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Abstract

Background: The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating
chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this
study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees
and bonobos.

Methodology/Principal Findings: PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this
domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17
chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide
level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the
subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and
bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans.
Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of
positive selection in the residues responsible for DNA binding.

Conclusions and Significance: The high number of alleles specific to the genus Pan, signs of positive selection in the DNA
binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest
that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate
species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level
between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in
interspecific hybrid sterility.
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Introduction

In sexually reproducing organisms, meiotic recombination is

a crucial process during which crossover events during the first

meiotic division ensure the correct alignment and segregation of

homologous chromosomes. This produces new allelic combina-

tions via the breaking and reforming of double strands, and thus

yields new genetic diversity upon which selection can act. Such

double-strand breaks do not occur randomly throughout the

genome, but instead are clustered spatially in 1–2 kb long

stretches, termed hotspots [1–4].

A number of research groups recently identified PRDM9 as

a gene involved in the specification of hotspots in mice and

humans [5–7]. Intriguingly, PRDM9 was also identified as the

identity of a hybrid sterility locus in mice that was first described

over 35 years ago [8]. Accordingly, as a result of its apparently

important role in recombination and potentially significant role in

the speciation process, this gene has become the focus of intense

study and interest [9–15].

The PRDM9 locus contains an N-terminal KRAB, SSXRD

and a PR/SET domain, followed by a variably long C-terminal

zinc finger (ZnF) array [16–18]. In contrast to the other domains,

the DNA binding domain (ZnF array) of PRDM9 was found to be

evolving rapidly in rodents and across the primate lineage and the

residues responsible for DNA binding show signs of positive

selection in these taxa. Furthermore, single zinc finger sequences

within each ZnF array are more similar to one another than to

zinc fingers of the array in closely related species, suggesting

concerted evolution within the arrays [7,19,20]. One particular

13 mer DNA motif is associated with roughly 40% of human

hotspots [21] but is not active in chimpanzees, and observed

patterns of motif evolution suggest that the motif was activated

along the human lineage, as opposed to inactivated in chimpan-

zees [7]. One possible explanation for the rapid evolution of the

zinc finger array is that the inevitable destruction of the hotspot

motifs through recombination itself (hotspot conversion paradox)

is counterbalanced by selection for novel binding targets

[14,15,22,23].

Allelic diversity of the PRDM9 ZnF domain has been

characterized in humans and more than 40 alleles with 8–

19 ZnF repeats have been identified to date [5,6,19,24–26]. One
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allele (A) has been found to be present at high frequency overall

and especially in populations of mainly non-African ancestry

(85%), but at a lower frequency in African ancestry populations

(47%). Most of the alleles identified in addition to allele A occur at

much lower frequencies (under 5%, data from [6,19,24,26]).

Studies of recombination patterns, combined with PRDM9 allele-

typing, suggest that allelic variation in PRDM9 accounts for

almost all of the variation in hostpot activity [6,24–28].

Specifically, allele A, which is predominant among Europeans,

binds in vitro to the degenerate 13 mer motif found in historic

recombination hotspots identified in Europeans [6,7], whereas

another allele (I) was shown to preferentially binds its own

predicted motif [6]. Thus, although it seems clear that allelic

variation in PRDM9 has a pronounced effect on recombination

patterns, it still remains a puzzle how dominance effects in

heterozygous individuals affect recombination (summarized in

[15]), why the genetic background, on which the 13 mer motif is

found, seems to influence the likelihood that the motif is associated

with a hotspot [15,21] and why activation of a hotspot is not

predictably dependent on the presence of a specific binding motif

[26]. Furthermore, it is still unclear to date how universal a role

PRDM9 has in causing hybrid sterility (e.g. [14,15]).

A hybrid sterility gene, that due to a Muller-Dobzhanzky

incompatibility leads to sterility of the male F1 in some crosses of

Mus mus musculus andM. m. domesticus, was first described over three

decades ago [29,30] and subsequently identified as PRDM9 [8].

