English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Augmenting mirror visual feedback-induced performance improvements in older adults

MPS-Authors
/persons/resource/persons98551

Hoff,  Maike
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons103088

Kaminski,  Elisabeth
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons198288

Rjosk,  Viola
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19994

Sehm,  Bernhard
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons81144

Steele,  Christopher
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;

/persons/resource/persons19935

Ragert,  Patrick
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Institute of General Kinesiology and Athletics Training, Faculty of Sport Science, University of Leipzig, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoff, M., Kaminski, E., Rjosk, V., Sehm, B., Steele, C., Villringer, A., et al. (2015). Augmenting mirror visual feedback-induced performance improvements in older adults. European Journal of Neuroscience, 41(11), 1475-1483. doi:10.1111/ejn.12899.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-C598-E
Abstract
Previous studies have indicated that age-related behavioral alterations are not irreversible but are subject to amelioration through specific training interventions. Both training paradigms and non-invasive brain stimulation (NIBS) can be used to modulate age-related brain alterations and thereby influence behavior. It has been shown that mirror visual feedback (MVF) during motor skill training improves performance of the trained and untrained hands in young adults. The question remains of whether MVF also improves motor performance in older adults and how performance improvements can be optimised via NIBS. Here, we sought to determine whether anodal transcranial direct current stimulation (a-tDCS) can be used to augment MVF-induced performance improvements in manual dexterity. We found that older adults receiving a-tDCS over the right primary motor cortex (M1) during MVF showed superior performance improvements of the (left) untrained hand relative to sham stimulation. An additional control experiment in participants receiving a-tDCS over the right M1 only (without MVF/motor training of the right hand) revealed no significant behavioral gains in the left (untrained) hand. On the basis of these findings, we propose that combining a-tDCS with MVF might be relevant for future clinical studies that aim to optimise the outcome of neurorehabilitation.