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Abstract

In recent vears it has been shown that some unconventional or nonstandard finite
difference schemes have very good properties. Some are exact schemes, others give
dvnamically correct approximations for wide parameter ranges and arbitrary initial
values even in the case of blow-up, or they are symplectic on a non-canonical Hamil-
tonian system. Thus it is highly desirable to know a general method for generating
such schemes for any given differential equation, without a priori knowledge of the
solution. We show that the ‘linearized trapezoidal rule’ is such a method: some
nonstandard schemes found in the literature are generated by it, others are approx-
imated in a surprizing way. Moreover, the method is nearly a standard method:
practitioners in computational plasma physics and fluid dynamics have been using
it for years, and it belongs to the family of Rosenbrock methods:




1 Introduction

As pointed out in several recent publications, it is sometimes advantageous to use non-
standard difference schemes for the numerical solution of differential equations. Some
nonstandard schemes are exact [11, 1], others give dynamically correct approximations
for wide parameter ranges and arbitrary initial values even in the case of blow-up [7],
or they are symplectic on a non-canonical Hamiltonian system [16, 6]. Until now, no
general method seems to be known for constructing nonstandard schemes. According to
R.P. Argawal’s recent review' of Mickens’ book [11], the present situation is the following:
‘Difference equation approximations are obtained either by using the known forms of the
solutions of the differential equations or by ad hoc experimentation. A more effective

method is still lacking’.

We present here a simple general method for derivation of nonstandard schemes for any
given initial value problem, without a priori knowledge of the solution. We demonstrate
its power for a number of often used equations. Moreover we extend the range of pertinent
examples for nonstandard schemes by discussing their role in the approximation of blow-

up solutions. With this general method, nonstandard schemes could become standard.

We begin by explaining the case of blow-up solutions. The general method is intro-
duced at the end of this section, and applied to the blow-up solution case in some detail
in section 2. Sections 3 and 4 provide several more cases of easy derivations of successful

‘nonstandard’ schemes from our general method (13).
When we approximate the solutions of an initial value problem
i=f), u(0)=u, (1)
by explicit finite differences, say a Runge-Kutta scheme, we get some difference equations
ther = g(tn,Yn), (2)
ynir = F(tn,yn), Yo = u(0).

If eq. (1) has blow-up solutions, it can happen that u(¢) exists only in a bounded time

interval (0,7), while the iterates {y,} exist for ¢, — oo.
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Example:

u = u?, u(0) = u, (3)

has the solutions
(i) = T y
W %e) = T Nt (4)
If Au, < 0 then u(t;u,) exists for t — oo and lims e u(Z; u,) = 0. If, however, Au, > 0
then u(t;u,) exists only in the bounded time interval (0,7 = A%o) Such solutions are

called blow-up solutions [12] or of explosive type [13]. If we approximate eq. (3) by

Euler’s method with constant step size k, we obtain the iterative scheme

tﬂ+l = tn + k-; (5)
Yntl = Yn+ )‘kyn2a Yo = Uo, (6)
and the iterates exist for all ¢, = nk, no matter if Ay, is positive or negative. For

sufficiently negative values Ay, , the trajectories {y,} do not tend to zero as the trajectories
of the differential equation do. Instead, they change sign and tend to +oo for ¢, — oo.
This can be shown in the same way as it was shown for forward Euler on the logistic
differential equation in [7]. In addition, there is the well-known problem of stability of

the scheme. ©

All this is no contradiction to the well-known fact that Euler’s method is convergent.
The convergence theorems assume a compé.ct time interval, and k& — 0. Here, however,
we consider the behavior of (6) for t, — oo, k fixed. Open time intervals without a-
priori bounds are the usual case when dealing with dynamical systems. Fixed k is not so
realistic for high quality numerical approximations. But it makes it easier to understand
basic effects. It seems reasonable to assume that if one method is superior to another for
fixed step size, it will be superior as well when used with step size control. The question of
how well continuous dynamical systems are approximated by discrete dynamical systems
has been formulated by Dahlquist in 1959 [3]. It is at present intensively investigated
(see the proceedings ‘Numerics of Dynamics - Dynamics of Numerics’ [14], especially the

article by Sanz-Serna [15]).

