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Abstract

The collisional, nonlinear trapped-fluid equations of Kadomtsev

and Pogutse (K.P.) are used as a description of the dissipative
trapped-ion modes. The equations are solved numerically in two
spatial dimension as an initial-value problem, with due observation
of the appropriate boundary conditions, which are derived. Numerical
results are given for the resulting anomalous diffusion coefficient
D at late times, when the dissipative trapped-ion instability
saturates. In terms of appropriate units, D is found to depend, in
essence, on one dimensionless parameter only. Examples of the time
development D(t) are also given. The numerical values of D (at late
times) are generally larger than according to the K.P. formula, and
the scaling of D with the equilibrium parameters resembles Bohm
scaling. The dependence of the results on the numerical grid and

on the initial conditions was also studied. In addition, several
analytical results are presented, some of which have been success-

fully used for testing the numerical code.




1. Introduction

An estimate given by KADOMISEV and POGUTSE (1967, 1970, 1971) shows
it to be probable that in future large tokamaks the anomalous
particle and energy transports in the plasma will depend critically

on the dissipative trapped-ion instability (DTII) (see list of

references). It is not clear whether the K.P. estimate, on the one
hand, and 1-D numerical calculations by the Princeton group (COHEN
et al., 1976), on the other hand, are reliable (see Sec. 10). It is
therefore important to check those results by more elaborate
calculations. We present here the first successful 2-D numerical
calculations of the saturation of the dissipative trapped-ion mode,

together with the resulting anomalous diffusion coefficients.

Generally, two different approaches can be adopted in order to
obtain a quantitative description of the DTII. On the one hand,

one merely calculates the linearly unstable parameter ranges and

the linear growth rates and frequencies of the various modes,

without investigating the magnitude of the anomalous tramsport.

This linear analysis has been done by several authors using kinetic

equations, considering complex equilibrium situations and including
various particle effects. See, for instance, COPPI
et al. (1976), GLADD et al. (1973), ROSENBLUTH et al. (1972),

TANG (1973, 1974), TANG et al. (1976). On the other hand, one

aims at calculating the time-asymptotic plasma state in order to

determine the saturation level of the modes and the anomalous




diffusion of plasma particles. See WIMMEL (1976/1 and 1976/2) and

COHEN (1976). This nonlinear problem calls for greater simplification

of the physical assumptions; that is, a fluid-type theory is to be

preferred, at least for the time being. This is the line followed

in this paper.

We shall therefore use the 2-D, collisional transport equations
that describe the particle balance for the ions and electrons
trapped in the toroidalrg - field, as formulated by KADOMISEV and
POGUTSE (1970, 1971). See Secs. 2 and 3. These equations will be
solved numerically (see Secs. 8 and 9). Here, it should be borne

in mind that the K.P. equations also admit of discontinuous
solutions (Sec. 5), which, however, are thought to be physically
unrealistic. Effects omitted in the K.P. equations (e.g. finite
gyroradii, neoclassical diffusion, viscosity, Landau damping) lead
one to expect smooth field distributions in real plasmas. It is
therefore a matter of finding a numerical code which does not
produce any undesirable singularities, and one must verify that the
anomalous diffusion calculated depends only insignificantly on the
discretization chosen. Otherwise additional smoothing terms must be
added in the equations. Other effects that are neglected by the
K.P. equations include the correct influence of the electric field
component parallel toAE on the trapped and free particles and the
effect of ‘750 , where 50 is the equilibrium fraction of trapped
particles (see WIMMEL, 1975 and 1976/1). Both corrections will be

ignored here for the sake of simplicity.



In addition, several analytic properties of the K.P. equations

will be discussed. These properties can be used to check the numerical

computations.

The paper is organized as follows: The K.P. equations are

introduced
conditions
properties

conditions

in Secs. 2 and 3. In Sec. 4 the necessary boundary
are established. Bounds for the solutions and invariance
are listed in Sec. 5. Section 6 presents necessary

for travelling wave solutions, while a dimensional

analysis of the parameter dependence of the anomalous diffusion

coefficient is given in Sec. 7. In Sec. 8 the method of computation

is briefly

In Sec. 10

described, and numerical results are given in Sec. 9.

the meaning and the reliability of the results are

discussed and 1-D and 2-D calculations are compared. Section 11

gives a summary.




2. General Equations

The Kadomtsev-Pogutse equations are (KADOMTSEV and POGUTSE, 1967,

1970, 1971; WIMMEL, 1976/1)

M, + Y (“Vtt'f’wc) + V(%Lj\_&) = {J; (2.1

M, + b, (Me—/rg"! -+ V(/hq:g—) - C,I {2.2)

d = q_——szo (m-mf), (2.3)

=N
s B

<
0

%x- Vo = % X V[/J(%waf/j/ (2.4)

VRBR=0 , Vv = O/ (2.5/6)
<l T = ETQ 2 . (2.7/8)
ZQBNO 7: T

1

A =

These equations describe the 2-D, j;f!é’drift motion of the trapped
ions and electrons in a plasma slab and their interaction (creation,
annihilation) with the background of untrapped particles by
collisional equations of continuity for the trapped particles. The
electric potential is obtained from the quasineutrality condition
for both trapped and untrapped particles. The coordinates used

are X, t} , and the time t. Given quantities are the magnetlc

field B , the temperatures T @(‘) and the density }\} (Y’)

equilibrium. The equilibrium densities of trapped and untrapped



[*]
particles, respectively, are /no(x/ = JOO{)'NP(Y) and N ()()

. [/‘_80 (X‘)J . NP(X‘) . The effective collision frequencies for
COUL 2
trapped particles are )) Qf /(5\ . The unknown functions

";9.

