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Abstract We construct a SU(2) connection formulation of Kerr isolated horizons. As
in the non-rotating case, the model is based on a SU(2) Chern—Simons theory describ-
ing the degrees of freedom on the horizon. The presence of a non-vanishing angular
momentum modifies the admissibility conditions for spin network states. Physical
states of the system are in correspondence with open intertwiners with total spin
matching the angular momentum of the spacetime.

Keywords Loop quantum gravity - Black hole entropy - Isolated horizons

1 Introduction

The phase space of rotating (Kerr) isolated horizons has been characterized already
in the very early papers on isolated horizons [1]. However, its quantization in the
loop quantum gravity framework has remained elusive due to what it seemed at first a
technical issue: as a result of the presence of angular momentum (a non-trivial charge

E. Frodden - A. Perez (<) - C. Roken

laboratoire affilié a la FRUMAM (FR 2291), Centre de Physique Théorique,
Unité Mixte de Recherche (UMR 6207) du CNRS et Aix-Marseille Université,
Campus de Luminy, 13288 Marseille, France

e-mail: perez@cpt.univ-mrs.fr

E. Frodden
Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia, Chile

D. Pranzetti

Institute for Quantum Gravity, University of Erlangen-Nurnberg (FAU), Staudtstrasse 7/B2,
91058 Erlangen, Germany

e-mail: daniele.pranzetti @ gravity.fau.de

@ Springer



1828 Page 2 of 16 E. Frodden et al.

generating rigid rotations around the symmetry axis) diffeomorphisms associated to
vector fields tangent to the horizons are not gauge symmetries of the system.

Even though this breaking of some of the gauge symmetries by the boundary con-
ditions has nothing pathological in itself and can be found in more familiar contexts',
it introduces serious problems for the quantum theory if one tries to approach the
issue of quantization using loop quantum gravity (LQG) techniques. The reason is
that diffeomorphism invariance is at the heart of the definition of the LQG frame-
work. Consequently, it can only accommodate boundary conditions that respect this
fundamental symmetry.

This is apparent from the central role played by diffeomorphism invariance in
the models leading to the black hole entropy calculations for the Schwarzschild-type
boundary condition. More precisely, kinematical states of the spherically symmetric
system are given by spin network states puncturing the horizon and endowing it with an
area eigenvalue within the range [A — €, A + €]. The degeneracy of such kinematical
states is infinite as it is labelled by the coordinates defining the embedding of the
punctures on the horizon. Physical states are however finitely many. The reason is
that, according to the standard recipe of Dirac quantization, they are obtained by
modding out gauge symmetries which in this case include tangent diffeomorphisms
to the horizons. This is crucial for the finiteness of the entropy. This central step is
not justified in the naive treatments of the rotating case. The lack of diffeomorphism
invariance in the phase space of the Kerr isolated horizon makes the usual program
inapplicable.

An approach to deal with generic quantum isolated horizons (including rotation)
has been proposed in [2]. However, the question of the fate of the diffeomorphism
symmetry is unclear in such treatment. In particular in such formulations both the
leading order of the entropy calculation as well as the logarithmic corrections remain
the same as the one of a non-rotating, spherically symmetric model. In this work
we emphasize the central role of diffeomorphism invariance in the construction of
the model of quantum rotating horizons. This will drastically change the nature of
the admissible states to be counted in the entropy calculation, and will make them
very natural from the perspective of previously stated intuitions about rotation in the
context of LQG [3,4]. The counting problem is in this way redefined and will be
studied elsewhere.

One can recover a manifestly diffeomorphism invariant description of the phase
space of a rotating isolated horizon by appropriately including new degrees of freedom
that restore the broken symmetry. This has been shown explicitly in [5] using vector
variables. We will adapt the same idea to the connection variable formulation presented
here. In fact what we aim at is a generalization of the Chern—Simons formulation used
in the spherically symmetric context.

