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Improved imputation quality of low-frequency
and rare variants in European samples using
the ‘Genome of The Netherlands’

Patrick Deelen1,2, Androniki Menelaou3, Elisabeth M van Leeuwen4, Alexandros Kanterakis1,2,
Freerk van Dijk1,2, Carolina Medina-Gomez5,6,7, Laurent C Francioli3, Jouke Jan Hottenga8, Lennart C Karssen4,
Karol Estrada5,6,9,10, Eskil Kreiner-Møller5,6,11, Fernando Rivadeneira5,6,7, Jessica van Setten3,
Javier Gutierrez-Achury1, Harm-Jan Westra1, Lude Franke1, David van Enckevort2,12, Martijn Dijkstra1,2,
Heorhiy Byelas1,2, Cornelia M van Duijn6, Genome of the Netherlands Consortium16, Paul I W de Bakker3,13,14,15,
Cisca Wijmenga1 and Morris A Swertz*,1,2

Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits,

low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference

panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we

present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL).

We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with ‘true’

genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant

improvement in the imputation quality for rare variants (MAF 0.05–0.5%) compared with 1000G. In Dutch samples, the mean

observed Pearson correlation, r2, increased from 0.61 to 0.71. We also saw improved imputation accuracy for other European

populations (in the British samples, r2 improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined

reference set comprising 1000G and GoNL improved the imputation of rare variants even further. The Italian samples

benefitted the most from this combined reference (the mean r2 increased from 0.47 to 0.50). We conclude that the creation

of a large population-specific reference is advantageous for imputing rare variants and that a combined reference panel across

multiple populations yields the best imputation results.
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INTRODUCTION

Although genome-wide association studies (GWAS) have been very
effective in identifying loci associated with diseases or traits,1 it has
proved difficult to fine-map the association signals to causal
variants.2,3 To overcome these limitations, there has been increasing
interest in the interrogation of less frequent variants, especially given
the enrichment of deleterious alleles at low frequencies.4–7 There are
specialized chips that can assess a larger number of rare variants, like
the ImmunoChip8 or Metabochip,9 although they do not provide
uniform genome-wide coverage. Hence, most investigators will
use statistical imputation from SNP arrays in GWAS using dense
reference panels.

Imputation using a densely typed reference set can be performed to
infer untyped variants that can be used to improve the power of a
GWAS,10 and there are numerous examples in which imputation has
effectively enriched the results in GWAS.11,12 Although most large
studies have so far been based on meta-analysis of HapMap-based
imputations across cohorts, the primary limitation is that HapMap is
essentially restricted to common variation (MAF45%). Thanks to
the sequencing of larger samples, such as 1000G, more complete
reference panels are now being assembled, setting off a new wave of
meta-analyses.

The power of detecting an association in a GWAS is determined by
its sample size and effective genome-wide coverage of the included
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variants, among other things.13,14 The effective coverage depends
directly on the number and quality of the imputed genotypes.15

In turn, the quality of the reference panel will depend largely on
the number of samples, the quality of the haplotypes, and the number
of variants included.16

The Genome of The Netherlands (GoNL) has the potential to
provide a good imputation reference panel. GoNL is a population-
based sequencing project, in which 769 Dutch samples were
sequenced at, on average, 14� coverage.17 In particular, the fact
that GoNL sequenced trios (231) or quartets (19) has enabled
improved haplotype phasing by using one of the children.18 The
GoNL imputation reference set contains 998 unrelated haplotypes. In
this paper, we report a quantitative analysis to assess the quality of
imputed genotypes from using both GoNL and 1000G in Dutch and
other European populations.

We adopted a ‘gold standard’ approach using samples genotyped
on two distinct platforms, HumanHap550 and ImmunoChip. Hap550
is a commonly used genotyping chip designed to tag as many
haplotypes as possible using common variants. ImmunoChip, how-
ever, is a fine-mapping chip: it contains a large number of low-
frequency and rare variants for a limited number of loci (primarily
selected on the basis of loci identified in immune-related traits).
Starting from the Hap550-genotyped SNPs, we were able to impute a
large number of variants present on ImmunoChip. We then com-
pared these imputed genotypes with the measured (‘gold standard’)
genotypes on ImmunoChip to quantify the imputation performance.
We have such a data set for three European populations: the Dutch,
British, and Italians. For each population we used 745 samples
genotyped on both platforms. These three populations allowed us
to ascertain population-specific differences in the imputation quality
of SNPs.