JE(X, g -(:) o are the trapped particle densities, ¢ is the electric
potential, andg is the E-‘(’E drift velocity. The subscript t
designates the time-derivative. Equations (2.1) to (2.4) are to be
solved using appropriate initial and boundary conditions (see Sec. 4).
The plasma slab extends over Oé X’_—<_ ad_, with walls at X'=O and

X =Q . The plasma is periodic in the direction, with the
¢

periodicity length @’ (Bof the order of @ ).

For general A[Y)} VA$ (O , the K.P. equations have the following

special solutions, which are damped and have vanishing particle

flux density in the x - direction:

m = (%) + /n,f (%) Wb [~v,;f)/ (2.9)

<

me = M (x) +m, (%) o (-0 1), 210

where M: and fhi can be chosen arbitrarily as long as /)’1! g @)
and the boundary conditions (see Sec. 4 below) are satisfied.
These solutions make the nonlinear terms of the K.P. equations
vanish separately. In particular, /H; and /]1:: can be chosen as

sums of Heaviside step functions, wich shows that the K.P. equations

allow discontinuous solutions.

In Sec. 4 we shall see that the appropriate boundary conditions to

the K.P. equations forbid trapped particle flux densities to the




walls. Hence, simple equations of motion can be derived for the

total trapped-particle numbers,

'Zm(t) = ja&rg&dl} m" (x, Y 1)
0 0

viz. if VV =0 '

L, + ) (Z{‘ ZO) =0,

with the general solutions:

+0 ¢
Here Ez is the initial value of Ez , and

a b
Zo = S&&"§ Ot\él M (x) .
0

7" = 2%+ (2°-2°) exp (-2 U,

(2.11)
(2.12)
(2.13)
(2.14)

A similar result obtains, of course, for the trapped electrons. It

v e
follows that the total trapped charge, i.e. Q = z = Z , relaxes

to zero for t s 00,



3. Spezialized Equations

It is of advantage to consider the K.P. equations in the approxi-
mation M/})y ‘:O . This condition can, on the one hand, be inter-
; Gy e ; ”r o
preted as a special equilibrium with /fA]:: const. Of course, the
. : P/nz3/2 Cgi
assumption V«.'e_ = const, l.e. M /T / o = const, then generally
1
assumes the character of an approximation. On the other hand, the
condition can be interpreted as a restriction of equilibria and

perturbations such that almost everywhere

oy I (T/N°)| < NI .

with g :‘fhﬁ—’hg being the trapped charge density divided by <.

1f rSX.A‘-:O , then the drift velocity E is tangential to the
instantaneous g: const contours, viz. "9’ = Aé‘_ X Vg and
tgf v Y?g — C)j and the following form of the K.P. equations

obtains:

! 2
M, N :O) (3.2)

me o+ v (m'-m®) + A(m;%; = ey g

t

0 e 5 1 'y toe B

where the subcripts X and 1; denote spatial derivatives.Consequen-—

tly, the following linear relation holds:
N ¢ 2 o q.
gp + Wi (m-m®) - b (mf-m7) = 0. (3.4)

The system of eqs. (3.2), (3.3) may also be transformed into the




following second-order equation, if V)/{: 2: O' viz.
/

Qup + (Mide) g + Vibe g - (ve-2:) v, 0y

+ AR gyt = 9y 0t) =0 =

[¢]
with the diamagnetic drift velocity 'U’cz AQ’[XL. Often V'U'O :O

is assumed, but, in general, U, may depend on X" . The trapped

14,Q
densities fY}_' can be obtained from g and S)t g

/Y]_'L = /ho -+ (l)&“)){)—d (?{_ + 3 S)/) [ (3.6)

m =m® + (% ;) (j’f i f,)- G-7

From egs. (3.5) to (3.7) and periodicity in y it is readily
derived that the specialized K.P. equations permit only one time-

. ; e v e 0
independent solution, namely the equilibrium f = O} M =M =1,
In particular, no stationary convection exists in the laboratory

system. The linear dispersion equation reads (WIMMEL, 1976/1):
; 2 :
(—/LUHJJ) + (%Jrl);)(www)
—a(Vy)we + 2 = 0, (3.8)

where () is the real frequency, ))the growth rate, W, = k/ U%.

7

The instability condition is

!
UQ —u..,'

' {3.9)
Ve t Vs



Furthermore (WIMMEL, 1976/1), the average particle flux density

in the x-direction is ambipolar and may be expressed as

X LRy A
[ = <ﬂ’l U /> = “B:—<Qt,’?%>} (3.10)

where the pointed brackets denote the average over }é .

