English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion

MPS-Authors
/persons/resource/persons80440

Menke,  Andreas
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons98244

Arloth,  Janine
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80495

Rex-Haffner,  Monika
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80563

Uhr,  Manfred
Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80372

Holsboer,  Florian
Clinical Research, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80272

Binder,  Elisabeth B.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Menke, A., Arloth, J., Gerber, M., Rex-Haffner, M., Uhr, M., Holsboer, F., et al. (2014). Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. PSYCHONEUROENDOCRINOLOGY, 44, 35-46. doi:10.1016/j.psyneuen.2014.02.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-AD50-4
Abstract
Work-related stress can lead to various health problems ranging from job-related exhaustion to psychiatric and somatic diseases. Biomarkers of job-related exhaustion could help to improve our understanding of the biological mechanisms and might be useful to guide prevention and treatment strategies. The present study included 12 male cases suffering from job-related exhaustion and 12 matched healthy controls. Severity of exhaustion was assessed with the Maslach Burnout Inventory (MBI) and the Shirom-Melamed Burnout Measure (SMBM). Whole genome expression profiles derived from whole blood cells (baseline and following glucocorticoid-receptor (GR) stimulation with 1.5 mg dexamethasone p.o.) and corresponding plasma cortisol levels were analyzed. All cases participated in regular aerobic exercise for 12 consecutive weeks and were then re-assessed at follow-up for exhaustion symptoms as well as for cortisol levels and gene expression profiles. At baseline, we found increased basal cortisol levels and an enhanced suppression of plasma cortisol concentrations following dexamethasone in cases suffering from job-related exhaustion. Gene expression analysis revealed that 1.6-fold more transcripts were significantly regulated by dexamethasone in cases as compared to controls. At follow-up after 12 weeks of regular exercise training which was accompanied by significantly improved exhaustion severity scores, cortisol levels and gene expression profiles of cases normalized to the levels observed in controls. In conclusion, we detected GR-induced neuroendocrine and gene expression changes in cases suffering from job-related exhaustion which are in line with an increased sensitivity of GR function. This GR dysregulation normalized with symptom recovery. (C) 2014 Elsevier Ltd. All rights reserved.