However, the first naive attempt to follow this strategy fails due to the fact that,
in contrast to the spherically symmetric case, the pull-back to the horizon of the
Ashtekar-Barbero connection does not satisfy the simple boundary condition of the
form F(A) = (constant)X, where ¥ = e A e [6]. As this boundary condition

1 Notice that this in strict analogy to the fact that generic diffeomorphisms that do not properly fall off at
infinity are not gauge symmetries of the phase space of asymptotically flat solutions of general relativity.
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becomes the key constraint equation for Chern—Simons theory in the non-rotating case
this seems to rule out the possibility of describing the boundary degrees of freedom
in terms of a Chern—Simons theory in the rotating model. Additional heuristics that
seems to preclude the Chern—Simons treatment of the rotating case comes from the
natural assumption, first put forward by Krasnov [3], that quantum states of rotating
horizons with total angular momentum J should satisfy an additional constraint taking
the form J = Y »Ip (where J), are the spin operators associated to punctures of the
horizon). In other words one assumes that the total angular momentum of the black
hole is made up from microscopic contributions from individual spins in the punctures.
This suggestion is certainly appealing from an intuitive perspective and from what we
know about LQG couplings to spinning matter, yet (with the exception of the symmetry
reduced context [4]) it has not been established mathematically as far as we know.
Nevertheless, the point we want to make is that if such a constraint would be true then
this would preclude the use of a Chern—Simons formulation as in such formulations
one always obtains the closure constraint > » Jp = 0 from the equations of motion.

The two apparent difficulties evoked in the previous paragraph are nicely avoided
in one stroke as follows. We will show that, using the available structure on the Kerr
isolated horizon, one can introduce a new connection .2 such that by definition one has
F(&) = (dn/k)(2/ (8716%,)/) for k constant almost everywhere on the horizon (we
get to this key subtlety in a moment). If one uses <7 as the connection dynamical field
instead of A then the boundary symplectic structure takes the Chern—Simons form as
far as the connection field is concerned. However, on the basis of our discussion in the
previous paragraph, this would seem to contradict Krasnov’s natural intuition that the
total spin contributed by the bulk geometry ¥ should be simply related to the spin of
the black hole. In fact it does not. The reason is that the transformation from A to .«
produces singularities of <7 in the north and south poles of the horizon as defined by
the symmetry axis. The equation satisfied by the Chern—Simons connection is

ko2 b J J
—PF(o)=— +5 =4, 1
4”() 8ﬂy+2N+2S (D

where J is the macroscopic angular momentum and the delta symbols represent sin-
gularities of the curvature at the north and south poles of the horizon as defined by the
singularities of the axisymmetric killing field. The previous constraint implies, in the
quantum theory, that the total spin contribution of spin network punctures must add
up to J (modulo k/2). Admissible states can then be depicted as in Fig. 1.

The geometric picture associated with the admissible states is similar to the one
advocated in polymer models of the horizon geometry introduced in [7] and later in [8].

2 Rotating horizons

In this section we present the variables used in order to describe boundary degrees of
freedom as Chern—Simons theory. We will be able to show explicitly a classical solution
in these variables such that isolated horizon conditions imply a consistent phase space
description. The pull-back of the Ashtekar—Barbero connection of Kerr geometry on
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Fig. 1 The admissible states of the rotating black hole are in correspondence with invariant vectors in the
Chern—Simons Hilbert space ji”cks =Inv[j; ® jo ® --- ju ® J]i where {j; }?:1 are the spins carried by
spin network punctures (with arbitrary n) and there are two additional (macroscopic) punctures at the south
and north poles carrying spins J/2 respectively. The subindex k is there to remind one that the notion of
invariant space are those of the quantum group su(2)4 with g fixed by the level k

the horizon has been computed in [6]. Here we follow a different approach: instead
of computing the pull-back of a bulk connection in Kerr geometry we construct a
connection field .27/ from the Kerr horizon data. More precisely the Chern—Simons
connection .«7 is required to satisfy the following set of conditions that will completely
fix it up to gauge transformations and diffeomorphisms tangent to the horizon H. First
we require the equation

iF" () = =i, 2)

4 8myl?

where k is the Chern—Simons level which is a function of the area A and the angular
momentum J of the isolated horizon that will be determined in what follows, to hold.
The two-forms of the previous equation are pulled back to the horizon two-surface
H. The densitized triad field %/ (the pull-back of €'/*¢; A e; to H, where ¢; is the
co-tretrad field) is part of the geometric data provided by the Kerr horizon geometry.