MATERIALS AND METHODS

Genome of the Netherlands
GoNL is a project in which 769 individuals from different Dutch

provinces were sequenced at, on average, 14� coverage.17 All samples are

part of either one of the 231 trios or one of the 19 quartets. The phasing was

performed using the trio information,18 and for the quartets one

of the children was used to enhance the phasing. Because of sequence

failures of two parents, from different trios, these samples were excluded

from the imputation reference set. Instead, from these two trios, we used the

haplotype of the child that was not present in the other parent. This resulted in

an imputation reference set containing 998 unrelated haplotypes. We used

GoNL release 4 for all our analyses (see http://www.nlgenome.nl). The current

GoNL release 5 also contains over one million indels but did not change

the SNPs.

Benchmarking samples
Samples from a celiac disease patient cohort were selected, as they had been

genotyped on both the Hap550 and ImmunoChip.19 The 745 Dutch and the

745 British samples were all cases, whereas the 745 Italian samples comprised

371 cases and 374 controls. The clustering for the genotype calling of the

ImmunoChip data was performed manually in the past, to ensure proper

genotyping results.

The Hap550 (516 426 SNPs) data were filtered on MAF41% and

HWE P-value41E-4 for each population separately. The ImmunoChip

(113 991 SNPs) data were filtered on MAF40.05% and HWE P-value

of 1E-4. Both data sets are filtered on variants present in both the 1000G

reference set and the GoNL reference set. After QC the Dutch, British, and

Italian Hap550 data contain 509 888, 509 984, and 510 225 SNPs, respectively.

The ImmunoChip data contain in the same order 107 383, 107 212, and

107 611 SNPs.

Combining 1000G and GoNL data
The reference set combining data from 1000G and GoNL was created using the

Impute2 option: ‘- -merge_ref_panels’. This merged reference set was written to

a file and subsequently used for the benchmarking. As our benchmarking data

are filtered for variants present in both reference sets, we did not assess the

imputations of variants that are unique to either reference set.

Pre-phasing
The 745 samples for each population were pre-phased using SHAPEIT2.15

This was done per chromosome using the default settings.

Imputation
The imputations were performed using Impute2 2.3.0.16 The different

populations were imputed separately and in chunks of 5 Mb. For the

comparison using an equal number of identical European haplotypes, we

performed an imputation using all 379 European 1000G samples and a

random selection of 379 GoNL samples. The random selection of GoNL

samples was performed stratified on the Dutch provinces. These samples were

selected using the Impute2 option: ‘- -exclude_samples_h’.

We used MOLGENIS compute20 to implement the imputation pipeline, run

the 8835 imputation chunks in parallel on a PBS compute cluster, and keep

track of the 15 imputations (five for each population). All pipelines are

available as open source via http://www.molgenis.org/wiki/ComputeStart.

Gold standard method
As stated above, we used samples genotyped on two distinct platforms. We

imputed the Hap550 genotypes from these samples and compared the imputed

genotypes with the SNPs previously present only in the ImmunoChip data.

We used the ImmunoChip data as our ‘gold standard’. The concordance between

imputed genotypes and ImmunoChip genotypes was determined by calculating

the Pearson correlation r2 between the imputed dosage and ImmunoChip-

observed genotypes. The mean concordances were calculated for three MAF

bins: rare (Z0.05% ando0.5%), low-frequency (Z0.5% ando5%), and

common (45%) SNPs. The MAF used to stratify the SNPs into the bins

was calculated separately for each population. The results were plotted using R
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Figure 1 Comparison of imputation quality of rare variants using the 1000G

data, GoNL, and the combined reference panel.
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2.14.2.21 The significance of the differences between the reference sets was

calculated using the Wilcoxon signed-rank test implementation in R.

