sin θ ≤ ρ/R̃. It follows that r ≤ π

2 ρ, independent of R or R̃.
Since the volume of a geodesic ball in an (m− 1)-sphere is smaller than a Euclidean (m− 1)-

dimensional ball of the same radius [Cha06, Theorem III.4.2], we have

vol(B) ≤ Vm−1(
π

2
ρ)m−1,

and the stated bound follows. �
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p

σ

B(p, ρ)

2β = 4α0ε

Sm−1(σ)

Fp(σ)

θ

r ≤ π
2ρ

R̃

ρ

Figure 3: The forbidden volume Fp(σ) that a simplex σ removes from the perturbation ball
B(p, ρ) constitutes the points in B(p, ρ) that are within a distance α02ε from Sm−1(σ), as sug-
gested by Properties P1 and P2 of Theorem 3.11.

Remark 5.3 If σ ∈ Sp(P′) is a j-simplex, with j ≤ m, then it is also the face of many m-
simplices in Sp(P′). Thus if d(x, Sm−1(σ)) ≤ α02ε, then we will also have d(x, S(τ)) ≤ α02ε
for any m-simplex τ such that σ ≤ τ . Thus the good perturbation Algorithm 2 only really
needs to consider the m-simplices in Sp(P′). This would save a factor of two in the estimate of
#(Sp), but if we wish to exploit Property P4 of Theorem 3.11, as must be done in the context of
finite precision, then all the lower dimensional simplices must also be taken into consideration.
Indeed, if σ is Γ0-good and has a small circumradius, we cannot assume that it is the face of an
m-simplex with these properties.

We now prove that at the i-th iteration of the algorithm there exists a p′i ∈ B(pi, ρ0ε) that
is a good perturbation of pi. We also establish an upper bound on the expected number of
times we have to pick random points from B(pi, ρ0ε) in order to get a good perturbation. In
the description of the algorithm we let ρ0 determine δ0 and Γ0, but here we keep all three as
separate parameters, subject to constraint inequalities.

Lemma 5.4 (Existence of good perturbations) If

δ0 ≤ Γm+1
0 , and Γ0 <

ρ0

K
, (6)

where K = Vm−1

Vm

(
8
µ0

)m2 (
16
µ0

)m+4

, then at the ith iteration of the algorithm there exists a good

perturbation p′i of pi such that no forbidden configuration is incident to p′i in Pi, and the expected
number of times we have to pick random points from B(pi, ρ0ε) to get a good perturbation of pi
is less than

T =
1

1− γ ,
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where

γ =
KΓ0

ρ0
.

Proof We exploit Theorem 3.11. Say that x is a bad perturbation of p ∈ P′ if there is a
σ ∈ Sp(P′) such that d(x, Sm−1(σ)) ≤ α02ε, with α0 defined by Property P1. Let Fp(σ) :=
Fp(ρ0ε, α02ε, Sm−1(σ)) denote the volume in B(p, ρ0ε) that represents bad perturbations with
respect to σ. Then Lemma 5.2 implies

Fp(σ) ≤ Vm−1(
π

2
)m−1ρm−1

0 εm−1α04ε.

Using E defined in Lemma 5.1, we obtain a bound on Fp, the total volume of the bad
perturbations in B(p, ρ0ε):

Fp ≤ EFp(σ)

≤ 8

(
8

µ0

)m2+m (π
2

)m−1

α0ρ
m−1
0 Vm−1ε

m

≤ 16

(
8

µ0

)m2+m (π
2

)m−1
(

16

µ0

)3

Γ0ρ
m−1
0 Vm−1ε

m by Property P1

≤
(

8

µ0

)m2 (
16

µ0

)m+4

Γ0ρ
m−1
0 Vm−1ε

m

Therefore, the volume of the set of good perturbations of p in B(p, ρ0ε) is greater than

Vmρ
m
0 ε

m −KVmρm−1
0 Γ0ε

m,

and it follows that the probability of getting a good perturbation of p by a picking random point
from B(p, ρ0ε) is greater than 1 − γ, where γ = KΓ0

ρ0
. Therefore the expected number of trials

required to get a good perturbation is not greater than

∞∑
i=0

(i+ 1)γi(1− γ) =
1

1− γ .