If we consider the nonstandard scheme

—_
=]
S—

Yn+1 = Yn + A k Yn Yn+1, Yo = Ug,
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for equation (3) instead of (6), we find that it solves eq. (3) exactly. And this also is valid

for arbitrary variable step size k.

Theorem 1 Scheme (7), and its explicit version

Yn

1 _ kn+1,\yn’ yO = u01 (8)

Ynt1 =

renders the exact solution (4) of (3) for all non-zero u, € IR and all sequences {kn}n<n

satisfying k, > 0 and

N
AYoln = Mo D kn < L. (9)

n=1
Here we put ty := Yo, k,. Note that condition (9) bounds the step sizes k, only if

Ayo > 0, i.e. in the blow-up case.

Proof: We prove this theorem by induction. For NV =1 we get

Yo

= —27 — oyt if ey, < 1.
751 1 = Aklyo u( 1)! 1 1Y, <
Let it be valid for N. Then
_ Yn
AT Ry VP Y
% 1
1 _tN’\yo l—kl\’+1)\1—_t‘%
frme yo
1-— (tN + kN+1)Ayo
p—ag ——_—yo
Tl =t A
= u(tN+1)1

if the blow-up time has not passed, i.e. if (9) is satisfied. This proves the theorem. o

Scheme (7) is called an exact scheme because it solves eq. (3) exactly, i.e. because

Y = u(t
70ff]. He proved that every ordinary differential equation

wa1)s as just proved. Exact schemes were introduced by Mickens, see 11, p.

= g(u,t, ), tia) =i, (10)




has an exact scheme. Using exact solutions of differential equations and methods of
mathematical physics, he found several examples of exact schemes. We shall study them

in section 3. Scheme (7) is one of Mickens’ examples, [11, (3.3.32)].

Scheme (7) is called a nonstandard scheme because it cannot be written in one of

the standard forms usually considered in Theoretical Numerical Analysis, neither as

Bt Z U (1 - 0\ + 00, 0SOSL, (11)

nor as

st U8 ) (1= Oy + Ogmss)? s 0O, (12

Gince standard difference schemes for (10) are always formulated as expressions in g,
they cannot lead to a scheme like (7). But the fact that (7) is exact and that many other
exact schemes contain terms involving more than one grid point (time level) shows that it
is important to consider nonstandard schemes. The best sources for today’s knowledge on
nonstandard schemes for single ordinary differential equations and parabolic differential
equations are probably the books by Mickens [11] and by Agarwal [1, Chap. 3]. Non-
standard modelling rules are offered in [11, p. 81ff]. These rules tell what nonstandard

schemes should look like, but do not tell how to produce them.

For this paper we start from the observation that the special difference scheme (7) can
be obtained by Taylor-expanding either of the formulas (11) or (12) at y, for 6 = ; and

neglecting terms of higher order in e =

Generalizing this derivation procedure for difference schemes to solve any eq. (1) leads

to

Bt 20 fy) + £/ () (13)

which can be viewed as using a time-centered scheme together with the first step of a

Newton iteration.

The time-centered scheme is either taken as the standard trapezoidal rule

Yot — Yn _ S(Yn) + F(Yns1) (1)
k 2
or the standard midpoint rule

Yn+1 — Yn Un + yn+1 -
g L (15)
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Schemes of type (13) have been used for practical applications in computational fluid

dynamics [2], [20, p. 1610] and in computational plasma physics [4, 5].

In the following sections we shall compare, for a number of cases, the schemes obtained
from (13) with ‘nonstandard’ schemes found in recent literature. We shall show that (13)
provides a unifying approach to these schemes and therefore should be ranked among the
standard methods. This is even more so since scheme (13) can also be viewed as the

simplest scheme in the family of Rosenbrock methods which are decribed in [9, p. 561].