Depending on the specific mouse strain, some M. m. musculus and

M. m. domesticus hybrids exhibit spermatogenetic failure depending

on the PRDM9 alleles (previously termed Hst1s (sterile) and Hst1f

(fertile)) and the origin of the X chromosome involved [8,31].

Moreover, a human study examining infertile and fertile Japanese

men found that three SNPs which alter DNA binding residues of

the ZnF array were found significantly more often in the proven-

fertile group [32]. This, together with PRDM9 being present and

apparently under positive selection in many taxa, leads to the

suggestion that variation in PRDM9 could be involved in hybrid

sterility in a number of species [13–15]. More specifically, it has

been hypothesized that reproductively isolated species should be

distinguishable by their PRDM9 alleles, if this gene plays

a universal role in hybrid sterility [14].

Although the domain architecture of PRDM9 is generally

conserved across metazoans [17,18], the gene is lacking in some

taxa, such as in chickens (Gallus gallus), frog (Xenopus tropicalis) and

fruit fly (Drosophila melanogaster) and apparently non-functional in

others, such as opossum (Monodelphis domestica), nematode (Caenor-

habditis elegans) and dog [19,33,34]. Moreover, the gene is present

in some taxa, such as ray-finned fishes (i.e. Danio rerio) and tunicates

(i.e. Ciona intestinalis), but characteristic features, such as signals of

positive selection and/or concerted evolution, are lacking, thus

suggesting that in these taxa PRDM9 is not active in re-

combination hotspot regulation [19]. It is thus not clear to what

an extent PRDM9 is universally active in hotspot regulation across

metazoans.

To date, allelic diversity of PRDM9 has only been well

characterized in humans [6,24–28] and to a lesser extent in mice

[6,35] and western chimpanzees [36]. The data available for all

other species is either based on sequencing of PRDM9 in single

individuals (rodents: [19]) or on genome data [20], which

depending on the sequencing and assembly methods employed

may be unreliable, due to the challenge posed by the highly

repetitive structure of the locus. Characterization of PRDM9

variation in other species beyond humans, western chimpanzees

and mice is paramount for addressing outstanding questions about

the function and evolution of PRDM9. As a first step towards this

goal, we sequenced the C-terminal ZnF array in representatives of

three chimpanzee subspecies and bonobos in order to characterize

allelic diversity of PRDM9 in our closest living relatives.

Results

We sequenced the C-terminal zinc finger (ZnF) array of the last

exon of the PRDM9 gene, excluding the first ZnF repeat because

it lies outside the array (‘‘0’’ in schematic representation of

PRDM9 in Fig. 1). The first ZnF repeat within the actual array

(‘‘1’’ in Fig. 1) is truncated and thus was not included in all

analyses (see Methods). We obtained 25 PRDM9 DNA sequences

from 17 chimpanzees and five bonobos. Ten of the 22 individuals

may possibly be heterozygous, but only in three cases was it

possible to identify the second allele (see Methods and Table S1).

Thus, it is possible that we underestimate the diversity at PRDM9

in this sample of chimpanzees and bonobos. In total, twelve alleles

differing at the nucleotide level were identified in the 22 Pan

individuals, which corresponds to 11 alleles at the amino acid level.

The DNA sequences we obtained contain seven to 17 ZnF

repeats (Fig. 1). There are 14 polymorphic sites in an alignment of

all Pan ZnF repeats, excluding the slightly aberrant first repeat.

Half of these polymorphic sites are found at residues 21, 3 and 6

of the ZnF a-helixes, which are the sites suggested to be

responsible for the DNA-binding specificity of PRDM9 (Fig. 2,

e.g. [37]). There are no shared ZnF repeats between the published

human PRDM9 sequences and those identified in the genus Pan.

For comparison we also include in Figure 1 the results from

a recent study in which 56 DNA sequences were found in a sample

of 25 western chimpanzees, 1 eastern chimpanzee and 3 bonobos.

These represented 19 alleles differing at the nucleotide level and

translate into 17 alleles differing at the amino acid level (Fig. 1)

[36]. Of these 17 amino acid sequences identified by Auton et al.

[36], four are also present in our data set.