The above equation fixes the connection ./ up to a rotation around the internal axis
leaving i seen as an internal vector, invariant. Explicitly, if @7 is also a solution of
(2) then @5 = ga1g~' — gdg™! is a solution of (2) with the same T if g € U(1)y C
SU(2) such that g=g~! = X. We view this as an intrinsic ambiguity in the choice of
the variable .7 and not a gauge transformation. In particular the bulk connection is (by
definition) unaffected by the transformation described above. Hence, we can and will
exploit this freedom to fix our variable &7 so that an additional condition is satisfied,
namely
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WA — @) S =0, A3)

where v is the unique normal direction to the axisymmetric Killing field ¢ = 0y
on the horizon, and A’ is the pullback of the Kerr connection to the horizon. In the
usual spherical local coordinates the previous condition can simply be written as
(39)2(A" — &/")E; = 0. We also require

%, (m‘ z,-) =0, “

where, again, ¥ = 0, is the axial Killing vector field on the Kerr horizon. With these
conditions the connection <7 is almost completely fixed by the data provided by =
and A of the Kerr isolated horizon. The remaining freedom is fixed by the condition

I (A" - M’) 5 (5)
8ty Jy
where J is the total angular momentum of the given Kerr black hole. Given k, Egs. (2)—
(5) uniquely determine the connection .2’ up to gauge transformations and tangent
diffeomorphisms (transforming A, ¥ and .«¢).
In order to study the properties of .7’ in more detail we will construct an explicit
solution. The properties of this solution discussed below are all gauge and diffeomor-
phism invariant. We start with a type I connection Af) (see Appendix in [9])

A} = cos(8)d¢
1
V2

1
A= —
T 2

The parameter y is not determined for the moment. The previous connection will be
used as a ‘seed’ for constructing the Chern—Simons connection 27 in what follows.
The fact that it is just the usual type I connection of [9] will guarantee that we recover
the standard connection in the limit / — 0. The parameter y labels a one-parameter
family of suitable type I SU(2) connections.” In [9] the seemingly natural choice y = 7
was made. We will see here that the inclusion of rotation gives us the means to fix this
ambiguity in a more physical way by requiring that the level of the Chern—Simons
theory (computed below) vanishes in the extremal case A = 8w J. The disappearance
of the level in the extremal case will in turn imply that the entropy of an extremal black
hole vanishes [12]. This will however have little effect on the entropy of physical black
holes no matter how close they are to the extremal case.

A2 = —(sin(0)d¢ + 7db)

(7 sin(@)d¢ — do).

2 This ambiguity exists in general. For a discussion see [10], and also the appendix in [11], where the
ambiguity parameter controlling it is denoted by a dimensionful quantity A». The type I geometry comes
with a dimensionful scale (its area) and so the ambiguity becomes natural in such a context and can be
labelled by a dimensionless parameter .
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The curvature of the previous connection is

Fioany s P20
(Ag) = 6} — sin(0)do A de. (6)

The solution that we are looking for can be obtained via an active diffeomorphism ¢y
acting on Ag sending dgp — 9, W (¢p)d¢. Such action should not be confused with a
gauge transformation as the diffeomorphism acts only on Ag. The action on the type
I connection is Ag — ¢*W Ao and it follows immediately that

F*-1

Fl(¢}yAg) = 8 sin(0)d, W (¢)d6 A dg. (7

Now Eq. (2) becomes the following equation for W (¢)

A

kd,W(p) = —————.
v dry(y? - 1DE3

®)

Thus ¢y, Ap solves (2) if W(¢) = %mw. The non-single-valued nature of
14

W (¢) will produce two curvature singularities at the poles (see Eq. (11) below). These
will play a crucial role in the quantum theory.

As mentioned above our connection has to fulfill also constraint (3) which is accom-
plished by fixing the U (1) ambiguity. Considering all this our solution is given by

o = glpt Aolg ™ + gdg ™! )

which is completely fixed (up to gauge transformations) by Egs. (2), (3), (4), and (5)
and hence by the data contained in A and ¥ for a Kerr isolated horizon. Now, it is
easy to show from (9) that in a circulation of an infinitesimal loop around the poles
our variables satisfy

k A
= (10)
47 Jo 8y (v — 13

The previous equation will be used to fix the value of the Chern—Simons level k. We
require that

k kT
— ¢ ==+ (11)
4 Jo 2202

From Egs. (10) and (11) we obtain k = A/(4my (> — 1)€3) — J /£3,. The level of the
Chern—Simons connection is given by the usual non-rotating level minus the isolated
horizon angular momentum in Planck units. We choose to fix the ambiguity parameter
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7 = /(2 + y)/y so that the Chern—Simons level takes the simpler form>

A J

k=—0r — =
2 2
gnez 02

(13)

which has the important property that it vanishes in the extremal case A = 87 J. We
will comment further on the importance of this choice.