Scheme (13) is therefore open to improvements in accuracy: either by using higher
order Rosenbrock schemes or by performing more Newton iterations. Investigations of

the dynamical properties of (13) and of generalizations of it are in progress [10].

In section 2 the modelling of blow-up by nonstandard schemes is discussed for the
logistic equation, and the relation between several nonstandard schemes and the scheme
obtained from (13). Sections 3 and 4 provide several more cases of easy derivations of

successful ‘nonstandard’ schemes from (13).

2 Nonstandard schemes for the logistic equation

The logistic differential equation
= Au(l —u), u(0)=u, (16)

has the two stationary states @(¢) = 0 and @(¢) = 1 for all \. The solutions of (16) are
given by

up et

u(t) = P (17)

Uo

(1 —uy)e™M+u,

To describe the behavior of the solutions, we have to consider several different cases.
1) Let A >0, wu,>1. Aslongasu(t) > 1, weget & = Au(l—u) < 0, and lim,;+ ¢ = 0,
lim;s0 u(t) = 1. Thus u(t) decays monotonically to @ = 1. The decay rate depends on

A




2) Let A >0, 0 < u, <1 Aslongas 0 < u(t) <1, &= du(l—-u)>0, and
litt, -5 =0, limpsou(t)=1.

From 1) and 2) follows that @(t) = 1 is a stable stationary state of (16), and that all
trajectories with u, > 0 approach # monotonically.

3) Let A >0, u, <0. Aslong as u(t) <0, = Au(l —u) < 0. Thus these solutions
tend to —oo.

The denominator in (17) is d(t) = 1 + u,(e* — 1). We have d(0) = 1 and d(T') = 0 with

blow-up time

_ 0_1 1/A
ity B 1=1n(“ ) > 0. (19)

A Uy Ug
From 2) and 3) follows that @(¢) = 0 is unstable from above and from below.
4) In the case A < 0, everything is very similar. Stability of the two stationary states is

different: @(t) = 0 is stable, @(t) = 1 is unstable.
When we discretize (16) using (13), we get

Yn — Yn A
b X = = (Un(l = Yns1) + Yns1 (1 — yn)). (20)
k 2

This scheme was considered by Wang et al. [19]. Their analysis left several open questions,

for instance they could not explain why the scheme is not defined for certain initial values

Yo-

To understand the properties of scheme (20), it is illustrative to consider the two

schemes of which it is the arithmetic mean:

Yn+1 = Yn + kAymH(] - yn)s Yo = Uop, (21)

which leads to the rational scheme

Y

n = - 3 o = Uo, | 22
Yn+1 T— kA1 — yn) Yo =4 (22)
and
Yn4+1 = Yn + k’\yn(l - yﬂ-l-l)a Yo = Uo, (23J
which leads to the rational scheme
1+ EMNy,
Yn41 = ( )y o = Up (24)

1+ khy, ’

|




Schemes (21) and (23) are adjoint schemes in the sense of Definition 8.2 of [8, Chap.
I1]: the map k — —k; Yn41 — Yn} Yn > Yns1 replaces scheme (21) by scheme (23), and

scheme (23) by scheme (21).

Theorem 2 The difference equation (22)

Y
y'n“}‘l = 1—1{,‘A(1 _yn)!

Yo grven ,

has the solution

Yo 5
n = . 2
S TR (- v + ()
The iteration is defined as long as
(1 -k £ L (26)
Yo — 1
Proof: A proof by induction shows that scheme (22) leads to
= Yo _ o
b = TR T B S (= @7
— Yo
(L=kN"(1 —yo) + ¥
because ) )
- . 1= (1L=FkN)"
1-k\)=——--——.
Bo-nr =105

The iteration is defined as long as the denominator of eq. (22) is non-zero, i.e. as long as

condition (26) is satisfied.