Diversity Among Pan Species and Subspecies
In a combined data set comprised of our data and that from

a recent study [36], a total of 81 PRDM9 DNA sequences were

obtained from a total of 51 Pan individuals (29 western, 6 central, 8

eastern chimpanzees and 8 bonobos) and 27 unique PRDM9

DNA sequences were observed. Of these, 24 were found in

chimpanzees and 3 in bonobos. When taking into account

differing sample sizes there is no difference in diversity between

the species (permutation test, test statistic = 3, one tailed p= 0.999).

At the subspecies level, diversity levels also do not differ among

any chimpanzee subspecies and bonobos (permutation test,

observed test statistic = 0.070, p = 0.898). Identical PRDM9

DNA sequences were generally not shared between individuals

of different subspecies or species, with one exception: A DNA

sequence (p6), that we identified in four central chimpanzee

individuals, was also reported in an eastern chimpanzee [36].

Overall, the combined data set consists of five unique DNA

sequences found in the eastern chimpanzee sample, four in the

central chimpanzees, 16 in the western chimpanzee sample and

a further three in the bonobos, amounting to 27 unique DNA

sequences, since one is shared among eastern and central

chimpanzees (p6 =E1, Table 1). The p1 (A1) and p11 (B2)

sequences differ only by two synonymous substitutions and thus

the bonobo and eastern chimpanzee samples share an allele at the

amino acid level, which has been described as a putatively

ancestral allele [36]. The published PRDM9 sequence

(GU166820, [19]) from a chimpanzee of unknown subspecies

affiliation represents an additional unique allele not found in our

sample.

High Diversity at PRDM9 in Chimpanzees and Bonobos
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Diversity in Chimpanzees in Comparison to Diversity in
Humans
In order to compare the diversity observed to date in Pan to

that reported in humans, we compiled the DNA sequences

reported in four different studies of humans [6,19,24,26]. We

differentiated between DNA sequences found in individuals of

mainly African and mainly non-African ancestry, but also

analyzed the combined data, so that there were three data sets

(Table S2). The resulting set of 446 human PRDM9 DNA

sequences from individuals of mainly non-African ancestry

contains 21 alleles, whereas the set comprised of individuals of

mainly African descent consists of 134 DNA sequences contain-

ing 19 alleles. In total, the set comprising all humans regardless

of their ancestry consists of 580 DNA sequences, containing 36

Figure 1. Schematic representation of PRDM9 domains and allelic variation in Pan. The top block depicts alleles identified in this study.
The second block shows the additional alleles characterized by Auton et al. [36]. The four alleles common to both studies are shown in the top block,
with the number of occurrences and the corresponding (sub-)species given in square brackets. Pp = Pan paniscus, Ptv = P. troglodytes verus, Ptt = P.
t. troglodytes, Pts = P. t. schweinfurthii. Different ZnF repeats are coded by letters and repeats marked with a * differ from those with the same letter
code by one, two, or three synonymous substitutions. The underlying nucleotide sequence, as shown in Figure 2, of O* is n or zg, D* represents q, A*
is zf and U* represents w. Colors correspond to the AA residue combination at positions 21, 3 and 6 of the ZnFs, as given in the legend. Residue
position 2, which also plays a role in DNA binding is fixed (serine) and therefore not shown. Human allele A is depicted for reference.
doi:10.1371/journal.pone.0039064.g001
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alleles. In contrast, 24 alleles were observed in the sample of 69

chimpanzee PRDM9 sequences. This suggests that the sample

of chimpanzees harbors significantly more diversity at PRDM9

than the samples of non-African humans, African humans and

humans in general (permutation test, test-statistic = 24, non-

Africans: one tailed p= 0, Africans: one tailed p= 0, combined

dataset: one tailed p= 0).

It has been proposed that for human PRDM9, not all ZnFs

present in the C-terminal array actually play a role in DNA

binding. The repeats that are involved in the recognition of the

13 mer hotspot motif identified by Myers et al [21] are found in

the C-terminal half of the ZnF array [6,7,24]. In humans, these

ZnF repeats in the second half of the array are much more similar

to one another than to any of the repeats in the first half of the

array, and vice-versa. This is illustrated by the comparison of

a sequence to itself in a dot-plot (Fig. 3). This type of structure in

self-similarity was not found in the alleles we identified in Pan

(Fig. 3).