A simple differential relation exists between the time-asymptotic
particle flux in the x-direction and the electric potential q), both

averaged over‘% and late times t' . From eqs. (2.1), (2.2) it

follows that

M = - Ko n = u Kt on D

(3.11)

where the bar denotes the time average and the double pointed
brackets indicate averaging over'lg and tj . Owing to eqs. (2.3),

(3.6), (3.7) this can be transformed to yield

[ ==L g 3> G

or

— X ) No Vo UV, e .
r — == &< (b/>/ . (3.13)

X 2{2-— l/{

||

{l

It follows that the average potential is negative in the interior
X
and positive near the outer wall (X"-:. Q), if F >0 in the volume
e - .
and :?O at the boundaries, as prescribed by the boundary

conditions (Sec.4). Another relation, between the particle flux and

the mean density ¢ = .g-_(f]q".i. f‘ne) , can also be derived, viz.



— X \\ \
FY _ ML < Mm—-m" D> (3.14)

//" *
X Y, + )Jt-

This formula and eq. (3.11) describe the underpopulation or over-
population of the trapped particles (preferably the ions) caused

by the divergence of the trapped particle flux (see WIMMEL, 1976/2).




4. Boundary Conditions

Previous authors either did not introduce boundary conditions at
all or else only for y because the equations were only intended
for estimates or because crude approximations were made. Boundary
conditions are indispensable, however, for numerical or analytical

calculations of solutions of the K.P. equations.

The slab coordinates x and y represent the coordinates r and
‘f(E?‘C1§) in the plasma torus (see LAQUEY et al., 1975) because
the surface considered has to be aligned perpendicular U))% Here

r is the distance from the magnetic axis, 9 and(j are the poloidal
and toroidal angles, and q(r) is the 'safety factor'. A surface in
the torus (or cylinder) everywhere perpendicular to B, with q

+ ©0 , is a surface that spirals around the magnetic axis. As the
dissipative trapped-ion modes considered here are flute-like, it is
possible to consider separately a section of the spiral surface
which spans an angle A(e—cff) =77 and impose pericdic boundary
conditions in r(e~%1fj or y. One thus has the intervals [Cn(ij
for r, and [O] 27(‘ TJ foxr E (e— cl f) . In the slab model
one accordingly chooses the intervals [O'IXJ for x, and {:Of er
for y, with b =a or b=NTQ , respectively. It now remains to

discuss the boundary conditions for x = O,a. The minor axis, r = 0,

is replaced by a reflecting wall (zero particle fluxes) at x = 0.

0 ..
Because of /YLJ = O the boundary conditions at x = 0 are then for

all times t:




(
O

4.1)

v o= -A% = A(m;—m’;)
and

vy o= —-A%t = A(vL'n; —)JQ%;):O. (4.2)

Because of ))1: ’-‘fv )]& this yields

/h't& = /hey = . (4.3)

This makes the nonlinear terms of the K.P. equations vanish, which

at ¥=0 thus take the form

+ Y, (ML'L—AAO) = (4.4)

‘I/!Q

My

with the general solutions (X’ = O) .

4, e & ) 0 )
n’' = M +(MA‘ _m)wf)(—){;/e f/. (4.5)
iIQ W . $ e
Here the constants /)/],4 represent the initial densities for

X'-:'t - O ; they must of course, be independent of’\j . The K.P.
equations can thus be solved at the reflecting wall separately and
yield a solution that relaxes towards equilibrium and guarantees
’UX: 0 for all \j and T . In other words, the boundary X=0with
the solutions of eq. (4.5) is a characteristic surface that is
isolated from the rest of the volume in the sense that the X-
derivatives of M‘L'Q are completely arbitrary at X’ =0 . This
leaves '\7} undetermined, too; but this does not prevent one
solving the K.P. equations at =0 , the reason being that

~

2 -
/y\’(le = . = O . The method of characteristics can be used

ks



to show that the solution given by eq. (4.5) is unique for given
o ~, e . La )
initial data f’h/‘ , provided /]/?_/i are independent of \j , and

provided the X'- derivatives, 4{;,and PlY , remain bounded. This
means that the above boundary conditions are automatically satisfied
in this case once the initial conditions for i::O at the reflecting
wall are given. For numerical calculations, however, it is pre-
ferable to use the boundary conditions in their explicit form, eq.

(4.5), at all times t.

At X = Q an absorbing wall is assumed. The boundary conditions

there first take the form

—_—

MI{I‘E' Ufk/ > O . (4.6)

te
Because of f}li E: (0 this can be rearranged to read
Y 2. () for N + M > Q
; . (6.7)
L
’\jk arbitrary for m ="M = O

Owing to the definition of }2 as a derivative and the periodicity

in \é one has for every X and t

(4.8)

G
Og\? l‘l\g = 0O

v e x ) ) ,
If 4&' and 1Y are continuous only E}-lntervals contribute to

1 e v 2
the integral, either with M +1n > O , or with M =ms O

¥ e
Because of U ==/i(@13—143) the following set of conditions is

then equivalent to eq. (4.7) for X = oL i




14

FU}Y'

1"
@
g
L
5
\'
@)

N e (4.9)
\jxv =0 for Mm =mn =20,

Hence, the integral of eq. (4.8) vanishes for X=@ only if for

all times
X X
v =0, Vv, =0. (4.10)

These boundary conditions of the absorbing wall are identical with

those of the reflecting wall.

One thus hase the, perhaps, paradoxical result that the K.P.