Equation (11) implies the presence of conical singularities in the curvature F (.27
at the poles. We will see in the following section that these singularities are relevant for
the implementation of the Chern—Simons quantization of the rotating isolated horizon.
One can recall the presence of the singularities at the poles if one writes the curvature
equation over H in its entirety (including the poles) as

k , i . _

—F () = ——— 818 88, 14

e () 8n£%y+p1N+plS (14)
where 8y and §; are Dirac delta functions centered on the north and south poles,

respectively, and

k J
In the quantum theory we will see that p appears in a quantum constraint which, due
to the properties of quantum Chern—Simons theories, will be sensitive to p modulo %,
here denoted by [ p]% . Therefore, we have

J
(Pl =| 55 | - (16)
5 [2@},}5

Remark There is a non-trivial choice in Eq.(11) that determines the value of the
Chern—Simons level. This choice implies that quantum states of the rotating horizon
are given by vectors in the representation of rigid gauge transformations with total
angular momentum J = |,  J»where j is the angular momentum density of the rotating
horizon that will be explicitly introduced in the following section. This interpretation is
available at least when J < k. For other values of J, allowed by the classical inequality
8w J < A, the interpretation is less obvious as the quantum group structure coming
from the quantization of Chern—Simons theory becomes relevant. We will see in a more
extended discussion in Sect.5 that this feature eliminates some apparently puzzling

3 Notice that one could fix 7 so that

VA2 — (47g)? J
=T e 2 L2 (12)
8o, 205

This would imply that k£ vanishes for all possible extremal horizons [13—16].
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inconsistencies with the classical black hole properties found in [3]. If we would have
replaced the right hand side of Eq. (11) by ]%, the conical singularities of the connection
at the poles would not have had an effect at the quantum level and physical states would
be invariant vectors (intertwiners) under rigid gauge transformations. The latter choice
corresponds to the (SU(2)) generalization of the type I connection technology used in
[2]. This second option is logically possible and one cannot rule it out on the basis of
first principles. The strength of the choice made here is that it produces quantum states
with a simple geometric interpretation. Itleads to a Chern—Simons level that vanishes in
the extremal case, and modifies the logarithmic corrections to the entropy computation.

3 Conservation of the symplectic structure

In this section we present the symplectic structure and prove that it is conserved
provided that the standard boundary conditions hold. The symplectic structure is con-
structed in terms of the connection .27 introduced in the previous section. Additional
variables are necessary to preserve diffeomorphism invariance in the rotating case (see
[5] for a discussion). These are a two form j (that will acquire the physical meaning of
the angular momentum density on shell) and its conjugate momentum, a scalar field ®.

As in the usual treatment [17,18] the only allowed variations on the horizon are
tangent diffeomorphisms and SU(2) gauge transformations. We start with the SU(2)
gauge transformations denoted by &, for e (x) € su(2), i.e a Lie algebra valued scalar
on M. For the bulk variables we have

8,2 = [, T]
SuA = —daa, (17)

while for boundary variables the transformation is

8o = —dya
8o ® = (a1ly +a1ls)/2
8uj = 0. (18)

Note that the angular momentum density j is gauge invariant by construction and
the scalar field transforms in a distributional way: only the value of @ on H at the
symmetry axis (the north and south poles) change ®.

We restrict diffeomorphisms to vector fields v that vanish at the north and south
poles of H and, therefore, leave the north and south poles invariant. The transformation
Sy 18

X =242 =dwiX)

8yA = LA =vidA + d(viA)

S = Ly =vadd +d(vadd)

Svj =Zyj =dvaj)

Sy ® =vidd. (19)
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Proposition In terms of the Ashtekar—Barbero variables the presymplectic structure
of the rotating Kerr horizon takes the form

QM = QB + QH
s ; k ; lérm .
= 25[12 A 82]A 51% NSt — — 5[1@52]], (20)
Ky 471 K

where k is the level of the CS boundary term and k = 8w G. Q2 denotes the first (bulk
integral) term while Qp denotes the last two (surface integral) terms.