Testing for Signals of Positive Selection
The residues 21, 2, 3 and 6 of the alpha helix of each ZnF are

of functional importance because they determine the DNA-

binding specificity of the protein (e.g. [37]). A subset of these

positions (21, 3, and 6) have a high degree of variability and show

strong signals of positive selection in rodents, as well as across the

primate lineage [19,20]. We examined whether the variation

found in Pan PRDM9 ZnFs is consistent with a history of positive

selection. This was done by first assessing a series of models, which

either do or do not allow for positive selection (dN/dS ratio (v) .1)

across the whole alignment.

All models that allow for positive selection also suggested

positive selection in the data set and were favored over models not

allowing for positive selection. For example, models M2a

(selection) and M3 (discrete) both suggest that roughly 12.5% of

sites are under strong positive selection with maximum likelihood

estimates of v=8.28 and 8.08, respectively. Models M2a, M3 and

M8 (beta+v) all show significantly higher log likelihood values

than the corresponding nested models (M0 vs M3:2Dl = 29.61,

Figure 2. Alignment of PRDM9 ZnF repeats of 52 Pan individuals and one human. The ZnF repeats identified in 82 Pan alleles of which 28
are unique DNA sequences, including data from Auton et al. [36] and Oliver at al. (GU166820: [19]), are depicted in the top block. Pp = Pan paniscus,
Ptv = P. troglodytes verus, Ptt = P. t. troglodytes, Pts = P. t. schweinfurthii. The second block depicts the ZnF repeats of the human A allele for
comparison with those identified in Pan. For comparative purposes, we adhere to the break between repeats chosen by Oliver et al. [19]. The two
conserved cysteine and histidine residues are marked at the top and positions 21, 3 and 6 of the alpha helices are identified by black frames.
doi:10.1371/journal.pone.0039064.g002

Table 1. Distribution of alleles according to subspecies/species.

Species Alleles (nt/AA) n Alleles nt (# of occurrences) Alleles AA (# of occurrences)

P. t. schweinfurthii 5/5 10 p1 =A1(6), p2(1), p3(1), p4(1), E1*(1) P1 =A1(6), P2(1), P3(1), P4(1), E1*(1)

P. t. troglodytes 4/4 7 p5(1), p6*(4), p7(1), p8(1) P5(1), P6*(4), P7(1), P8(1)

P. t. verus 16/15 52 p9 =W1(12), p10(1), W2(1), W3a(2), W3b(2),
W4(1), W5(3), W6(12), W7(1), W8(2), W9a(1),
W9b(1), W10(1), W11a(1), W11b(7), W11c(4)

P9 =W1(12), P10(1), W2(1), W3a(2), W3b(2), W4(1),
W5(3), W6(12), W7(1), W8(2), W9a(1), W9b(1),
W10(1), W11a/b(8), W11c(4)

P. paniscus 3/3 12 p11= B2(8), p12(2), B1(2) P1 = B2(8), P11(2), B1(2)

Alleles (p1 =A1 and p11 = B2) differ only by two synonymous substitutions, so that bonobos and eastern chimpanzees share an allele (P1) at the amino acid level. Two
alleles (W11a, W11b) identified in western chimpanzees differ only by one synonymous substitution and represent one allele at the amino acid level.
*There is one shared allele between central and eastern chimpanzees: alleles p6 and E1 are identical at the nucleotide level.
doi:10.1371/journal.pone.0039064.t001
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PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e39064



df = 4, p= 0.00001; M1a vs M2a: 2Dl = 13.50, df = 2, p = 0.001;

M7 vs M8:2Dl = 14.33, df = 2, p = 0.0008).