.

v, L2
equations do not allow wall losses if M '

’ U’x’, and, hence 83_

are continuous. However the collisonal interaction of trapped

particles with untrapped ones allows one to have a mean particle

flux in the X- direction in the plasma volume, since, for example,

trapped particles are created at small values of X and annihilated
at large values of X° . The anomalous diffusion in the volume can
then be calculated in the hope of estimating the wall losses of a
real plasma. The above derivation of the boundary conditions holds

for the general case with VA i O .



5. Bounds and Invariance Properties

Consideration of the K.P. equations in the Lagrangian form

'3
YL YR 0

= o= . — {5.1)

I ))L’L (WL M) } ‘

with

A s &
'12’/ Z X V[A(m /14)] /
and the definition

dont / Ry A 4 /
F:mt+g Vm _/mt+{7.(mgj, (5.3)

for general A(x), i.e. VA i O , shows that the property

ve . : s .
W d ;Z 0 is preserved in time. Furthermore, one obtains

1
the following upper bounds for qa,’ and g :

we & he °) (5.4)
v e o)
]g{ < MW(MA/MAIM,, (5.5)

L}

T 2
where ’VLA ) ‘\ﬁ“ are the initial density profiles. Hence it is

seen that the densities remain bounded for all times.

1

. v ;
In addition, one can prove that stationary values of M , viz.

; v B e
with YLVl = O , or 1, viz, with Eﬁh :.O , always relax
towards equilibrium as long as they do not disappear as such.

This may involve stationary points or curves. The proper velocities




\

v e 5 s
W or W of such points or curves must be taken into account.
~ e
These velocities generally differ from the drift velocity EZ .

<
Let us consider, for example, a stationary point YZH.Z'O. Substi-

tution in the K.P. equations, eq. (2.1) to (2.6), yields
1: 4 <]
mf_;,y“(m_m) = (J, (5.6)

This equation is also satisfied if the partial time derivative is
replaced by the total time derivative taken when moving with the

. A L. . ¢
velocity )y . In fact, both derivatives are equal owing to Ez41 = 0 .

v . . . i

&M L v L b
e . _ . (5.7)

—-——-—-g_t = 4 M,c + W Vm /VLt

The same applies, of course, to stationary values of 41% This

proves the validity of the above assertion.

The nonlinear K.P. equations with arbitrary A(X‘}, i.e. VA '?" O’
together with the boundary conditions of Sec. 4, are not only in-
variant to translations of % and t , they also remain invariant

with respect to "translations with shear" of tbe form '3 —$>'y + Tz(Y)}
Vl(xj arbitrary. Thus, for every solution /hf'e(&ﬂ y,'t) , the
functions qiwe(xlg_+q(xJ’fﬁ”T) are also solutions. This invariance

can be used for checking numerical solutions. By substituting

a sum of Heaviside step functions for Il(k) a discontinuous solution

is produced from an arbitrary, smooth solution. This proves again
that the K.P. equations have discontinuous solutions, which ought

to be eliminated for physical reasons, e.g. by suitable numerical
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methods or by adding diffusion terms.

p\ 0
In the special case X':O and MX’XE: O a further invariance
exists with respect to "pseudo - reflection" at the straight line

X= %‘ ; i.e. for every solution [g(Y,"-aIt) , 9.(_ (N‘,'La,{)]

of eq. (3.5) (that satisfies the boundary conditions), the functions

[—- ?(C&‘){', \j ,'U, —-?{ (Q-Y‘, 13, t)J also form such a solution.

Antisymmetric initial conditions, viz.

g@((\g}to) 3 ?(Q'yzy;OJ =0,
(5.8)

Q¢ (x1y,0) + ¢, (a-x,y,0) =0,

yield solutions that are antisymmetric at all times. Of course,
periodicity of a solution [g‘,j}{_} in X and/or \3 is also

conserved in time.

It would be desirable to derive constants of the motion from the
invariance properties. This is not possible for want of a Lagrangian
density producing the K.P. equations. It can, in fact, be readily

: . v,e ;
proved that no polynomial function constructed from M ' and first

derivatives can be a Lagrangian density for the K.P. equations.




6. Necessary Conditions for Nonlinear Travelling Waves

Let us consider whether there exist solutions of the K.P. equations
in the form of travelling waves that propagate in the \jf direction,
viz.

‘\,'Q

A2
v = m' (Y,\H—W'U; (6.1)
with W= const. Only the special case with faxA: OI ’éx, 1)81: —, O]
}

0 1 e
and fax_\)' = (0 is discussed, on the basis of eq. (3.5) for g:fh, -Nn .

This equation now assumes the form

Wo gy = Koy + Wi

+Aw(g>‘a g)xy - S”?}f‘a‘) — O/ (6.2)

with
k - (p&-+p£)w -+ (De—)/,;,)\);, (6.3)

The boundary conditions at X=0 and ¥za, eq. (4.5), yield ?:O

at these boundaries.

Multiplying eq. (6.2) by 28\& vields

wl (?‘dz)y - 2K 9\; + b, U (fl)}}

-fAW[(g\js)k - (?yzgY)y]: 0, (6.4)
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By integration over the domain of definition one obtains

S‘(‘MS%&B kg‘az = 0. (6.5)

This yields, for K}‘“O , only the trivial solution 8:—" S’y =

: ey e e ©
representing the equilibrium 7\ = Nn .