Proof We prove the result by first looking at variations which are pure SU(2) gauge
transformations. Then we show the invariance for pure diffeomorphisms. O

3.1 Invariance under infinitesimal SU(2) transformations

We want to check that Q37(8y,8) = 2584, 8) + Qy (8, 8) = 0 for §, which is a
local SU(2) transformation as given in (17) and (18). The first contribution 25 (8, 8)
yields

1 . .
Qp(8y.8) = — ([a, S ASA 4+ 5% A dAoe’)
KY Jm

1 i i 1 i
- [d(oziBE ) — 0;8(dsD )] N
KY Ju KY Ju

where we have used the Gauss law 6(d4 £) = 0 and that boundary terms at infinity
vanish. At the boundary itself we have to take special care of the singular nature of our
connection variables at the poles. Therefore, we split H in two infinitesimal patches
around the poles N and S, and an intermediate strip H* = H\ (N US). Thus we obtain

k k
842%/\5;2%1: d@/a A 8.9
4 4
k : k :
= —— da'8a;) + —/ a;8F' (o)
4 H* 4 H*
k
- (da' + € k,saﬂa)/\&;af
NUS
:——/ a8d+— aiéEi
H*

k 1 .
— olsot + — oSy + — a’cSZ,-
4 Jon 4z Jys Ky

1. ‘ .
/ a;d (—E’ + pdndy + P‘SsSi),
H Ky
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where on line 2 we have integrated by part, on line 3 we used (14) on H*, on line 4
we used 0H* = —(dN U 9S), and on line 5 we used (11). Then

k 8
Qpr (8, 8) = E/ S i NS — 7” 5o ® 8j @1
H

1 4 .
= — [ &'8%; + (ai1ly +a1ls)dp — — (a1l +<x1|s)/ 3 (22)
KY JH K H

Hence, the symplectic structure is gauge invariant, namely Q37 (84, 6) = Q5(84, ) +
Q4 8y, 8) = 0, if the following constraint is satisfied

4
K

J=r (23)

3.2 Invariance under infinitesimal diffeomorphisms

Now we focus on the invariance under infinitesimal diffeomorphisms, in other words,
we want to show that for a small tangent vector field v € T'(H) we have

Qp (v, 8) = Qp(8y, 8) + Q4 (8y,8) = 0.

For the bulk term, using (19), we obtain

1 - . .
60 = | |43 ASAT — 5% A,,%Al]
1 [ . . ,
= — | [da oz ASAT =555 A v +d(vJA,~521)]
Ky L
1 r , .
—— [ la (vmi A 3A') % Ada <8A’)
ky Jul
5% AvaF +d (uJAiazf)]
1 r . . . .
—— [ |a (UJE,- A 8A‘)+1u2,' ASF —85; AvaF! + d(vaA; 52’)]
ky Ju L
1 [ . . _
— — | [dwosi ASAT) +8(Si A vaFi(A)) —I—d(vJAi(SE’)]
ky Ju L
1 ,
= — [ saA; T, 24)
KY JH

The horizon term yields

Qpy 6y, 8) = /,Z;z%l/\&d——/ [(LP6] —6P.Z, )]

_ _E [W ANVIF () + 8. Adoy (um )]
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8
——”/ [0ad® 8] — 5® d(v.))]
K

[a(uqf) Fi() + 8F; () vJ;zfl]

s
——/ [vud® ) 4+ §(dDP) A vaj]
K JH

—i/ 8(vod, Fi(%))—g—n/ S(vad® j)
47'[ H K H

1 ,
BN [UJ@{' S + 87y vdd j] . 25)
KY JH

Now, equation €2,,(3,, 8) = 0 is satisfied if the following constraint holds

% K [UJ (A" - M) S — 87y wdd)j] -0 (26)

for all v € T (H). Equation (26) is nothing else but the diffeomorphism constraint in
these variables. The classical solution corresponding to Kerr is ® = ¢, where ¢ is
the Killing parameter associated to axisymmetry. In this case (A’ — o7 i)¢ %i/@8my)
is the angular momentum density satisfying

J=/]—%/(A 527)(41 is (27)

where J is the total angular momentum of the Kerr solution. This provides the physical
interpretation of the /./.s of the constraint (23) found above telling us that p = 4 J /.