Theorem 3 The difference equation (24)

= —-——(1 + kA)yn iwen
yn+1 - 1+ kAyn ? ya g
has the solution
(1+kA)"y,

ST T () 1)
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The iteration is defined as long as

o — 1
(14 kA £ 2, (29)
Proof: A proof by induction shows that (24) leads to
(14 kA)"yo
Un = g (L FA) (9]
(1+kX)"yo

I

1+ y((L+kA)"—1)
The iteration is defined as long as the denominator of (24) is non-zero, i.e. as long as (29)

is satisfied. ¢

It should be noted that the actual iterations produce versions (27) and (30) of the
solutions. Versions (25) and (28) are chosen in the formulation of the theorems because
they are more concise, and more convenient for the analysis of the properties of the
schemes. Though both versions are mathematically the same, they might be different in

their sensitivity to rounding errors.

Solution (28) is given by Mickens [11, (2.4.37)] for the case A = 1 in a slightly different
formulation. He derived it by introducing z;x = 1/y; and then solving the difference

equation for zj.

We now discuss the aproximation of the differential equation by the difference equa-

tions.

If we replace in (25) (1 — k)" by (€7 = =" = e~ we get u(t,), i.e. the exact
solution at ¢, = nk in formulation (18). If we replace in (28) (1 + kA)" by e'® = etn,
we get u(t,), i.e. the exact solution at ¢, = nk in formulation (17). Thus the quality
of the approximation of the solutions of the differential equation by the solutions of the
difference equations is completely governed by the quality of approximation of ek by

the first two terms of its Taylor expansion, 1 + Ak.

1 + Ak is a qualitatively correct approximation to e as long as 1 + kA > 0, i.e. as
long as kA > —1.

1 — Mk is a qualitatively correct approximation to e~** as long as kA < 1. This confirms

9




that (23)
Ynt1 = Yn + EAYa(l — Yns1) (31)

gives qualitatively correct aproximations for kA > —1, and that (21)

Ynt1 = Yn + kAYns1(1 — ya) (32)

gives qualitatively correct approximations for kA < 1. For |Ak| > 1, one of the schemes
gives the correct dynamic behavior of the approximated differential equation, and its
adjoint gives stability and global attractivity to the unstable steady state. The difference
scheme (20)

Yntl = Yn T+ -{)"(yn(l - yn+1) + yn+1(1 - yn)) (33)

gives qualitatively correct approximations when both components of it do so, i.e. for
|[Mk] < 1, and even in a larger Ak interval: up to |Ak| = 2. It produces oscillatory
trajectories and thus wrong dynamic behavior for |Ak| > 2, but the stability of both fixed
points is correct for all Ak [10, 19]. More details are given in [7, 10]. The papers by

Twizell, Wang and Price [18, 19] contain errors which are corrected in [7, 10].

Scheme (31) treats the solution @ = 1 implicitly, and this is favorable for A > 0 since
u(t; A) = 1 is stable then. For A < 0, u(t; A) = 0 is stable, and thus scheme (32) is
favorable. In their favorable cases, the two schemes have all advantages of fully implicit

schemes. In addition, they give good approximations of the blow-up solutions then.

Note that conditions (26) or (29) need not be violated directly. Since we are dealing
with discrete equations, the denominators can change sign without hitting zero. The
blow-up time can thus be passed unvoluntarily. This is detected by a sudden sign change
of the iterates. Twizell et al found that there are for given Ak ‘forbidden initial values’
since they nullify the denominator of the scheme. In the light of our analysis, it should
be stated that for certain given initial values there are forbidden Ak-values: they are
forbidden, because the time step is already of the size of the blow-up time of the solution

for that initial value.

How do the continuous and the discrete blow-up times compare?
We consider scheme (32) for kA < 0 and u, > 1. It seems reasonable to consider for given

X only those k for which it happens that there is an N such that 1 — Ak(1 —y,) =0, L.e.