The case K‘ZO must be treated separately. Multiplying eq. (6.2)

by 3 yields for K = O

\ul(gg\a)% - W gﬂz + b b 3>L

“‘AW[ (W\az)y B (S)?k?y)y] = 0, (6.6)

By integrating we obtain

jdvj?ro\\& Y D, 91 - wzg,;”) - 0, 6.7)
0 0

If one takes ))4:-:_0 » the trivial solution g = gy: is again
obtained. It follows that nonlinear waves are only possible for
K:_O,| ))2’]){-_-‘: 0 at most. It was not possible to give a proof of
existence or construct solutions for this case. This result is in
contrast with the disparate cases of LAQUEY et al. (1975) and
COHEN et al. (1976). Their equations differ essentially from the
K.P. equations used here in that they include Landau damping and
AX"’:*: 0 and use various approximations; unlike the present result,
their equations do allow nonlinear travelling waves with W = —

0

in the case ))4: = O :
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7. Dimensional Analysis: Parameter Dependence of the Anomalous

Diffusion Coefficient

Let us write eqs. (3.2) and (3.3) in the form

1

’i iy o ~{ ~R A~ N
L - gy “LA(/“”“g _44?1%)_ 0, a1

) t e ~te ye o0 ) )
with S) =M-m » N' = -M , and 'U;) being defined
—-A o
as after eq. (3.8). By using the units Ue, , &, &, and 1 for

the wvariables t g R } , and /VL‘"’Q , including 5), one obtains

the dimensionless equations

(7.3)

C e pbA /4/“0 ¢ e <
}L’t ‘Jr)/k = '1—);—&‘6;( <+ Veal /’kf}“{;( '/’hl/u; :O)

(o (7.4)
/ . . .
where C , ? " lfl 5 }A , O are the dimensionless substitutes for

't , X ,3 , /}’:i":f‘z 5 ? . The boundary conditions require that
1R

M x

and that }l:’;’z: ) at the wallsj: O andf:/f. Hence the solutions

of egs. (7.3), (7.4) depend on the variables T ,} 5 1? , on the

and § be periodic in Vl with, say,the period 1?0 — '@' = /f;
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parameters

(7:5)
I, Am?®

Y, o Y, a*

—

2

and on the initial conditions.

Let us now consider the anomalous diffusion coefficient. According

to eq. (3.10) the diffusion coefficient is given by

A e

— Ao . N (7.6)
jD ! mo ~ )/Etm; \?‘f‘ S)E’) /

or

D ~ Am" <G,C,-b‘%>, (7.7)

If the pointed brackets are now re-interpreted as an average
over X, gwand t'for large times, and if it is assumed that an
asymptotic value of D is attained for tf4?CU that is independent

of the initial conditions, then it follows that

b = i e 9/' (C,”C?_); (7.8)
where is an undetermined function. Other possible forms of
A

eq. (7.8) are, for example,

92
:b _ U (32 (C4 ’ Ca) (7.9)

Yo
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or
= c
D = P{G\'g'g CCA[ 2 ) (7.10)
Equation (7.9) exhibits the K.P. scaling in the dimensional factor,
while eq. (7.10) refers to creation and annihilation of the trapped
ions by collisions (SAISON and WIMMEL, 1975; WIMMEL, 1976). In terms
P m

of experimental parameters, viz. A , B 5 N . / " CS; , and for

a given choice of ions and of Ti/Te one has C,f:const and

3 S5/2
AT
B NP (1-3)

1£, in particular, one assumes 33 to represent a power law, viz.

(7.11)

g? A sz , then the scaling law for:D will read

3 g
. NP é\o T JZ
' . a2

D€ e | TR N (A

with o undetermined. For o=/ and «=2 Bohm scaling and
Kadomtsev-Pogutse scaling are recovered. Equations (7.8) to

(7.10) can be used for checking numerical results.
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8. Numerical Computations

< 0
Equations (2.1) to (2.8), with BXA = axﬂ’l =0 and U‘; g — comst ,
7
together with the boundary conditions of eq. (4.5), were numerically

solvedintherangeO.__é_X‘é(l, 0:4_ yé @:a,'tio

From the solutions the diffusion coefficient D with respect to the

0
gradient of the trapped equilibrium density M (XJ y WiZ.

b(&,t) :_F%_jgdy(mi_f /h‘i) \JX/V’MO, i3
0

2

was determined. The numerical calculations use an explicit version
of the Carlson method (see RICHTMYER, 1957). Most runs were
performed with a 60 x 60 quadratic grid (AX‘ =5 Ag), some
calculations with a 30 x 30 grid and test runs with 70 x 70 up to

110 x 110 grids were also performed. The equilibrium used was of the

form
a(x) = m"(0) (A= =), o

e B PT .

with o = const. Hence, PJ and are also known functions of X" .
; NPT

The numerical values of and given below are the values

at X = (0 . The collision frequencies Lﬁ ¢ are calculated from

!
these values on the axis. The formula

couL e 2
e = 33 (——*—LZ———‘) (8.3)
MR e QYT Samm (SO

couL 2
was used instead of Lk/e,:: Lq e '//J; . The following boundary
/

conditions were used:
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mi’o’(xw,tj,t) = m’ (X)) (8.4)

for Xw:O and X"W:CL , as well as periodicity in \é , with the

period g’: a.