�

5.2 Complexity of the algorithm

Lemmas 5.1 and 5.4 lead directly to bounds on the asymptotic properties of the algorithm:

Lemma 5.5 The expected time complexity of Algorithm 1 is

O(m)(#(P))2 + (1− γ)−1

(
2

µ0

)O(m2)

#(P).

The space complexity required to run the algorithm is(
2

µ0

)O(m)

#(P) +

(
2

µ0

)O(m2)

.
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Proof The setsNp can be computed inO(m)(#(P))2 time, while being stored in
(

2
µ0

)O(m)

#(P)

space, which is also sufficient to store the input and output point sets.
The algorithm visits each point once, and it computes and stores the set Sp(P′) which has size(

2
µ0

)O(m2)

. The good perturbation procedure (Algorithm 2) evaluates |d(x,C(σ)) − R(σ)| ≤
2α0ε for every simplex σ ∈ Sp(P′). This computation can be performed via determinant evalua-

tions in O(m3) time, so the time required to run the good perturbation algorithm is
(

2
µ0

)O(m2)

.

The expected number of times it must be run on each point is (1 − γ)−1, and this yields the
stated bound. �

5.3 Summary of guarantees

Lemma 4.3 and Lemma 5.4 guarantee that Algorithm 1 terminates with Pn which contains no
forbidden configurations and is a perturbation of P. Lemma 5.5 establishes the complexity bound.
Since Condition (6) demanded by Lemma 5.4 implies Condition (5) required for Theorem 3.11,
the main result is established:

Theorem 5.6 (Main result) Algorithm 1 takes as input a (µ0, ε)-net P ⊂ Rm and positive
parameters ρ0 ≤ µ0

4 and Γ0, with

Γ0 <
ρ0

K
, (7)

where

K =
Vm−1

Vm

(
8

µ0

)m2 (
16

µ0

)m+4

, (8)

and Vj is the volume of the j-dimensional unit ball.
By sequentially perturbing the points, it produces a (µ′0, ε

′)-net P′ that is a δ-generic, ρ0ε-
perturbation of P and such that all the Delaunay m-simplices in Del|(P

′) are Γ0-good and

δ = Γm+1
0 µ′0ε

′,

where µ′0 and ε′ are defined in Lemma 2.2.
The expected time complexity is less than

O(m)(#(P))2 + (1− γ)−1

(
2

µ0

)O(m2)

#(P),

where the constant in the big-O notation is an absolute constant and

γ =
KΓ0

ρ0
.

Theorem 4.1 is a restatement of this result, simplified by setting Γ0 = ρ0
2K , and by also observing

that
Vm−1

Vm
≤ 2m. (9)

Indeed, Vm−1

Vm
is a slowly growing function of m, and the crude bound (9) can be obtained from

an elementary calculation using the expression [CS88, Eq. (18), p. 9] for log2 Vm.
The constant K involved in the bound on Γ0 has been computed explicitly, and cannot easily

be reduced significantly. This means that Equation (6) yields a 2−O(m3) bound on δ0, which
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results in very small numbers, even in low dimensions. Two of the powers of m in the exponent
come from the consideration of all m-simplices in the neighbourhood of a point (Lemma 5.1), and
the other comes from the dimension-graduated thickness bound introduced in the Definition 3.1
of a flake. Analyses of traditional sliver exudation algorithms suffer from similar tiny bounds,
but in practice these bounds appear to be pessimistic.

6 Conclusions

We have demonstrated an algorithm that will produce a δ-generic (µ′0, ε
′)-net P′ that is a per-

turbation of a given (µ0, ε)-net P. The Delaunay triangulation of P′ is then quantifiably stable
with respect to changes in the metric or the points themselves.