Given the results suggesting a history of positive selection in the

ZnF sequences, we next used a Bayes empirical Bayes (BEB)

approach [38] to try and identify sites showing signs of positive

selection. Under both models M2a and M8, the BEB analysis

identified the same three amino acid sites as showing signs of

positive selection (M2a: position 21: posterior probability

P = 1.000**; posterior mean of v=8.01761.736; pos 3:

P = 0.964*, v=7.73862.150; pos 6: P = 0.853, v=6.92262.957

M8: position 21: P = 1.000** v=7.83261.779 (SE); pos 3:

P = 0.983*, v=7.69961.982; pos 6: P = 0.905, v=7.11862.661),

which correspond to residues responsible for DNA binding

specificity of the ZnF. We furthermore employed a sitewise

likelihood-ratio method, which is a direct test for the location of

selection [39] to confirm the results obtained by the previous

approach. The SLR test detects positive selection at the same three

residues under the F364 model and the incorporation of codon

frequencies into the substitution matrix according to Muse and

Gaut [40] with a p-value #0.05 (pos 21: v=18.630,

p = 1.6373e28, pos 3: v=8.976. p = 1.8045e24, pos 6:

v=5.186, p = 1.3003e22; pos 21 and 3 are also significant after

multiple testing correction at p#0.01) When assuming a F61/F60

codon model, pos 6 is no longer identified as positively selected,

while changing how codon frequencies are incorporated into the

substitution matrix to the method described by Goldman and

Whelan [41] leads to site 1 being additionally identified as having

experienced positive selection. Overall, these analyses strongly

suggest that the residues responsible for DNA binding specificity in

Pan PRDM9 have been under strong positive selection, as has

been previously demonstrated for the whole primate lineage and

among rodents [19,20].

Discussion

In this study we assess DNA sequence diversity at PRDM9 in

three subspecies of chimpanzees as well as bonobos. We find high

levels of diversity in Pan, with 12 DNA sequences identified from

a total of 22 individuals. When we analyze our data together with

that of a recently published study, we find that one PRDM9

sequence is shared between members of the central and eastern

chimpanzee subspecies. Although chimpanzees and bonobos do

not share alleles at the DNA sequence level, two alleles identified

in bonobos and eastern chimpanzees only differ by two

synonymous substitutions so that they share an allele at the amino

acid level. By finding no sharing of DNA sequences and only

limited sharing of amino acid sequences between species, our

results contrast with a recent study of autosomal non-coding

regions of the genus Pan which demonstrated that bonobos fell

within the variation of chimpanzees for many of the loci studied

[42]. Although comparisons of diversity at noncoding, neutrally-

evolving loci sequenced in bonobos as well as chimpanzees

generally find levels of diversity in bonobos similar to that in any

one chimpanzee subspecies [43], we found similar levels of

variation at PRDM9 in chimpanzees and bonobos. In comparison

to what we observed in chimpanzees, PRDM9 variation in

humans appears more limited. We found a significant difference in

PRDM9 variation between humans and chimpanzees when

pooling all available human data, as well as when only considering

humans of mainly non-African or mainly African ancestry. This is

largely in agreement with general patterns of human autosomal

genetic variation at non-coding loci and with current knowledge of

relative levels of chimpanzee and human genetic diversity [43].

We also detected signals of positive selection in Pan PRDM9.

The sites identified as having experienced positive selection are

known to be contact residues, responsible for site-specific

recognition. Our results are consistent with previous findings,

which demonstrated positive selection on contact residues in

rodents and primates, including humans [19,20]. In sum, our

findings suggest a different mode of evolution at PRDM9 than at

neutral loci in Pan, raising the question of whether PRDM9 plays

a similar role in hotspot recruitment in chimpanzees as it does in

humans.

To explore this, we noted that the ZnFs of the second half of the

human PRDM9 ZnF array are more similar to one another than

to any of the repeats in the first half of the array, and vice-versa.

This structure was not detected in any Pan PRDM9 ZnF array. In

humans, only the ZnFs of the second half of the array are

predicted to bind to the core 13 mer motif [6,7,21,24]. However,

Berg et al. [26] found that alleles that only differ in ZnFs in the first

half of the array apparently have differing effects in hotspot

recruitment. This suggests that the whole ZnF array plays a role in

hotspot recruitment in humans, irrespective of the ‘‘2-block’’

structure. Thus, the apparent lack of this type of structure in Pan

does not in itself signify that the gene is not active in hotspot

regulation in this taxon.