10




for which blow-up actually happens. Then we get from (19) and (22) that

(Lo kY = e T (34)

U, — 1

To get a rough idea what (34) actually means, we make further simplifications:

A=-1, N=1, u, > 2. Then

tv=k= 1 5
1 Uo—1< (35)
and
T o= el
U, — 1
= In(1+4k) (36)
k2 ks
= k——4+—=——+4+....
2+3 u

Thus ¢; is too large, and the error is of order k2.

Better approximations of the blow-up can be obtained by using this scheme with a stan-
dard step size control, or with a nonlinear transformation as discussed by Stuart and
Floater [17]. Note that their function H(u) satisfies

H(u) = u/f(u) if f(u) ox u™ as u = oo and

H(u) =1/f(u) if f(u) < €* as u — oco.

We can thus expect that H(u) = 1/f'(u) will be the right choice in the general case, and
that their method will simplify considerably when used in combination with scheme (13).

This will be dealt with in [10].

3 Exact difference schemes

In this section we compare the exact schemes we found in Mickens’ book with the corre-
sponding schemes obtained by using (13). For deriving the exact schemes, Mickens used
a-priori knowledge about the solution of the differential equations. Application of our

method (13) does not require such knowledge.

The list contains:
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the reference number in the book,

the differential equation,

the exact scheme, and

the difference scheme obtained by using (13).

For more transparence, we use u; for the time iterates in Mickens’ schemes and y; for the

time iterates in our schemes.

The schemes obtained with (13) dare second order accurate and self-adjoint up to their
order of accuracy [10]. Mickens’ schemes are sometimes self-adjoint, sometimes not. We
did not change that. Because of this, our schemes seem to differ more from Mickens’

schemes than they actually do.

Schemes adjoint to each other always have the same order of accuracy, and the first
term in the error expansion is same size, with opposite sign. Consequently, self-adjoint
schemes have always an even order of accuracy [8]. If a scheme is exact, its adjoint is also

exact. The arithmetic mean of the two is then self-adjoint and exact.

(3.3.5) The differential equation

U= —Au (37)
has the exact scheme [11, (3.3.5)]
| Un41 — Un
——-—(1 Ep=vyY = —Auy,. (38)
Using (13), we obtain
It — Ay + Y1) /2. (39)
We note that N -
k:(l——e"\k)/)‘-l-k(g— ( 3t) —...) (40)
(3.3.32)
v = u’ (41)
u"+1k_ cz QS oy Wi (42)
yn+lk_ Yn = YnYni1 (43)




This example was discussed in the introduction.

(3.3.27)
4 = Au— Au’
%"1_;1;7)\_1 = AUn — AgUns1Un
g’.‘%ﬁi = M(YUn + Unt1)/2 — A2¥nt1¥n
In the case A\; = Ay = A this leads to
—Zm—lkﬁ-ﬂﬂ = %(yn(l — Ynt1) + Ynt1(1 — ¥n)),

the arithmetic mean of schemes (21) and (23). It was considered in section 2.

(44)
(45)

(46)

(47)

A comparison with (38) and (42) shows that it is the linear term in eq. (44) that introduces

the error when applying scheme (13).

(3.3.42)
u = —u®
Upp1 = Un 2u? ul
k Un41 = Un
Ynt1 — Yn

= +y5/2 = 3Ynyn+1/2

— 203 Ynt1 + Y2 — BYiYA L,
Z(yn+1 + yn)

(43)
(49)

(50)

(51)

Note that (=2 + 1 — 3)/2 = —2. Thus the error of scheme (51) is governed by the size

of |yns1/yn — 1], and it is a very good approximation to (49) whenever Yns1/Yn = 1 (DO

additional condition on k !).