Principal component analysis
The principal component analysis was performed using the EIGENSOFT 4.2

package.22 The components were calculated using the European 1000G, GoNL,

and the 3 GWAS data sets that we used for benchmarking. Before the

components were calculated, all data sets were filtered to include only variants

with MAF45%. A joint data set, featuring variants present in all five data sets,

was created. This data set was again filtered for MAF45%; the merged data

were also filtered on HWE41E-4 and a call rate of 95%. This data set was

pruned using PLINK 1.0723 with the ‘–indep-pairwise’ option, windows: 1000,

step: 5, r2 threshold: 0.2. The first component explained 0.33% of the variation

and the second 0.10%. All subsequent components described less than 0.06%.

RESULTS

We stratified our analysis into three groups: common variants
(MAFZ5%), low-frequency variants (MAF 0.5–5%), and rare
variants (MAF 0.05–0.5%). We focused mainly on the rare variants,
as these are more difficult to impute and most can be gained in terms
of imputation quality when using a better reference set. We observed a
large increase in the imputation quality of rare variants when using
GoNL as the reference compared with 1000G (Figure 1, Table 1). The
mean observed Pearson correlation (r2) showed a significant increase
from 0.61 to 0.71 for Dutch samples (Wilcoxon P-value¼ 7.16E-60).

The British and Italian imputations also showed a significant
improvement when imputing rare variants, from 0.58 to 0.65
(P¼ 3.70E-35) and from 0.43 to 0.47 (P¼ 2.64E-13), respectively.
GoNL also significantly outperformed the 1000G reference set in the
imputation of variants with higher MAFs (Supplementary Figures/
Supplementary Appendices S1, S2, S3).

Using a combined reference set composed of the 1000G and GoNL
samples, we could improve the imputation further. The imputation of
rare variants using the combined reference in Dutch and British
samples showed a small increase in quality compared with GoNL-only
imputation (0.02 (P¼ 1.16E-03) and 0.02 (P¼ 2.70E-05), respec-
tively). The Italians benefitted most from the combined reference with
an increase of 0.04 (P¼ 3.62E-30) compared with a GoNL-only
reference, resulting in a mean concordance for rare variants of 0.5.
The differences in imputation quality when using the combined
reference set for more frequent alleles were either very small or not
significant (Supplementary Figure S1, Supplementary Tables S2
and S3).

A striking trend in these results is that the imputation quality of
rare variants in the Italian samples is lower than that in Dutch and
British samples. The Dutch and Italian samples were genotyped at the
same center and have similar call rates, and there were no indications
that the genotyping quality of the Italian samples was lower. However,
a principal component analysis revealed that the Italian samples were

Table 1 Mean observed r2 of rare variants

Reference set Dutch British Italian

1000G 0.61 0.58 0.43

GoNL 0.71 0.65 0.47

1000GþGoNL 0.72 0.67 0.50

Abbreviation: GoNL, The Genome of The Netherlands.
Differences in the mean imputation quality between the reference sets was significant for each
population (Po0.001).
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Figure 2 Clustering of reference and study samples. PC1 and PC2 reveal three main clusters: Tuscans from Italy (TSI), Finnish (FIN), and a Western

European cluster with the CEU (Utah Residents with Northern and Western European ancestry), the GBR (British) and the GoNL samples (a). b shows that

most of our GWAS samples clustered in a similar way to the corresponding 1000G/GoNL samples.

Table 2 Mean observed r2 of rare variants for reference sets of equal

sample size from 1000G and GoNL (all of European descent)

Reference set Dutch British Italian

1000G European 0.59 0.57 0.40

GoNL random subset 379 samples 0.68 0.64 0.45

Abbreviation: GoNL, The Genome of The Netherlands.
Differences in the mean imputation quality between the reference sets of equal sample size
was significant for each population (Po0.001).
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not as well represented by either 1000G or GoNL compared with the
Dutch and British GWAS samples used for benchmarking (Figure 2).

We assessed whether the better performance of GoNL compared
with 1000G was due to the larger number of European haplotypes in
the reference set (998 vs. 758 in 1000G). We did this by performing an
imputation using solely the 379 European samples in 1000G and a
random subset of 379 GoNL samples. We found that the GoNL
subset also significantly outperformed the European 1000G subset
(Table 2).

