Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Correlation of Car S1 → Chl with Chl → Car S1 Energy Transfer Supports the Excitonic Model in Quenched Light Harvesting Complex II

MPG-Autoren
/persons/resource/persons137947

Wilk,  Laura
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137764

Kühlbrandt,  Werner       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liao, P.-N., Holleboom, C.-P., Wilk, L., Kühlbrandt, W., & Walla, P. J. (2010). Correlation of Car S1 → Chl with Chl → Car S1 Energy Transfer Supports the Excitonic Model in Quenched Light Harvesting Complex II. The Journal of Physical Chemistry B, 114(47), 15650-15655. doi:10.1021/jp1034163.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-D6EE-A
Zusammenfassung
Recently, excitonic carotenoid-chlorophyll interactions have been proposed as a simple but effective model for the down-regulation of photosynthesis in plants. The model was proposed on the basis of quenching-correlated electronic carotenoid-chlorophyll interactions (Car S(1) → Chl) determined by Recently, excitonic carotenoid−chlorophyll interactions have been proposed as a simple but effective model for the down-regulation of photosynthesis in plants. The model was proposed on the basis of quenching-correlated electronic carotenoid−chlorophyll interactions (Car S1 → Chl) determined by Car S1 two-photon excitation and red-shifted absorption bands. However, if excitonic interactions are indeed responsible for this effect, a simultaneous correlation of quenching with increased energy transfer in the opposite direction, Chl Qy → Car S1, should be observed. Here we present a systematic study on the correlation of Car S1 → Chl and Chl → Car S1 energy transfer with the occurrence of red-shifted bands and quenching in isolated LHCII. We found a direct correlation between all four phenomena, supporting our conclusion that excitonic Car S1−Chl interactions provide low-lying states serving as energy traps and dissipative valves for excess excitation energy.