There are no shared PRDM9 sequences between human and

Pan, nor even sharing of individual ZnF sequences. This would

suggest that, if PRDM9 is active in hotspot recruitment in

chimpanzees, it activates hotspots distinct from human hotspots,

which is in agreement with the lack of conservation of re-

combination hotspot locations between humans and chimpanzees

Figure 3. Self-comparison of predominant PRDM9 alleles. These diagrams depict the results of an analysis comparing PRDM9 DNA sequences
to themselves with a window size of 83 and a mismatch limit of five. The main diagonal represents the alignment of a sequence to itself. The off-
diagonal lines represent similar patterns within the sequences. The human allele shows a clear two-block structure, in which the repeats of the first
half of the sequence are more similar to one another than to those in the second half of the sequence and vice versa. This structure is not seen in any
of the Pan alleles.
doi:10.1371/journal.pone.0039064.g003
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[44,45]. Auton et al. [36] note that they did not identify predicted

PRDM9 binding sites, simple DNA motifs or repeat elements that

are consistently associated with chimpanzee hotspots. The authors

present three alternative explanations regarding this lack of

association: 1) loss of function of PRDM9 in chimpanzees 2)

recent origin of high allelic variation in PRDM9 masking signals

for single alleles 3) individual alleles in chimpanzees binding to

a greater number of target sequences than do human alleles. Our

data are consistent with Auton et al.’s characterization of high

allelic variation in western chimpanzees, albeit do not aid in

distinguishing among these hypotheses.

It is worth emphasizing that while we are confident of the

validity of the data presented here, our results possibly represent

an underestimate of the diversity present in Pan. As described in

detail in the supplementary information (Methods S1, Table S1,

Table S3), we were successful in obtaining sequences from only 22

individuals. Direct sequencing of PCR products from ten of these

individuals suggested the presence of more than one allele, but

after repeated cloning and sequencing of multiple clones both

alleles were obtained from only three of the ten apparently

heterozygous individuals. PRDM9 is a member of a large gene

family, which originated in Metazoans, expanded in vertebrates

and experienced further duplications in primates. The presence of

closely related paralogs in the genome, such as PRDM7, which

apparently arose by duplication in primates [18], impedes specific

targeting of the correct gene in the initial PCR step. Moreover, the

repetitive structure of the ZnF array seemingly favors processes

that lead to recombinant molecules either produced by in vitro

recombination during PCR and/or due to mismatch-repair of

heteroduplex molecules during cloning in E. coli [46–51]. It is

conceivable that both processes contributed to the artefacts

observed in this study. Additionally, long single reads are required

to obtain reliable sequence data for the alleles with large fragment

sizes (e.g. an amplicon with 17 repeats spans 1422 bp), since

internal primers cannot be employed due to the highly repetitive

structure of the array. Our data may therefore be biased towards

shorter alleles. However, the human data used for comparison

[6,19,24,26] may also be similarly biased due to non-random

sampling and the methods employed (e.g. MVR-PCR).

Although PRDM9 DNA sequences were generally not shared

between individuals of different subspecies or species, the central

and eastern chimpanzee and the eastern chimpanzee and bonobo

samples share an allele at the DNA sequence and the functional

level (due to two synonymous substitutions), respectively. This is

not fully in agreement with the hypothesis that species should be

distinguishable by their PRDM9 alleles and, strictly taken, does

not support the idea that PRDM9 plays a universal role in hybrid

sterility. However, because the ranges of chimpanzees and

bonobos do not overlap, it is not clear whether hybridization is

indeed possible between representatives of these species, or if any

resulting offspring are themselves fertile. Eventual characterization

of allelic variation in additional species will aid in addressing

questions regarding the role of PRDM9 in meiotic recombination

as well as in mediating hybrid sterility.