Our experimental design also allowed us to assess the calibration
of the posterior probabilities of the genotypes as they are output
by Impute2. We observed that the posterior probabilities were, in
general, well calibrated, although we did observe a few deviations for
low-frequency and rare variants (Figure 3a). To ascertain whether
these deviations in posterior probabilities affect the predicted
imputation quality, the Impute2 info metric, we plotted the predicted

quality against the observed r2. This showed a strong correlation
between the predicted and observed quality for common variants and
low-frequency variants (correlation of 0.97 and 0.91, respectively;
Figures 3b and c). However, the info metric is not as accurate for rare
variants, and the correlation with the observed r2 dropped to 0.70
(Figure 3d). We also observed some discrepancies wherein a near-
perfect imputation was predicted while in fact there was poor
imputation, and vice versa when assessing rare variants.

DISCUSSION

We have shown that the new GoNL reference set provides higher
downstream imputation accuracy than the 1000G reference set, not
only for Dutch samples but also for other European populations
studied in this paper. Aside from the increase in the imputation
quality of rare variants in Dutch samples from 0.61 (1000G) to 0.71
(GoNL), we also observed an increase in imputation quality in British
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Figure 3 Calibration of posterior probabilities. The posterior probabilities were, in general, well calibrated, although there were a few deviations from the

expected accuracy (a). For common and low-frequency variants (b and c), we observed a strong correlation (r2 0.97 and 0.91, respectively) between the

impute2 info metric and the observed r2. However, for the rare variants (d), the relation between predicted and observed quality was less profound. We also

observed a correlation of 0.70 and several large deviations from the diagonal.
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(0.58–0.65) and Italian (0.43–0.47) samples. We show that GoNL
yielded better imputed genotypes for at least these European
populations. A combined reference set, of 1000G and GoNL,
increased the mean imputation quality of rare variants even further
to 0.72, 0.67, and 0.50 for the Dutch, British and Italians, respectively.

By selecting an identical number of European haplotypes from
1000G and GoNL, we showed a strong added value for GoNL in all
the tested populations, confirming that the trio design of GoNL and
the resultant accurate haplotypes aid the downstream imputation
quality. We also observed a population-specific added value of GoNL
when imputing Dutch samples. The added value (ie mean increase in
imputation quality) was largest when comparing GoNL with 1000G in
imputing the Dutch samples. Of course, it was already known that a
better matched reference set will result in better imputed genotypes;13

however, the results from this paper were based on low-frequency
variants and we show that there is also an inter-European effect of
reference sets.

It is important to note that we only assessed variants present on the
ImmunoChip. Although these variants were not randomly selected,
we have no reason to assume that the imputation quality will be
positively biased or that they do not represent low-frequency variants
in general. The ImmunoChip was made to fine-map loci previously
associated with autoimmune diseases using a large number of low-
frequency and rare variants.

We were encouraged by the observation that the posterior
probabilities were, in general, well calibrated with respect to the gold
standard genotypes. We observed no adverse effects on the accuracy of
the Impute2 info metrics, although for rare variants we did observe a
few instances with large deviations between the predicted and
observed quality. This is in line with previous observations.24 This
observed inaccuracy also emphasizes the importance of validating
associations from imputed genotypes.

It was shown earlier that a larger and more diverse reference set can
improve the imputation of low-frequency variants.25 We observed
that a combination of 1000G and GoNL showed limited added value
for the imputation of rare variants in the Dutch and British samples.
It was, however, interesting to observe that the imputation of the
Italian samples was improved more by this combined reference panel,
leading us to speculate that populations that are poorly represented in
the reference panel benefit more from a large and diverse reference
set. Despite the limited added value for the Dutch and British data
sets, such a large reference set may still be of interest for consortia
aiming to impute cohorts of both European and non-European
origin. All these cohorts can be imputed using the same combined
reference set and then use Impute2 to automatically select the best
matching haplotypes.26 We should note that we were only able to
assess variants present in both reference sets, as there are very few
variants on the ImmunoChip that are unique to either GoNL or
1000G. Nonetheless, our results show that population-specific
reference sets and cosmopolitan panels, such as 1000G, can
augment each other. This even holds true for the imputation of
samples with ancestry other than those present in the population-
specific reference sets, which provides further motivation for
international efforts towards large and integrated reference sets.
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