(3.3.41)
i = —uf2+1/(2u)
Unpl —Un u? 1
1—e* _’Un+1 +Up  Unt1 T Un
Ynt1 —Yn _ _Ynt1 T Yn 3 Ynna
k 4 4y, 4y}

13




_ y,": + y;21+1 + 2YnYnt1 3+ 2yn+1/yn - (yn+1/yn)2
4(Yns1 + Yn) 4(Ynt1 + Yn)
Note that (1+1+4+2)/4 =1and (3+2—1)/4 = 1. Thus (55) is a qualitatively correct

(55)

approximation if yn41/¥» & 1 and if k is small enough so that the higher order terms in

(40), A = 1, do not cause qualitative changes.

(3.3.11)

i = —wu (56)

Ung1 — 2Up + Up—y L

oy Tl A (57)
;‘2-8111 D)

To apply formula (13), we transform (56) into a first order system and get:

Ynt1 — Un . Unt1 + vg —
7 = 5 (58)
Ung41 — Un — —L:J2 Yn+1 + Yn
k 2 '

To get a second order difference equation from this, we evaluate (58) both centered in

1

5> subtract one from the other, devide by k, eliminate

n+ L (as written down) and in n —
2

the vs and get

n - 2 n + n—
Ut = o ot (g 4 2+ ) (59)
We note that
4 kw 2k? 2 1. kw
2= —sin? — R — (= 4+ =) () =) 60
k= gein o+ (G - (Gt gl ) + ) (60)
(3.5.16) and (7.3.19)
U = Ulgy (61)
has the special solutions
4 _
u(x,t):(-2—$2+61$+,82)/(a1 —at) ; (62)

No exact scheme is known, but two ‘best schemes™ best according to the principles
formulated in [11, p. 85]. They are

n+1 n n _ n n
e~ pbl B 2uy 4 up_,

e o= ur A2 and (63)
n+l __ ,n Lo 2 n+1 n+1
i (64)
At Az
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Scheme (13) produces the arithmetic mean of the two adjoint schemes:

got —ta L up. Upti — 2Ym + Ym— n y:iq-lx — 2 + ypts 65
e MM -;)— ] ( i )

_l_
At " Az? Ym Az?

4 Symplectic schemes

W. Kahan considered in his (unpublished) lecture notes on ‘unconventional numerical

methods’ the first order system

u = au+ Puv, w(0)= n, (66)
v = v+ duv, v(0) = v,

with given constants a,3,7,4d, and gave the following nonstandard difference scheme for

it:

u,-n_ - un « 7

el R —(un+1 + un) + é(un-[-lvn + Unvn+1) (GI)
k 2 2

Un41 — Un 7

_-+T-— — §(vn+1 +vn) + §(Un+1Un + UnVn41)

The axes v = 0 and v = 0 are invariant under (66). In the case
a<0, B>0 >0 6<0 (68)

this is a simplified predator (u) and pray (v) Lotka-Volterra system. For positive u and

v the dynamical system (66) has one equilibrium point, & = —a/8 >0, ©= —v/8 > 0.
Point (@,?) has neutral stability, and thus the trajectories of system (66) with positive
initial values (u,,v,) are closed curves around (u,v). The Jacobian in (i,v) has two

conjugate purely imaginary eigenvalues.

When such a system is approximated numerically, it is not sufficient that the Jacobian
of the discrete model has conjugate complex eigenvalues of modulus 1 in (u,v): Examples
are known for which this condition is satisfied, but the discrete trajectories spiral (inwards
or outwards) instead of being closed curves. In the case of system (67), however, the
discrete trajectories are closed curves. Sanz-Serna [16] explained that this is so because

system (67) is symplectic with respect to a noncanonical Hamiltonian. M.J. Gander [6]

15




then showed that the following scheme for system (66) (a = d = 1, 8 = v = —1) is

symplectic as well:

Up41 — Uy
K
Unt1 — VUn

k

= Up — UnpUp (69)

= —Up + Un41Un -

It is easy to check that system (67) is the system we obtain by applying formula (13) to

system (66).
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