Generally, the initial perturbations were of the form

- diss < V3
M = COX(G-*)%AH ACM(/VM?JrG)i'CO'IWT

(8.5)
with T:Z?Ty/;@ s CO:- 2 » 107, /WID= 4. Other values of W  were
also used. The constants 2’ and 9 were determined in such a way
that /m =M, gave a purely growing term according to the linear-

ized theory. The time step At was variable and was determined as

bt = min (AL, A, | Aty At (5.6

with At/‘ = 2},\_58(}, Atl = (/{O}je)_,fl At}:AY’/(’{.’{maxlny ) ,
At% = AB /(].1 max l \7’\&[ ). Replacing Z\It_ by A%/SJ in one run did
not appreciably alter the time asymptotic value of the diffusion

coefficient: —D decreased by only about 10 Z.
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9. Numerical Results

We now present the numerical results. As a parameter, the critical
wavelength )‘L: 27[-170/(){’e V§) is used (WIMMEL, 1976/1). For
)(::> CL the diffusion coefficient ]) does not approach an asymptot-
ic value. Rather does.D at Xt:é; fluctuate in time between zero
and a maximal value of the order of J)R-P. . One-dimensional Fourier
analysis in the X}—direction shows that most of the energy resides

in the M=4 and W =( modes. This parameter range is close to
the limit of validity of the theory, where magnetic drifts become
important, and a transition to the collisionless trapped-ion mode
occurs (KADOMTSEV and POGUTSE, 1970, 1971). In an intermediate range,
Q/Z > 1C> o\/q_ , fluctuations of D in time become smaller.
The fluctuating asymptotic state is reached, on the average, after
/[O MS,in the range of parameters we considered. Again, most of

the energy resides in the /Wl'-:/l and M =0 modes.

; ; ; Qa
In the regime of small-scale convection, 1.e.'1clf -, the

diffusion coefficient in most runs assumes a constant asymptotic
value after about 5 to 10 ms. Between the initial phase of linear
growth and the asymptotic phase there is a strongly nonlinear

phase in whicth may exceed the asymptotic value by a large factor
and, in addition, may strongly oscillate (see Fig. 1). The final
state is characterized by an azimuthal mode number m z; 1 in which,
again except for M=0 , most of the energy resides. For this range

a diagram of equipotential contours, showing also the direction

of the E\(B drift, is given, with /M — /f (see Fig. 2).
~ ~ ﬁ:mq_e
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In agreement with analytical results the potential shows a dipole

effect. In this case as well as for larger values of L

no indication of a disordered, turbulent state is found; rather an
ordered wave pattern prevails. The one-dimensional Fourier transforms

of E\j and E in the j and X -directions yle]d the 4 energy

~_

spectra \)\) ("Wa. l’” \\/3(- (A"" YL) V\f\}n'\/‘ ‘})f \M‘x-[-'f_'i:f

where and nA are the mode numbers in the 3 and ¥ —directions,
s

respectively. While, in a case with Mee 1=

peaked at m=2 , \‘J){, at Mn=0 and 2 5 \)\/r and \'V;l are

smooth spectral distributions with respect to 9 . 0Of course, the

)
7 th is strongly

kinetic energy density of the drift motion is much larger than the
electrostatic energy density, the ratio between the two being of the
order of Cz/ﬂz: > , with 'QQZZ Alfvén speed. But for
our purpose it is sufficient to consider the electrostatic energy

spectrum alone.

A peculiar phenomenon may occur for carefully selected parameters
in the transition region between different values of the final

M1 -number (see Fig. 3). In the example, first a metastable state
with A= 4 is reached; then, after 15msec, a sudden jump toc a
final state A = 2 occurs. By this transition, the diffusion

coefficient is enlarged by a factor of two.

In Tigs. & to 6 we show the dependence of several dimensionless
versions of the anomalous diffusion coefficient c¢n the dimension-

less quantity
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s = — VY, V. (9.1)
g 271 VU
that describes the equilibrium state considered, and that is proportio-
nal to Qj/lc . Because the original calculations were carried out
varying the dimensional parameters B ,T , NP » A, CYO separately,
the results reduced to dimensionless form show that the quantity
mmarg is the only equilibrium parameter that matters for the diffusion

coefficient. Figure 4 shows that the diffusion is roughly Bohm-like

since the quantity (ll}b is proportional to D Fig. 5 proves

Bohm’
that the diffusion is generally stronger than according to K.P.;
Fig. 6 compares the diffusion to trapped ion creation and annihilat-
ion by ion collisions. All three figures demonstrate a sawtooth
structure of the diffusion curves that comes about by the differing

values of the final mode number, m (Fig. 7), and by the fact

final
that the global scaling of D differs from the "local" scaling valid
for a constant value of Mes a1’
In order to prove that the results are independent of the number

of grid intervals, this number (NX = NY) was varied, for a particular
equilibrium, between NX = 60 up to NX = 110, Figure 8 shows the
resulting diffusion coefficient and final mode number, which are

both fairly independent of NX. In addition, the initial conditions
were varied in two different ways. First, the quantity N, of

Sec. 8 was varied between 1 and 10 (Fig. 9, solid line); second,

monochromatic initial conditions, i.e. m,

.. =m , m from 1 to 10,
init [e} o

were used (Fig. 9, dashed line). Figure 9 demonstrates that the
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diffusion coefficient does not vary too much with this set of
initial conditions, while the final mode number varies to a
greater extent, particularly so in the case of monochromatic initial

excitation; as might be expected.