4 Quantization

Once the degrees of freedom on the boundary are captured by a Chern—Simons sym-
plectic structure plus Chern—Simons-like constraint, as the one given in Eq. (14), the
quantization is basically analogous to the one applied in the non-rotating case. There
are, however, new aspects here that have to be treated carefully. The most obvious
one is that in addition to the Chern—Simons connection .7 we have the field j and
its conjugate @ in the boundary symplectic structure and their quantization too needs
to be addressed. The second issue is that the Chern—Simons constraint (14) contains
two classical singularities at the north and south poles of the sphere and these are
seemingly new features of the rotating system. Here we will start by ignoring the first
problem and go directly to the second. The last part of this section will be dedicated
to the first.

As in the non-rotating case, and if for the moment we concentrate on the connection
fields, the form of the symplectic structure motivates one to handle the quantization of
the bulk and horizon degrees of freedom separately. We first discuss the bulk quanti-
zation. As in standard LQG [8] one first considers (bulk) Hilbert spaces 3@3 defined
onagraph y C M and then takes the projective limit containing the Hilbert spaces for
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arbitrary graphs. Along these lines let us first consider %’;B for a fixed graph y C M
with end points on H, denoted y N H. The quantum operator associated with ¥ in
(14) reads
€8l (x) = 167Gy D 8(x.x,)J (p). (28)
peyNH

where [J%(p), J/(p)] = €/, J¥(p) at each p € y N H. Also, consider a basis of
A} of eigenstates of both J), - J), as well as J; forall p € y N H with eigenvalues
n?j »(jp+1) and im , respectively. These states are spin network states, here denoted
by [{jp, mp}}; ), where j, and m , are the spins and magnetic numbers labelling the
n edges puncturing the horizon at points x, (other labels are left implicit). They are
eigenstates of the horizon area operator ay as well

n
@ [Lp,mphis =) =8y ey 3\ ipGp + D [{prmp i)
p=1

Now substituting the expression (28) into the quantum version of (14), we obtain

k n. . . .
8—ne“bFa’b= Z 8(x, xp) I (p) — 8(x, xy) Jiy — 8(x, x5) Ji, (29)
peynNH
where
Ji= s ana gz (30)
N ST

for 2! a normalized internal direction representing the symmetry axis. As we will show,
the previous equation tells us that the surface Hilbert space 72/, ,, that we are looking
for is precisely the one corresponding to (the well studied) Chern—Simons theory in
the presence of particles. Equation (29) implies the formal closure constraints

> =1

peyNH p

> =0,

peyNH

> J(p=o. (31)
peyNH

We call them formal because they are indeed inconsistent due to quantum uncertainties.
However, there is a clear consistent quantum version of the previous conditions.

From the point of view of quantum geometry (bulk perspective), admissible states
(solving the above constraint in the strongest possible way compatible with the uncer-
tainty principle) are coherent states of the collection of punctures satisfying the con-
straints:
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Zm(l’) =[]
p
[EZﬂ@J[EZL@J=4RJ+Uh®, (32)
p p

where —j(p) < m(p) < j(p) denote the usual magnetic quantum numbers, J =
J /€2, and in the last equality, the r.h.s. denotes the SU (2)4 (k) Casimir. The state is of
the form |J, J) in the usual Wigner notation |j, m). Such states can be graphically
represented as shown in Fig. 1.

From the point of view of the boundary Chern—-Simons theory the constraints are
even simpler. The two classical punctures are aligned along the same axis. This
amounts in the Chern—Simons description to a single puncture carrying the total
macroscopic spin of the black hole. Admissible states span the intertwiner space
j1®jp® - ® j, — J, give condition (32), and finally the usual area constraint

n
A—e <8yl > Jiplp+ 1) < A+te. (33)
p=1

Finally we need to address the quantization of j and ® and the imposition of the
vector constraint (26), namely

/ S[va(A' — ) S — 8y vadd j1 =0 (34)
H

for all vector fields v tangent to H. At the classical level the previous constraint
completely reduces the (j, ®) degrees of freedom. This is due to the fact that it is an
additional first class local constraint for two local degrees of freedom. More precisely
this constraint is responsible for imposing diffeomorphism invariance. Here we assume
that this holds also at the quantum level: for each spin network state satisfying the
above restrictions there is only one solution of the previous equation for the quantum
counterpart of j and ®. In other words admissible states are indeed labelled by the
spin quantum numbers satisfying the above constraints up to diffeomorphisms. This
assumption is similar to the one made generically in the context of quantum states of
isolated horizons as far as the bulk Hamiltonian and diffeomorphism constraints are
concerned.