Methods

Samples
We used a total of 22 samples of the genus Pan, including five

bonobos (Pan paniscus), seven eastern chimpanzees (Pan troglodytes

schweinfurthii), six central chimpanzees (P. t. troglodytes) and four

western chimpanzees (P. t. verus) obtained from in-house collections

of the Genetics department of the MPI-EVA under the re-

sponsibility of Svante Pääbo. No new samples were collected for

the purpose of this study. DNA samples used were derived from

pre-existing materials at the MPI-EVA. The original source and

geographic origin of the samples used in this study are listed in

Table S4. Primate samples were collected during the course of

routine veterinary procedures, were collected in accordance with

regulations of the relevant governing agencies, and are used here

in accordance with agreements established with the relevant

animal sanctuaries. Other results from the samples used here were

already published in [42].

DNA Amplification and Sequencing
We sequenced the C-terminal zinc finger array of the gene

PRDM9, excluding the first zinc finger repeat (‘‘0’’ in schematic

representation of PRDM9 in Fig. 1). The second repeat (first

repeat in the actual C-terminal zinc finger array) is truncated and

does not contain the first cysteine residue, as is known from

primates and rodents [19]. The ZnF array was amplified and

sequenced using previously published primers, which had been

used successfully in humans (Table 2). Long range PCR

amplifications were carried out in 50 ml reactions containing

a final concentration of 3 mM MgCl2, 0.5 mM dNTPs, 0.4 mM
each primer, 7 or 9% DMSO, 16Expand Long Range buffer and

3.5 U Expand Long Range enzyme mix per 50 ml reaction (Roche

Applied Science, Mannheim, Germany). Cycling conditions were

2 min initial denaturation at 92uC, ten cycles of 10 s denaturation,

15 s annealing and 2 min elongation at 68uC followed by 30 cycles

during which the elongation time was increased by 20 s per cycle

and a final elongation step of 7 min. Annealing temperatures were

optimized as specified in Table 2. PCR products were excised

from TAE gels and purified using QIAquick MinElute spin

columns (Qiagen). Due to difficulties in obtaining unambiguous

full length sequences from direct sequencing from all products,

probably due to multiple polymorphic sites and length poly-

morphisms in heterozygous individuals, PCR products were

cloned using a TOPO TA Cloning kit (Invitrogen, pCR2.1-

TOPO vector, TOP10 chemically competent One Shot cells) to

identify single alleles. For consistency, we also cloned and

sequenced apparently homozygous products. Plasmid DNA was

isolated using the PureLink Quick Plasmid Miniprep Kit

(Invitrogen) via centrifugation. Both strands were sequenced using

the primers listed in Table 2 employing the BigDye Terminator

v3.1 Cycle Sequencing Kit (Applied Biosystems) on a 3730 DNA

Analyzer (Applied Biosystems). The number of sequenced clones

per individual ranged from five to 24 (average = 13, see Table S3

for details). All DNA sequences in our final data set were observed

in at least four clones from two independent initial PCRs or in five

clones from one initial PCR (Table S3). DNA sequences have been

deposited at GenBank (Accession numbers: JQ771765–

JQ771776).

Sequence Data Analysis
Raw sequences were edited using CodonCodeAligner v3.7.1

(CodonCode Corporation, Dedham, MA, USA) and checked by

eye. Subsequently, sequences were manipulated using SeaView

v4.2.8 [52] and Se-Al v2.0a11 (Andrew Rambaut, http://tree.bio.

ed.ac.uk/software/seal/) and collapsed into unique alleles using

FaBox [53].

Dot plots of the highest frequency Pan PRDM9 alleles and the

previously published human allele A were generated with a window

size of 83 and a mismatch limit of five using a web-based tool

(http://www.vivo.colostate.edu/molkit/dnadot/).

To test whether the observed differences in the number of

unique alleles found within a species/subspecies was significant,

permutation tests were carried out [54,55]. 10,000 permutations
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were performed for the comparison among the three subspecies