The fact that the final states contain a large—amplitude, m = O
Fourier component points to a possible saturation mechanism, i.e.
modification of the equilibrium density profile of the trapped ionms.
Here the question arises whether it is the profile modification
averaged over }é or the local profile modification, e.g. the

maximum deviation from the equilibrium, that counts for saturation.

In Fig. 10 the radial density profile, averaged over }} , of the
trapped ions is shown for the time—asymptotic state. It is seen
that the profile is far from forming a plateau. However, the
maximum local trapped-ion density has a deviation from the equili-
brium density that is 3 to 4 times greater than the average
deviation in this case. (This fact has not been diagnosed directly;
rather is it deduced by comparing average and maximum values of the
electric potential). Hence, it appears that it is the maximum
density perturbation that approximately satisfies the mixing

length condition of saturation (WIMMEL, 1976/1) viz.

| Ky | I/Aﬁil%w ~ | Vme | (9.2)

The reason, in terms of the mixing length model (WIMMEL, 1976/1),

that the diffusion is nevertheless larger than according to K.P.
(Fig. 5) seems to be that rather than having \l<¥-l ~ |L<H ]

as is postulated by K.P., we find



(9.3)

& |k

L]

\Ky‘ Y

QT

In fact, the ansatz
“(*‘m < 27?.”(\3{/& (9.4)

reproduces Bohm-type diffusion, as is explained in the next section.

If one considers, instead, a picture of mode-mode interaction, then,
according to linearized theory, the m = O modes provide for damping,
while me. 1 =M and its harmonics give rise to growth. Hence, if a
conserved, energy-like quantity existed, this quantity were to flow
from higher to lower azimuthal wave numbers m. This flow direction

is opposite to the one implied by KADOMTSEV and POGUTSE (1970, 1971)
and explicitly mentioned by LAQUEY et al. (1975). However, because the
ExB drifts, when they vary in time, couple to the reservoir of
internal energy, no useful energy conservation theorem can be formulated
for the nonlinear K.P. equations, that isyin terms of the macroscopic
variables ni, ne, db s E; , and lz' alone which enter the K.P.

equations. Notice that this difficulty refersnot to the collision

terms, but rather to the convection terms of the K.P. equations.
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10. Discussion

Our results are important mainly because they stem from the first
successful 2-D computations made so far, and that they contradict
the earlier claims by KADOMISEV and POGUTSE (1970, 1971). In the
following, we shall discuss several points that refer to the

question how reliable our results probably are.

First of all, it is plausible that the diffusion depends on the
spatial extent (coherence length) of the perturbations in the

x - direction. Our calculations, by specializing to Y7]76 =)
probably maximize this radial coherence length and, hence, also the
diffusion coefficient. This can be made plausible by considering

a mixing length ansatz ( WIMMEL, 1976/1), whereby

) o~ - Av, Ky
K (et + Y

It is seen that Bohm scaling, consistent with the numerical results,

rax“l’l . (10.1)

is obtained by a special choice of the average I}(k[ namely by

taking the effective coherence length

o=t mfligl < ara/liG1 e

and by choosing l OJI = ’Cdolcﬁliz , sign ([L”/{JO) - 4.
Such a value of ’exv is in agreement with the fact that the
numerical solutions exhibit broad k&r— spectra. However, for

V'\‘}oio both QY and :D will possibly be reduced because the



dominating () and/or the dominating kéﬂ could become X dependent

and, thus, impair wave coherence.

A second point concerns particle detrapping. The time-asymptotic
plasma states of the computations satisfy a rough condition for

electrostatic detrapping being absent (LAQUEY et al., 1975), viz.

l QC#/T[ & 80?'- (10.3)

However, at short times, the spatial maximum of the potential

goes through a maximum value that may violate eq. (10.3). Therefore

it will be desirable to modify the K.P. equations to include detrapping
effects and repeat the numerical calculations. It could well be that
the final plasma states will be nearly the same as without this

modifications; but this is not known at present.

A third point concerns the additional occurrence of the ion
diamagnetic branch of the dissipative trapped-ion instability (TANG
et al., 1976). 1In special cases such that the magnetic particle
drift can be assumed to be destabilizing for ions of arbitrary
pitch angle (condition for the magnetic shear: ﬂ[1f//ﬁ ~ /1)
there are apparently regimes in the parameter space where the ion
diamagnetic modes dominate in terms of linear growth rates. Such

modes are not taken into account in the K.P. fluid equations.

A fourth point concerns the comparison of our calculations with
several 1-D computations by other authors (LAQUEY et al., 1975,

and COHEN et al., 1976). These authors have reduced the K.P.