Accordingly the computation of black hole entropy for the present model should
simply reduce to the counting of states satisfying the constraints (33) up to tangent
diffeomorphism generated by (34) moving punctures. The expectation that j and its
conjugate ¢ do not add new degrees of freedom that could affect the counting can
be argued in the following alternative way. One can gauge fix the constraint (34) by
choosing the gauge fixing condition

O =g (35)
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where g is the killing parameter. It is clear that this condition is a good gauge fixing
promoting (35) and (34) to a second class system. By substituting the previous equation
into the diffeomorphism constraint we can solve for j namely

N PP B Ny
]_Sny((A ")y i), (36)

which implies that ® and j is completely fixed by the other fields.

Nevertheless, the above remains a classical argumentation. It would be certainly
interesting to try to apply the LQG quantisation techniques to the j and ® degrees
of freedom and obtain a consistent picture with the previous expectations from the
quantum theory. This is particularly important due to the possibility that new pure
quantum degrees of freedom relevant for the entropy counting could arise from j
and ® in a way similar to the would-be-gauge degrees of freedom that are already
responsible for the degeneracy of states for the non-rotating black hole. Unfortunately
our efforts along such direction have been rather sterile so far. We leave this important
question for future studies.

5 Conclusions

In this work we have constructed a model of a rotating isolated horizon which is
axisymmetric and has angular momentum J. The classical description of the system is
based on a SU(2) Chern—Simons connection plus additional auxiliary fields that restore
diffeomorphism invariance. In the quantum theory the connection is constrained to
be flat almost everywhere. As in spherically symmetric models, there are conical
singularities with a strength that matches the quantum flux of the area encoded in the
spin quantum numbers of spin network edges ending at the horizon. In addition to
these, there are two conical singularities at the north and south poles (as defined by
the singularities of the axisymmetric Killing field) with combined strength equal to
[J/R]k)2.

An ambiguity parameter in the definition of the SU(2) boundary Chern—Simons
connection, identified in previous models, can be fixed in the rotating case by the
requirement that the level of the Chern—Simons theory vanishes in the extremal case.
This requirement implies that the number of states of an extremal horizon is unity
and hence that their entropy vanishes as suggested in [12]. We expect that the number
of states of the rotating isolated horizon grows exponentially with the area with a
universal coefficient (the same as in the non-rotating case) for large black holes no
matter how close to the extreme case they are (the counting technology of [19] or
the polymer model treatment of [8] should be analysed in our setting). Therefore, the
entropy of physical black holes is consistent with the Hawking-Bekenstein entropy
formula. The proportionality constant is not, as in previous models, equal to 1/4 (for
a newly introduced perspective on the origin of the mismatch see [20], and for an
argument as to how the low-energy Bekenstein-Hawking entropy is to be recovered
see [21]).
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In [3] atension was pointed out between the analog of Egs. (32), the area spectrum of
LQG, and the fact that classically J can vary between 0 and A /(87), which completely
disappears in our formalism. In that reference the analogue of (32) was postulated with
the important difference that the r.h.s. would not contain the mod; symbol. In such
a case one sees that there are maximum spin states of the horizon for which Jy,,, ~
A/(8my). The fact that, classically, Jyqax = A/(87) would seem to imply y = 1.
Moreover, as the spectrum of the area is non-linear in the spins, it was conjectured
in [3] that the extremal black holes would be represented by single puncture states
with a large spin: in the large spin limit the spectrum becomes linear. None of these
conclusions are valid in our model due to the appearance of the symbol mod; on the
r.h.s. Indeed any classically allowed angular momentum value leads to a consistent
set of constraints and there are no restrictions on the value of the Immirzi parameter
y. No matter how close we are from the extremal situation the black hole states that
dominate the statistical mechanical treatment have many punctures (of the order of
A /6?,) which is compatible with the idea that these states approximate continuum
geometries well.
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