Although our exposition assumes a finite set P, it is worth observing that the analysis requires
only local finiteness (the intersection of P with any compact set is a finite set), and the algorithm
extends trivially to the case of a periodic set P̃ ⊂ Rm. For example, we may have P̃ = P̃ + v
for any v ∈ Zm, and P̃ is ε-dense with respect to all of Rm. In this framework we require that
ε � 1, and we may view P̃ as a finite set P in the standard flat torus Tm = Rm/Zm. This
has the advantage of avoiding boundary considerations. It is also closer in spirit to the primary
motivating application of this work, which is the construction of Delaunay triangulations of
compact manifolds.

Funke et al. [FKMS05] hinted at a much simpler analysis for arguing that a perturbation of
points in Rm, for arbitrary m, has a good probability of being δ-generic, with Γ0-good simplicies.
For a given point p, one simply calculates the volumes of δ-thick shells around the diametric
spheres of the nearby m-simplices (i.e., take β = δ in Figure 3), and one also accounts for
the volumes of “slabs” (i.e., the affine hull of each nearby j-simplex thickened by an offset
proportional to Γj0). The probability that the perturbed point p′ violates the protection of a
Delaunay ball, or becomes the vertex of a Γ0-bad simplex, can thus be made as small as required
by appropriately reducing the size of δ and Γ0, or by increasing the perturbation parameter ρ0.

The problem with this simplified analysis is that although the probability calculated for a
given point depends only on points in a neighbourhood (assuming a sampling density), these
probabilities are not independent. Conceptually, all the points must be perturbed at once, and
the probability of success is proportional to the total number of points. Funke et al. [FKMS05,
Section 4.3] mentioned this limitation of their analysis.

In this paper we have shown that the hoop property provides a way to circumvent this
difficulty and obtain a δ-generic P′, where δ/ε is only ultimately constrained by the separation
parameter, µ0, via Equations 2 and 6, and not by the sampling density or total number of sample
points. This is essential for our intended application to meshing non-flat manifolds.

The idea is that locally a manifold can be approximated by Euclidean space. If the sampling
density is high enough the transition functions between the local Euclidean spaces associated
to nearby points on the manifold will have small metric distortion. This will allow us to argue
that if there are no small simplices containing p that have Γ̂0-good facets and have the α̂0-
hoop property in a local Euclidean metric at p, then p will not be a vertex of any simplex with
the α0-hoop property and Γ0-good facets in any of the nearby local Euclidean metrics, for some
α0 ≤ α̂0 and Γ0 ≥ Γ̂0. We then exploit the stability results [BDG13b] to argue that the Delaunay
triangulations in the local Euclidean neighbourhoods will agree where they overlap, and therefore
define a coherent triangulation of the manifold.

Such a framework will not require that the manifold be embedded in a Euclidean space,
and in particular it will encompass the task of anisotropic meshing. The framework will also
accommodate a sampling radius ε that changes by a small amount between neighbouring local
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Euclidean spaces, corresponding to a Lipschitz function on the manifold. In the case where the
manifold is flat, this would also encompass the model of point sets with a Gap Property that
was used by Edelsbrunner et al. [ELM+00].
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gramme for Research of the European Commission, under FET-Open grant number 255827
(CGL Computational Geometry Learning). The third author is supported by ACM Unit, Indian
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A Proof of the Hoop Lemma

In this appendix we demonstrate the Hoop Lemma 3.9, which can be stated in full detail as:

Lemma A.1 (Hoop Lemma) Let τ be a (k + 1)-dimensional forbidden configuration in a
(µ′0, ε

′)-net. If

δ0 ≤
µ′20 Γk0

6
,

then for any p ∈ τ
d(p, S(τp)) ≤

(
84

µ′30

δ0
Γk0

+
216

µ′30
Γ0

)
R(τp),

and

R(τp) <

(
1 +

3δ0
µ′0Γk0

)
ε′.