32

equations to one spatial dimension by using a number of approximations.
By this device the character of the K.P. equations is altered so much
as to even lack the fundamental property of saturation, which the
original K.P. equations possess (see Sec. 5). As a consequence,
additional damping must be added, and it is Landau damping that

3

is negative, i.e. destabilizing. Therefore, the 1-D theory was not

has been chosen for this purpose. But, for pz.ﬁ> L Landau damping
A

evaluated for the important cases with 11{> '7§— . Further critical
points are the following:
a) The 1-D theory neglects the aspect of wave coherence in the
X - direction. However, our 2-D results show that
the time-asymptotic diffusion coefficient can be influenced
by the X - dependence of the initial conditions.
b) At large perturbation amplitudes the validity of the Landau-
damping formula is uncertain.
c¢) The 1-D results of Princeton for the diffusion coefficient

depend in an extremely sensitive fashion on the equilibrium

parameters. Hence, the practicalvalue of those results

appears to be questionable.

The last point will be illustrated by giving a quantitative argument.

The anomalous diffusion coefficient D given by COHEN et al. (1976),
eq. (48), when corrected according to an earlier version of the

paper ( see MATT-1259, 1976) has the form

] A0S
AR

) < 616 RE (4“%1@)} (10.4)
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where the symbols have their usual meaning (explained in the reference
cited)., In order to obtain eq. (i0.4) from the Cohen paper, one must
insert the formula for DK P in the formula for D/DK v given there.

This diffusion coefficient then does not depend or the magnetic field

B, but very large exponents operate on most of the other quantities.

For instance, increasinng“ by a factor of 2 increases D by a factor
greater than 1000. This does not agree with our 2-D results. In these
an opposite tendency is effective, namely the dependence of D on the
equilibrium parameters is much weaker than according to KADOMISEV
and POGUTSE (1970, 1971) and, a fortiori, than according to COHEN

et al. (1976).

From what has been said we think that our 2-D analysis is superior to
the 1-D computations mentioned. It presents no problem to insert a
Landau damping term and/or other damping terms in our equations.

But, contrary to the 1-D approximation, our 2-D solutions saturate
already without Landau damping, and they better represent the

extended type of modes (GLADD and ROSS, 1973) which we expect to

dominate anomalous diffusion.
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11. Summarz

We have presented numerical results on nonlinear saturation and

anomalous diffusion due to unstable, dissipative trapped-ion modes.

This has been the first successful 2-D treatment of this problem,
including boundary effects and time-dependent behavior, starting
from given initial density distributions. Several effects, e.g.
neoclassical diffusion, Landau damping, viscosity, finite gyro-—

radii, have not been included so far.

The main numerical results are: At large times, saturation occurs,
and in the prevailing cases the diffusion coefficient D approaches

a time-independent value. Usually, an ordered wave pattern evolves,

with only a few azimuthal wave numbers visible, viz. m = O and
mo=m depending on the equilibrium parameters. Harmonics of m,
are also present, but with much lower intensities. A turbulent

state, with many modes excited, and showing a stochastic behaviour,

is not found at all. The diffusion coefficient D scales nearly

Bohm-1like and, generally, is larger than according to the K.P.

formula (KADOMTSEV et al., 1970, 1971). It appears that in a

mixing-length model (WIMMEL, 1976/1) the result D> DK p, can

be understood by the fact that rather than ]i(v,l ~ [ k;j}

one has
lKY!la\J— == lk\é[ ) (rr.1)

while the condition for the maximum saturation amplitude is

unaltered (WIMMEL, 1976/1):



35

. , Mt (11.2)
ay A

[ K|

L IV/VLO

When the equilibrium parameters are varied, there exist small
transition regions in parameter space where the azimuthal wave
number that shows up at late times,

= m,, tends to jump to

Mfinal 1

another integer value. In these regions solutions behave somewhat
irregular, as explained in Sec. 9, but these "quantum effects' do

not affect the overall picture.

The main analytical results are: The boundary conditions forbid
true wall losses, but allow anomalous diffusion in the plasma
volume. Dimensional analysis gives useful information on the
scaling properties of the anomalous diffusion coefficient. Special
solutions and bounds of the general solutions are obtained. In-
variance properties of the K.P. equations are considered, and
necessary conditions for the existence of travelling waves are

derived.
After we had completed this paper, additional work on the trapped
ion mode driven by ion magnetic drift (see Sec. 10) came to our

attention (TAGGER et al., 1977).

Acknowledgment - We thank Dietrich Lortz for a valuable discussion.
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Figure Captions

Fig. 1. - Diffusion coefficient D wvs. time t, normal
situation.

Fig. 2. - Example of equipotential contours at late times, for
M, 1 = 1. The arrows give the direction of the E x B

drift velocity.
Fig. 3. - Diffusion coefficient vs. time, special situation,
equilibrium parameters in a transition region between

different values of m

final®
Fig. 4. - Bohmtype scaling of the anomalous diffusion coefficient,
(D/avo) vs, mmarg'
Fig. 5. - Comparison of the anomalous diffusion coefficient

with the Kadomtsev - Pogutse formula: D/DK p, Vs

m :
marg
Fig. 6. - Dimensionless diffusion coefficient (D/)&az) Vs,
m ;
marg
Fig. 7. - Final dominant mode number m_. vVs. m .
final marg
Fig. 8. - Test of validity of calculationms. Diffusion coefficient
D vs. the number of grid intervals, NX = NY.
Fig. 9. - Another test,involving variation of initial conditions.
Diffusion coefficient vs. parameter m describing
the initial spectrum (see main text).
Fig. 10. - Average radial density profile of the trapped ions

(solid line), and equilibrium density profile

(broken line).
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