and bonobos, as well as the comparison between chimpanzees and

bonobos, and chimpanzees and humans. Alleles were permuted

over species/subspecies. The test statistic for the comparison

between two groups (in this case species: human vs. chimpanzee

and chimpanzee vs. bonobo) was the number of unique alleles in

the smaller group. For the comparison among more than two

groups (subspecies) the test statistic was the sum of squared

deviations from the mean of the number of unique alleles per

number of total alleles per group. The P values of the test statistics

were the proportion of permutations that revealed a test statistic at

least as large as that of the respective original data set. The

comparisons between chimpanzees and bonobos, as well as among

the chimpanzee subspecies and bonobos, were based on the DNA

sequence data presented in this study plus data taken from Auton

et al. [36] (Table 1). For the comparison with humans, data from

four separate studies were compiled [6,19,24,26] and aligned and

alignments subsequently collapsed into unique alleles using using

FaBox [53]. The first data set consisted of 21 unique alleles found

among 446 individuals of mainly non-African ancestry and the

second data set of 19 unique alleles found in a sample of 134

individuals of mainly African ancestry (Table S2). All permutation

tests were conducted in R (R 2.11.1 GUI 1.34).

To detect sites under positive selection we used an alignment of

all Pan ZnFs identified in our study, excluding the slightly aberrant

first repeat. We employed both the method described by Nielsen

and Yang [56] and Yang et al. [57] as implemented in codeml of

the PAML package v4.4b [58], as well as the sitewise likelihood-

ratio method using SLR v1.3 [39]. The former method takes

information from all sites of the alignment into account, to

estimate parameters that are common to all sites, in order to to

identify whether the presence of positive selection can be inferred

in general. Multiple nested pairs of models are assumed, which can

then be compared by likelihood-ratio tests (LRT). If positive

selection is detected by LRT in general, the location of sites under

positive selection can be assessed through a post hoc Bayesian

analysis (Bayes empirical Bayes = BEB) in a subsequent step

[56,57,59]. We compared models M0 vs M3, M1a vs M2a, and

M7 vs M8 [58]. The SLR method is a direct test for the location of

selection. It tests each site for neutrality, while also estimating the

parameters common to all sites based on the entire alignment.

This method has been described to be less prone to type I errors

than the former method and was used to confirm the results

previously obtained using codeml [39]. We constrained the

calculations to positively selected sites only and left all other

parameters not mentioned here at their default value. To guard

against potential convergence problems, each model/test was run

twice and results were compared. Since tree topology (codeml, slr)

and choice of codon model (codeml) did not influence the overall

results, only the results from the best tree and the F364 model are

presented for the codeml analyses. For the SLR tests, results from

both codon models (F364, F61/F60) and both methods of codon

frequency incorporation (freqtype: 1 and 2) are given.

The tree topology was estimated under maximum likelihood as

implemented in Garli v2.0.1019 [60]. Two codon models were

assumed. Both models calculate the codon frequencies as the

product of the frequencies of the three nucleotides that constitute

each codon as observed in the data. In the F364 model the

nucleotide frequencies are based on each codon position

separately, whereas the F164 model uses the nucleotide frequen-

cies across all codon positions. The relative nucleotide rate

parameters assumed by the codon model were set to the standard

Goldman and Yang [61] model, with different substitution rates

for transitions and transversions. Ten repetitions were carried out

to verify consistency in log likelihood scores and obtained tree

topologies. All other settings were left at their default value. Both

codon models resulted in the same two tree topologies (F364: best

tree 46, 2nd tree 66; F164: best tree 66, 2nd tree 46), which

were used in the analyses of positive selection.
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Table 2. Primers used in this study.

Primer Sequence 59–39 Reference Ta uC

HsPrdm9_F3 TGTAAGGAATGACACTGCCCTGA [6] 60

HsPrdm9_R1 ATGTCCCCCGAACACTTACAGAA [6]

PN0.6F TGAGGTTACCTAGTCTGGCA [24] 57

PN2.5R ATAAGGGGTCAGCAGACTTC [24]

11F GGACTGTAAAGGTCCATCCAGCACTTGG [32] 68

11R AAAGAACCACACATGCTGATGTCC [32]

11FS* CATACCTTCATATGTGGTAAGGCC [32]

11RS* TATAAGGGGTCAGCAGACTTCCGC [32]

11S1* AAAGTCAAGTATGGAGAGTGTGG [32]

Ta uC= annealing temperature in degrees Celsius.
*indicates primers used for sequencing.
doi:10.1371/journal.pone.0039064.t002
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