Recall that Lemma 3.8 demonstrated that any vertex in a forbidden configuration lies close to
a circumscribing sphere for its opposing face. We now use the fact that a forbidden configuration
is a flake to bound the distance from a vertex to the circumsphere of its opposing face. We
employ the following characterisation of the altitudes of a triangle:

Lemma A.2 (Triangle altitude bound) For any non-degenerate triangle ζ = [p̃, u, v], we
have

D(p̃, ζ) =
‖p̃− v‖‖p̃− u‖

2R(ζ)
.

Proof Let α = ∠p̃uv and observe that

sinα =
‖p̃− v‖
2R(ζ)

.

Since D(p̃, ζ) = ‖p̃− u‖ sinα, the result follows. �

Lemma A.3 (Distance to circumsphere) Suppose τ is a Γ0-flake with ∆(τ) ≤ 3ε′ and
L(τ) ≥ µ′0ε

′. If there exists a p ∈ τ and a ball B = B(C,R) circumscribing τp, with R < 3
2ε
′,

and such that d(p, ∂B) ≤ δ̃0L(τp) for some δ̃0 ≥ 0, then d(p, S(τp)) ≤ α0R(τp), with

α0 =
14

µ′0
δ̃0 +

216

µ′30
Γ0.
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C

C(τp) vu

p̃
p

aff(τp)

Figure 4: Diagram for Lemma A.3.

Proof We are given that p lies close to a circumscribing sphere ∂B for τp. The fact that τ
is a flake implies that p must also lie close to the affine hull of τp. The result follows since
S(τp) = ∂B ∩ aff(τp). We quantify this by reducing the problem to two dimensions.

Consider the plane Q defined by p, C, and C(τp); if two of these three points coincide,
we may choose Q to be any plane which contains the three points. If p = C, then we have
d(p, S(τp)) = R = d(p, ∂B) ≤ δ̃0L(τp) ≤ δ̃02R(τp) which immediately implies the result. Thus
suppose p 6= C. Let p̃ be the point of intersection of the ray from C through p with ∂B, let
u ∈ S(τp) ∩Q be the point closest to p̃, and let v ∈ S(τp) ∩Q be the farther point, as shown in
Figure 4. Then

d(p, u) ≤ d(p, p̃) + d(p̃, u). (10)

If p̃ = u ∈ S(τp), then the result follows immediately, so we suppose these points to be
distinct, and we consider the triangle ζ = [p̃, u, v]. Since R(ζ) = R, Lemma A.2 yields

d(p̃, u) =
2RD(p̃, ζ)

d(p̃, v)
.

Using our definition of u we find

d(p̃, v) ≥ 1

2
d(u, v) = R(τp) ≥

1

2
L(τp).

The altitude is bounded by

D(p̃, ζ) ≤ d(p̃, p) + d(p, aff([u, v]))

= d(p̃, p) +D(p, τ).

Indeed, if p∗ is the orthogonal projection of p into aff(τp), then [p, p∗] is parallel to [C,C(τp)],
because aff(τp) has codimension one in aff(τ). It follows that p∗ ∈ Q ∩ aff(τp) = aff([u, v]).

By Lemma 3.4 and the fact that ∆(τ) < 3ε′, we have

D(p, τ) ≤ 2∆(τ)2Γ0

L(τ)
≤ 6∆(τ)Γ0

µ′0
≤ 18Γ0L(τp)

µ′20
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Finally, recalling that d(p, p̃) ≤ δ̃0L(τp), and R < 3
2ε
′, we return to Equation (10) and expand it

using all of the subsequent displayed observations:

d(p, u) ≤ δ̃0L(τp) +
2RD(p̃, ζ)

d(p̃, v)

≤ δ̃0L(τp) +
4R

L(τp)

(
δ̃0L(τp) +

18Γ0

µ′20
L(τp)

)
< δ̃02R(τp) +

12

µ′0

(
δ̃0 +

18Γ0

µ′20

)
R(τp)

≤
(

14

µ′0
δ̃0 +

216

µ′30
Γ0

)
R(τp).

(11)

�

Proof of Lemma A.1 Using Lemma 3.8, we apply Lemma A.3 with

δ̃0 =
6δ0
µ′20 Γk0

.

�
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